51
|
Wang L, Van Meulebroek L, Vanhaecke L, Smagghe G, Meeus I. The Bee Hemolymph Metabolome: A Window into the Impact of Viruses on Bumble Bees. Viruses 2021; 13:v13040600. [PMID: 33915836 PMCID: PMC8066158 DOI: 10.3390/v13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
State-of-the-art virus detection technology has advanced a lot, yet technology to evaluate the impacts of viruses on bee physiology and health is basically lacking. However, such technology is sorely needed to understand how multi-host viruses can impact the composition of the bee community. Here, we evaluated the potential of hemolymph metabolites as biomarkers to identify the viral infection status in bees. A metabolomics strategy based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was implemented. First, we constructed a predictive model for standardized bumble bees, in which non-infected bees were metabolically differentiated from an overt Israeli acute paralysis virus (IAPV) infection (R2Y = 0.993; Q2 = 0.906), as well as a covert slow bee paralysis virus (SBPV) infection (R2Y = 0.999; Q2 = 0.875). Second, two sets of potential biomarkers were identified, being descriptors for the metabolomic changes in the bee's hemolymph following viral infection. Third, the biomarker sets were evaluated in a new dataset only containing wild bees and successfully discriminated virus infection versus non-virus infection with an AUC of 0.985. We concluded that screening hemolymph metabolite markers can underpin physiological changes linked to virus infection dynamics, opening promising avenues to identify, monitor, and predict the effects of virus infection in a bee community within a specific environment.
Collapse
Affiliation(s)
- Luoluo Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510610, China;
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.V.M.); (L.V.)
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.V.M.); (L.V.)
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Ivan Meeus
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| |
Collapse
|
52
|
Crone MK, Grozinger CM. Pollen protein and lipid content influence resilience to insecticides in honey bees ( Apis mellifera). J Exp Biol 2021; 224:jeb.242040. [PMID: 33758024 DOI: 10.1242/jeb.242040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
In honey bees (Apis mellifera), there is growing evidence that the impacts of multiple stressors can be mitigated by quality nutrition. Pollen, which is the primary source of protein and lipids in bees diets, is particularly critical for generating more resilient phenotypes. Here, we evaluate the relationship between pollen protein-to-lipid ratios (P:Ls) and honey bee insecticide resilience. We hypothesized that pollen diets richer in lipids would lead to increased survival in bees exposed to insecticides, as pollen-derived lipids have previously been shown to improve bee resilience to pathogens and parasites. Furthermore, lipid metabolic processes are altered in bees exposed to insecticides.We fed age-matched bees pollen diets of different P:Ls by altering a base pollen by either adding protein (casein powder) or lipids (canola oil) and simulating chronic insecticide exposure by feeding bees an organophosphate (Chlorpyrifos). We also tested pollen diets of naturally different P:Ls to determine if results are consistent. Linear regression analysis revealed that mean survival time for altered diets was best explained by protein concentration (p =0.04 , adjusted R2 =0.92), and that mean survival time for natural diets was best explained by P:L ratio (p =0.008 , adjusted R2 =0.93). Our results indicate that higher ratios of dietary protein to lipid has a negative effect on bee physiology when combined with insecticide exposure, while lower ratios have a positive effect. These results suggest that protein and lipid intake differentially influence insecticide response in bees, laying the groundwork for future studies of metabolic processes and development of improved diets.
Collapse
Affiliation(s)
- Makaylee K Crone
- Intercollege Graduate Program in Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, USA
| |
Collapse
|
53
|
Dalmon A, Diévart V, Thomasson M, Fouque R, Vaissière BE, Guilbaud L, Le Conte Y, Henry M. Possible Spillover of Pathogens between Bee Communities Foraging on the Same Floral Resource. INSECTS 2021; 12:insects12020122. [PMID: 33573084 PMCID: PMC7911050 DOI: 10.3390/insects12020122] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 01/02/2023]
Abstract
Simple Summary Floral resource availability is one of the keys to preserving the health of bee communities. However, flowers also present a risk of pathogen transmission, as infected pollinators could deposit pathogens while foraging, exposing other pollinators to infection via the consumption of contaminated nectar or pollen. Here, we studied, over time, the prevalence of seven viruses in bee communities that share the same small surface of floral resource in order to assess the risk of virus spillover. In total, 2057 bee specimens from 30 species were caught, identified and checked for the presence of viruses. Specimens from the Halictidae family were the dominant wild bees. The prevalence of viruses was quite high: at least one virus was detected in 78% of the samples, and co-infections were frequent. The genetic diversity of the viruses was also investigated to look for the possible association of geographic origin or host with shared ancestry. Abstract Viruses are known to contribute to bee population decline. Possible spillover is suspected from the co-occurrence of viruses in wild bees and honey bees. In order to study the risk of virus transmission between wild and managed bee species sharing the same floral resource, we tried to maximize the possible cross-infections using Phacelia tanacetifolia, which is highly attractive to honey bees and a broad range of wild bee species. Virus prevalence was compared over two years in Southern France. A total of 1137 wild bees from 29 wild bee species (based on COI barcoding) and 920 honey bees (Apis mellifera) were checked for the seven most common honey bee RNA viruses. Halictid bees were the most abundant. Co-infections were frequent, and Sacbrood virus (SBV), Black queen cell virus (BQCV), Acute bee paralysis virus (ABPV) and Israeli acute paralysis virus (IAPV) were widespread in the hymenopteran pollinator community. Conversely, Deformed wing virus (DWV) was detected at low levels in wild bees, whereas it was highly prevalent in honey bees (78.3% of the samples). Both wild bee and honey bee virus isolates were sequenced to look for possible host-specificity or geographical structuring. ABPV phylogeny suggested a specific cluster for Eucera bees, while isolates of DWV from bumble bees (Bombus spp.) clustered together with honey bee isolates, suggesting a possible spillover.
Collapse
|
54
|
Flores JM, Gámiz V, Jiménez-Marín Á, Flores-Cortés A, Gil-Lebrero S, Garrido JJ, Hernando MD. Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Res Vet Sci 2021; 135:85-95. [PMID: 33454582 DOI: 10.1016/j.rvsc.2021.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/29/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022]
Abstract
Varroa mite is the major threat to the western honey bee, Apis mellifera, and the cause of significant economic losses in the apiculture industry. Varroa destructor feeds on brood and adult bees being responsible for vectoring virus infections and other diseases. This study analyses the role of Varroa and other associated pathogens, such as viruses or the fungus Nosema ceranae, and their relationships regarding the viability of the bee colony. It has been carried out during one beekeeping season, with the subspecies A. m. iberiensis, commonly used in the apiculture industry of Spain. Our study shows a significant relationship between the presence of Varroa destructor and viral infection by deformed wing virus and acute bee paralysis virus. Nosema ceranae behaved as an opportunistic pathogen. In addition, this study explored a potential naturally occurring subset of peptides, responsible for the humoral immunity of the bees. The expression of the antimicrobial peptides abaecin and melittin showed a significant relationship with the levels of Varroa mite and the deformed wing virus.
Collapse
Affiliation(s)
- José M Flores
- Department of Zoology, Faculty of Veterinary, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain.
| | - Victoria Gámiz
- Department of Zoology, Faculty of Veterinary, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetic, Faculty of Veterinary, Grupo de Genómica y Mejora Animal, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Alicia Flores-Cortés
- Department of Genetic, Faculty of Veterinary, Grupo de Genómica y Mejora Animal, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Sergio Gil-Lebrero
- Department of Zoology, Faculty of Veterinary, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - Juan J Garrido
- Department of Genetic, Faculty of Veterinary, Grupo de Genómica y Mejora Animal, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain
| | - María Dolores Hernando
- National Institute for Agricultural and Food Research and Technology (INIA), 28040 Madrid, Spain
| |
Collapse
|
55
|
Ullah A, Tlak Gajger I, Majoros A, Dar SA, Khan S, Kalimullah, Haleem Shah A, Nasir Khabir M, Hussain R, Khan HU, Hameed M, Anjum SI. Viral impacts on honey bee populations: A review. Saudi J Biol Sci 2021; 28:523-530. [PMID: 33424335 PMCID: PMC7783639 DOI: 10.1016/j.sjbs.2020.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee's pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.
Collapse
Affiliation(s)
- Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| | | | - Showket Ahmad Dar
- Division of Agricultural Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kalimullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Haleem Shah
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Riaz Hussain
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Hikmat Ullah Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
56
|
DeGrandi-Hoffman G, Corby-Harris V, Chen Y, Graham H, Chambers M, Watkins deJong E, Ziolkowski N, Kang Y, Gage S, Deeter M, Simone-Finstrom M, de Guzman L. Can supplementary pollen feeding reduce varroa mite and virus levels and improve honey bee colony survival? EXPERIMENTAL & APPLIED ACAROLOGY 2020; 82:455-473. [PMID: 33125599 PMCID: PMC7686192 DOI: 10.1007/s10493-020-00562-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Varroa destructor is an ectoparasitic mite of immature and adult honey bees that can transmit several single-stranded RNA viruses to its host. Varroa reproduce in brood cells, and mite populations increase as colonies produce brood in spring and summer. Mite numbers also can sharply rise, particularly in the fall, by the migration of varroa into hives on foragers. Colonies with high levels of varroa and viruses often die over the winter. Feeding colonies pollen might keep virus levels low and improve survival because of the positive effects of pollen on immunity and colony growth. We compared varroa and virus levels and overwinter survival in colonies with (fed) and without (unfed) supplemental pollen. We also measured the frequency of capturing foragers with mites (FWM) at colony entrances to determine its relationship to varroa and virus levels. Colonies fed supplemental pollen were larger than unfed colonies and survived longer. Varroa populations and levels of Deformed wing virus (DWV) rose throughout the season, and were similar between fed and unfed colonies. The growth of varroa populations was correlated with FWM in fed and unfed colonies, and significantly affected DWV levels. Increasing frequencies of FWM and the effects on varroa populations might reduce the positive influence of supplemental pollen on immune function. However, pollen feeding can stimulate colony growth and this can improve colony survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Kang
- Arizona State University, Tempe, AZ, USA
| | | | | | | | | |
Collapse
|
57
|
Hsieh EM, Berenbaum MR, Dolezal AG. Ameliorative Effects of Phytochemical Ingestion on Viral Infection in Honey Bees. INSECTS 2020; 11:insects11100698. [PMID: 33066263 PMCID: PMC7602108 DOI: 10.3390/insects11100698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Simple Summary Virus infection is among the many stressors honey bees are experiencing in the modern agricultural landscape. Although some promising treatments are currently under development, no reliable cure currently exists. Here, we investigated the effects of various phytochemicals (plant-produced chemical compounds) on the survivorship of virus infected honey bees. Our results showed that, when consumed at natural concentrations like those found in flowers, caffeine is capable of significantly reducing the mortality of infected bees. It is important to note that caffeine did not clear the infected bees of all viruses and should, therefore, not be considered a virus cure. Rather, caffeine represents a potential antiviral therapeutic agent that should be studied further to improve understanding of virus-phytochemical interactions. Abstract Honey bee viruses are capable of causing a wide variety of devastating effects, but effective treatments have yet to be discovered. Phytochemicals represent a broad range of substances that honey bees frequently encounter and consume, many of which have been shown to improve honey bee health. However, their effect on bee viruses is largely unknown. Here, we tested the therapeutic effectiveness of carvacrol, thymol, p-coumaric acid, quercetin, and caffeine on viral infection by measuring their ability to improve survivorship in honey bees inoculated with Israeli acute paralysis virus (IAPV) using high-throughput cage bioassays. Among these candidates, caffeine was the only phytochemical capable of significantly improving survivorship, with initial screening showing that naturally occurring concentrations of caffeine (25 ppm) were sufficient to produce an ameliorative effect on IAPV infection. Consequently, we measured the scope of caffeine effectiveness in bees inoculated and uninoculated with IAPV by performing the same type of high-throughput bioassay across a wider range of caffeine concentrations. Our results indicate that caffeine may provide benefits that scale with concentration, though the exact mechanism by which caffeine ingestion improves survivorship remains uncertain. Caffeine therefore has the potential to act as an accessible and inexpensive method of treating viral infections, while also serving as a tool to further understanding of honey bee–virus interactions at a physiological and molecular level.
Collapse
|
58
|
Luo ZW, Dong ZX, Chen YF, Li HY, Tang QH, Li JL, Guo J. Comparative analysis of the gut microbiota of Apis cerana in Yunnan using high-throughput sequencing. Arch Microbiol 2020; 202:2557-2567. [PMID: 32666301 DOI: 10.1007/s00203-020-01974-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Gut microbes play an important role in host disease and health. The Asian honey bee Apis cerana is an important pollinator of agricultural crops in China. However, there are still few studies on the structure and composition of the microbiota in the intestine of A. cerana, especially A. cerana in Yunnan. To understand the species and composition of the microbiota in the intestine of A. cerana in Yunnan, we used high-throughput sequencing technology to carry out 16S rRNA sequencing on 50 samples from Kunming, Xishuangbanna and Mengzi. The results show that both from the phylum level and the genus level, the structure and abundance of the microbiota in the gut of A. cerana from the three regions tended to be the same. At the phylum level, the abundance of Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Acidobacteria and other species was high in A. cerana from different areas. At the genus level, the abundance of Lactobacillus, Gilliamella, Snodgrassella, Apibacter, Candidatus Schmidhempelia and other species was high in A. cerana from different areas. Due to its unique geographical environment and climatic conditions, at the genus level, the diversity of bacterial communities in Xishuangbanna was significantly lower than that in the other two regions, which was about 100 genera less. In conclusion, our results reveal the composition and structure of the intestinal microbiota of bees in Yunnan and deepen our understanding of the intestinal microbiota of bees.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ji-Lian Li
- Institute of Apiculture, Chinese Academy of Agricultural Science/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, 100093, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
59
|
St. Clair AL, Zhang G, Dolezal AG, O’Neal ME, Toth AL. Diversified Farming in a Monoculture Landscape: Effects on Honey Bee Health and Wild Bee Communities. ENVIRONMENTAL ENTOMOLOGY 2020; 49:753-764. [PMID: 32249293 PMCID: PMC7371362 DOI: 10.1093/ee/nvaa031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 05/20/2023]
Abstract
In the last century, a global transformation of Earth's surface has occurred due to human activity with extensive agriculture replacing natural ecosystems. Concomitant declines in wild and managed bees are occurring, largely due to a lack of floral resources and inadequate nutrition, caused by conversion to monoculture-based farming. Diversified fruit and vegetable farms may provide an enhanced variety of resources through crops and weedy plants, which have potential to sustain human and bee nutrition. We hypothesized fruit and vegetable farms can enhance honey bee (Hymenoptera: Apidae, Apis mellifera Linnaeus) colony growth and nutritional state over a soybean monoculture, as well as support a more diverse wild bee community. We tracked honey bee colony growth, nutritional state, and wild bee abundance, richness, and diversity in both farm types. Honey bees kept at diversified farms had increased colony weight and preoverwintering nutritional state. Regardless of colony location, precipitous declines in colony weight occurred during autumn and thus colonies were not completely buffered from the stressors of living in a matrix dominated with monocultures. Contrary to our hypothesis, wild bee diversity was greater in soybean, specifically in August, a time when fields are in bloom. These differences were largely driven by four common bee species that performed well in soybean. Overall, these results suggest fruit and vegetable farms provide some benefits for honey bees; however, they do not benefit wild bee communities. Thus, incorporation of natural habitat, rather than diversified farming, in these landscapes, may be a better choice for wild bee conservation efforts.
Collapse
Affiliation(s)
- Ashley L St. Clair
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, IA
- Department of Entomology, Iowa State University, Dr. Ames, IA
- Corresponding author, e-mail:
| | - Ge Zhang
- Department of Entomology, Iowa State University, Dr. Ames, IA
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL
| | | | - Amy L Toth
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, IA
- Department of Entomology, Iowa State University, Dr. Ames, IA
| |
Collapse
|
60
|
Zhang G, St. Clair AL, Dolezal A, Toth AL, O’Neal M. Honey Bee (Hymenoptera: Apidea) Pollen Forage in a Highly Cultivated Agroecosystem: Limited Diet Diversity and Its Relationship to Virus Resistance. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1062-1072. [PMID: 32274498 PMCID: PMC7362718 DOI: 10.1093/jee/toaa055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 05/24/2023]
Abstract
Intensified agriculture reduces natural and seminatural habitats and plant diversity, reducing forage available to honey bees (Apis mellifera L. [Hymenoptera: Apidea]). In agricultural landscapes of Iowa, United States, we studied the impact of extrinsic agricultural intensification on the availability of pollen for honey bees by placing colonies next to soybean fields surrounded by either a low or high level of cultivation. The abundance and diversity of pollen returned to a colony were estimated by placing pollen traps on bee colonies during the summer and fall of 2015 and 2016. We observed no difference in abundance and diversity of pollen collected by colonies in either landscape, but abundance varied over time with significantly less collected in September. We explored if the most commonly collected pollen from these landscapes had the capacity to support honey bee immune health by testing if diets consisting of these pollens improved bee resistance to a viral infection. Compared to bees denied pollen, a mixture of pollen from the two most common plant taxa (Trifolium spp. L. [Fabales: Fabaceae] and Chimaechrista fasciculata (Michx.) Greene [Fabales: Fabaceae]) significantly reduced honey bee mortality induced by viral infection. These data suggest that a community of a few common plants was favored by honey bees, and when available, could be valuable for reducing mortality from a viral infection. Our data suggest a late season shortage of pollen may be ameliorated by additions of fall flowering plants, like goldenrod (Solidago spp. L. [Asterales: Asteraceae]) and sunflower (Helianthus, Heliopsis, and Silphium spp. [Asterales: Asteraceae]), as options for enhancing pollen availability and quality for honey bees in agricultural landscapes.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Iowa State University, Ames, IA
| | - Ashley L St. Clair
- Department of Entomology, Iowa State University, Ames, IA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Adam Dolezal
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL
| | - Amy L Toth
- Department of Entomology, Iowa State University, Ames, IA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Matthew O’Neal
- Department of Entomology, Iowa State University, Ames, IA
| |
Collapse
|
61
|
Harwood GP, Dolezal AG. Pesticide-Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020; 12:E566. [PMID: 32455815 PMCID: PMC7291294 DOI: 10.3390/v12050566] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how two such stressors, pesticides and viruses, may interact in additive or synergistic ways to affect honey bee health. Despite what appears to be a straightforward comparison, there is a dearth of studies examining this issue likely owing to the complexity of such interactions. Such complexities include the wide array of pesticide chemical classes with different modes of actions, the coupling of many bee viruses with ectoparasitic Varroa mites, and the intricate social structure of honey bee colonies. Together, these issues pose a challenge to researchers examining the effects pesticide-virus interactions at both the individual and colony level.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | | |
Collapse
|
62
|
Ricigliano VA. Microalgae as a promising and sustainable nutrition source for managed honey bees. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21658. [PMID: 31976574 DOI: 10.1002/arch.21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Managed honey bee colony losses are attributed to a number of interacting stressors, but many lines of evidence point to malnutrition as a primary factor. Commercial beekeepers have become increasingly reliant on artificial pollen substitute diets to nourish colonies during periods of forage scarcity and to bolster colony size before pollination services. These artificial diets may be deficient in essential macronutrients (proteins, lipids, prebiotic fibers), micronutrients (vitamins, minerals), and antioxidants. Therefore, improving the efficacy of pollen substitutes can be considered vital to modern beekeeping. Microalgae are prolific sources of plant-based nutrition with many species exhibiting biochemical profiles that are comparable to natural pollen. This emerging feed source has been employed in a variety of organisms, including limited applications in honey bees. Herein, I introduce the nutritional value and functional properties of microalgae, extrapolating to central aspects of honey bee physiology and health. To conclude, I discuss the potential of microalgae-based feeds to sustainably provision managed colonies on an agricultural scale.
Collapse
Affiliation(s)
- Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana
| |
Collapse
|
63
|
Honey bee virus causes context-dependent changes in host social behavior. Proc Natl Acad Sci U S A 2020; 117:10406-10413. [PMID: 32341145 DOI: 10.1073/pnas.2002268117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes create evolutionarily novel environments that present opportunities for emerging diseases, potentially changing the balance between host and pathogen. Honey bees provide essential pollination services, but intensification and globalization of honey bee management has coincided with increased pathogen pressure, primarily due to a parasitic mite/virus complex. Here, we investigated how honey bee individual and group phenotypes are altered by a virus of concern, Israeli acute paralysis virus (IAPV). Using automated and manual behavioral monitoring of IAPV-inoculated individuals, we find evidence for pathogen manipulation of worker behavior by IAPV, and reveal that this effect depends on social context; that is, within versus between colony interactions. Experimental inoculation reduced social contacts between honey bee colony members, suggesting an adaptive host social immune response to diminish transmission. Parallel analyses with double-stranded RNA (dsRNA)-immunostimulated bees revealed these behaviors are part of a generalized social immune defensive response. Conversely, inoculated bees presented to groups of bees from other colonies experienced reduced aggression compared with dsRNA-immunostimulated bees, facilitating entry into susceptible colonies. This reduction was associated with a shift in cuticular hydrocarbons, the chemical signatures used by bees to discriminate colony members from intruders. These responses were specific to IAPV infection, suggestive of pathogen manipulation of the host. Emerging bee pathogens may thus shape host phenotypes to increase transmission, a strategy especially well-suited to the unnaturally high colony densities of modern apiculture. These findings demonstrate how anthropogenic changes could affect arms races between human-managed hosts and their pathogens to potentially affect global food security.
Collapse
|
64
|
Dolezal AG, St Clair AL, Zhang G, Toth AL, O'Neal ME. Native habitat mitigates feast-famine conditions faced by honey bees in an agricultural landscape. Proc Natl Acad Sci U S A 2019; 116:25147-25155. [PMID: 31767769 PMCID: PMC6911205 DOI: 10.1073/pnas.1912801116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intensive agriculture can contribute to pollinator decline, exemplified by alarmingly high annual losses of honey bee colonies in regions dominated by annual crops (e.g., midwestern United States). As more natural or seminatural landscapes are transformed into monocultures, there is growing concern over current and future impacts on pollinators. To forecast how landscape simplification can affect bees, we conducted a replicated, longitudinal assessment of honey bee colony growth and nutritional health in an intensively farmed region where much of the landscape is devoted to production of corn and soybeans. Surprisingly, colonies adjacent to soybean fields surrounded by more cultivated land grew more during midseason than those in areas of lower cultivation. Regardless of the landscape surrounding the colonies, all experienced a precipitous decline in colony weight beginning in August and ended the season with reduced fat stores in individual bees, both predictors of colony overwintering failure. Patterns of forage availability and colony nutritional state suggest that late-season declines were caused by food scarcity during a period of extremely limited forage. To test if habitat enhancements could ameliorate this response, we performed a separate experiment in which colonies provided access to native perennials (i.e., prairie) were rescued from both weight loss and reduced fat stores, suggesting the rapid decline observed in these agricultural landscapes is not inevitable. Overall, these results show that intensively farmed areas can provide a short-term feast that cannot sustain the long-term nutritional health of colonies; reintegration of biodiversity into such landscapes may provide relief from nutritional stress.
Collapse
Affiliation(s)
- Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801;
| | - Ashley L St Clair
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, IA 50011
- Department of Entomology, Iowa State University, Ames, IA 50011
| | - Ge Zhang
- Department of Entomology, Iowa State University, Ames, IA 50011
| | - Amy L Toth
- Department of Ecology and Evolutionary Biology, Iowa State University, Ames, IA 50011
- Department of Entomology, Iowa State University, Ames, IA 50011
| | | |
Collapse
|
65
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
66
|
Rutter L, Carrillo-Tripp J, Bonning BC, Cook D, Toth AL, Dolezal AG. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics 2019; 20:412. [PMID: 31117959 PMCID: PMC6532243 DOI: 10.1186/s12864-019-5767-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Parts of Europe and the United States have witnessed dramatic losses in commercially managed honey bees over the past decade to what is considered an unsustainable extent. The large-scale loss of bees has considerable implications for the agricultural economy because bees are one of the leading pollinators of numerous crops. Bee declines have been associated with several interactive factors. Recent studies suggest nutritional and pathogen stress can interactively contribute to bee physiological declines, but the molecular mechanisms underlying interactive effects remain unknown. In this study, we provide insight into this question by using RNA-sequencing to examine how monofloral diets and Israeli acute paralysis virus inoculation influence gene expression patterns in bees. RESULTS We found a considerable nutritional response, with almost 2000 transcripts changing with diet quality. The majority of these genes were over-represented for nutrient signaling (insulin resistance) and immune response (Notch signaling and JaK-STAT pathways). In our experimental conditions, the transcriptomic response to viral infection was fairly limited. We only found 43 transcripts to be differentially expressed, some with known immune functions (argonaute-2), transcriptional regulation, and muscle contraction. We created contrasts to explore whether protective mechanisms of good diet were due to direct effects on immune function (resistance) or indirect effects on energy availability (tolerance). A similar number of resistance and tolerance candidate differentially expressed genes were found, suggesting both processes may play significant roles in dietary buffering from pathogen infection. CONCLUSIONS Through transcriptional contrasts and functional enrichment analysis, we contribute to our understanding of the mechanisms underlying feedbacks between nutrition and disease in bees. We also show that comparing results derived from combined analyses across multiple RNA-seq studies may allow researchers to identify transcriptomic patterns in bees that are concurrently less artificial and less noisy. This work underlines the merits of using data visualization techniques and multiple datasets to interpret RNA-sequencing studies.
Collapse
Affiliation(s)
- Lindsay Rutter
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, 50011 IA USA
| | - Jimena Carrillo-Tripp
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, Ensenada, 22860 Baja California Mexico
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611 FL USA
| | - Dianne Cook
- Econometrics and Business Statistics, Monash University, Clayton, 3800 VIC Australia
| | - Amy L. Toth
- Department of Entomology, Iowa State University, Ames, 50011 IA USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011 IA USA
| | - Adam G. Dolezal
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, 61801 IL USA
| |
Collapse
|