51
|
Abstract
Neuroimaging techniques provide information on the neural substrates underlying functional recovery after stroke, the number one cause of long-term disability. Despite the methodological difficulties, they promise to offer insight into the mechanisms by which therapeutic interventions can modulate human cortical plasticity. This information should lead to the development of new, targeted interventions to maximize recovery.
Collapse
Affiliation(s)
- Timea Hodics
- Department of Neurology, Georgetown University Hospital, Washington, DC, USA
| | | |
Collapse
|
52
|
Longitudinal changes in resting-state brain activity in a capsular infarct model. J Cereb Blood Flow Metab 2015; 35:11-9. [PMID: 25352047 PMCID: PMC4814054 DOI: 10.1038/jcbfm.2014.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022]
Abstract
Strokes attributable to subcortical infarcts have been increasing recently in elderly patients. To gain insight how this lesion influences the motor outcome and responds to rehabilitative training, we used circumscribed photothrombotic capsular infarct models on 36 Sprague-Dawley rats (24 experimental and 12 sham-operated). We used 2-deoxy-2-[(18)F]-fluoro-D-glucose-micro positron emission tomography (FDG-microPET) to assess longitudinal changes in resting-state brain activity (rs-BA) and daily single-pellet reaching task (SPRT) trainings to evaluate motor recovery. Longitudinal FDG-microPET results showed that capsular infarct resulted in a persistent decrease in rs-BA in bilateral sensory and auditory cortices, and ipsilesional motor cortex, thalamus, and inferior colliculus (P<0.0025, false discovery rate (FDR) q<0.05). The decreased rs-BA is compatible with diaschisis and contributes to manifest the malfunctions of lesion-specific functional connectivity. In contrast, capsular infarct resulted in increase of rs-BA in the ipsilesional internal capsule, and contralesional red nucleus and ventral hippocampus in recovery group (P<0.0025, FDR q<0.05), implying that remaining subcortical structures have an important role in conducting the recovery process in capsular infarct. The SPRT training facilitated motor recovery only in rats with an incomplete destruction of the posterior limb of the internal capsule (PLIC) (Pearson's correlation, P<0.05). Alternative therapeutic interventions are required to enhance the potential for recovery in capsular infarct with complete destruction of PLIC.
Collapse
|
53
|
Chatelle C, Thibaut A, Gosseries O, Bruno MA, Demertzi A, Bernard C, Hustinx R, Tshibanda L, Bahri MA, Laureys S. Changes in cerebral metabolism in patients with a minimally conscious state responding to zolpidem. Front Hum Neurosci 2014; 8:917. [PMID: 25520636 PMCID: PMC4251320 DOI: 10.3389/fnhum.2014.00917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/27/2014] [Indexed: 11/30/2022] Open
Abstract
Background: Zolpidem, a short-acting non-benzodiazepine GABA agonist hypnotic, has been shown to induce paradoxical responses in some patients with disorders of consciousness (DOC), leading to recovery of arousal and cognitive abilities. We here assessed zolpidem-induced changes in regional brain metabolism in three patients with known zolpidem response in chronic post-anoxic minimally conscious state (MCS). Methods: [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) and standardized clinical assessments using the Coma Recovery Scale-Revised were performed after administration of 10 mg zolpidem or placebo in a randomized double blind 2-day protocol. PET data preprocessing and comparison with a healthy age-matched control group were performed using statistical parametric mapping (SPM8). Results: Behaviorally, all patients recovered functional communication after administration of zolpidem (i.e., emergence from the MCS). FDG-PET showed increased metabolism in dorsolateral prefrontal and mesiofrontal cortices after zolpidem but not after placebo administration. Conclusion: Our data show a metabolic activation of prefrontal areas, corroborating the proposed mesocircuit hypothesis to explain the paradoxical effect of zolpidem observed in some patients with DOC. It also suggests the key role of the prefrontal cortices in the recovery of functional communication and object use in hypoxic patients with chronic MCS.
Collapse
Affiliation(s)
- Camille Chatelle
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium ; Neurorehabilitation Lab, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School Boston, MA, USA
| | - Aurore Thibaut
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium ; Center for Sleep and Consciousness, and Postle Laboratory, Department of Psychiatry, University of Wisconsin Madison, WI, USA
| | - Marie-Aurélie Bruno
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium
| | - Athena Demertzi
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium
| | - Claire Bernard
- Nuclear Medicine Department, University Hospital of Liège Liège, Belgium
| | - Roland Hustinx
- Nuclear Medicine Department, University Hospital of Liège Liège, Belgium
| | - Luaba Tshibanda
- Department of Neuroradiology, University Hospital of Liège Liège, Belgium
| | - Mohamed A Bahri
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Centre, University and University Hospital of Liège Liège, Belgium
| |
Collapse
|
54
|
Imbrosci B, Neitz A, Mittmann T. Focal cortical lesions induce bidirectional changes in the excitability of fast spiking and non fast spiking cortical interneurons. PLoS One 2014; 9:e111105. [PMID: 25347396 PMCID: PMC4210267 DOI: 10.1371/journal.pone.0111105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/28/2014] [Indexed: 11/29/2022] Open
Abstract
A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unknown whether specific interneuronal subpopulations contribute differentially to such pathological condition. In the present study we investigated functional alterations of inhibitory interneurons embedded in a hyperexcitable cortical circuit at the border of chronically induced focal lesions in mouse visual cortex. Interestingly, we found opposite alterations in the excitability of non fast-spiking (Non Fs) and fast-spiking (Fs) interneurons in acute cortical slices from injured animals. Non Fs interneurons displayed a depolarized membrane potential and a higher frequency of spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, Fs interneurons showed a reduced sEPSCs amplitude. The observed downscaling of excitatory synapses targeting Fs interneurons may prevent the recruitment of this specific population of interneurons to the hyperexcitable network. This mechanism is likely to seriously affect neuronal network function and to exacerbate hyperexcitability but it may be important to protect this particular vulnerable population of GABAegic neurons from excitotoxicity.
Collapse
Affiliation(s)
- Barbara Imbrosci
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- * E-mail: (BI); (TM)
| | - Angela Neitz
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- * E-mail: (BI); (TM)
| |
Collapse
|
55
|
Bihemispheric ischemic tolerance induced by a unilateral focal cortical lesion. Brain Res 2014; 1570:54-60. [DOI: 10.1016/j.brainres.2014.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 11/15/2022]
|
56
|
Park SY, Marasini S, Kim GH, Ku T, Choi C, Park MY, Kim EH, Lee YD, Suh-Kim H, Kim SS. A method for generating a mouse model of stroke: evaluation of parameters for blood flow, behavior, and survival [corrected]. Exp Neurobiol 2014; 23:104-14. [PMID: 24737945 PMCID: PMC3984953 DOI: 10.5607/en.2014.23.1.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 12/18/2022] Open
Abstract
Stroke is one of the common causes of death and disability. Despite extensive efforts in stroke research, therapeutic options for improving the functional recovery remain limited in clinical practice. Experimental stroke models using genetically modified mice could aid in unraveling the complex pathophysiology triggered by ischemic brain injury. Here, we optimized the procedure for generating mouse stroke model using an intraluminal suture in the middle cerebral artery and verified the blockage of blood flow using indocyanine green coupled with near infra-red radiation. The first week after the ischemic injury was critical for survivability. The survival rate of 11% in mice without any treatment but increased to 60% on administering prophylactic antibiotics. During this period, mice showed severe functional impairment but recovered spontaneously starting from the second week onward. Among the various behavioral tests, the pole tests and neurological severity score tests remained reliable up to 4 weeks after ischemia, whereas the rotarod and corner tests became less sensitive for assessing the severity of ischemic injury with time. Further, loss of body weight was also observed for up 4 weeks after ischemia induction. In conclusion, we have developed an improved approach which allows us to investigate the role of the cell death-related genes in the disease progression using genetically modified mice and to evaluate the modes of action of candidate drugs.
Collapse
Affiliation(s)
- Sin-Young Park
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Subash Marasini
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Geu-Hee Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Chulhee Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Min-Young Park
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Hee Kim
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Young-Don Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea. ; Center for Cell Death Regulating Biodrug, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 443-380, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 443-380, Korea. ; Center for Cell Death Regulating Biodrug, Ajou University School of Medicine, Suwon 443-380, Korea
| |
Collapse
|
57
|
Razanau A, Xie J. Emerging mechanisms and consequences of calcium regulation of alternative splicing in neurons and endocrine cells. Cell Mol Life Sci 2013; 70:4527-36. [PMID: 23800988 PMCID: PMC11113957 DOI: 10.1007/s00018-013-1390-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 12/12/2022]
Abstract
Alternative splicing contributes greatly to proteomic complexity. How it is regulated by external stimuli to sculpt cellular properties, particularly the highly diverse and malleable neuronal properties, is an underdeveloped area of emerging interest. A number of recent studies in neurons and endocrine cells have begun to shed light on its regulation by calcium signals. Some mechanisms include changes in the trans-acting splicing factors by phosphorylation, protein level, alternative pre-mRNA splicing, and nucleocytoplasmic redistribution of proteins to alter protein-RNA or protein-protein interactions, as well as modulation of chromatin states. Importantly, functional analyses of the control of specific exons/splicing factors in the brain point to a crucial role of this regulation in synaptic maturation, maintenance, and transmission. Furthermore, its deregulation has been implicated in the pathogenesis of neurological disorders, particularly epilepsy/seizure. Together, these studies have not only provided mechanistic insights into the regulation of alternative splicing by calcium signaling but also demonstrated its impact on neuron differentiation, function, and disease. This may also help our understanding of similar regulations in other types of cells.
Collapse
Affiliation(s)
- Aleh Razanau
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
| | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| |
Collapse
|
58
|
Kida H, Nomura S, Shinoyama M, Ideguchi M, Owada Y, Suzuki M. The effect of hypothermia therapy on cortical laminar disruption following ischemic injury in neonatal mice. PLoS One 2013; 8:e68877. [PMID: 23894362 PMCID: PMC3720877 DOI: 10.1371/journal.pone.0068877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/02/2013] [Indexed: 11/19/2022] Open
Abstract
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O2, 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period.
Collapse
Affiliation(s)
- Hiroyuki Kida
- Department of Systems Neuroscience, Graduate School of Medicine Yamaguchi University, Ube, Japan.
| | | | | | | | | | | |
Collapse
|
59
|
Imbrosci B, Mittmann T. Alterations in membrane and firing properties of layer 2/3 pyramidal neurons following focal laser lesions in rat visual cortex. Neuroscience 2013; 250:208-21. [PMID: 23845747 DOI: 10.1016/j.neuroscience.2013.06.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022]
Abstract
Focal cortical injuries are well known to cause changes in function and excitability of the surviving cortical areas but the cellular correlates of these physiological alterations are not fully understood. In the present study we employed a well established ex vivo-in vitro model of focal laser lesions in the rat visual cortex and we studied membrane and firing properties of the surviving layer 2/3 pyramidal neurons. Patch-clamp recordings, performed in the first week post-injury, revealed an increased input resistance, a depolarized spike threshold as well as alterations in the firing pattern of neurons in the cortex ipsilateral to the lesion. Notably, the reported lesion-induced alterations emerged or became more evident when an exciting perfusing solution, known as modified artificial cerebrospinal fluid, was used to increase the ongoing synaptic activity in cortical slices. Conversely, application of glutamatergic or GABAA receptor blockers reduced the observed alterations and GABAB receptor blockers abolished the differences completely. All together the present findings suggest that changes in synaptic receptors function, following focal cortical injuries, can modulate membrane and firing properties of layer 2/3 pyramidal neurons. This previously unknown functional interplay between synaptic and membrane properties may constitute a novel cellular mechanism to explain alterations in neuronal network function and excitability following focal cortical injuries.
Collapse
Affiliation(s)
- B Imbrosci
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes-Gutenberg University Mainz, D-55128 Mainz, Germany.
| | | |
Collapse
|
60
|
Garbuzova-Davis S, Rodrigues MCO, Hernandez-Ontiveros DG, Tajiri N, Frisina-Deyo A, Boffeli SM, Abraham JV, Pabon M, Wagner A, Ishikawa H, Shinozuka K, Haller E, Sanberg PR, Kaneko Y, Borlongan CV. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One 2013; 8:e63553. [PMID: 23675488 PMCID: PMC3651135 DOI: 10.1371/journal.pone.0063553] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 04/02/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Comprehensive stroke studies reveal diaschisis, a loss of function due to pathological deficits in brain areas remote from initial ischemic lesion. However, blood-brain barrier (BBB) competence in subacute diaschisis is uncertain. The present study investigated subacute diaschisis in a focal ischemic stroke rat model. Specific focuses were BBB integrity and related pathogenic processes in contralateral brain areas. METHODOLOGY/PRINCIPAL FINDINGS In ipsilateral hemisphere 7 days after transient middle cerebral artery occlusion (tMCAO), significant BBB alterations characterized by large Evans Blue (EB) parenchymal extravasation, autophagosome accumulation, increased reactive astrocytes and activated microglia, demyelinization, and neuronal damage were detected in the striatum, motor and somatosensory cortices. Vascular damage identified by ultrastuctural and immunohistochemical analyses also occurred in the contralateral hemisphere. In contralateral striatum and motor cortex, major ultrastructural BBB changes included: swollen and vacuolated endothelial cells containing numerous autophagosomes, pericyte degeneration, and perivascular edema. Additionally, prominent EB extravasation, increased endothelial autophagosome formation, rampant astrogliosis, activated microglia, widespread neuronal pyknosis and decreased myelin were observed in contralateral striatum, and motor and somatosensory cortices. CONCLUSIONS/SIGNIFICANCE These results demonstrate focal ischemic stroke-induced pathological disturbances in ipsilateral, as well as in contralateral brain areas, which were shown to be closely associated with BBB breakdown in remote brain microvessels and endothelial autophagosome accumulation. This microvascular damage in subacute phase likely revealed ischemic diaschisis and should be considered in development of treatment strategies for stroke.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lara-Celador I, Goñi-de-Cerio F, Alvarez A, Hilario E. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury. Neural Regen Res 2013; 8:731-44. [PMID: 25206720 PMCID: PMC4146074 DOI: 10.3969/j.issn.1673-5374.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/07/2013] [Indexed: 12/30/2022] Open
Abstract
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- I. Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa 48949, Bizkaia, Spain
| | - F. Goñi-de-Cerio
- GAIKER Technology Centre, Bizkaia Science and Technology Park, Building 202, Zamudio 48170, Bizkaia, Spain
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa 48949, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa 48949, Bizkaia, Spain
| |
Collapse
|
62
|
Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study. PLoS One 2013; 8:e57425. [PMID: 23437385 PMCID: PMC3578858 DOI: 10.1371/journal.pone.0057425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Premotor cortical regions (PMC) play an important role in the orchestration of motor function, yet their role in compensatory mechanisms in a disturbed motor system is largely unclear. Previous studies are consistent in describing pronounced anatomical and functional connectivity between the PMC and the primary motor cortex (M1). Lesion studies consistently show compensatory adaptive changes in PMC neural activity following an M1 lesion. Non-invasive brain modification of PMC neural activity has shown compensatory neurophysiological aftereffects in M1. These studies have contributed to our understanding of how M1 responds to changes in PMC neural activity. Yet, the way in which the PMC responds to artificial inhibition of M1 neural activity is unclear. Here we investigate the neurophysiological consequences in the PMC and the behavioral consequences for motor performance of stimulation mediated M1 inhibition by cathodal transcranial direct current stimulation (tDCS). Purpose The primary goal was to determine how electrophysiological measures of PMC excitability change in order to compensate for inhibited M1 neural excitability and attenuated motor performance. Hypothesis Cathodal inhibition of M1 excitability leads to a compensatory increase of ipsilateral PMC excitability. Methods We enrolled 16 healthy participants in this randomized, double-blind, sham-controlled, crossover design study. All participants underwent navigated transcranial magnetic stimulation (nTMS) to identify PMC and M1 corticospinal projections as well as to evaluate electrophysiological measures of cortical, intracortical and interhemispheric excitability. Cortical M1 excitability was inhibited using cathodal tDCS. Finger-tapping speeds were used to examine motor function. Results Cathodal tDCS successfully reduced M1 excitability and motor performance speed. PMC excitability was increased for longer and was the only significant predictor of motor performance. Conclusion The PMC compensates for attenuated M1 excitability and contributes to motor performance maintenance.
Collapse
|
63
|
Shift from phasic to tonic GABAergic transmission following laser-lesions in the rat visual cortex. Pflugers Arch 2012; 465:879-93. [PMID: 23224682 DOI: 10.1007/s00424-012-1191-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
Reduction in the strength of GABAergic neurotransmission has often been reported following brain lesions. This weakened inhibition is believed to influence neurological deficits, neuronal hyperexcitability and functional recovery after brain injuries. Uncovering the mechanisms underlying the altered inhibition is therefore crucial. In the present study we used an ex vivo-in vitro model of laser lesions in the rat visual cortex to characterize the cellular correlates of changes in GABAergic transmission in the tissue adjacent to the injury. In the first week post-injury the number of VGAT positive GABAergic terminals as well as the expression level of the GABA synthesizing enzymes GAD67 and GAD65 remained unaltered. However, a reduced frequency of miniature inhibitory postsynaptic currents (mIPSCs) together with an increased paired-pulse ratio (PPR) of evoked IPSCs suggested a functional reduction of phasic GABA release. In parallel, we found an enhancement in the GABAA receptor-mediated tonic inhibition. On the basis of these findings, we propose that cortical lesions provoke a shift in GABAergic transmission, decreasing the phasic and reinforcing the tonic component. We therefore suggest that it is not, as traditionally assumed, the overall inhibitory strength to be primarily compromised by a cortical lesion but rather the temporal accuracy of the GABAergic synaptic signaling.
Collapse
|
64
|
Hamrah P, Cruzat A, Dastjerdi MH, Prüss H, Zheng L, Shahatit BM, Bayhan HA, Dana R, Pavan-Langston D. Unilateral herpes zoster ophthalmicus results in bilateral corneal nerve alteration: an in vivo confocal microscopy study. Ophthalmology 2012; 120:40-7. [PMID: 22999636 DOI: 10.1016/j.ophtha.2012.07.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Herpes zoster ophthalmicus (HZO), thought to be a unilateral disease, results in loss of corneal sensation, leading to neurotrophic keratopathy. This study aimed to analyze bilateral corneal nerve changes in patients with HZO by in vivo confocal microscopy (IVCM) and their correlation with corneal sensation as a measure of nerve function. DESIGN Prospective, cross-sectional, controlled, single-center study. PARTICIPANTS Twenty-seven eyes with the diagnosis of HZO and their contralateral clinically unaffected eyes were studied and compared with normal controls (n = 15). METHODS In vivo confocal microscopy (Confoscan 4; Nidek Technologies, Gamagori, Japan) and corneal esthesiometry (Cochet-Bonnet; Luneau Ophthalmologie, Chartres, France) of the central cornea were performed bilaterally in all patients and controls. Patients were grouped into normal (>5.5 cm), mild (>2.5-5.5 cm), and severe (<2.5 cm) loss of sensation. MAIN OUTCOME MEASURES Changes in corneal nerve density, total nerve number, main nerve trunks, branching, and tortuosity were evaluated after IVCM and were correlated to corneal sensation, disease duration, and number of recurrences. RESULTS Eyes with herpes zoster ophthalmicus had a significant (P<0.001) decrease in total nerve length (595.8±358.1 vs. 2258.4±989.0 μm/frame), total number of nerves (5.4±2.8 vs. 13.1±3.8), number of main nerve trunks (2.3±1.1 vs. 4.7±1.2), and number of nerve branches (3.2±2.3 vs. 8.4±3.7) as compared with controls. In the contralateral clinically unaffected eyes, total nerve length (1053.1±441.4 μm/frame), total number of nerves (8.3±2.9), and main nerve trunks (3.1±1.0) also were decreased significantly as compared with controls (P<0.01). Reduced nerve density, total nerve count, main trunks, and tortuosity was correlated significantly with corneal sensation across all subgroups (P<0.001). CONCLUSIONS Patients with unilateral HZO demonstrated a profound and significant bilateral loss of the corneal nerve plexus as compared with controls, demonstrating bilateral changes in a clinically unilateral disease. Loss of corneal sensation strongly correlated with subbasal nerve plexus alterations as shown by IVCM. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Pedram Hamrah
- Ocular Surface Imaging Center and Cornea & Refractive Surgery Service, Massachusetts Eye & Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Manuel AL, Radman N, Mesot D, Chouiter L, Clarke S, Annoni JM, Spierer L. Inter- and Intrahemispheric Dissociations in Ideomotor Apraxia: A Large-Scale Lesion–Symptom Mapping Study in Subacute Brain-Damaged Patients. Cereb Cortex 2012; 23:2781-9. [DOI: 10.1093/cercor/bhs280] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
66
|
A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales. PLoS Comput Biol 2012; 8:e1002601. [PMID: 22807666 PMCID: PMC3395609 DOI: 10.1371/journal.pcbi.1002601] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022] Open
Abstract
Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary physiological signals. Cerebral autoregulation is an important mechanism that regulates blood supply to brain tissue to match metabolic demands during daily activities. Impaired cerebral autoregulation increases the dependence of cerebral blood flow on systemic blood pressure, and is associated with fatal outcomes in patients after brain injury and acute ischemic stroke. Reliable and noninvasive assessment of cerebral autoregulation is still a major challenge in medical diagnostics and clinic studies, mainly because blood pressure and flow are intrinsically nonstationary (possessing complex oscillations/fluctuations with varying amplitude and frequency) while traditional methods for assessment of the pressure-flow dependence assume stationary signals. We propose a new computational technique that is based on nonlinear theories without the assumption of stationary signals. This technique allows us to detect the degradation of cerebral autoregulation in patients with mild ischemic stroke even at >6 months after the insult. The degradation was present in both stroke and non-stroke sides and was accompanied by an altered pressure-flow interaction over a wide range of frequencies from 0.02–0.38 Hz. Our results challenges the traditionally accepted functional region of autoregulation (<∼0.1 Hz). The observed long-term influences of stroke highlight the importance of reliable monitoring of cerebral blood flow regulation for the management and daily care of stroke patients.
Collapse
|
67
|
Lioumis P, Mustanoja S, Bikmullina R, Vitikainen AM, Kičić D, Salonen O, Tatlisumak T, Kaste M, Forss N, Mäkelä JP. Probing modifications of cortical excitability during stroke recovery with navigated transcranial magnetic stimulation. Top Stroke Rehabil 2012; 19:182-92. [PMID: 22436366 DOI: 10.1310/tsr1902-182] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To follow cortical excitability changes during recovery from stroke with navigated transcranial magnetic stimulation (nTMS), in particular, to characterize changes of short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), to correlate them with recovery of upper extremity function, and to detect possible shifts of cortical hand representations. METHODS Single and paired pulse nTMS were delivered to the hemisphere with infarction and to the hemisphere without infarction in 14 first-ever stroke patients at 1 (T1) and 3 months (T2) after stroke. Electromyographic responses to nTMS stimulation were recorded from the first dorsal interosseus muscles. nTMS was used to ensure an accurate coil repositioning in repeated measurements. Hand function recovery was clinically evaluated using the Action Research Arm Test (ARAT) and 9-hole peg test (9-HPT). RESULTS SICI and ICF were modulated in both hemispheres during recovery. Inhibition in the hemisphere without infarction correlated significantly with the affected hand performance at T2; stronger disinhibition (poor inhibition) was associated with worse hand performance. Location of hand muscle representations was shifted in 3 well-recovered patients out of 14 patients at T2. CONCLUSIONS In line with earlier studies, disinhibition in the hemisphere without infarction may be related to poor recovery of the affected hand. Usage of the affected hand during stroke recovery seems to influence these cortical excitability changes. nTMS is a valuable tool for tracking muscle cortical representation changes during brain reorganization.
Collapse
|
68
|
Mršić-Pelčić J, Pilipović K, Pelčić G, Vitezić D, Župan G. Temporal and regional changes of superoxide dismutase and glutathione peroxidase activities in rats exposed to focal cerebral ischemia. Cell Biochem Funct 2012; 30:597-603. [PMID: 22570305 DOI: 10.1002/cbf.2839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/17/2012] [Accepted: 04/12/2012] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species are important cause of tissue injury during cerebral ischemia and reperfusion (I/R). Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) are intracellular enzymes responsible for endogenous antioxidant defense of tissues affected by I/R. The aim of this study was to examine temporal and regional changes of SOD and GSH-Px activities in animals exposed to transient focal cerebral ischemia. Male Wistar Hannover rats were subjected to the right middle cerebral artery occlusion for 2 h. The animals were sacrificed immediately, 0·5, 1, 2, 3, 6, 24, 48, 72 or 168 h after ischemic procedure. SOD and GSH-Px activities were determined spectrophotometrically in the hippocampus and parietal cortex, both unilaterally and contralaterally to the occlusion. Sham-operated animals were used as the control group. Our results indicated that transient focal cerebral ischemia causes significant changes in SOD activities in the hippocampus and parietal cortex such as in GSH-Px activities in the parietal cortex, unilaterally and contralaterally to the lesion in rats during different reperfusion periods. Statistically significant activation of GSH-Px was registered neither in the right nor in the left hippocampus of ischemic animals.
Collapse
Affiliation(s)
- Jasenka Mršić-Pelčić
- Department of Pharmacology, School of Medicine, University of Rijeka, Rijeka, Croatia.
| | | | | | | | | |
Collapse
|
69
|
Johnston DG, Denizet M, Mostany R, Portera-Cailliau C. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cereb Cortex 2012; 23:751-62. [PMID: 22499800 DOI: 10.1093/cercor/bhs092] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity.
Collapse
Affiliation(s)
- David G Johnston
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
70
|
An SJ, Kim DS. Alterations in serotonin receptors and transporter immunoreactivities in the hippocampus in the rat unilateral hypoxic-induced epilepsy model. Cell Mol Neurobiol 2011; 31:1245-55. [PMID: 21681557 DOI: 10.1007/s10571-011-9726-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/06/2011] [Indexed: 11/26/2022]
Abstract
Unilateral hypoxic-ischemia results in the frequent occurrence of interictal spikes, and occasionally sustained ictal discharges accompanied by a reduction in paired-pulse inhibition within the non-lesioned dentate gyrus. To elucidate the roles of serotonin (5-hydroxytryptamine [5-HT]) in an epileptogenic insult, we investigated the changes in 5-HT receptors and serotonin transporter (5-HTT) immunoreactivities within the lesioned and contralateral hippocampus following unilateral hypoxic-ischemia. During epileptogenic periods following hypoxic-ischemia, both 5-HT(1A) and 5HT(1B) receptor immunoreactivities were decreased within the lesioned and the non-lesioned hippocampus. However, 5-HTT immunoreactivity was transiently increased within the hippocampus bilaterally. These findings indicate that alteration of the 5-HT system results in a "diaschisis" pattern, and may contribute to neuronal death and the development of emotional disorders in epileptic patients accompanied by psychological stress.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Epilepsy/physiopathology
- Hippocampus/physiology
- Hippocampus/physiopathology
- Humans
- Male
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Stress, Psychological
Collapse
Affiliation(s)
- Sung-Jin An
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, Republic of Korea
| | | |
Collapse
|
71
|
Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Löwel S. Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci U S A 2011; 108:15450-5. [PMID: 21873250 PMCID: PMC3174619 DOI: 10.1073/pnas.1016458108] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We tested the influence of a photothrombotic lesion in somatosensory cortex on plasticity in the mouse visual system and the efficacy of anti-inflammatory treatment to rescue compromised learning. To challenge plasticity mechanisms, we induced monocular deprivation (MD) in 3-mo-old mice. In control animals, MD induced an increase of visual acuity of the open eye and an ocular dominance (OD) shift towards this eye. In contrast, after photothrombosis, there was neither an enhancement of visual acuity nor an OD-shift. However, OD-plasticity was present in the hemisphere contralateral to the lesion. Anti-inflammatory treatment restored sensory learning but not OD-plasticity, as did a 2-wk delay between photothrombosis and MD. We conclude that (i) both sensory learning and cortical plasticity are compromised in the surround of a cortical lesion; (ii) transient inflammation is responsible for impaired sensory learning, suggesting anti-inflammatory treatment as a useful adjuvant therapy to support rehabilitation following stroke; and (iii) OD-plasticity cannot be conceptualized solely as a local process because nonlocal influences are more important than previously assumed.
Collapse
Affiliation(s)
- Franziska Greifzu
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| | - Silvio Schmidt
- Hans-Berger Klinik für Neurologie, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Karl-Friedrich Schmidt
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| | - Klaus Kreikemeier
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| | - Otto W. Witte
- Hans-Berger Klinik für Neurologie, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Siegrid Löwel
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| |
Collapse
|
72
|
Imbrosci B, Mittmann T. Functional consequences of the disturbances in the GABA-mediated inhibition induced by injuries in the cerebral cortex. Neural Plast 2011; 2011:614329. [PMID: 21766043 PMCID: PMC3135051 DOI: 10.1155/2011/614329] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/05/2011] [Indexed: 11/18/2022] Open
Abstract
Cortical injuries are often reported to induce a suppression of the intracortical GABAergic inhibition in the surviving, neighbouring neuronal networks. Since GABAergic transmission provides the main source of inhibition in the mammalian brain, this condition may lead to hyperexcitability and epileptiform activity of cortical networks. However, inhibition plays also a crucial role in limiting the plastic properties of neuronal circuits, and as a consequence, interventions aiming to reestablish a normal level of inhibition might constrain the plastic capacity of the cortical tissue. A promising strategy to minimize the deleterious consequences of a modified inhibitory transmission without preventing the potential beneficial effects on cortical plasticity may be to unravel distinct GABAergic signaling pathways separately mediating these positive and negative events. Here, gathering data from several recent studies, we provide new insights to better face with this "double coin" condition in the attempt to optimize the functional recovery of patients.
Collapse
Affiliation(s)
- Barbara Imbrosci
- Institute of Physiology and Pathophysiology, Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | | |
Collapse
|
73
|
Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci 2011; 5:8. [PMID: 21441991 PMCID: PMC3060711 DOI: 10.3389/fnsys.2011.00008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/08/2011] [Indexed: 12/14/2022] Open
Abstract
Plasticity after stroke has traditionally been studied by observing changes only in the spatial distribution and laterality of focal brain activation during affected limb movement. However, neural reorganization is multifaceted and our understanding may be enhanced by examining dynamics of activity within large-scale networks involved in sensorimotor control of the limbs. Here, we review functional connectivity as a promising means of assessing the consequences of a stroke lesion on the transfer of activity within large-scale neural networks. We first provide a brief overview of techniques used to assess functional connectivity in subjects with stroke. Next, we review task-related and resting-state functional connectivity studies that demonstrate a lesion-induced disruption of neural networks, the relationship of the extent of this disruption with motor performance, and the potential for network reorganization in the presence of a stroke lesion. We conclude with suggestions for future research and theories that may enhance the interpretation of changing functional connectivity. Overall findings suggest that a network level assessment provides a useful framework to examine brain reorganization and to potentially better predict behavioral outcomes following stroke.
Collapse
Affiliation(s)
- Kelly P Westlake
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco CA, USA
| | | |
Collapse
|
74
|
Struble RG, Ala T, Patrylo PR, Brewer GJ, Yan XX. Is brain amyloid production a cause or a result of dementia of the Alzheimer's type? J Alzheimers Dis 2011; 22:393-9. [PMID: 20847431 DOI: 10.3233/jad-2010-100846] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amyloid cascade hypothesis has guided much of the research into Alzheimer's disease (AD) over the last 25 years. We argue that the hypothesis of amyloid-β (Aβ) as the primary cause of dementia may not be fully correct. Rather, we propose that decline in brain metabolic activity, which is tightly linked to synaptic activity, actually underlies both the cognitive decline in AD and the deposition of Aβ. Aβ may further exacerbate metabolic decline and result in a downward spiral of cognitive function, leading to dementia. This novel interpretation can tie the disparate risk factors for dementia to a unifying hypothesis and present a roadmap for interventions to decrease the prevalence of dementia in the elderly population.
Collapse
Affiliation(s)
- Robert G Struble
- Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Carbondale, IL 62794, USA.
| | | | | | | | | |
Collapse
|
75
|
Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo. J Neurosci 2011; 31:851-60. [PMID: 21248108 DOI: 10.1523/jneurosci.5080-10.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hippocampal formation is one of the brain regions most sensitive to ischemic damage. However, there are no studies about changes in hippocampal neuronal activity during and after a selective unilateral hippocampal ischemia. We developed a novel unilateral cerebrovascular ischemia model in mice that selectively shuts down blood supply to the ipsilateral hippocampal formation. Using a modified version of the photothrombotic method, we stereotaxically targeted the initial ascending part of the longitudinal hippocampal artery in urethane anesthetized and rose bengal-injected mice. To block blood flow in the targeted artery, we photoactivated the rose bengal by illuminating the longitudinal hippocampal artery through an optical fiber inserted into the brain. In vivo field potential recordings in the CA1 region of the hippocampus before, during and after the induction of ischemia demonstrated a high-frequency discharge (HFD) reaching frequencies of >300 Hz and lasting 7-24 s during the illumination consistent with a massive synchronous neuronal activity. The HFD was invariably followed by a DC voltage shift and a decreased activity at both low (30-57 Hz)- and high (63-119 Hz)-gamma frequencies. This decrease in gamma activity lasted for the entire duration of the recordings (∼160 min) following ischemia. The contralateral hippocampus displayed HFDs but with different frequency spectra and without DC voltage shifts or long-lasting decreases in gamma oscillations. Our findings reveal for the first time the acute effects of unilateral hippocampal ischemia on ensemble hippocampal neuronal activities.
Collapse
|
76
|
Berthier ML, Pulvermüller F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat Rev Neurol 2011; 7:86-97. [PMID: 21297651 DOI: 10.1038/nrneurol.2010.201] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
77
|
Jiao L, Zhang J, Li Z, Liu H, Chen Y, Xu S. Edaravone alleviates delayed neuronal death and long-dated cognitive dysfunction of hippocampus after transient focal ischemia in Wistar rat brains. Neuroscience 2011; 182:177-83. [PMID: 21241778 DOI: 10.1016/j.neuroscience.2011.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 01/02/2023]
Abstract
Edaravone is currently being used in acute ischemic stroke both in clinical and experimental research as a potent antioxidant. Here we explore the effects of edaravone on delayed neuronal death (DND) and long-dated cognitive dysfunction of hippocampus after cerebral ischemia-reperfusion (IR) injury and explain the underlying mechanisms and pathways. Our findings suggested that edaravone not only significantly alleviated delayed neuronal death and cognitive dysfunction of hippocampus after cerebral focal ischemia, but also markedly decreased malondialdehyde (MDA) levels. In addition, edaravone increased superoxide dismutase (SOD) levels and reduced the levels of inflammatory cytokines such as IL-1β and TNF-α expression; edaravone, also suppressed glial fibrillary acidic protein (GFAP) proliferation at days 3, 7 and 30 after reperfusion. Overall, the consensus emerging from this body of data indicated that edaravone exerts a later neuroprotective effect to hippocampus through its ability to inhibit inflammation, suppression of astrocyte activation and scavenging free radicals in stroke events.
Collapse
Affiliation(s)
- L Jiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | |
Collapse
|
78
|
Jeong HS, Moon JS, Baek IC, Lee AY, Kim JM. Transient global amnesia with post-hyperventilation temporal sharp waves--a case report. Seizure 2010; 19:609-11. [PMID: 20951337 DOI: 10.1016/j.seizure.2010.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/19/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022] Open
Abstract
We report a 55-year-old woman, who presented with transient amnesia for 7h following underwater swimming. There was no evidence of neurological disturbance except global amnesia. Sharp waves in both temporal regions were registered during the initial EEG recording, which was accentuated by hyperventilation. Right hippocampal high signal intensity was observed in DWI performed 56 h after symptom onset. The sharp waves were all disappeared on follow-up EEG recordings.
Collapse
Affiliation(s)
- Hye Seon Jeong
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
79
|
Park S, Jung Y. Combined actions of Na/K-ATPase, NCX1 and glutamate dependent NMDA receptors in ischemic rat brain penumbra. Anat Cell Biol 2010; 43:201-10. [PMID: 21212860 PMCID: PMC3015038 DOI: 10.5115/acb.2010.43.3.201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 08/26/2010] [Accepted: 09/10/2010] [Indexed: 11/27/2022] Open
Abstract
Instrumental role of Na+ and Ca2+ influx via Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) and Na+/Ca2+ exchanger 1 (NCX1) is examined in the N-Methyl-D-aspartate (NMDA) receptor-mediated pathogenesis of penumbra after focal cerebral ischemia. An experimental model of 3, 6, and 24 h focal cerebral ischemia by permanent occlusion of middle cerebral artery was developed in rats. The changes in protein expression of Na+/K+-ATPase and NCX1 as well as functional subunits of NMDA receptor 2A and 2B (NR2A and NR2B) in the penumbra were assessed using by quantitative immunoblottings. The most prominent changes of Na+/K+-ATPase (78±6%, n=4, *P<0.05) and NCX1 (144±2%, n=4, *P<0.05) in the penumbra were developed 24 h after focal cerebral ischemia. The expression of NR2A in the penumbra was significantly increased (153±9%, n=4, *P<0.05) whereas the expression of NR2B was significantly decreased (37±2%, n=4, *P<0.05) as compared with sham-operated controls 3 h after focal cerebral ischemia. However, the expression of NR2A and NR2B in the penumbra was reversed 24 h after focal cerebral ischemia (NR2A: 40±7%; NR2B: 120±16%, n=4, *P<0.05). Moreover, the decreased expression of neuronal nuclei (NeuN) in the penumbra was most prominent than that of glial fibrillary acidic protein (GFAP) 24 h after focal cerebral ischemia. These findings imply that intracellular Na+ accumulation via decreased Na+/K+-ATPase exacerbate the Ca2+ overload cooperated by the increased NCX1 and NR2B-containing NMDA receptor which may play an important role in the pathogenesis of the penumbra.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju, Korea
| | | |
Collapse
|
80
|
Seitz RJ, Donnan GA. Role of neuroimaging in promoting long-term recovery from ischemic stroke. J Magn Reson Imaging 2010; 32:756-72. [PMID: 20882606 DOI: 10.1002/jmri.22315] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rüdiger J Seitz
- Department of Neurology, University Hospital Düsseldorf, and Biomedical Research Centre, Heinrich-Heine-University Düsseldorf, Germany.
| | | |
Collapse
|
81
|
Targeting S100B in Cerebral Ischemia and in Alzheimer's Disease. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20862385 PMCID: PMC2939387 DOI: 10.1155/2010/687067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/25/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022] Open
Abstract
S100B is an EF-hand calcium-binding protein that exerts both intracellular and extracellular effects on a variety of cellular processes. The protein is predominantly expressed in the central nervous system by astrocytes, both physiologically and during the course of neurological disease. In the healthy adult brain and during development, constitutive S100B expression acts as a trophic factor to drive neurite extension and to referee neuroplasticity. Yet, when induced during central nervous system disease, the protein can take on maladaptive roles and thereby exacerbate brain pathology. Based on genetic and pharmacological lines of evidence, we consider such deleterious roles of S100B in two common brain pathologies: ischemic stroke and Alzheimer's disease (AD). In rodent models of ischemic brain damage, S100B is induced early on during the subacute phase, where it exacerbates gliosis and delayed infarct expansion and thereby worsens functional recovery. In mouse models of AD, S100B drives brain inflammation and gliosis that accelerate cerebral amyloidosis. Pharmacological inhibition of S100B synthesis mitigates hallmark pathologies of both brain diseases, opening the door for translational approaches to treat these devastating neurological disorders.
Collapse
|
82
|
Karl J, Alaverdashvili M, Cross A, Whishaw I. Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience 2010; 170:123-37. [DOI: 10.1016/j.neuroscience.2010.06.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 11/28/2022]
|
83
|
Kim SY, Jones TA. Lesion size-dependent synaptic and astrocytic responses in cortex contralateral to infarcts in middle-aged rats. Synapse 2010; 64:659-71. [PMID: 20336630 PMCID: PMC2904857 DOI: 10.1002/syn.20777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In young adult rats, unilateral lesions of the sensorimotor cortex lead to neuronal structural plasticity and synaptogenesis in the contralateral motor cortex, which is connected to the lesion site by transcallosal fibers. The contralesional neural plasticity varies with lesion size and results from the convergence of denervation-induced reactive plasticity and behavioral asymmetries. It was unknown whether similar effects occur in older animals. Furthermore, the coordination of synaptic responses with that of perisynaptic astrocytes had not been investigated. In this study, middle-aged rats (14-16 months old) were given sham-operations or unilateral ischemic lesions of the sensorimotor cortex. Fifty days later, numerical densities of neurons and synapses and morphological characteristics of astrocytic processes in layer V of the contralesional motor cortex were measured using stereological light and electron microscopy methods. Lesions resulted in behavioral asymmetries, but no significant synapse addition in the contralesional motor cortex. Synapse number per neuron was negatively correlated with lesion size and reduced opposite larger lesions compared with smaller ones. Astrocytic changes were also lesion size-dependent. Astrocytic hypertrophy was observed only after smaller lesions and was associated with greater coverage and greater numbers of synapses. These findings are consistent with those in younger rats indicating an inverse relationship between lesion size and adaptive neuronal restructuring in denervated cortex. However, they indicate that the synaptogenic reaction to this lesion is relatively limited in older animals. Finally, the results indicate that structural plasticity of perisynaptic astrocytes parallels, and could play a role in shaping, synaptic responses to postischemic denervation.
Collapse
Affiliation(s)
- Soo Young Kim
- Institute for Neuroscience, University of Texas at Austin, TX, USA
| | - Theresa A. Jones
- Institute for Neuroscience, University of Texas at Austin, TX, USA
- Department of Psychology, University of Texas at Austin, TX, USA
| |
Collapse
|
84
|
Allred RP, Cappellini CH, Jones TA. The "good" limb makes the "bad" limb worse: experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats. Behav Neurosci 2010; 124:124-132. [PMID: 20141287 DOI: 10.1037/a0018457] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following stroke-like lesions to the sensorimotor cortex in rats, experience with the ipsi-to-lesion (ipsilesional), "nonparetic", forelimb worsens deficits in the contralesional, "paretic", forelimb. We tested whether the maladaptive effects of experience with the nonparetic limb are mediated through callosal connections and the contralesional sensorimotor cortex. Adult male rats with proficiency in skilled reaching with their dominant (for reaching) forelimb received ischemic bilateral sensorimotor cortex lesions, or unilateral lesions, with or without callosal transections. After assessing dominant forelimb function (the paretic forelimb in rats with unilateral lesions), animals were trained with their nonparetic/nondominant forelimb or underwent control procedures for 15 days. Animals were then tested with their paretic/dominant forelimb. In animals with unilateral lesions only, nonparetic forelimb training worsened subsequent performance with the paretic forelimb, as found previously. This effect was not found in animals with both callosal transections and unilateral lesions. After bilateral lesions, training the nondominant limb did not worsen function of the dominant limb compared with controls. Thus, the maladaptive effects of training the nonparetic limb on paretic forelimb function depend upon the contralesional cortex and transcallosal projections. This suggests that this experience-dependent disruption of functional recovery is mediated through interhemispheric connections of the sensorimotor cortex.
Collapse
|
85
|
Abstract
Poststroke seizures and epilepsy have been described in numerous clinical and epidemiological studies over many years. In contrast, the pathophysiological events occurring in injured brain that establish poststroke epileptogenesis and epilepsy are not known. However, in the last several years, animal modeling has made significant inroads toward an improved understanding of the progressive biochemical, anatomical, and physiological changes associated with both early and late seizures following stroke. A review of animal studies of poststroke seizures and epilepsy is presented.
Collapse
Affiliation(s)
- Kevin M Kelly
- Drexel University College of Medicine, Allegheny General Hospital Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
86
|
Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 2010; 30:3964-72. [PMID: 20237267 DOI: 10.1523/jneurosci.5709-09.2010] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the success of functional imaging to map changes in brain activation patterns after stroke, spatiotemporal dynamics of cerebral reorganization in correlation with behavioral recovery remain incompletely characterized. Here, we applied resting-state functional magnetic resonance imaging (rs-fMRI) together with behavioral testing to longitudinally assess functional connectivity within neuronal networks, in relation to changes in associated function after unilateral stroke in rats. Our specific goals were (1) to identify temporal alterations in functional connectivity within the bilateral cortical sensorimotor system and (2) to elucidate the relationship between those alterations and changes in sensorimotor function. Our study revealed considerable loss of functional connectivity between ipsilesional and contralesional primary sensorimotor cortex regions, alongside significant sensorimotor function deficits in the first days after stroke. The interhemispheric functional connectivity restored in the following weeks, but remained significantly reduced up to 10 weeks after stroke in animals with lesions that comprised subcortical and cortical tissue, whereas transcallosal neuroanatomical connections were preserved. Intrahemispheric functional connectivity between primary somatosensory and motor cortex areas was preserved in the lesion border zone and moderately enhanced contralesionally. The temporal pattern of changes in functional connectivity between bilateral primary motor and somatosensory cortices correlated significantly with the evolution of sensorimotor function scores. Our study (1) demonstrates that poststroke loss and recovery of sensorimotor function is associated with acute deterioration and subsequent retrieval of interhemispheric functional connectivity within the sensorimotor system and (2) underscores the potential of rs-fMRI to assess spatiotemporal characteristics of functional brain reorganization that may underlie behavioral recovery after brain injury.
Collapse
|
87
|
Jaenisch N, Witte OW, Frahm C. Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia. Stroke 2010; 41:e151-9. [PMID: 20044519 DOI: 10.1161/strokeaha.109.570424] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The potassium chloride cotransporter 2 (KCC2) is the main neuronal chloride extruder in the adult nervous system. Therefore, KCC2 is responsible for an inwardly directed electrochemical gradient of chloride that leads to hyperpolarizing GABA-mediated responses. Under some pathophysiological conditions, GABA has been reported to be depolarizing because of a downregulation of KCC2. This is the first study to our knowledge analyzing the expression of KCC2 after a focal cerebral ischemia. METHODS Mild and severe ischemia were induced in rats by a transient occlusion of the middle cerebral artery for 30 and 120 minutes, respectively. KCC2 mRNA and protein expression were studied in the ischemic hemisphere after different reperfusion times (2 hour, 1 day, 7 days, 30 days, 168 days) by using quantitative polymerase chain reaction, Western blotting, and immunohistological staining. RESULTS We found a substantial decrease of KCC2 mRNA and protein levels in the ischemic hemisphere, with a stronger downregulation of KCC2 after severe vs mild ischemia. Long-term surviving cells expressing KCC2 could be detected in the infarct core. These cells were identified as GABAergic interneurons mainly expressing parvalbumin. CONCLUSIONS Our study revealed a substantial neuron-specific downregulation of KCC2 after focal cerebral ischemia.
Collapse
Affiliation(s)
- Nadine Jaenisch
- Hans-Berger Clinic for Neurology, Friedrich-Schiller University, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | |
Collapse
|
88
|
Quairiaux C, Sizonenko SV, Mégevand P, Michel CM, Kiss JZ. Functional deficit and recovery of developing sensorimotor networks following neonatal hypoxic-ischemic injury in the rat. Cereb Cortex 2010; 20:2080-91. [PMID: 20051355 DOI: 10.1093/cercor/bhp281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is the most important cause of brain injury in the newborn. Here we studied structural alterations and functional perturbations of developing large-scale sensorimotor cortical networks in a rat model of moderate HI at postnatal day 3 (P3). At the morphological level, HI led to a disorganized barrel pattern in the somatosensory cortex without detectable histological changes in the motor cortex. Functional effects were addressed by means of epicranial mapping of somatosensory-evoked potentials (SEPs) during the postischemic recovery period. At P10, SEPs were immature and evoked activity was almost restricted to the somatosensory and motor cortices of the contralateral hemisphere. Peak and topographic analyses of epicranial potentials revealed that responses were profoundly depressed in both sensory and motor areas of HI-lesioned animals. At the end of the postnatal period at P21, responses involved networks in both hemispheres. SEP amplitude was still depressed in the injured sensory region, but it completely recovered in the motor area. These results suggest a process of large-scale network plasticity in sensorimotor circuits after perinatal ischemic injury. The model provides new perspectives for investigating the temporal and spatial characteristics of the recovery process following HI and eventually developing therapeutic interventions.
Collapse
Affiliation(s)
- Charles Quairiaux
- Faculty of Medicine, Department of Fundamental Neurosciences, University of Geneva, 1211 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
89
|
Ende-Henningsen B, Henningsen H. Neurobiologische Grundlagen der Plastizität des Nervensystems. NeuroRehabilitation 2010. [DOI: 10.1007/978-3-642-12915-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Saleh MC, Connell BJ, Saleh TM. Resveratrol preconditioning induces cellular stress proteins and is mediated via NMDA and estrogen receptors. Neuroscience 2009; 166:445-54. [PMID: 20040366 DOI: 10.1016/j.neuroscience.2009.12.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/20/2022]
Abstract
Resveratrol pretreatment has been shown to provide neuroprotection in models of cerebral ischemia. This phenomenon, commonly termed preconditioning, promotes ischemic tolerance and may involve mild activation of endoplasmic reticulum stress pathways in the affected tissue. Systemic injection of resveratrol (2 x 10(-3), 2 x 10(-4), 1 x 10(-4) mg/kg) 30 min prior to a 4 h period of right middle cerebral artery occlusion significantly reduced infarct area in the insular region of rat prefrontal cortex. This affect was blocked when resveratrol treatment was combined with a non-selective estrogen receptor antagonist, or preceded by intracortical injection of an NMDA receptor antagonist. The neuroprotective effect of resveratrol was associated with reduced renal sympathetic nerve activity as well as induction of resident endoplasmic reticulum chaperone proteins, glucose-regulated proteins 78 and 94. The calcium-sensitive chaperone heat shock protein 70 and the cysteine protease m calpain did not respond to resveratrol pretreatment. However, a significant induction of heat shock protein 70 was observed in the contralateral cortex of resveratrol pretreated rats following 4 h of right middle cerebral artery occlusion. These data suggest that resveratrol preconditioning promotes ischemic tolerance in the short term, in part via effects mediated through activation of estrogen and NMDA receptors, as well as through mild activation of cellular stress proteins.
Collapse
Affiliation(s)
- M C Saleh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | | | | |
Collapse
|
91
|
Abe T, Kamida T, Momii Y, Anan M, Ooba H, Fujiki M, Mori T. Functional motor recovery of an infant after a huge ependymoma resection. Clin Neurol Neurosurg 2009; 111:779-83. [DOI: 10.1016/j.clineuro.2009.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/30/2022]
|
92
|
Ruscher K, Johannesson E, Brugiere E, Erickson A, Rickhag M, Wieloch T. Enriched environment reduces apolipoprotein E (ApoE) in reactive astrocytes and attenuates inflammation of the peri-infarct tissue after experimental stroke. J Cereb Blood Flow Metab 2009; 29:1796-805. [PMID: 19623195 DOI: 10.1038/jcbfm.2009.96] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein E (ApoE), a cholesterol transporter and an immunomodulator, is brain protective after experimental stroke and implicated in brain repair. Here, we study the involvement of ApoE in the restoration of brain function after experimental stroke, by using animal housing conditions that differentially improve recovery after occlusion of the middle cerebral artery occlusion (MCAO). We found that after MCAO the ApoE levels increased in the injured hemisphere over a 30 days recovery period. The exception was a proximal narrow peri-infarct rim, in which ApoE was solely localized in S100beta(+)/glial fibrillary acidic protein (GFAP) negative reactive astrocytes at 4 to 7 days of recovery. Enriched housing after MCAO caused a marked decrease in ApoE levels compared with standard housing conditions, particularly in the ApoE/S100beta(+) reactive astrocytes. In addition, the levels of interleukin 1beta were lower in animals housed in an enriched environment. We propose that during the subacute phase after experimental stroke a zone for tissue reorganization with low cellular ApoE levels is formed. We conclude that the strong sensori-motor stimulation provided by enriched housing conditions mitigates the inflammatory response after stroke decreasing the level of ApoE that may contribute to the observed improvement of functional recovery.
Collapse
Affiliation(s)
- Karsten Ruscher
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, University of Lund, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
93
|
Knieling M, Metz GA, Antonow-Schlorke I, Witte OW. Enriched environment promotes efficiency of compensatory movements after cerebral ischemia in rats. Neuroscience 2009; 163:759-69. [PMID: 19589371 DOI: 10.1016/j.neuroscience.2009.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 11/17/2022]
Abstract
Rehabilitation therapy is known to drive motor improvement in stroke patients. However, the interplay of functional recovery and compensation in postischemic motor behavior is poorly understood. This study focused on the time course of functional recovery versus motor compensation in skilled forelimb movements after cerebral ischemia in rats. Young adult male rats underwent a focal cerebral ischemia by unilateral photothrombotic lesion of the motor cortex related to the preferred forelimb. In a first set of experiments animals were exposed to small cortical lesions comprising the forelimb motor cortex (n=8) or to larger lesions additionally extending into the hind limb motor area (n=8). In a second set of experiments animals with large lesion were either housed in standard (n=10) or enriched environment (n=14). Skilled reaching was assessed for 25 to 28 days postischemia. This task allows the distinction between recovery and compensation by parallel quantitative (reaching success) and qualitative (movement pattern) analysis. The results reveal that lesion size determines the initial magnitude of motor deficits, but not the degree of chronic impairments in movement pattern in all experimental groups. Compensatory movements represent the major mechanism of functional improvement and were accompanied by a partial functional restitution. Enriched environment facilitates effective compensation in skilled reaching, while it does not promote restitution of function. In particular, rotating movements of the forelimb during reaching were permanently impaired and required functional compensation through intensified use of the upper body. We conclude an activity dependent postischemic restoration of movement success. Enriched environment provides benefit by increased motor activity mainly due to compensation. Furthermore, these findings emphasize the power of comprehensive movement analysis to gain insight into recovery processes after stroke.
Collapse
Affiliation(s)
- M Knieling
- Hans Berger Clinic of Neurology, Friedrich Schiller University, 07740 Jena, Germany.
| | | | | | | |
Collapse
|
94
|
Moreira TJTP, Pierre K, Maekawa F, Repond C, Cebere A, Liljequist S, Pellerin L. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab 2009; 29:1273-83. [PMID: 19401710 DOI: 10.1038/jcbfm.2009.50] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.
Collapse
|
95
|
Abstract
As a marker of generalized atherosclerosis, peripheral arterial disease (PAD) has implications not only for the affected lower extremity but also to overall cardiovascular health. It confers an increased risk of non-fatal and fatal vascular events which increases with the severity of the disease. Patient-based studies have shown that individuals with advanced PAD tend to perform poorly on cognitive tests compared to controls. In population studies, PAD is associated with an increased cognitive decline independently of previous cerebrovascular disease and cardiovascular risk factors. A low ankle-brachial index (ABI) may be an early predictor of cognitive decline and of potential value in identifying individuals at increased risk of cognitive impairment. In patients with PAD, secondary preventive measures directed at decreasing the long-term systemic vascular complications may also be important to the preservation of cognitive health. However, evidence suggests that PAD patients may be undertreated with regard to atherosclerotic risk factors, as demonstrated by an undue emphasis on symptom relief rather than essential risk factor reduction. More research needs to be carried out to determine the predictors of cognitive function in PAD patients, whether subtle cognitive disturbances are related to activities of daily living, including medical treatment compliance, and whether neuroprotective strategies and atherosclerotic risk factor control positively influence cognitive function in these high-risk patients.
Collapse
Affiliation(s)
- Snorri B Rafnsson
- Public Health Sciences Section, School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | |
Collapse
|
96
|
Abstract
BACKGROUND Investigations following stroke first of all require information about the spatio-temporal dimension of the ischemic core as well as of perilesional and remote affected tissue. Here we systematically evaluated regions differently impaired by focal ischemia. METHODOLOGY/PRINCIPAL FINDINGS Wistar rats underwent a transient 30 or 120 min suture-occlusion of the middle cerebral artery (MCAO) followed by various reperfusion times (2 h, 1 d, 7 d, 30 d) or a permanent MCAO (1 d survival). Brains were characterized by TTC, thionine, and immunohistochemistry using MAP2, HSP72, and HSP27. TTC staining reliably identifies the infarct core at 1 d of reperfusion after 30 min MCAO and at all investigated times following 120 min and permanent MCAO. Nissl histology denotes the infarct core from 2 h up to 30 d after transient as well as permanent MCAO. Absent and attenuated MAP2 staining clearly identifies the infarct core and perilesional affected regions at all investigated times, respectively. HSP72 denotes perilesional areas in a limited post-ischemic time (1 d). HSP27 detects perilesional and remote impaired tissue from post-ischemic day 1 on. Furthermore a simultaneous expression of HSP72 and HSP27 in perilesional neurons was revealed. CONCLUSIONS/SIGNIFICANCE TTC and Nissl staining can be applied to designate the infarct core. MAP2, HSP72, and HSP27 are excellent markers not only to identify perilesional and remote areas but also to discriminate affected neuronal and glial populations. Moreover markers vary in their confinement to different reperfusion times. The extent and consistency of infarcts increase with prolonged occlusion of the MCA. Therefore interindividual infarct dimension should be precisely assessed by the combined use of different markers as described in this study.
Collapse
|
97
|
Transient widespread blood-brain barrier alterations after cerebral photothrombosis as revealed by gadofluorine M-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab 2009; 29:331-41. [PMID: 18957988 DOI: 10.1038/jcbfm.2008.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful tool to assess brain lesions, but currently available contrast agents are limited in the assessment of cellular and functional alterations. By use of the novel MRI contrast agent gadofluorine M (Gf) we report on imaging of transient and widespread changes of blood-brain barrier (BBB) properties as a consequence of focal photothrombotic brain lesions in rats. After i.v. application, Gf led to bright contrast in the lesions, but also the entire ipsilateral cortex on T1-weighted MRI. In contrast, enhancement after application of gadolinium diethylenetriamine-pentaacetic acid (Gd-DTPA), a common clinical indicator of BBB leakage was restricted to the lesions. Remote Gf enhancement was restricted in time to the first 24 h after photothrombosis and corresponded to a transient breakdown of the BBB as revealed by extravasation of the dye Evans blue. In conclusion, our study shows that Gf can visualize subtle disturbances of the BBB in three dimensions not detectable by Gd-DTPA. Upon entry into the central nervous system Gf most likely is locally trapped by interactions with extracellular matrix proteins. The unique properties of Gf hold promise as a more sensitive contrast agent for monitoring BBB disturbances in neurologic disorders, which appear more widespread than anticipated previously.
Collapse
|
98
|
Fair DA, Snyder AZ, Connor LT, Nardos B, Corbetta M. Task-evoked BOLD responses are normal in areas of diaschisis after stroke. Neurorehabil Neural Repair 2008; 23:52-7. [PMID: 18796542 DOI: 10.1177/1545968308317699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Cerebral infarction can cause diaschisis, a reduction of blood flow and metabolism in areas of the cortex distant from the site of the lesion. Although the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal is increasingly used to examine the neural correlates of recovery in stroke, its reliability in areas of diaschisis is uncertain. DESIGN The effect of chronic diaschisis as measured by resting positron emission tomography on task-evoked BOLD responses during word-stem completion in a block design fMRI study was examined in 3 patients, 6 months after a single left hemisphere stroke involving the inferior frontal gyrus and operculum. RESULTS The BOLD responses were minimally affected in areas of chronic diaschisis. CONCLUSIONS Within the confines of this study, the mechanism underlying the BOLD signal, which includes a mismatch between neuronally driven increases in blood flow and a corresponding increase in oxygen use, appears to be intact in areas of chronic diaschisis.
Collapse
Affiliation(s)
- Damien A Fair
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
99
|
Gharbawie OA, Williams PTJA, Kolb B, Whishaw IQ. Transient middle cerebral artery occlusion disrupts the forelimb movement representations of rat motor cortex. Eur J Neurosci 2008; 28:951-63. [PMID: 18717732 DOI: 10.1111/j.1460-9568.2008.06399.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infarcts from proximal middle cerebral artery (MCA) stroke can produce impairments in motor function, particularly finger movements in humans and digit flexion in rats. In rats, the extent of neural damage may be limited to basal ganglia structures or may also include portions of the frontal and parietal cortex in severe cases. Although the primary motor cortex (M1) is anatomically spared in proximal MCA occlusion, its functional integrity is suspect because even a small subcortical infarct can damage neural circuits linking M1 with basal ganglia, brainstem, and spinal cord. This motivated the present study to investigate the neurophysiological integrity of M1 after transient proximal MCA occlusion. Rats, preoperatively trained and non-preoperatively trained to reach for food, received extensive reach training/testing with the contralateral-to-lesion paw for several weeks after MCA occlusion. The forelimb movement representations were assayed from the ipsilateral-to-lesion M1 with intracortical microstimulation approximately 10 weeks after MCA occlusion. Digit flexion was impaired during food grasping in rats with relatively small subcortical infarcts and was completely abolished in rats that sustained at least moderate subcortical damage. Corresponding forelimb movement representations ranged from abnormally small to absent. The results suggest that ischemia in subcortical territories of the MCA does not spare the neurophysiological properties of M1 despite its apparent anatomical intactness, probably because of damage sustained to its descending fibers. Thus, M1 dysfunction contributes to the impairments that ensue from proximal MCA occlusion, even when the infarct is limited to subcortical regions.
Collapse
Affiliation(s)
- Omar A Gharbawie
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | |
Collapse
|
100
|
Richter F, Bauer R, Lehmenkühler A, Schaible HG. Spreading depression in the brainstem of the adult rat: electrophysiological parameters and influences on regional brainstem blood flow. J Cereb Blood Flow Metab 2008; 28:984-94. [PMID: 18059430 DOI: 10.1038/sj.jcbfm.9600594] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression is a pathophysiological excitation wave that occurs during pathophysiological brain conditions such as ischemic brain infarction, migraine aura, and others. Judged from experiments in rodents, the brainstem is thought to be comparatively resistant to the generation of spreading depression. However, because spreading depression can be elicited in the brainstem of rat pups after superfusing the brainstem with solutions enhancing excitability, we reinvestigated spreading depression in the brainstem of the adult rat. Based on theoretical predictions indicating a major role of extracellular potassium in susceptibility to spreading depression, we used conditioning solutions in which chloride ions were replaced by acetate and tetraethylammonium chloride and a small amount of KCl were added. Under these conditions, spreading depression was reproducibly elicited in the brainstem either by topical application of KCl crystals to the brainstem surface or by local microinjection of KCl into the brainstem. The direct current shifts so elicited were accompanied by typical elevation of extracellular potassium ions, propagated in the brainstem, and were prevented by MK-801, an N-methyl D-aspartate blocker. During spreading depression, the regional blood flow in the brainstem was transiently increased. In addition, systemic arterial blood pressure, but not the heart rate, was transiently enhanced. In the nonconditioned brainstem, KCl stimulation neither elicited spreading depression nor induced changes in regional blood flow and blood pressure. These data show that proper conditioning renders the brainstem susceptible to spreading depression, and that spreading depression at this site elicits changes in local circulation and systemic blood pressure.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | |
Collapse
|