51
|
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 2015; 116:13-23. [PMID: 26071627 DOI: 10.1016/j.ymgme.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.
Collapse
Affiliation(s)
- Ángela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Alexander Rodríguez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ángela Mosquera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltrán
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sergio Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Oscar F Sánchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Henry Córdoba
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
52
|
Abstract
Pharmacological chaperone therapy is an emerging approach to treat lysosomal storage diseases. Small-molecule chaperones interact with mutant enzymes, favor their correct conformation and enhance their stability. This approach shows significant advantages when compared with existing therapies, particularly in terms of the bioavailability of drugs, oral administration and positive impact on the quality of patients' lives. On the other hand, future research in this field must confront important challenges. The identification of novel chaperones is indispensable to expanding the number of patients amenable to this treatment and to optimize therapeutic efficacy. It is important to develop new allosteric drugs, to address the risk of inhibiting target enzymes. Future research must also be directed towards the exploitation of synergies between chaperone treatment and other therapeutic approaches.
Collapse
|
53
|
Scarpa M, Bellettato CM, Lampe C, Begley DJ. Neuronopathic lysosomal storage disorders: Approaches to treat the central nervous system. Best Pract Res Clin Endocrinol Metab 2015; 29:159-71. [PMID: 25987170 DOI: 10.1016/j.beem.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany; University of Padova, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Cinzia Maria Bellettato
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Christina Lampe
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany.
| | - David J Begley
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Kings College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
54
|
Karagol IHE, Bakirtas A, Yilmaz O, Topal E, Kucukcongar A, Ezgu FS, Demirsoy MS, Turktas I. Desensitisation of the youngest patient with Pompe disease in response to alglucosidase alfa. Allergol Immunopathol (Madr) 2014; 42:372-5. [PMID: 23769736 DOI: 10.1016/j.aller.2013.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/25/2013] [Accepted: 02/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- I H E Karagol
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - A Bakirtas
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - O Yilmaz
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - E Topal
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - A Kucukcongar
- Department of Pediatric Metabolism, Gazi University Faculty of Medicine, Ankara, Turkey
| | - F S Ezgu
- Department of Pediatric Metabolism, Gazi University Faculty of Medicine, Ankara, Turkey
| | - M S Demirsoy
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| | - I Turktas
- Department of Pediatric Asthma and Allergy, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
55
|
Katz ML, Coates JR, Sibigtroth CM, Taylor JD, Carpentier M, Young WM, Wininger FA, Kennedy D, Vuillemenot BR, O'Neill CA. Enzyme replacement therapy attenuates disease progression in a canine model of late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). J Neurosci Res 2014; 92:1591-8. [PMID: 24938720 PMCID: PMC4263309 DOI: 10.1002/jnr.23423] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/07/2014] [Indexed: 01/16/2023]
Abstract
Using a canine model of classical late-infantile neuronal ceroid lipofuscinosis (CLN2 disease), a study was conducted to evaluate the potential pharmacological activity of recombinant human tripeptidyl peptidase-1 (rhTPP1) enzyme replacement therapy administered directly to the cerebrospinal fluid (CSF). CLN2 disease is a hereditary neurodegenerative disorder resulting from mutations in CLN2, which encodes the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Infants with mutations in both CLN2 alleles develop normally but in the late-infantile/early-childhood period undergo progressive neurological decline accompanied by pronounced brain atrophy. The disorder, a form of Batten disease, is uniformly fatal, with clinical signs starting between 2 and 4 years of age and death usually occurring by the early teenage years. Dachshunds homozygous for a null mutation in the canine ortholog of CLN2 (TPP1) exhibit a similar disorder that progresses to end stage at 10.5–11 months of age. Administration of rhTPP1 via infusion into the CSF every other week, starting at approximately 2.5 months of age, resulted in dose-dependent significant delays in disease progression, as measured by delayed onset of neurologic deficits, improved performance on a cognitive function test, reduced brain atrophy, and increased life span. Based on these findings, a clinical study evaluating the potential therapeutic value of rhTPP1 administration into the CSF of children with CLN2 disease has been initiated.
Collapse
Affiliation(s)
- Martin L Katz
- Mason Eye Institute, University of Missouri School of Medicine, and Department of Bioengineering, University of Missouri, Columbia, Missouri
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
In addition to their roles in normal cell physiology, endocytic processes play a key role in many diseases. In this review, three diseases are discussed as examples of the role of endocytic processes in disease. The uptake of cholesterol via LDL is central to our understanding of atherosclerosis, and the study of this disease led to many of the key breakthroughs in understanding receptor-mediated endocytosis. Alzheimer's disease is a growing burden as the population ages. Endosomes and lysosomes play important but only partially understood roles in both the formation and the degradation of the amyloid fibrils that are associated with Alzheimer's disease. Inherited lysosomal storage diseases are individually rare, but collectively they affect many individuals. Recent advances are leading to improved enzyme replacement therapy and are also leading to small-molecule drugs to treat some of these diseases.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
57
|
Naz H, Islam A, Waheed A, Sly WS, Ahmad F, Hassan MI. Humanβ-Glucuronidase: Structure, Function, and Application in Enzyme Replacement Therapy. Rejuvenation Res 2013; 16:352-63. [DOI: 10.1089/rej.2013.1407] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Abdul Waheed
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, University School of Medicine, St. Louis, Missouri
| | - William S. Sly
- The Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, University School of Medicine, St. Louis, Missouri
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
58
|
Fagiuoli S, Daina E, D'Antiga L, Colledan M, Remuzzi G. Monogenic diseases that can be cured by liver transplantation. J Hepatol 2013; 59:595-612. [PMID: 23578885 DOI: 10.1016/j.jhep.2013.04.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 02/08/2023]
Abstract
While the prevalence of most diseases caused by single-gene mutations is low and defines them as rare conditions, all together, monogenic diseases account for approximately 10 in every 1000 births according to the World Health Organisation. Orthotopic liver transplantation (LT) could offer a therapeutic option in monogenic diseases in two ways: by substituting for an injured liver or by supplying a tissue that can replace a mutant protein. In this respect, LT may be regarded as the correction of a disease at the level of the dysfunctional protein. Monogenic diseases that involve the liver represent a heterogeneous group of disorders. In conditions associated with predominant liver parenchymal damage (i.e., genetic cholestatic disorders, Wilson's disease, hereditary hemochromatosis, tyrosinemia, α1 antitrypsin deficiency), hepatic complications are the major source of morbidity and LT not only replaces a dysfunctional liver but also corrects the genetic defect and effectively cures the disease. A second group includes liver-based genetic disorders characterised by an architecturally near-normal liver (urea cycle disorders, Crigler-Najjar syndrome, familial amyloid polyneuropathy, primary hyperoxaluria type 1, atypical haemolytic uremic syndrome-1). In these defects, extrahepatic complications are the main source of morbidity and mortality while liver function is relatively preserved. Combined transplantation of other organs may be required, and other surgical techniques, such as domino and auxiliary liver transplantation, have been attempted. In a third group of monogenic diseases, the underlying genetic defect is expressed at a systemic level and liver involvement is just one of the clinical manifestations. In these conditions, LT might only be partially curative since the abnormal phenotype is maintained by extrahepatic synthesis of the toxic metabolites (i.e., methylmalonic acidemia, propionic acidemia). This review focuses on principles of diagnosis, management and LT results in both paediatric and adult populations of selected liver-based monogenic diseases, which represent examples of different transplantation strategies, driven by the understanding of the expression of the underlying genetic defect.
Collapse
Affiliation(s)
- Stefano Fagiuoli
- Gastroenterology and Transplant Hepatology, Ospedale Papa Giovanni XXIII, Bergamo, Italy.
| | | | | | | | | |
Collapse
|
59
|
Abstract
The neuronal ceroid lipofuscinoses constitute one of many groups of rare childhood diseases for which disease-modifying treatments are nonexistent. Disease-specific barriers to therapeutic success include incomplete understanding of disease pathophysiology and limitations of treatments that cannot adequately cross the blood-brain barrier to access the central nervous system. Therapeutic development in the neuronal ceroid lipofuscinoses shares many challenges with other rare diseases, such as incomplete understanding of natural history to inform trial design, need for alternatives to the randomized controlled clinical trial, requirement for more sensitive outcome measures to quantify disease, limited access to resources required to mount a clinical trial (including funding), and difficulties of recruiting a small sample to participation. Solutions to these barriers will require multicenter collaboration, partnership with patient organizations, training a new generation of researchers interested in rare diseases, and leveraging existing resources.
Collapse
Affiliation(s)
- Erika F Augustine
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, NY, USA
| | | | | |
Collapse
|
60
|
Erba PA, Minichilli F, Giona F, Linari S, Dambrosia J, Pierini A, Filocamo M, Di Rocco M, Buffoni F, Brady RO, Mariani G. 99mTc-sestamibi scintigraphy to monitor the long-term efficacy of enzyme replacement therapy on bone marrow infiltration in patients with Gaucher disease. J Nucl Med 2013; 54:1717-24. [PMID: 23990684 DOI: 10.2967/jnumed.113.121871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Assessing the skeletal response to enzyme replacement therapy (ERT) in Gaucher disease (GD) is problematic. We investigated the reliability of (99m)Tc-sestamibi scintigraphy in monitoring changes in bone marrow involvement induced by ERT. METHODS In 52 GD patients, the efficacy of ERT on bone marrow disease was monitored using at least 2 sequential (99m)Tc-sestamibi scans; 17 patients were receiving ERT at enrollment, and 35 were ERT-naïve. We elaborated a dose-response model by statistical analysis based on linear mixed models. RESULTS Patients whose marrow disease improved had received a significantly higher ERT dose per month than patients who did not improve. Significantly more patients reached near-disappearance of marrow disease if their disease burden at enrollment had been lower and the duration of clinical signs shorter. The response of the marrow scintigraphic score was more pronounced in ERT-naïve patients. No relevant effect of ERT on marrow disease was observed until platelet count and splenomegaly had improved. CONCLUSION Although based on localized evaluation, changes in the (99m)Tc-sestamibi score closely correlated with the main determinants of ERT, with a definite dose-response relationship. The threshold at which ERT induced any improvement in bone marrow disease was 35-36 U/kg/mo; in ERT-naïve patients, the scintigraphic score declined by 1 unit after ERT at 28 U/kg/mo.
Collapse
Affiliation(s)
- Paola A Erba
- Regional Center of Nuclear Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Xu M, Liu K, Swaroop M, Sun W, Dehdashti SJ, McKew JC, Zheng W. A phenotypic compound screening assay for lysosomal storage diseases. ACTA ACUST UNITED AC 2013; 19:168-75. [PMID: 23983233 DOI: 10.1177/1087057113501197] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The lysosome is a vital cellular organelle that primarily functions as a recycling center for breaking down unwanted macromolecules through a series of hydrolases. Functional deficiencies in lysosomal proteins due to genetic mutations have been found in more than 50 lysosomal storage diseases that exhibit characteristic lipid/macromolecule accumulation and enlarged lysosomes. Recently, the lysosome has emerged as a new therapeutic target for drug development for the treatment of lysosomal storage diseases. However, a suitable assay for compound screening against the diseased lysosomes is currently unavailable. We have developed a Lysotracker staining assay that measures the enlarged lysosomes in patient-derived cells using both fluorescence intensity readout and fluorescence microscopic measurement. This phenotypic assay has been tested in patient cells obtained from several lysosomal storage diseases and validated using a known compound, methyl-β-cyclodextrin, in primary fibroblast cells derived from Niemann Pick C disease patients. The results demonstrate that the Lysotracker assay can be used in compound screening for the identification of lead compounds that are capable of reducing enlarged lysosomes for drug development.
Collapse
Affiliation(s)
- Miao Xu
- 1Therapeutics for Rare and Neglected Disease, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Meijer OLM, van Vlies N, Wijburg FA. Treatment of mucopolysaccharidosis type III (Sanfilippo syndrome). Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.830069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Olga LM Meijer
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
| | - Naomi van Vlies
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Lab Genetic Metabolic Diseases, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- University of Amsterdam, Academic Medical Centre, Department of Pediatrics and Amsterdam Lysosome Centre ‘Sphinx', Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands ;
| |
Collapse
|
63
|
Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev 2013; 35:515-23. [PMID: 23290321 DOI: 10.1016/j.braindev.2012.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/07/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
Chaperone therapy is a newly developed molecular therapeutic approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. Based on early molecular studies during the last decade of the 20th century and early years of the 21st century, mainly on Fabry disease and GM1-gangliosidosis, we found some mutant enzyme proteins were unstable in the cell, and unable to express catalytic activities. Subsequently galactose and other active-site binding substrate analogs were found stabilized and enhance the mutant enzyme activity in culture cells. We concluded that the mutant misfolding enzyme protein and substrate analog competitive inhibitor (chemical chaperone) form a stable complex to be transported to the lysosome, to restore the catalytic activity of mutant enzyme after spontaneous dissociation under the acidic condition. This gene mutation-specific molecular interaction is a paradoxical phenomenon that an enzyme inhibitor in vitro serves as an enzyme stabilizer in situ. First we developed a commercially available compound 1-deoxygalactonojirimycin (DGJ) for Fabry disease, and confirmed the above molecular phenomenon. Currently DGJ has become a new candidate of oral medicine for Fabry disease, generalized vasculopathy involving the kidneys, heart and central nervous system in the middle age. This drug development has reached the phase 3 of human clinical study. Then we found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (GM1-gangliosidosis and Morquio B disease) and β-glucosidase deficiency disorders (phenotypic variations of Gaucher disease), respectively. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice have been used for confirmation of clinical effectiveness, adverse effects and pharmacokinetic studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Computational analysis revealed pH-dependent enzyme-chaperone interactions. Our recent study indicated chaperone activity of a new DGJ derivative, MTD118, for β-galactosidase complementary to NOEV. NOV also showed the chaperone effect toward several β-glucosidase gene mutants in Gaucher disease. Furthermore a commercial expectorant drug ambroxol was found to be a chaperone for β-glucosidase. A few Gaucher patients responded to this drug with remarkable improvement of oculomotor dysfunction and myoclonus. We hope chaperone therapy will become available for some patients with Fabry disease, GM1-gangliosidosis, Gaucher disease, and other lysosomal storage diseases particularly with central nervous system involvement.
Collapse
|
64
|
Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F, Zare H, Polishchuk R, Puertollano R, Parenti G, Ballabio A, Raben N. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 2013; 5:691-706. [PMID: 23606558 PMCID: PMC3662313 DOI: 10.1002/emmm.201202176] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/01/2023] Open
Abstract
A recently proposed therapeutic approach for lysosomal storage disorders (LSDs) relies upon the ability of transcription factor EB (TFEB) to stimulate autophagy and induce lysosomal exocytosis leading to cellular clearance. This approach is particularly attractive in glycogen storage disease type II [a severe metabolic myopathy, Pompe disease (PD)] as the currently available therapy, replacement of the missing enzyme acid alpha-glucosidase, fails to reverse skeletal muscle pathology. PD, a paradigm for LSDs, is characterized by both lysosomal abnormality and dysfunctional autophagy. Here, we show that TFEB is a viable therapeutic target in PD: overexpression of TFEB in a new muscle cell culture system and in mouse models of the disease reduced glycogen load and lysosomal size, improved autophagosome processing, and alleviated excessive accumulation of autophagic vacuoles. Unexpectedly, the exocytosed vesicles were labelled with lysosomal and autophagosomal membrane markers, suggesting that TFEB induces exocytosis of autophagolysosomes. Furthermore, the effects of TFEB were almost abrogated in the setting of genetically suppressed autophagy, supporting the role of autophagy in TFEB-mediated cellular clearance.
Collapse
|
65
|
Lawlor MW, Armstrong D, Viola MG, Widrick JJ, Meng H, Grange RW, Childers MK, Hsu CP, O'Callaghan M, Pierson CR, Buj-Bello A, Beggs AH. Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Hum Mol Genet 2013; 22:1525-38. [PMID: 23307925 DOI: 10.1093/hmg/ddt003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
No effective treatment exists for patients with X-linked myotubular myopathy (XLMTM), a fatal congenital muscle disease caused by deficiency of the lipid phosphatase, myotubularin. The Mtm1δ4 and Mtm1 p.R69C mice model severely and moderately symptomatic XLMTM, respectively, due to differences in the degree of myotubularin deficiency. Contractile function of intact extensor digitorum longus (EDL) and soleus muscles from Mtm1δ4 mice, which produce no myotubularin, is markedly impaired. Contractile forces generated by chemically skinned single fiber preparations from Mtm1δ4 muscle were largely preserved, indicating that weakness was largely due to impaired excitation contraction coupling. Mtm1 p.R69C mice, which produce small amounts of myotubularin, showed impaired contractile function only in EDL muscles. Short-term replacement of myotubularin with a prototypical targeted protein replacement agent (3E10Fv-MTM1) in Mtm1δ4 mice improved contractile function and muscle pathology. These promising findings suggest that even low levels of myotubularin protein replacement can improve the muscle weakness and reverse the pathology that characterizes XLMTM.
Collapse
Affiliation(s)
- Michael W Lawlor
- Division of Genetics and Program in Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Acid sphingomyelinase (ASM) is a lipid hydrolase that cleaves the sphingolipid, sphingomyelin, into ceramide. Mutations in the ASM gene (SMPD1) result in the rare lysosomal storage disorder, Niemann-Pick disease (NPD). In addition to its role in NPD, over the past two decades, the importance of sphingolipids, and ASM in particular, in normal physiology and the pathophysiology of numerous common diseases also has become known. For example, altered sphingolipid metabolism occurs in many cancers, generally reducing the levels of the pro-apoptotic lipid, ceramide, and/or elevating the levels of the proliferative lipid, sphingosine-1-phosphate (S1P). These changes likely contribute to the tumorigenicity and/or metastatic capacity of the cancer. In addition, many cancer therapies induce ceramide-mediated death, and cancer cells have evolved novel mechanisms to overcome this effect. In the present review, we discuss sphingolipid metabolism in cancer, and specifically the potential for pharmacological modulation using ASM. Of note, recombinant human ASM (rhASM) has been produced for human use and is being evaluated as a treatment for NPD. Thus, its use for cancer therapy could be rapidly evaluated in the clinic after appropriate animal model studies have been completed. As this enzyme was initially studied in the context of NPD, we start with a brief overview of the history of ASM and NPD, followed by a discussion of the role of ASM in cancer biology, and then summarize emerging preclinical efficacy studies using rhASM as an adjunct in the treatment of solid tumors.
Collapse
Affiliation(s)
- Radoslav Savić
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
67
|
Schuchman EH, Simonaro CM. The genetics of sphingolipid hydrolases and sphingolipid storage diseases. Handb Exp Pharmacol 2013:3-32. [PMID: 23579447 DOI: 10.1007/978-3-7091-1368-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The relationship of sphingolipids with human disease first arose from the study of sphingolipid storage diseases over 50 years ago. Most of these disorders are due to inherited deficiencies of specific sphingolipid hydrolases, although a small number also result from defects in sphingolipid transport or activator proteins. Due to the primary protein deficiencies sphingolipids and other macromolecules accumulate in cells and tissues of affected patients, leading to a diverse presentation of clinical abnormalities. Over 25 sphingolipid storage diseases have been described to date. Most of the genes have been isolated, disease-causing mutations have been identified, the recombinant proteins have been produced and characterized, and animal models exist for most of the human diseases. Since most sphingolipid hydrolases are enriched within the endosomal/lysosomal system, macromolecules first accumulate within these compartments. However, these abnormalities rapidly spread to other compartments and cause a wide range of cellular dysfunction. This review focuses on the genetics of sphingolipid storage diseases and related hydrolytic enzymes with an emphasis on the relationship between genetic mutations and human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
68
|
Ichiki T, Huntley BK, Burnett JC. BNP molecular forms and processing by the cardiac serine protease corin. Adv Clin Chem 2013; 61:1-31. [PMID: 24015598 DOI: 10.1016/b978-0-12-407680-8.00001-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cardiac hormone, B-type natriuretic peptide (BNP), is one of human natriuretic peptides which possesses cardiorenal protective actions and is used as a therapeutic and a biomarker for heart failure (HF). Its prohormone, proBNP1_108, is processed by the proNPs convertases, corin or furin, to inactive NT-proBNP1_76 and active BNP1-32. Paradoxically, circulating NT-proBNP and BNP are elevated in HF leading to the use of BNP as a sensitive and predictive marker of HF. This paradox may be explained by the "nonspecific" nature of conventional assays and/or a relative deficiency state of "active BNP" as characterized by an increase in inactive proBNP_108 and a decrease in active BNP1-32. Therefore, understanding the regulation of proBNP1_108 processing and the role of the convertase corin may be important in understanding the physiology of HF. Corin is expressed in heart and kidney and may play an important role in regulating blood pressure and remodeling of the heart. The processing of proBNP1_108 by corin may be controlled by O-linked glycosylation of proBNP1-108. A potential impairment of proBNP1lo8 processing in HF may be linked to dysregulation of the convertase corin, which may offer therapeutic opportunities to control proBNPlo0s processing and its activation in HF.
Collapse
|
69
|
Lai WF. Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 2013; 12:310-5. [PMID: 22982112 DOI: 10.1016/j.arr.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022]
Abstract
Prolongation of longevity is a history-long desire of humans. Driven by the genetic contribution to longevity and the remarkable plasticity of healthy lifespan as demonstrated in animal models, arduous efforts have been directed to aging and longevity research over the years. Today, our understanding of lifespan determination is much greater than it was in the past, but administrable interventions for longevity enhancement are still virtually absent. The aim of this article is to highlight the technical gap between basic biogerontological research and intervention development, and to explore the importance of nucleic acid (NA) delivery technologies in bridging the gap. It is hoped that this article can engender more awareness of the roles of NA delivery technologies in biogerontological interventions, particularly NA therapy.
Collapse
|
70
|
Thekkedath R, Koshkaryev A, Torchilin VP. Lysosome-targeted octadecyl-rhodamine B-liposomes enhance lysosomal accumulation of glucocerebrosidase in Gaucher's cells in vitro. Nanomedicine (Lond) 2012. [PMID: 23199221 DOI: 10.2217/nnm.12.138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM We hypothesized that liposomes modified with lysosomotropic octadecyl-rhodamine B (Rh) and loaded with therapeutic glucocerebroside velaglucerase alfa (VPRIV™) will improve lysosomal delivery of the enzyme into Gaucher's cells. MATERIALS & METHODS Confocal microscopy and flow cytometry were used to evaluate the ability of Rh-modified liposomes loaded with VPRIV to improve the lysosomal targeting in monocyte-derived macrophages and Gaucher's fibroblasts. RESULTS Confocal microscopy demonstrated that Rh-modified liposomes localized primarily in the lysosomes. As confirmed by flow cytometry using specific substrate 5-(pentafluorobenzoylamino)fluorescein diglucoside, intralysosomal accumulation of VPRIV in the cells treated with Rh-modified liposomes was significantly increased (up to 68%) relative to the cells treated with plain liposomes or free VPRIV. CONCLUSION Rh-modified lysosomotropic liposomes can improve lysosomal accumulation of liposomal enzymes both in nonphagocytic Gaucher's fibroblasts and phagocytic monocyte-derived macrophages.
Collapse
Affiliation(s)
- Ritesh Thekkedath
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology & Nanomedicine, Northeastern University, 140 Fenway Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
71
|
|
72
|
Hu J, Lu JY, Wong AM, Hynan LS, Birnbaum SG, Yilmaz DS, Streit BM, Lenartowicz EM, Thompson TC, Cooper JD, Hofmann SL. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab 2012; 107:213-21. [PMID: 22704978 PMCID: PMC3444630 DOI: 10.1016/j.ymgme.2012.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 11/22/2022]
Abstract
PPT1-related neuronal ceroid lipofuscinosis (NCL) is a lysosomal storage disorder caused by deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1). Enzyme replacement therapy (ERT) has not been previously examined in a preclinical animal model. Homozygous PPT1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death by around 8 months. In the current study, PPT1 knockout mice were treated with purified recombinant PPT1 (0.3 mg, corresponding to 12 mg/kg or 180 U/kg for a 25 g mouse) administered intravenously weekly either 1) from birth; or 2) beginning at 8 weeks of age. The treatment was surprisingly well tolerated and neither anaphylaxis nor antibody formation was observed. In mice treated from birth, survival increased from 236 to 271 days (p<0.001) and the onset of motor deterioration was similarly delayed. In mice treated beginning at 8 weeks, no increases in survival or motor performance were seen. An improvement in neuropathology in the thalamus was seen at 3 months in mice treated from birth, and although this improvement persisted it was attenuated by 7 months. Outside the central nervous system, substantial clearance of autofluorescent storage material in many tissues was observed. Macrophages in spleen, liver and intestine were especially markedly improved, as were acinar cells of the pancreas and tubular cells of the kidney. These findings suggest that ERT may be an option for addressing visceral storage as part of a comprehensive approach to PPT1-related NCL, but more effective delivery methods to target the brain are needed.
Collapse
Affiliation(s)
- Jie Hu
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Jui-Yun Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Andrew M.S. Wong
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Centre for the Cellular Basis of Behavior, King’s Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Linda S. Hynan
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Shari G. Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | - Denis S. Yilmaz
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Centre for the Cellular Basis of Behavior, King’s Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Barbara M. Streit
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Centre for the Cellular Basis of Behavior, King’s Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ewelina M. Lenartowicz
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Centre for the Cellular Basis of Behavior, King’s Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Thomas C.M. Thompson
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Centre for the Cellular Basis of Behavior, King’s Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Centre for the Cellular Basis of Behavior, King’s Health Partners Centre for Neurodegeneration, James Black Centre, Institute of Psychiatry, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sandra L. Hofmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| |
Collapse
|
73
|
Huang HP, Chuang CY, Kuo HC. Induced pluripotent stem cell technology for disease modeling and drug screening with emphasis on lysosomal storage diseases. Stem Cell Res Ther 2012; 3:34. [PMID: 22925465 PMCID: PMC3580472 DOI: 10.1186/scrt125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent derivation of disease-specific induced pluripotent stem cells (iPSCs) from somatic cells of patients with familial and sporadic forms of diseases and the demonstration of their ability to give rise to disease-relevant cell types provide an excellent opportunity to gain further insights into the mechanisms responsible for the pathophysiology of these diseases and develop novel therapeutic drugs. Here, we review the recent advances in iPSC technology for modeling of various lysosomal storage diseases (LSDs) and discuss possible strategies through which LSD-iPSCs can be exploited to identify novel drugs and improve future clinical treatment of LSDs.
Collapse
|
74
|
Grimm C, Hassan S, Wahl-Schott C, Biel M. Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J Pharmacol Exp Ther 2012; 342:236-44. [PMID: 22518024 DOI: 10.1124/jpet.112.192880] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) channels TRPML1, TRPML2, and TRPML3 (also called mucolipins 1-3 or MCOLN1-3) are nonselective cation channels. Mutations in the Trpml1 gene cause mucolipidosis type IV in humans with clinical features including psychomotor retardation, corneal clouding, and retinal degeneration, whereas mutations in the Trpml3 gene cause deafness, circling behavior, and coat color dilution in mice. No disease-causing mutations are reported for the Trpml2 gene. Like TRPML channels, which are expressed in the endolysosomal pathway, two-pore channels (TPCs), namely TPC1, TPC2, and TPC3, are found in intracellular organelles, in particular in endosomes and lysosomes. Both TRPML channels and TPCs may function as calcium/cation release channels in endosomes, lysosomes, and lysosome-related organelles with TRPMLs being activated by phosphatidylinositol 3,5-bisphosphate and regulated by pH and TPCs being activated by nicotinic acid adenine dinucleotide phosphate in a calcium- and pH-dependent manner. They may also be involved in endolysosomal transport and fusion processes, e.g., as intracellular calcium sources. Currently, however, the exact physiological roles of TRPML channels and TPCs remain quite elusive, and whether TRPML channels are purely endolysosomal ion channels or whether they may also be functionally active at the plasma membrane in vivo remains to be determined.
Collapse
Affiliation(s)
- Christian Grimm
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, 81377 Germany.
| | | | | | | |
Collapse
|