51
|
Trevisan B, Alcantara DM, Machado DJ, Marques FP, Lahr DJ. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 2019; 7:e7543. [PMID: 31565556 PMCID: PMC6746217 DOI: 10.7717/peerj.7543] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
Global loss of biodiversity is an ongoing process that concerns both local and global authorities. Studies of biodiversity mainly involve traditional methods using morphological characters and molecular protocols. However, conventional methods are a time consuming and resource demanding task. The development of high-throughput sequencing (HTS) techniques has reshaped the way we explore biodiversity and opened a path to new questions and novel empirical approaches. With the emergence of HTS, sequencing the complete mitochondrial genome became more accessible, and the number of genome sequences published has increased exponentially during the last decades. Despite the current state of knowledge about the potential of mitogenomics in phylogenetics, this is still a relatively under-explored area for a multitude of taxonomic groups, especially for those without commercial relevance, non-models organisms and with preserved DNA. Here we take the first step to assemble and annotate the genomes from HTS data using a new protocol of genome skimming which will offer an opportunity to extend the field of mitogenomics to under-studied organisms. We extracted genomic DNA from specimens preserved in ethanol. We used Nextera XT DNA to prepare indexed paired-end libraries since it is a powerful tool for working with diverse samples, requiring a low amount of input DNA. We sequenced the samples in two different Illumina platform (MiSeq or NextSeq 550). We trimmed raw reads, filtered and had their quality tested accordingly. We performed the assembly using a baiting and iterative mapping strategy, and the annotated the putative mitochondrion through a semi-automatic procedure. We applied the contiguity index to access the completeness of each new mitogenome. Our results reveal the efficiency of the proposed method to recover the whole mitogenomes of preserved DNA from non-model organisms even if there are gene rearrangement in the specimens. Our findings suggest the potential of combining the adequate platform and library to the genome skimming as an innovative approach, which opens a new range of possibilities of its use to obtain molecular data from organisms with different levels of preservation.
Collapse
Affiliation(s)
- Bruna Trevisan
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel M.C. Alcantara
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Denis Jacob Machado
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Department of Bioinformatics and Genomics / College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Fernando P.L. Marques
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel J.G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
52
|
de Oliveira Padilha MA, de Oliveira Melo J, Romano G, de Lima MVM, Alonso WJ, Sallum MAM, Laporta GZ. Comparison of malaria incidence rates and socioeconomic-environmental factors between the states of Acre and Rondônia: a spatio-temporal modelling study. Malar J 2019; 18:306. [PMID: 31484519 PMCID: PMC6727495 DOI: 10.1186/s12936-019-2938-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/27/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum malaria is a threat to public health, but Plasmodium vivax malaria is most prevalent in Latin America, where the incidence rate has been increasing since 2016, particularly in Venezuela and Brazil. The Brazilian Amazon reported 193,000 cases in 2017, which were mostly confirmed as P. vivax (~ 90%). Herein, the relationships among malaria incidence rates and the proportion of accumulated deforestation were contrasted using data from the states of Acre and Rondônia in the south-western Brazilian Amazon. The main purpose is to test the hypothesis that the observed difference in incidence rates is associated with the proportion of accumulated deforestation. METHODS An ecological study using spatial and temporal models for mapping and modelling malaria risk was performed. The municipalities of Acre and Rondônia were the spatial units of analysis, whereas month and year were the temporal units. The number of reported malaria cases from 2009 until 2015 were used to calculate the incidence rate per 1000 people at risk. Accumulated deforestation was calculated using publicly available satellite images. Geographically weighted regression was applied to provide a local model of the spatial heterogeneity of incidence rates. Time-series dynamic regression was applied to test the correlation of incidence rates and accumulated deforestation, adjusted by climate and socioeconomic factors. RESULTS The malaria incidence rate declined in Rondônia but remained stable in Acre. There was a high and positive correlation between the decline in malaria and higher proportions of accumulated deforestation in Rondônia. Geographically weighted regression showed a complex relationship. As deforestation increased, malaria incidence also increased in Acre, while as deforestation increased, malaria incidence decreased in Rondônia. Time-series dynamic regression showed a positive association between malaria incidence and precipitation and accumulated deforestation, whereas the association was negative with the human development index in the westernmost areas of Acre. CONCLUSION Landscape modification caused by accumulated deforestation is an important driver of malaria incidence in the Brazilian Amazon. However, this relationship is not linearly correlated because it depends on the overall proportion of the land covered by forest. For regions that are partially degraded, forest cover becomes a less representative component in the landscape, causing the abovementioned non-linear relationship. In such a scenario, accumulated deforestation can lead to a decline in malaria incidence.
Collapse
Affiliation(s)
| | - Janille de Oliveira Melo
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação do ABC, Santo André, SP, Brazil
| | - Guilherme Romano
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação do ABC, Santo André, SP, Brazil
| | - Marcos Vinicius Malveira de Lima
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação do ABC, Santo André, SP, Brazil
- Gerência Estadual de Controle de Endemias, Rio Branco, AC, Brazil
| | | | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Gabriel Zorello Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC, Fundação do ABC, Santo André, SP, Brazil.
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
53
|
Saavedra MP, Conn JE, Alava F, Carrasco-Escobar G, Prussing C, Bickersmith SA, Sangama JL, Fernandez-Miñope C, Guzman M, Tong C, Valderrama C, Vinetz JM, Gamboa D, Moreno M. Higher risk of malaria transmission outdoors than indoors by Nyssorhynchus darlingi in riverine communities in the Peruvian Amazon. Parasit Vectors 2019; 12:374. [PMID: 31358033 PMCID: PMC6664538 DOI: 10.1186/s13071-019-3619-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/19/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Malaria remains an important public health problem in Peru where incidence has been increasing since 2011. Of over 55,000 cases reported in 2017, Plasmodium vivax was the predominant species (76%), with P. falciparum responsible for the remaining 24%. Nyssorhynchus darlingi (previously Anopheles darlingi) is the main vector in Amazonian Peru, where hyperendemic Plasmodium transmission pockets have been found. Mazán district has pronounced spatial heterogeneity of P. vivax malaria. However, little is known about behavior, ecology or seasonal dynamics of Ny. darlingi in Mazán. This study aimed to gather baseline information about bionomics of malaria vectors and transmission risk factors in a hyperendemic malaria area of Amazonian Peru. METHODS To assess vector biology metrics, five surveys (two in the dry and three in the rainy season), including collection of sociodemographic information, were conducted in four communities in 2016-2017 on the Napo (Urco Miraño, URC; Salvador, SAL) and Mazán Rivers (Visto Bueno, VIB; Libertad, LIB). Human-biting rate (HBR), entomological inoculation rate (EIR) and human blood index (HBI) were measured to test the hypothesis of differences in entomological indices of Ny. darlingi between watersheds. A generalized linear mixed effect model (GLMM) was constructed to model the relationship between household risk factors and the EIR. RESULTS Nyssorhynchus darlingi comprised 95% of 7117 Anophelinae collected and its abundance was significantly higher along the Mazán River. The highest EIRs (3.03-4.54) were detected in March and June in URC, LIB and VIB, and significantly more Ny. darlingi were infected outdoors than indoors. Multivariate analysis indicated that the EIR was >12 times higher in URC compared with SAL. The HBI ranged from 0.42-0.75; humans were the most common blood source, followed by Galliformes and cows. There were dramatic differences in peak biting time and malaria incidence with similar bednet coverage in the villages. CONCLUSIONS Nyssorhynchus darlingi is the predominant contributor to malaria transmission in the Mazán District, Peru. Malaria risk in these villages is higher in the peridomestic area, with pronounced heterogeneities between and within villages on the Mazán and the Napo Rivers. Spatiotemporal identification and quantification of the prevailing malaria transmission would provide new evidence to orient specific control measures for vulnerable or at high risk populations.
Collapse
Affiliation(s)
- Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY USA
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | | | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY USA
| | | | - Jorge L. Sangama
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernandez-Miñope
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Tong
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA USA
- Present Address: Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT USA
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA USA
- Present Address: Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
54
|
Campos M, Alonso DP, Conn JE, Vinetz JM, Emerson KJ, Ribolla PEM. Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasit Vectors 2019; 12:242. [PMID: 31101131 PMCID: PMC6525393 DOI: 10.1186/s13071-019-3498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background In the Amazon Basin, Nyssorhynchus (Anopheles) darlingi is the most aggressive and effective malaria vector. In endemic areas, behavioral aspects of anopheline vectors such as host preference, biting time and resting location post blood meal have a key impact on malaria transmission dynamics and vector control interventions. Nyssorhynchus darlingi presents a range of feeding and resting behaviors throughout its broad distribution. Methods To investigate the genetic diversity related to biting behavior, we collected host-seeking Ny. darlingi in two settlement types in Acre, Brazil: Granada (~ 20-year-old, more established, better access by road, few malaria cases) and Remansinho (~ 8-year-old, active logging, poor road access, high numbers malaria cases). Mosquitoes were classified by the location of collection (indoors or outdoors) and time (dusk or dawn). Results Genome-wide SNPs, used to assess the degree of genetic divergence and population structure, identified non-random distributions of individuals in the PCA for both location and time analyses. Although genetic diversity related to behavior was confirmed by non-model-based analyses and FST values, model-based STRUCTURE detected considerable admixture of these populations. Conclusions To our knowledge, this is the first study to detect genetic markers associated with biting behavior in Ny. darlingi. Additional ecological and genomic studies may help to understand the genetic basis of mosquito behavior and address appropriate surveillance and vector control. Electronic supplementary material The online version of this article (10.1186/s13071-019-3498-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melina Campos
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Diego Peres Alonso
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Laboratorio de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kevin J Emerson
- Biology Department, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Paulo Eduardo Martins Ribolla
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil.
| |
Collapse
|
55
|
Voges K, da Rosa MPC, Westphal-Ferreira B, Navarro-Silva MA, Pontes CLM, Pitaluga AN, de Carvalho-Pinto CJ, Rona LD. Novel molecular evidence of population structure in Anopheles (Kerteszia) bellator from Brazilian Atlantic Forest. Mem Inst Oswaldo Cruz 2019; 114:e180598. [PMID: 31090862 PMCID: PMC6516739 DOI: 10.1590/0074-02760180598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/03/2019] [Indexed: 11/22/2022] Open
Abstract
Anopheles bellator is a primary malaria vector in the Atlantic Forest. Partial sequences of timeless and Clock genes were used to assess the genetic differentiation of five Brazilian populations, which showed strong population structure (e.g. high FST values and fixed differences) in all pairwise comparisons between Bahia sample and the others from Paraná, São Paulo and Rio de Janeiro states. Also, the resulting phylogenetic trees clearly grouped the sequences from Bahia in a different cluster with high bootstrap values. Among southern and southeastern populations low levels of genetic differentiation were found suggesting a general stability of the genetic structure.
Collapse
Affiliation(s)
- Kamila Voges
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianópolis, SC, Brasil
| | - Marcela Possato Correa da Rosa
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianópolis, SC, Brasil
| | - Betina Westphal-Ferreira
- Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Zoologia, Curitiba, PR, Brasil
| | - Mario Antonio Navarro-Silva
- Universidade Federal do Paraná, Setor de Ciências Biológicas, Departamento de Zoologia, Curitiba, PR, Brasil
| | - Carime Lessa Mansur Pontes
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Florianópolis, SC, Brasil
| | - André Nóbrega Pitaluga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Parasitas e Vetores, Rio de Janeiro, RJ, Brasil.,Imperial College London, Department of Life Sciences, London, United Kingdom.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Carlos José de Carvalho-Pinto
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Florianópolis, SC, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Luísa Dp Rona
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianópolis, SC, Brasil.,Imperial College London, Department of Life Sciences, London, United Kingdom.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
56
|
Prussing C, Saavedra MP, Bickersmith SA, Alava F, Guzmán M, Manrique E, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE. Malaria vector species in Amazonian Peru co-occur in larval habitats but have distinct larval microbial communities. PLoS Negl Trop Dis 2019; 13:e0007412. [PMID: 31091236 PMCID: PMC6538195 DOI: 10.1371/journal.pntd.0007412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/28/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
In Amazonian Peru, the primary malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), is difficult to target using standard vector control methods because it mainly feeds and rests outdoors. Larval source management could be a useful supplementary intervention, but to determine its feasibility, more detailed studies on the larval ecology of Ny. darlingi are essential. We conducted a multi-level study of the larval ecology of Anophelinae mosquitoes in the peri-Iquitos region of Amazonian Peru, examining the environmental characteristics of the larval habitats of four species, comparing the larval microbiota among species and habitats, and placing Ny. darlingi larval habitats in the context of spatial heterogeneity in human malaria transmission. We collected Ny. darlingi, Nyssorhynchus rangeli (formerly Anopheles rangeli), Nyssorhynchus triannulatus s.l. (formerly Anopheles triannulatus s.l.), and Nyssorhynchus sp. nr. konderi (formerly Anopheles sp. nr. konderi) from natural and artificial water bodies throughout the rainy and dry seasons. We found that, consistent with previous studies in this region and in Brazil, the presence of Ny. darlingi was significantly associated with water bodies in landscapes with more recent deforestation and lower light intensity. Nyssorhynchus darlingi presence was also significantly associated with a lower vegetation index, other Anophelinae species, and emergent vegetation. Though they were collected in the same water bodies, the microbial communities of Ny. darlingi larvae were distinct from those of Ny. rangeli and Ny. triannulatus s.l., providing evidence either for a species-specific larval microbiome or for segregation of these species in distinct microhabitats within each water body. We demonstrated that houses with more reported malaria cases were located closer to Ny. darlingi larval habitats; thus, targeted control of these sites could help ameliorate malaria risk. The co-occurrence of Ny. darlingi larvae in water bodies with other putative malaria vectors increases the potential impact of larval source management in this region.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
| | - Marlon P. Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sara A. Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| | | | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany–State University of New York, Albany, NY, United States of America
- Wadsworth Center, New York State Department of Health, Albany, NY, United States of America
| |
Collapse
|
57
|
Grillet ME, Hernández-Villena JV, Llewellyn MS, Paniz-Mondolfi AE, Tami A, Vincenti-Gonzalez MF, Marquez M, Mogollon-Mendoza AC, Hernandez-Pereira CE, Plaza-Morr JD, Blohm G, Grijalva MJ, Costales JA, Ferguson HM, Schwabl P, Hernandez-Castro LE, Lamberton PHL, Streicker DG, Haydon DT, Miles MA, Acosta-Serrano A, Acquattela H, Basañez MG, Benaim G, Colmenares LA, Conn JE, Espinoza R, Freilij H, Graterol-Gil MC, Hotez PJ, Kato H, Lednicky JA, Martinez CE, Mas-Coma S, Morris JG, Navarro JC, Ramirez JL, Rodriguez M, Urbina JA, Villegas L, Segovia MJ, Carrasco HJ, Crainey JL, Luz SLB, Moreno JD, Noya Gonzalez OO, Ramírez JD, Alarcón-de Noya B. Venezuela's humanitarian crisis, resurgence of vector-borne diseases, and implications for spillover in the region. THE LANCET. INFECTIOUS DISEASES 2019; 19:e149-e161. [PMID: 30799251 DOI: 10.1016/s1473-3099(18)30757-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 01/19/2023]
Abstract
In the past 5-10 years, Venezuela has faced a severe economic crisis, precipitated by political instability and declining oil revenue. Public health provision has been affected particularly. In this Review, we assess the impact of Venezuela's health-care crisis on vector-borne diseases, and the spillover into neighbouring countries. Between 2000 and 2015, Venezuela witnessed a 359% increase in malaria cases, followed by a 71% increase in 2017 (411 586 cases) compared with 2016 (240 613). Neighbouring countries, such as Brazil, have reported an escalating trend of imported malaria cases from Venezuela, from 1538 in 2014 to 3129 in 2017. In Venezuela, active Chagas disease transmission has been reported, with seroprevalence in children (<10 years), estimated to be as high as 12·5% in one community tested (n=64). Dengue incidence increased by more than four times between 1990 and 2016. The estimated incidence of chikungunya during its epidemic peak is 6975 cases per 100 000 people and that of Zika virus is 2057 cases per 100 000 people. The re-emergence of many vector-borne diseases represents a public health crisis in Venezuela and has the possibility of severely undermining regional disease elimination efforts. National, regional, and global authorities must take action to address these worsening epidemics and prevent their expansion beyond Venezuelan borders.
Collapse
Affiliation(s)
- Maria E Grillet
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Alberto E Paniz-Mondolfi
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clinica IDB Cabudare, Cabudare, Venezuela; Instituto de Estudios Avanzados, Caracas, Venezuela
| | - Adriana Tami
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Venezuela
| | - Maria F Vincenti-Gonzalez
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marilianna Marquez
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clinica IDB Cabudare, Cabudare, Venezuela; Health Sciences Department, College of Medicine, Universidad Centrooccidental Lisandro Alvarado, Barquisimeto, Lara State, Venezuela
| | - Adriana C Mogollon-Mendoza
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clinica IDB Cabudare, Cabudare, Venezuela; Health Sciences Department, College of Medicine, Universidad Centrooccidental Lisandro Alvarado, Barquisimeto, Lara State, Venezuela
| | - Carlos E Hernandez-Pereira
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clinica IDB Cabudare, Cabudare, Venezuela; Health Sciences Department, College of Medicine, Universidad Centrooccidental Lisandro Alvarado, Barquisimeto, Lara State, Venezuela
| | - Juan D Plaza-Morr
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clinica IDB Cabudare, Cabudare, Venezuela; Health Sciences Department, College of Medicine, Universidad Nacional Experimental Francisco de Miranda, Punto Fijo, Falcón State, Venezuela
| | - Gabriella Blohm
- Infectious Diseases Research Incubator and the Zoonosis and Emerging Pathogens Regional Collaborative Network, Department of Tropical Medicine and Infectious Diseases, Instituto de Investigaciones Biomédicas IDB, Clinica IDB Cabudare, Cabudare, Venezuela; Emerging Pathogens Institute, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Mario J Grijalva
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jaime A Costales
- Center for Research on Health in Latin America, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Poppy H L Lamberton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alvaro Acosta-Serrano
- Department of Vector Biology and Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Maria G Basañez
- Department of Vector Biology and Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Gustavo Benaim
- Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela; Instituto de Estudios Avanzados, Caracas, Venezuela
| | - Luis A Colmenares
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Jan E Conn
- Griffin Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, USA; School of Public Health, University at Albany, NY, USA
| | - Raul Espinoza
- Hospital Miguel Pérez Carreño, Instituto Venezolano de los Seguros Sociales, Caracas, Venezuela
| | - Hector Freilij
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Mary C Graterol-Gil
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Peter J Hotez
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - John A Lednicky
- Emerging Pathogens Institute, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Clara E Martinez
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Santiago Mas-Coma
- Departamento de Parasitología, Universidad de Valencia, Valencia, Spain
| | - J Glen Morris
- Emerging Pathogens Institute, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Juan C Navarro
- Enfermedades Emergentes y Salud Ambiental, Centro de Biodiversidad, Universidad Internacional SEK, Quito, Ecuador
| | - Jose L Ramirez
- Biotechnology Center, Instituto de Estudios Avanzados, Caracas, Venezuela
| | - Marlenes Rodriguez
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Julio A Urbina
- Venezuelan Institute for Scientific Research, Caracas, Venezuela
| | | | - Maikell J Segovia
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hernan J Carrasco
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - James L Crainey
- Instituto Leônidas e Maria Deane ILMD/FIOCRUZ, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, Amazonas, Brazil
| | - Sergio L B Luz
- Instituto Leônidas e Maria Deane ILMD/FIOCRUZ, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Manaus, Amazonas, Brazil
| | - Juan D Moreno
- Centro de Investigaciones de Campo "Dr Francesco Vitanza", Servicio Autónomo Instituto de Altos Estudios "Dr Arnoldo Gabaldon", MPPS, Tumeremo, Venezuela
| | - Oscar O Noya Gonzalez
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela; Centro de Investigaciones de Campo "Dr Francesco Vitanza", Servicio Autónomo Instituto de Altos Estudios "Dr Arnoldo Gabaldon", MPPS, Tumeremo, Venezuela
| | - Juan D Ramírez
- Grupo de Investigaciones Microbiológicas-UR, Programa de Biología, Universidad del Rosario, Bogotá, Colombia
| | | |
Collapse
|
58
|
Chu VM, Sallum MAM, Moore TE, Lainhart W, Schlichting CD, Conn JE. Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Sci Rep 2019; 9:5356. [PMID: 30926833 PMCID: PMC6441093 DOI: 10.1038/s41598-019-41651-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/13/2019] [Indexed: 11/08/2022] Open
Abstract
The primary Brazilian malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), ranges from 0°S-23°S across three biomes (Amazonia, Cerrado, Mata Atlântica). Rising temperatures will increase mosquito developmental rates, and models predict future malaria transmission by Ny. darlingi in Brazil will shift southward. We reared F1 Ny. darlingi (progeny of field-collected females from 4 state populations across Brazil) at three temperatures (20, 24, 28 °C) and measured key life-history traits. Our results reveal geographic variation due to both genetic differences among localities and plastic responses to temperature differences. Temperature significantly altered all traits: faster larval development, shorter adult life and overall lifespan, and smaller body sizes were seen at 28 °C versus 20 °C. Low-latitude Amazonia mosquitoes had the fastest larval development at all temperatures, but at 28 °C, average development rate of high-latitude Mata Atlântica mosquitoes was accelerated and equivalent to low-latitude Amazonia. Body size of adult mosquitoes from the Mata Atlântica remained larger at all temperatures. We detected genetic variation in the plastic responses among mosquitoes from different localities, with implications for malaria transmission under climate change. Faster development combined with larger body size, without a tradeoff in adult longevity, suggests vectorial capacities of some Mata Atlântica populations may significantly increase under warming climates.
Collapse
Affiliation(s)
- V M Chu
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - M A M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - T E Moore
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - W Lainhart
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - C D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - J E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
59
|
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, Prussing C, Vinetz JM, Conn JE, Moreno M, Gamboa D. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 2019; 13:e0007105. [PMID: 30653491 PMCID: PMC6353212 DOI: 10.1371/journal.pntd.0007105] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions. The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi (formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi feeds both indoors and outdoors (endophagy, exophagy), depending on the local environment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed for vector control, target endophagic and endophilic mosquitoes. Thus, they are only partially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes, larval source management (LSM), targets the most productive breeding sites nearest to human habitation. In four riverine communities, we used drones with high-resolution imagery as a key initial step to analyze water bodies within the estimated flight range of Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were positive versus negative for Ny. darlingi. The methodology and analysis reported here provide the basis for testing whether LSM can be combined successfully with LLINs and IRS to contribute to the elimination of transmission in malaria hotspots in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (GCE); (MM)
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (GCE); (MM)
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
60
|
Prussing C, Bickersmith SA, Moreno M, Saavedra MP, Alava F, Sallum MAM, Gamboa D, Vinetz JM, Conn JE. Nyssorhynchus dunhami: bionomics and natural infection by Plasmodium falciparum and P. vivax in the Peruvian Amazon. Mem Inst Oswaldo Cruz 2018; 113:e180380. [PMID: 30517211 PMCID: PMC6276023 DOI: 10.1590/0074-02760180380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/30/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Nyssorhynchus dunhami, a member of the Nuneztovari Complex, has been collected in Brazil, Colombia, and Peru and described as zoophilic. Although to date Ny. dunhami has not been documented to be naturally infected by Plasmodium, it is frequently misidentified as other Oswaldoi subgroup species that are local or regional malaria vectors. OBJECTIVES The current study seeks to verify the morphological identification of Nuneztovari Complex species collected in the peri-Iquitos region of Amazonian Peru, to determine their Plasmodium infection status, and to describe ecological characteristics of their larval habitats. METHODS We collected Ny. nuneztovari s.l. adults in 2011-2012, and Ny. nuneztovari s.l. larvae and adults in 2016-2017. When possible, samples were identified molecularly using cytochrome c oxidase subunit I (COI) barcode sequencing. Adult Ny. nuneztovari s.l. from 2011-2012 were tested for Plasmodium using real-time PCR. Environmental characteristics associated with Ny. nuneztovari s.l. larvae-positive water bodies were evaluated. FINDINGS We collected 590 Ny. nuneztovari s.l. adults and 116 larvae from eight villages in peri-Iquitos. Of these, 191 adults and 111 larvae were identified by COI sequencing; all were Ny. dunhami. Three Ny. dunhami were infected with P. falciparum, and one with P. vivax, all collected from one village on one night. Ny. dunhami larvae were collected from natural and artificial water bodies, and their presence was positively associated with other Anophelinae larvae and amphibians, and negatively associated with people living within 250m. MAIN CONCLUSIONS Of Nuneztovari Complex species, we identified only Ny. dunhami across multiple years in eight peri-Iquitos localities. This study is, to our knowledge, the first report of natural infection of molecularly identified Ny. dunhami with Plasmodium. We advocate the use of molecular identification methods in this region to monitor Ny. dunhami and other putative secondary malaria vectors to more precisely evaluate their importance in malaria transmission.
Collapse
Affiliation(s)
- Catharine Prussing
- University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
| | | | - Marta Moreno
- University of California San Diego, Department of Medicine, Division of Infectious Diseases, La Jolla, CA, USA
| | - Marlon P Saavedra
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
| | | | - Maria Anice Mureb Sallum
- Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Epidemiologia, São Paulo, SP, Brasil
| | - Dionicia Gamboa
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Joseph M Vinetz
- University of California San Diego, Department of Medicine, Division of Infectious Diseases, La Jolla, CA, USA
- Universidad Peruana Cayetano Heredia, Facultad de Ciencias y Filosofia, Laboratorios de Investigación y Desarrollo, Laboratorio ICEMR-Amazonia, Lima, Peru
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Jan E Conn
- University at Albany, State University of New York, School of Public Health, Department of Biomedical Sciences, Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
61
|
Greni SE, Demari-Silva B, de Oliveira TMP, Suesdek L, Laporta GZ, Sallum MAM. A Multi-Gene Analysis and Potential Spatial Distribution of Species of the Strodei Subgroup of the Genus Nyssorhynchus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1486-1495. [PMID: 30107605 DOI: 10.1093/jme/tjy137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Nyssorhynchus strodei (Root) is an understudied species of potential epidemiological importance, having been found naturally infected in Brazil with Plasmodium falciparum Welch, Plasmodium vivax Grassi & Feletti, and Plasmodium malariae Feletti & Grassi. It belongs to the strodei subgroup that includes Nyssorhynchus albertoi (Unti), Nyssorhynchus arthuri (Unti), Nyssorhynchus rondoni (Neiva & Pinto), Nyssorhynchus striatus (Sant'Ana & Sallum), and three unnamed species, Nyssorhynchus arthuri B, Nyssorhynchus arthuri C, and Nyssorhynchus arthuri D. As the accurate identification of vector species is of fundamental importance for public health entomology, the aim of the study was to provide additional information for the presence of seven species that had been previously misidentified as Ny. strodei. Bayesian phylogenetic analyses using DNA sequences of the genes COI mtDNA, white, CAD and CAT nuclear genes confirmed Ny. albertoi, Ny. arthuri, Ny. strodei, and Ny. striatus as distinct groups within the strodei subgroup and corroborated the presence of three undescribed species under the name Ny. arthuri. Results of the GMYC model analysis corroborated Ny. arthuri B, Ny. arthuri C, and Ny. arthuri D; however, they did not distinguish between Ny. strodei and Ny. albertoi. Predicted distribution of seven species based on maximum entropy in MaxEnt showed that each species has its specific ecological niche suitability.
Collapse
Affiliation(s)
- Susan Elaine Greni
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Demari-Silva
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Pós-graduação do Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel Zorello Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Faculdade de Medicina do ABC, Santo André, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
62
|
Ding YR, Li B, Zhang YJ, Mao QM, Chen B. Complete mitogenome of Anopheles sinensis and mitochondrial insertion segments in the nuclear genomes of 19 mosquito species. PLoS One 2018; 13:e0204667. [PMID: 30261042 PMCID: PMC6160108 DOI: 10.1371/journal.pone.0204667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles sinensis is a major malarial vector in China and Southeast Asia. The mitochondria is involved in many important biological functions. Nuclear mitochondrial DNA segments (NUMTs) are common in eukaryotic organisms, but their characteristics are poorly understood. We sequenced and analyzed the complete mitochondrial (mt) genome of An. sinensis. The mt genome is 15,418 bp long and contains 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs and a large non-coding region. Its gene arrangement is similar to previously published mosquito mt genomes. We identified and analyzed the NUMTs of 19 mosquito species with both nuclear genomes and mt genome sequences. The number, total length and density of NUMTs are significantly correlated with genome size. About half of NUMTs are short (< 200 bp), but larger genomes can house longer NUMTs. NUMTs may help explain genome size expansion in mosquitoes. The expansion due to mitochondrial insertion segments is variable in different insect groups. PCGs are transferred to nuclear genomes at a higher frequency in mosquitoes, but NUMT origination is more different than in mammals. Larger-sized nuclear genomes have longer mt genome sequences in both mosquitoes and mammals. The study provides a foundation for the functional research of mitochondrial genes in An. sinensis and helps us understand the characteristics and origin of NUMTs and the potential contribution to genome expansion.
Collapse
Affiliation(s)
- Yi-Ran Ding
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bo Li
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Qi-Meng Mao
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| |
Collapse
|
63
|
Bourke BP, Conn JE, de Oliveira TMP, Chaves LSM, Bergo ES, Laporta GZ, Sallum MAM. Exploring malaria vector diversity on the Amazon Frontier. Malar J 2018; 17:342. [PMID: 30261932 PMCID: PMC6161421 DOI: 10.1186/s12936-018-2483-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Deforestation in the Amazon and the social vulnerability of its settler communities has been associated with increased malaria incidence. The feeding biology of the most important malaria vectors in the region, notably Nyssorhynchus darlingi, compounds efforts to control vectors and reduce transmission of what has become known as "Frontier Malaria". Exploring Anophelinae mosquito diversity is fundamental to understanding the species responsible for transmission and developing appropriate management and intervention strategies for malaria control in the Amazon River basin. METHODS This study describes Anophelinae mosquito diversity from settler communities affected by Frontier Malaria in the states of Acre, Amazonas and Rondônia by analysing COI gene data using cluster and tree-based species delimitation approaches. RESULTS In total, 270 specimens from collection sites were sequenced and these were combined with 151 reference (GenBank) sequences in the analysis to assist in species identification. Conservative estimates found that the number of species collected at these sites was between 23 (mPTP partition) and 27 (strict ABGD partition) species, up to 13 of which appeared to be new. Nyssorhynchus triannulatus and Nyssorhynchus braziliensis displayed exceptional levels of intraspecific genetic diversity but there was little to no support for putative species complex status. CONCLUSIONS This study demonstrates that Anophelinae mosquito diversity continues to be underestimated in poorly sampled areas where frontier malaria is a major public health concern. The findings will help shape future studies of vector incrimination and transmission dynamics in these areas and support efforts to develop more effective vector control and transmission reduction strategies in settler communities in the Amazon River basin.
Collapse
Affiliation(s)
- Brian P Bourke
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, 12159, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, 12222, USA
| | - Tatiane M P de Oliveira
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo S M Chaves
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Gabriel Z Laporta
- Setor de Pós-graduação, Pesquisa e Inovação, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Maria A M Sallum
- Department of Epidemiology, Faculty of Public Health, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
64
|
Harbach RE. An Anopheles by Any Other Name …? JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1069-1070. [PMID: 30020514 DOI: 10.1093/jme/tjy108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The physical characteristics of a nematoceran fly that evokes the image of a mosquito of the genus Anopheles Meigen (Diptera: Culicidae) has existed since the genus was defined in the early part of the twentieth century. Is that image likely to change with the recent proposal to elevate four Neotropical subgenera to generic status based on relationships generated by phylogenetic analyses of mitochondrial protein-coding genes? Reasons for retaining the traditional concept of Anopheles, with its traditionally recognized subgenera, are presented. However, as the ranking of taxa as genera or subgenera is subjective, the choice of rank of a genus-group name may be considered a subjective decision and a matter of user preference.
Collapse
Affiliation(s)
- Ralph E Harbach
- Department of Life Sciences, Natural History Museum, London, UK
| |
Collapse
|
65
|
Hutchings RSG, Hutchings RW, Menezes IS, Motta MDA, Sallum MAM. Mosquitoes (Diptera: Culicidae) From the Northwestern Brazilian Amazon: Araçá River. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1188-1209. [PMID: 29767750 DOI: 10.1093/jme/tjy065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Indexed: 06/08/2023]
Abstract
The mosquito fauna (Diptera: Culicidae) from two remote localities along the Araçá River, within the Municipality of Barcelos, towards the northern border of the Brazilian State of Amazonas, were sampled using CDC, Shannon, Malaise, and Suspended traps, along with net sweeping and immature collections. During June 2010, 111 collections yielded more than 23,500 mosquitoes distributed in 15 genera, representing 119 different species, together with eight morphospecies, which may represent undescribed new taxa. Among the species collected, there is one new distributional record for Brazil and nine new distributional records for the State of Amazonas. With the highest number of species, the genus Culex Linnaeus also had the largest number of individuals followed by Aedes Meigen with the second highest number of species. The most abundant species was Culex (Melanoconion) gnomatos Sallum, Hutchings & Ferreira followed by Culex (Melanoconion) portesi Senevet & Abonnenc, Culex (Culex) mollis Dyar & Knab, Aedes (Ochlerotatus) fulvus (Wiedemann), Culex (Melanoconion) pedroi Sirivanakarn & Belkin, Culex (Melanoconion) crybda Dyar, Aedes (Ochlerotatus) nubilus (Theobald), and Anopheles (Anopheles) peryassui Dyar & Knab. The epidemiological implications of mosquito species found are discussed and are compared with other mosquito inventories from the Amazon region. As the first standardized mosquito inventory of the Araçá River, with the identification of 127 species level taxa, the number of mosquito species which have been collected along the northern tributaries of the middle Rio Negro Basin (i.e., Padauari and Araçá Rivers) increased significantly.
Collapse
Affiliation(s)
- Rosa Sá Gomes Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, Manaus, AM, Brazil
| | - Roger William Hutchings
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, Manaus, AM, Brazil
| | - Isis Sá Menezes
- Laboratório de Bionomia e Sistemática de Culicidae, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, Manaus, AM, Brazil
| | - Monique de Albuquerque Motta
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro, RJ, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Doutor Arnaldo, São Paulo, SP, Brazil
| |
Collapse
|
66
|
Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km 2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep 2018; 8:7077. [PMID: 29728637 PMCID: PMC5935754 DOI: 10.1038/s41598-018-25344-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/20/2022] Open
Abstract
The precise role that deforestation for agricultural settlements and commercial forest products plays in promoting or inhibiting malaria incidence in Amazonian Brazil is controversial. Using publically available databases, we analyzed temporal malaria incidence (2009–2015) in municipalities of nine Amazonian states in relation to ecologically defined variables: (i) deforestation (rate of forest clearing over time); (ii) degraded forest (degree of human disturbance and openness of forest canopy for logging) and (iii) impacted forest (sum of deforested and degraded forest patches). We found that areas affected by one kilometer square of deforestation produced 27 new malaria cases (r² = 0.78; F1,10 = 35.81; P < 0.001). Unexpectedly, we found both a highly significant positive correlation between number of impacted forest patches less than 5 km2 and malaria cases, and that these patch sizes accounted for greater than ~95% of all patches in the study area. There was a significantly negative correlation between extraction forestry economic indices and malaria cases. Our results emphasize not only that deforestation promotes malaria incidence, but also that it directly or indirectly results in a low Human Development Index, and favors environmental conditions that promote malaria vector proliferation.
Collapse
Affiliation(s)
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
67
|
Hanemaaijer MJ, Houston PD, Collier TC, Norris LC, Fofana A, Lanzaro GC, Cornel AJ, Lee Y. Mitochondrial genomes of Anopheles arabiensis, An. gambiae and An. coluzzii show no clear species division. F1000Res 2018; 7:347. [PMID: 31069048 PMCID: PMC6489993 DOI: 10.12688/f1000research.13807.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 12/05/2022] Open
Abstract
Here we report the complete mitochondrial sequences of 70 individual field collected mosquito specimens from throughout Sub-Saharan Africa. We generated this dataset to identify species specific markers for the following Anopheles species and chromosomal forms: An. arabiensis, An. coluzzii (The Forest and Mopti chromosomal forms) and An. gambiae (The Bamako and Savannah chromosomal forms). The raw Illumina sequencing reads were mapped to the NC_002084 reference mitogenome sequence. A total of 783 single nucleotide polymorphisms (SNPs) were detected on the mitochondrial genome, of which 460 are singletons (58.7%). None of these SNPs are suitable as molecular markers to distinguish among An. arabiensis, An. coluzzii and An. gambiae or any of the chromosomal forms. The lack of species or chromosomal form specific markers is also reflected in the constructed phylogenetic tree, which shows no clear division among the operational taxonomic units considered here.
Collapse
Affiliation(s)
- Mark J. Hanemaaijer
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Parker D. Houston
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Travis C. Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Laura C. Norris
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Abdrahamane Fofana
- Malaria Research and Training Center, University of Bamako, Bamako, E2528, Mali
| | - Gregory C. Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| | - Anthony J. Cornel
- Mosquito Control Research Laboratory, Kearney Agricultural Center, Department of Entomology and Nematology, University of California Davis, Davis, CA, 93648, USA
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis , Davis, CA, 95616, USA
| |
Collapse
|