51
|
Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, Zhang YJ, Zheng P, Tan XH, Zhou L. Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One 2014; 9:e86206. [PMID: 24465960 PMCID: PMC3897654 DOI: 10.1371/journal.pone.0086206] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Tacrolimus is a widely used immunosuppressive drug for preventing the rejection of solid organ transplants. The efficacy of tacrolimus shows considerable variability, which might be related to genetic variation among recipients. We conducted a retrospective study of 240 Chinese renal transplant recipients receiving tacrolimus as immunosuppressive drug. The retrospective data of all patients were collected for 40 days after transplantation. Seventeen SNPs of CYP3A5, CYP3A4, COMT, IL-10 and POR were identified by the SNaPshot assay. Tacrolimus blood concentrations were obtained on days 1-3, days 6-8 and days 12-14 after transplantation, as well as during the period of the predefined therapeutic concentration range. Kruskal-Wallis test was used to examine the effect of genetic variation on the tacrolimus concentration/dose ratio (C 0/D) at different time points. Chi-square test was used to compare the proportions of patients who achieved the target C 0 range in the different genotypic groups at weeks 1, 2, 3 and 4 after transplantation. After correction for multiple testing, there was a significant association of C 0/D with CYP3A5*3, CYP3A4*1G and CYP3A4 rs4646437 T>C at different time points after transplantation. The proportion of patients in the IL-10 rs1800871-TT group who achieved the target C 0 range was greater (p = 0.004) compared to the IL-10 rs1800871-CT and IL-10 rs1800871-CC groups at week 3 after transplantation. CYP3A5*3, CYP3A4 *1G, CYP3A4 rs4646437 T>C and IL-10 rs1800871 C>T might be potential polymorphisms affecting the interindividual variability in tacrolimus metabolism among Chinese renal transplant recipients.
Collapse
Affiliation(s)
- Chuan-Jiang Li
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
- * E-mail:
| | - Li Lin
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Hai-Xia Jiang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ze-Yan Zhong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Wei-Mo Li
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan-Jun Zhang
- College of Pharmacy, University of Cincinnati Academic Health Centre, Cincinnati, Ohio, United States of America
| | - Ping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xu-Hui Tan
- Department of Biostatistics, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, PR China
| | - Lin Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
52
|
Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenet Genomics 2014; 23:403-14. [PMID: 23778323 DOI: 10.1097/fpc.0b013e3283629ce9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. METHODS We resequenced CYP2D6 in 187 CSKT individuals and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT individuals. RESULTS We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9, and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. CONCLUSION These results highlight the importance of carrying out pharmacogenomic research in AI/AN populations and show that extrapolation from other populations is not appropriate. This information could help optimize drug therapy for the CSKT population.
Collapse
|
53
|
Kreutz RP, Owens J, Jin Y, Nystrom P, Desta Z, Kreutz Y, Breall JA, Li L, Chiang C, Kovacs RJ, Flockhart DA. Cytochrome P450 3A4*22, PPAR-α, and ARNT polymorphisms and clopidogrel response. Clin Pharmacol 2013; 5:185-92. [PMID: 24353446 PMCID: PMC3862586 DOI: 10.2147/cpaa.s53151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent candidate gene studies using a human liver bank and in vivo validation in healthy volunteers identified polymorphisms in cytochrome P450 (CYP) 3A4 gene (CYP3A4*22), Ah-receptor nuclear translocator (ARNT), and peroxisome proliferator-activated receptor-α (PPAR-α) genes that are associated with the CYP3A4 phenotype. We hypothesized that the variants identified in these genes may be associated with altered clopidogrel response, since generation of clopidogrel active metabolite is, partially mediated by CYP3A activity. Blood samples from 211 subjects, of mixed racial background, with established coronary artery disease, who had received clopidogrel, were analyzed. Platelet aggregation was determined using light transmittance aggregometry (LTA). Genotyping for CYP2C19*2, CYP3A4*22, PPAR-α (rs4253728, rs4823613), and ARNT (rs2134688) variant alleles was performed using Taqman® assays. CYP2C19*2 genotype was associated with increased on-treatment platelet aggregation (adenosine diphosphate 20 μM; P=0.025). No significant difference in on-treatment platelet aggregation, as measured by LTA during therapy with clopidogrel, was demonstrated among the different genotypes of CYP3A4*22, PPAR-α, and ARNT. These findings suggest that clopidogrel platelet inhibition is not influenced by the genetic variants that have previously been associated with reduced CYP3A4 activity.
Collapse
Affiliation(s)
- Rolf P Kreutz
- Krannert Institute of Cardiology, Indianapolis, Indiana, USA ; Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Janelle Owens
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yan Jin
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Perry Nystrom
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yvonne Kreutz
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Chienwei Chiang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - David A Flockhart
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
54
|
Woillard JB, Kamar N, Coste S, Rostaing L, Marquet P, Picard N. Effect of CYP3A4*22, POR*28, and PPARA rs4253728 on Sirolimus In Vitro Metabolism and Trough Concentrations in Kidney Transplant Recipients. Clin Chem 2013; 59:1761-9. [DOI: 10.1373/clinchem.2013.204990] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND
Recent studies have identified new candidate polymorphisms in the genes related to CYP3A activity or calcineurin inhibitor dose requirements in kidney transplant recipients. These genes and polymorphisms are CYP3A4 (cytochrome P450, family 3, subfamily A, polypeptide 4) (rs35599367-C>T; *22); POR [P450 (cytochrome) oxidoreductase] (rs1057868-C>T; *28); and PPARA (peroxisome proliferator-activated receptor alpha) (rs4253728-G>A). We investigated the impact of these polymorphisms on sirolimus (SRL) in vitro hepatic metabolism, SRL trough concentrations (C0), and SRL adverse events in kidney transplant recipients.
METHODS
The clinical study included 113 stable kidney transplant patients switched from a calcineurin inhibitor to SRL (SRL C0 measured at 1, 3, and 6 months thereafter). We investigated SRL metabolism in vitro using human liver microsomes derived from individual donors (n = 31). Microsomes and patients were genotyped by use of Taqman® allelic discrimination assays. The effects of polymorphisms and covariates were studied using multilinear regression imbedded in linear mixed-effect models or logistic regressions.
RESULTS
In vitro, the CYP3A4*22 allele resulted in approximately 20% lower metabolic rates of SRL (P = 0.0411). No significant association was found between CYP3A4, CYP3A5, or PPARA genotypes and SRL dose, C0, or C0/dose in kidney transplant patients. POR*28 was associated with a minor but significant decrease in SRL log-transformed C0 [CT/TT vs CC, β = −0.15 (0.05); P = 0.0197] but this did not have any impact on the dose administered, which limited the relevance of the finding. After adjustment for nongenetic covariates and correction for false discovery finding, none of the single-nucleotide polymorphisms tested showed significant association with SRL adverse events.
CONCLUSIONS
These recently described polymorphisms do not seem to substantially influence the pharmacokinetics of SRL or the occurrence of SRL adverse events in kidney transplant recipients.
Collapse
Affiliation(s)
- Jean-Baptiste Woillard
- INSERM, UMR S-850, Limoges, France
- Univ Limoges, Limoges, France
- CHU Limoges, Department of Pharmacology and Toxicology, Limoges, France
| | - Nassim Kamar
- CHU Toulouse, Department of Nephrology-Dialysis and Multi-Organ Transplantation, Toulouse, France
- INSERM, U563, IFR–BMT, CHU Purpan, Toulouse, France
- Univ Paul Sabatier, Toulouse, France
| | | | - Lionel Rostaing
- CHU Toulouse, Department of Nephrology-Dialysis and Multi-Organ Transplantation, Toulouse, France
- INSERM, U563, IFR–BMT, CHU Purpan, Toulouse, France
- Univ Paul Sabatier, Toulouse, France
| | - Pierre Marquet
- INSERM, UMR S-850, Limoges, France
- Univ Limoges, Limoges, France
- CHU Limoges, Department of Pharmacology and Toxicology, Limoges, France
| | - Nicolas Picard
- INSERM, UMR S-850, Limoges, France
- Univ Limoges, Limoges, France
- CHU Limoges, Department of Pharmacology and Toxicology, Limoges, France
| |
Collapse
|
55
|
Okubo M, Murayama N, Shimizu M, Shimada T, Guengerich FP, Yamazaki H. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci 2013; 38:349-54. [PMID: 23665933 DOI: 10.2131/jts.38.349] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Effects of the CYP3A4 intron 6 C>T (CYP3A4*22) polymorphism, which has recently been reported to have a critical role in vivo, were investigated by measuring CYP3A4 protein expression levels and CYP3A4-dependent drug oxidation activities in individual human liver microsomes in vitro. Prior to protein analysis, analysis of DNA samples indicated that 36 Caucasian subjects were genotyped as CYP3A4*1/*1 and five subjects were CYP3A4*1/*22, with a CYP3A4*22 allelic frequency of 6.1%. No CYP3A4*22 alleles were found in the Japanese samples (106 alleles). Individual differences in CYP2D6-dependent dextromethorphan O-demethylation activities in liver microsomes from Caucasians were not affected by either the CYP3A4*1/*22 or CYP3A5*1/*3 genotype. Liver microsomes genotyped as CYP3A4*1/*22 (n = 4) showed significantly lower CYP3A-dependent dextromethorphan N-demethylation, midazolam 1'-hydroxylation, and testosterone 6β-hydroxylation activities, as well as lower expression levels of CYP3A protein (28% of control), compared with those of the CYP3A4*1/*1 group (n = 19). The other polymorphism, CYP3A5*1/*3, did not show these differences (n = 4). The CYP3A4*22 polymorphism was associated with reduced CYP3A4 protein expression levels and resulted in decreased CYP3A4-dependent activities in human livers. The present results suggest an important role of low expression of CYP3A4 protein associated with the CYP3A4*22 allele in the individual differences in drug clearance.
Collapse
Affiliation(s)
- Maho Okubo
- Showa Pharmaceutical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RHN. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14:47-62. [PMID: 23252948 DOI: 10.2217/pgs.12.187] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many studies have attempted to explain the interindividual variability observed in drug metabolism by assessing the impact of SNPs in genes implicated in drug absorption, distribution, metabolism and excretion pathways. Particular attention has been paid to the CYP450s. CYP3A4 is the main CYP isoform in human liver and intestine and is involved in the metabolism of many drugs. Its activity, however, is characterized by widespread variation in the general population, which is thought to have a genetic basis. A new CYP3A4 allele (CYP3A4*22; rs35599367 C>T in intron 6) with a frequency of 5-7% in the Caucasian population was recently discovered through its association with low hepatic CYP3A4 expression and CYP3A4 activity, and showing effects on statin, tacrolimus and cyclosporine metabolism. This review will summarize the current literature on phenotypes linked to this new promising CYP3A4 genetic marker SNP and discusses the potential clinical relevance.
Collapse
Affiliation(s)
- Laure Elens
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
57
|
Ravyn D, Ravyn V, Lowney R, Nasrallah HA. CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res 2013; 149:1-14. [PMID: 23870808 DOI: 10.1016/j.schres.2013.06.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
Abstract
Although a number of first- and second-generation antipsychotics are available, achieving optimal therapeutic response for patients with schizophrenia can be challenging. The presence of polymorphic alleles for cytochrome P (CYP) 450 may result in lack of expression, altered levels of expression, or altered function of CYP450 enzymes. CYP2D6, CYP1A2, and CYP3A4/5 are major enzymes in the metabolism of antipsychotics and polymorphisms of alleles for these proteins are associated with altered plasma levels. Consequently, standard dosing may result in drug plasma concentrations that are subtherapeutic or toxic in some patients. Patient CYP450 genotype testing can predict altered pharmacokinetics, and is currently available and relatively inexpensive. Evidence-based guidelines provide dose recommendations for some antipsychotics. To date few studies have demonstrated a significant association with genotype-guided antipsychotic use and clinical efficacy. However, many studies have been small, retrospective or cohort designs, and many have not been adequately powered. Numerous studies have shown a significant association between genotype and adverse effects, such as CYP2D6 polymorphisms and tardive dyskinesia. This review summarizes evidence for the role of CYP450 genetic variants in the response to antipsychotic medications and the clinical implications of pharmacogenetics in the management of patients with schizophrenia.
Collapse
Affiliation(s)
- Dana Ravyn
- CMEology, West Hartford, CT, United States
| | | | | | | |
Collapse
|
58
|
Kitzmiller JP, Sullivan DM, Phelps MA, Wang D, Sadee W. CYP3A4/5 combined genotype analysis for predicting statin dose requirement for optimal lipid control. ACTA ACUST UNITED AC 2013; 28:59-63. [PMID: 23314529 DOI: 10.1515/dmdi-2012-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/13/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Statins are indicated for prevention of atherosclerotic cardiovascular disease. Metabolism of certain statins involves the cytochrome P450 3A (CYP3A) enzymes, and CYP3A4*22 significantly influences the dose needed for achieving optimal lipid control for atorvastatin, simvastatin, and lovastatin. CYP3A4/5 combined genotype approaches have proved useful in some studies involving CYP3A substrates. We intend to compare a combined genotype analysis to our previously reported single gene CYP3A4 analysis. METHODS A total of 235 patients receiving stable statin doses were genotyped and grouped by CYP3A4/5 status. RESULTS The number and demographic composition of the patients categorized into the combined genotype groups were consistent with those reported for other cohorts. Dose requirement was significantly associated with the ordered combined-genotype grouping; median daily doses were nearly 40% greater for CYP3A4/5 intermediate metabolizers compared with poor metabolizers, and median daily doses were nearly double for extensive metabolizers compared with poor metabolizers. The combined-genotype approach, however, did not improve the genotype-dosage correlation p-values when compared with the previously-reported analysis; values changed from 0.129 to 0.166, 0.036 to 0.185, and 0.014 to 0.044 for atorvastatin, simvastatin, and the combined statin analysis, respectively. CONCLUSIONS The previously-reported single-gene approach was superior for predicting statin dose requirement in this cohort.
Collapse
|
59
|
Elens L, Nieuweboer A, Clarke SJ, Charles KA, de Graan AJ, Haufroid V, Mathijssen RHJ, van Schaik RHN. CYP3A4 intron 6 C>T SNP (CYP3A4*22) encodes lower CYP3A4 activity in cancer patients, as measured with probes midazolam and erythromycin. Pharmacogenomics 2013; 14:137-49. [PMID: 23327575 DOI: 10.2217/pgs.12.202] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The CYP3A4*22 allele was recently reported to be associated with reduced CYP3A4 activity. We investigated the impact of this allele on the metabolism of the CYP3A-phenotyping probes, midazolam (MDZ) and erythromycin. PATIENTS & METHODS Genomic DNA from 108 cancer patients receiving intravenous MDZ and 45 undergoing the erythromycin breath test was analyzed for CYP3A4*22 (rs35599367 C>T) and CYP3A5*3. RESULTS The MDZ metabolic ratio (1´-OH-MDZ:MDZ) was 20.7% (95% CI: -36.2 to -6.2) lower for CYP3A4*22 carriers compared with CYP3A4*1/*1 patients (p = 0.01). Combining CYP3A4*22 and CYP3A5*3 genotypes showed a 38.7% decrease (95% CI: -50.0 to -27.4; p < 0.001) in 1´-OH-MDZ:MDZ for poor (CYP3A4*22-CYP3A5*3/*3) and 28.0% (95% CI: -33.3 to -22.6; p < 0.001) for intermediate (CYP3A4*1/*1-CYP3A5*3/*3) metabolizers, compared with extensive (CYP3A4*1/*1-CYP3A5*1) CYP3A metabolizers. CYP3A4 erythromycin N-demethylation activity was 40% lower in CYP3A4*22 carriers compared with CYP3A4*1/*1 patients (p = 0.032). CONCLUSION The CYP3A4*22 allele is associated with decreased CYP3A4-mediated metabolism, as verified by CYP3A-phenotyping probes.
Collapse
Affiliation(s)
- Laure Elens
- Department of Clinical Chemistry, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Shin KH, Choi MH, Lim KS, Yu KS, Jang IJ, Cho JY. Evaluation of Endogenous Metabolic Markers of Hepatic CYP3A Activity Using Metabolic Profiling and Midazolam Clearance. Clin Pharmacol Ther 2013; 94:601-9. [DOI: 10.1038/clpt.2013.128] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/10/2013] [Indexed: 11/09/2022]
|
61
|
Stockmann C, Fassl B, Gaedigk R, Nkoy F, Uchida DA, Monson S, Reilly CA, Leeder JS, Yost GS, Ward RM. Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J Pediatr 2013; 162:1222-7, 1227.e1-2. [PMID: 23290512 PMCID: PMC3620714 DOI: 10.1016/j.jpeds.2012.11.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/10/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the relationship between allelic variations in genes involved in fluticasone propionate (FP) metabolism and asthma control among children with asthma managed with inhaled FP. STUDY DESIGN The relationship between variability in asthma control scores and genetic variation in drug metabolism was assessed by genotyping 9 single nucleotide polymorphisms in the CYP3A4, CYP3A5, and CYP3A7 genes. Genotype information was compared with asthma control scores (0=well controlled to 15=poorly controlled), determined using a questionnaire modified from the National Heart Lung and Blood Institute's Expert Panel 3 guidelines. RESULTS Our study cohort comprised 734 children with asthma (mean age, 8.8±4.3 years) and was predominantly male (61%) and non-Hispanic white (53%). More than one-half of the children (56%; n=413) were receiving an inhaled glucocorticoid daily, with FP the most frequently prescribed agent (65%). Among the children receiving daily FP, single nucleotide polymorphisms in CYP3A5 and CYP3A7 were not associated with asthma control scores. In contrast, asthma control scores were significantly improved in the 20 children (7%) with the CYP3A4*22 allele (median, 3; range, 0-6) compared with the 201 children without the CYP3A4*22 allele (median, 4; range, 0-15; P=.02). The presence of CYP3A4*22 was associated with improved asthma control scores by 2.1 points (95% CI, 0.5-3.8). CONCLUSION The presence of CYP3A4*22, which is associated with decreased hepatic CYP3A4 expression and activity, was accompanied by improved asthma control in the FP-treated children. Decreased CYP3A4 activity may improve asthma control with inhaled FP.
Collapse
Affiliation(s)
- Chris Stockmann
- Department of Pediatrics, University of Utah School of Medicine
,Department of Pharmacology/Toxicology, University of Utah College of Pharmacy
| | - Bernhard Fassl
- Department of Pediatrics, University of Utah School of Medicine
| | - Roger Gaedigk
- Developmental Pharmacology and Experimental Therapeutics Laboratory, University of Missouri Kansas City
| | - Flory Nkoy
- Department of Pediatrics, University of Utah School of Medicine
| | - Derek A. Uchida
- Department of Pediatrics, University of Utah School of Medicine
| | - Steven Monson
- Department of Pediatrics, University of Utah School of Medicine
| | | | - J. Steven Leeder
- Developmental Pharmacology and Experimental Therapeutics Laboratory, University of Missouri Kansas City
| | - Garold S. Yost
- Department of Pharmacology/Toxicology, University of Utah College of Pharmacy
| | - Robert M. Ward
- Department of Pediatrics, University of Utah School of Medicine
,Department of Pharmacology/Toxicology, University of Utah College of Pharmacy
| |
Collapse
|
62
|
van Schie RMF, Aoussar A, van der Meer FJM, de Boer A, Maitland-van der Zee AH. Evaluation of the effects of single-nucleotide polymorphisms in CYP3A4 and CYP4F2 on stable phenprocoumon and acenocoumarol maintenance doses. J Thromb Haemost 2013; 11:1200-3. [PMID: 23510058 DOI: 10.1111/jth.12195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Indexed: 08/31/2023]
|
63
|
de Graan AJM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B, de Raaf PJ, de Bruijn P, Engels FK, Eskens FALM, Wiemer EAC, Verweij J, Mathijssen RHJ, van Schaik RHN. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res 2013; 19:3316-24. [PMID: 23640974 DOI: 10.1158/1078-0432.ccr-12-3786] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Paclitaxel is used for the treatment of several solid tumors and displays a high interindividual variation in exposure and toxicity. Neurotoxicity is one of the most prominent side effects of paclitaxel. This study explores potential predictive pharmacokinetic and pharmacogenetic determinants for the onset and severity of neurotoxicity. EXPERIMENTAL DESIGN In an exploratory cohort of patients (n = 261) treated with paclitaxel, neurotoxicity incidence, and severity, pharmacokinetic parameters and pharmacogenetic variants were determined. Paclitaxel plasma concentrations were measured by high-performance liquid chromatography or liquid chromatography/tandem mass spectrometry, and individual pharmacokinetic parameters were estimated from previously developed population pharmacokinetic models by nonlinear mixed effects modeling. Genetic variants of paclitaxel pharmacokinetics tested were CYP3A4*22, CYP2C8*3, CYP2C8*4, and ABCB1 3435 C>T. The association between CYP3A4*22 and neurotoxicity observed in the exploratory cohort was validated in an independent patient cohort (n = 239). RESULTS Exposure to paclitaxel (logAUC) was correlated with severity of neurotoxicity (P < 0.00001). Female CYP3A4*22 carriers were at increased risk of developing neurotoxicity (P = 0.043) in the exploratory cohort. CYP3A4*22 carrier status itself was not associated with pharmacokinetic parameters (CL, AUC, Cmax, or T>0.05) of paclitaxel in males or females. Other genetic variants displayed no association with neurotoxicity. In the subsequent independent validation cohort, CYP3A4*22 carriers were at risk of developing grade 3 neurotoxicity (OR = 19.1; P = 0.001). CONCLUSIONS Paclitaxel exposure showed a relationship with the severity of paclitaxel-induced neurotoxicity. In this study, female CYP3A4*22 carriers had increased risk of developing severe neurotoxicity during paclitaxel therapy. These observations may guide future individualization of paclitaxel treatment.
Collapse
Affiliation(s)
- Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Tian X, Cheng ZY, He J, Jia LJ, Qiao HL. Concentration-dependent inhibitory effects of baicalin on the metabolism of dextromethorphan, a dual probe of CYP2D and CYP3A, in rats. Chem Biol Interact 2013; 203:522-9. [PMID: 23458730 DOI: 10.1016/j.cbi.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/31/2013] [Accepted: 02/18/2013] [Indexed: 02/04/2023]
Abstract
Baicalin has been shown to possess many pharmacological effects, including antiviral, antioxidant, anti-cancer and anti-inflammatory properties. In the current study, we reveal the inhibitory effects of baicalin on the metabolism of dextromethorphan (DXM), a dual probe substrate of CYP2D and CYP3A, in rats. Lineweaver-Burk plots demonstrated that baicalin inhibited the activities of CYP2D and CYP3A in a non-competitive manner in rat liver microsomes (RLMs). Concomitant administration of baicalin (0.90 g/kg, i.v.) and DXM (10 mg/kg, i.v.) increased the maximum drug concentration (C(max)) (37%) and the area under concentration-time curve (AUC) (42%) and decreased the clearance (CL) (27%) of DXM in a randomised, crossover study in rats (P < 0.01). The change in the AUC of DXM was significantly correlated with the C(max) and AUC of baicalin (P < 0.05). The inhibitory effects of multiple doses of baicalin (0.90 g/kg, i.v., 12 days) on the metabolism of DXM were similar to those observed following a single dose in rats. The activity of CYP3A in excised liver samples from rats following multiple baicalin treatment was significantly decreased compared to that of the control group (P < 0.05), whereas multiple doses of baicalin had no obvious effect on the activity of CYP2D. Taken together, these data demonstrate that baicalin inhibits the metabolism of DXM in a concentration-dependent manner in rats, possibly through inhibiting hepatic CYP2D and CYP3A activities.
Collapse
Affiliation(s)
- Xin Tian
- Department of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
65
|
Impact of POR*28 on the clinical pharmacokinetics of CYP3A phenotyping probes midazolam and erythromycin. Pharmacogenet Genomics 2013; 23:148-55. [DOI: 10.1097/fpc.0b013e32835dc113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Klein K, Zanger UM. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress Toward the "Missing Heritability" Problem. Front Genet 2013; 4:12. [PMID: 23444277 PMCID: PMC3580761 DOI: 10.3389/fgene.2013.00012] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/26/2013] [Indexed: 12/19/2022] Open
Abstract
CYP3A4 is the most important drug metabolizing enzyme in adult humans because of its prominent expression in liver and gut and because of its broad substrate specificity, which includes drugs from most therapeutic categories and many endogenous substances. Expression and function of CYP3A4 vary extensively both intra- and interindividually thus contributing to unpredictable drug response and toxicity. A multitude of environmental, genetic, and physiological factors are known to influence CYP3A4 expression and activity. Among the best predictable sources of variation are drug–drug interactions, which are either caused by pregnane X-receptor (PXR), constitutive androstane receptor (CAR) mediated gene induction, or by inhibition through coadministered drugs or other chemicals, including also plant and food ingredients. Among physiological and pathophysiological factors are hormonal status, age, and gender, the latter of which was shown to result in higher levels in females compared to males, as well as inflammatory processes that downregulate CYP3A4 transcription. Despite the influence of these non-genetic factors, the genetic influence on CYP3A4 activity was estimated in previous twin studies and using information on repeated drug administration to account for 66% up to 88% of the interindividual variation. Although many single nucleotide polymorphisms (SNPs) within the CYP3A locus have been identified, genetic association studies have so far failed to explain a major part of the phenotypic variability. The term “missing heritability” has been used to denominate the gap between expected and known genetic contribution, e.g., for complex diseases, and is also used here in analogy. In this review we summarize CYP3A4 pharmacogenetics/genomics from the early inheritance estimations up to the most recent genetic and clinical studies, including new findings about SNPs in CYP3A4 (*22) and other genes (P450 oxidoreductase (POR), peroxisome proliferator-activated receptor alpha (PPARA)) with possible contribution to CYP3A4 variable expression.
Collapse
Affiliation(s)
- Kathrin Klein
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, Stuttgart Stuttgart, Germany ; University of Tübingen Tübingen, Germany
| | | |
Collapse
|
67
|
Drögemöller B, Plummer M, Korkie L, Agenbag G, Dunaiski A, Niehaus D, Koen L, Gebhardt S, Schneider N, Olckers A, Wright G, Warnich L. Characterization of the genetic variation present in CYP3A4 in three South African populations. Front Genet 2013; 4:17. [PMID: 23423246 PMCID: PMC3574981 DOI: 10.3389/fgene.2013.00017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/01/2013] [Indexed: 12/26/2022] Open
Abstract
The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5′-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4*12, CYP3A4*15, and the reportedly functional CYP3A4*1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.
Collapse
Affiliation(s)
- Britt Drögemöller
- Department of Genetics, Stellenbosch University Stellenbosch, South Africa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Kitzmiller JP, Embi PJ, Manickam K, Sweet KM, Phelps MA, Jackson RD, Marsh CB, Sadee W. Program in pharmacogenomics at the Ohio State University Medical Center. Pharmacogenomics 2012; 13:751-6. [PMID: 22594506 DOI: 10.2217/pgs.12.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Established in 2002, the Ohio State University Medical Center Program in Pharmacogenomics, lead by Wolfgang Sadee, is comprised of nearly 50 members dedicated to the discovery, investigation and translation of genetic biomarkers with the primary goal of advancing personalized healthcare. This article describes the research teams, bioinformatics infrastructure, supporting laboratories and Centers for Personalized Healthcare and for Clinical and Translational Science, current molecular genetic studies, translational and clinical pharmacogenomic studies, examples of biomarkers under development, and the future directions of the program.
Collapse
|
69
|
|
70
|
Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. THE PHARMACOGENOMICS JOURNAL 2012; 13:1-11. [PMID: 23089672 DOI: 10.1038/tpj.2012.45] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interindividual differences in drug disposition are important causes for adverse drug reactions and lack of drug response. The majority of phase I and phase II drug-metabolizing enzymes (DMEs) are polymorphic and constitute essential factors for the outcome of drug therapy. Recently, both genome-wide association (GWA) studies with a focus on drug response, as well as more targeted studies of genes encoding DMEs have revealed in-depth information and provided additional information for variation in drug metabolism and drug response, resulting in increased knowledge that aids drug development and clinical practice. In addition, an increasing number of meta-analyses have been published based on several original and often conflicting pharmacogenetic studies. Here, we review data regarding the pharmacogenomics of DMEs, with particular emphasis on novelties. We conclude that recent studies have emphasized the importance of CYP2C19 polymorphism for the effects of clopidogrel, whereas the CYP2C9 polymorphism appears to have a role in anticoagulant treatment, although inferior to VKORC1. Furthermore, the analgesic and side effects of codeine in relation to CYP2D6 polymorphism are supported and the influence of CYP2D6 genotype on breast cancer recurrence during tamoxifen treatment appears relevant as based on three large studies. The influence of CYP2D6 polymorphism on the effect of antidepressants in a clinical setting is yet without any firm evidence, and the relation between CYP2D6 ultrarapid metabolizers and suicide behavior warrants further studies. There is evidence for the influence of CYP3A5 polymorphism on tacrolimus dose, although the influence on response is less studied. Recent large GWA studies support a link between CYP1A2 polymorphism and blood pressure as well as coffee consumption, and between CYP2A6 polymorphism and cigarette consumption, which in turn appears to influence the lung cancer incidence. Regarding phase II enzyme polymorphism, the anticancer treatment with mercaptopurines and irinotecan is still considered important in relation to the polymorphism of TPMT and UGT1A1, respectively. There is a need for further clarification of the clinical importance and use of all these findings, but the recent research in the field that encompasses larger studies and a whole genome perspective, improves the possibilities be able to make firm and cost-effective recommendations for drug treatment in the future.
Collapse
Affiliation(s)
- S C Sim
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
71
|
ABCB1 polymorphisms are associated with cyclosporine-induced nephrotoxicity and gingival hyperplasia in renal transplant recipients. Eur J Clin Pharmacol 2012; 69:385-93. [PMID: 22886152 DOI: 10.1007/s00228-012-1355-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/10/2012] [Indexed: 01/08/2023]
Abstract
PURPOSE There is a great deal of controversy regarding the clinical impact of genetic variants in patients receiving cyclosporine (CsA) as immunosuppressant therapy. We have investigated the effect of polymorphisms in the CYP3A and ABCB1 genes on CsA pharmacokinetics, acute rejection incidence and drug-related side effects in renal transplant recipients METHODS The presence of CYP3A5*3, CYP3A4*1B and ABCB1 C1236T, G2677T/A and C3435T polymorphisms was assessed in 68 patients and retrospectively associated with pharmacokinetic and clinical parameters at 1 week and 1, 5 and 12 months after transplantation. RESULTS Only minor associations were found between the tested polymorphisms and CsA pharmacokinetics. Most notably, CYP3A5 expressers showed lower blood trough levels than non-expressers in the first week after grafting (32.5 ± 14.7 vs. 55.1 ± 3.8 ng/ml per mg/day per kilogram). In terms of CsA-induced adverse effects, the incidence of nephrotoxicity was higher in carriers of the ABCB1 3435TT genotype and in those patients carrying four to six variants in the three ABCB1 loci [odds ratio (OR) 4.2, 95 % confidence interval (CI) 1.3-13.9, p = 0.02 and OR 3.6, 95 % CI 1.1-11.8, p = 0.05, respectively]. These subjects with four to six ABCB1 variants were also at higher risk for gingival hyperplasia (OR 3.29, 95 % CI 1.1-10.3, p = 0.04). Renal function and the incidence of neurotoxicity and of acute rejection did not vary across the different genotypes. CONCLUSIONS ABCB1 polymorphisms may be helpful in predicting certain CsA-related side effects in renal transplant recipients. Our results also suggest that the mechanisms underlying these genetic associations are most likely independent of the drug's trough blood concentrations.
Collapse
|