51
|
Lee CC, Lin CY, Tseng SP, Matsuura K, Yang CCS. Ongoing Coevolution of Wolbachia and a Widespread Invasive Ant, Anoplolepis gracilipes. Microorganisms 2020; 8:E1569. [PMID: 33053771 PMCID: PMC7601630 DOI: 10.3390/microorganisms8101569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/25/2023] Open
Abstract
While Wolbachia are commonly found among arthropods, intraspecific infection rates can vary substantially across the geographic populations. Here we report nearly 100% prevalence of Wolbachia in the global populations of the yellow crazy ant, Anoplolepis gracilipes. To understand coevolutionary history between Wolbachia and A. gracilipes, we identified single nucleotide polymorphisms (SNPs) in Wolbachia from the ant across 12 geographical regions and compared the phylogeny of SNP-based Wolbachia to patterns of the ant's mitochondrial DNA (mtDNA) variation. Our results revealed a strong concordance between phylogenies of Wolbachia and host mtDNA, providing immediate evidence of co-divergence. Among eight identified SNP loci separating the genetic clusters of Wolbachia, seven loci are located in potential protein-coding genes, three of which being non-synonymous SNPs that may influence gene functions. We found a Wolbachia hypothetical protein gene with signature of positive selection. These findings jointly allow us to characterize Wolbachia-ant coevolution and also raise a question about mechanism(s) underlying maintenance of high prevalence of Wolbachia during the colonization of this invasive ant.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan;
| | - Chun-Yi Lin
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan;
| | - Shu-Ping Tseng
- Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA;
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Chin-Cheng Scotty Yang
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan;
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology, National Chung Hsing University, Taichung 402204, Taiwan
| |
Collapse
|
52
|
Lenhart PA, White JA. Endosymbionts facilitate rapid evolution in a polyphagous herbivore. J Evol Biol 2020; 33:1507-1511. [PMID: 32894786 DOI: 10.1111/jeb.13697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 11/28/2022]
Abstract
Maternally transmitted bacterial symbionts can be important mediators of the interactions between insect herbivores and their foodplants. These symbionts are often facultative (present in some host individuals but not others) and can have large effects on their host's phenotype, thus giving rise to heritable variation upon which selection can act. In the cowpea aphid (Aphis craccivora), it has been established that the facultative endosymbiont Arsenophonus improves aphid performance on black locust trees (Robinia pseudoacacia) but not on fava (Vicia faba). Here, we tested whether this fitness differential translated into contemporaneous evolution of aphid populations associated with the different plants. In a laboratory study lasting 16 weeks, we found that the frequency of Arsenophonus-infected individuals significantly increased over time for aphid populations on black locust but declined for aphid populations on fava. By the end of the experiment, Arsenophonus infection was >3× more common on black locust than fava, which is comparable to previously described infection frequencies in natural field populations. Our results clearly demonstrate that aphid populations with mixed facultative symbiont infection status can rapidly evolve in response to the selective environments imposed by different host plants. This selection differential may be a sufficient explanation for the global association between Arsenophonus-infected cowpea aphids and black locust trees, without invoking additional assortative mechanisms. Because the aphid and plant originate from different parts of the world, we further hypothesize that Arsenophonus infection may have acted as a preadaptation that has promoted functional specialization of infected aphids on a novel host plant.
Collapse
Affiliation(s)
- Paul A Lenhart
- Department of Entomology, S-225 Agricultural Science Center N, University of Kentucky, Lexington, KY, USA
| | - Jennifer A White
- Department of Entomology, S-225 Agricultural Science Center N, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
53
|
Rossbacher S, Vorburger C. Prior adaptation of parasitoids improves biological control of symbiont-protected pests. Evol Appl 2020; 13:1868-1876. [PMID: 32908591 PMCID: PMC7463345 DOI: 10.1111/eva.12934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
There is increasing demand for sustainable pest management to reduce harmful effects of pesticides on the environment and human health. For pest aphids, biological control with parasitoid wasps provides a welcome alternative, particularly in greenhouses. However, aphids are frequently infected with the heritable bacterial endosymbiont Hamiltonella defensa, which increases resistance to parasitoids and thereby hampers biological control. Using the black bean aphid (Aphis fabae) and its main parasitoid Lysiphlebus fabarum, we tested whether prior adaptation of parasitoids can improve the control of symbiont-protected pests. We had parasitoid lines adapted to two different strains of H. defensa by experimental evolution, as well as parasitoids evolved on H. defensa-free aphids. We compared their ability to control caged aphid populations comprising 60% unprotected and 40% H. defensa-protected aphids, with both H. defensa strains present in the populations. Parasitoids that were not adapted to H. defensa had virtually no effect on aphid population dynamics compared to parasitoid-free controls, but one of the adapted lines and a mixture of both adapted lines controlled aphids successfully, strongly benefitting plant growth. Selection by parasitoids altered aphid population composition in a very specific manner. Aphid populations became dominated by H. defensa-protected aphids in the presence of parasitoids, and each adapted parasitoid line selected for the H. defensa strain it was not adapted to. This study shows, for the first time, that prior adaptation of parasitoids improves biological control of symbiont-protected pests, but the high specificity of parasitoid counter-resistance may represent a challenge for its implementation.
Collapse
Affiliation(s)
- Silvan Rossbacher
- Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Christoph Vorburger
- Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| |
Collapse
|
54
|
Gerardo NM, Hoang KL, Stoy KS. Evolution of animal immunity in the light of beneficial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190601. [PMID: 32772666 DOI: 10.1098/rstb.2019.0601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune system processes serve as the backbone of animal defences against pathogens and thus have evolved under strong selection and coevolutionary dynamics. Most microorganisms that animals encounter, however, are not harmful, and many are actually beneficial. Selection should act on hosts to maintain these associations while preventing exploitation of within-host resources. Here, we consider how several key aspects of beneficial symbiotic associations may shape host immune system evolution. When host immunity is used to regulate symbiont populations, there should be selection to evolve and maintain targeted immune responses that recognize symbionts and suppress but not eliminate symbiont populations. Associating with protective symbionts could relax selection on the maintenance of redundant host-derived immune responses. Alternatively, symbionts could facilitate the evolution of host immune responses if symbiont-conferred protection allows for persistence of host populations that can then adapt. The trajectory of immune system evolution will likely differ based on the type of immunity involved, the symbiont transmission mode and the costs and benefits of immune system function. Overall, the expected influence of beneficial symbiosis on immunity evolution depends on how the host immune system interacts with symbionts, with some interactions leading to constraints while others possibly relax selection on immune system maintenance. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kim L Hoang
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kayla S Stoy
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
55
|
High Prevalence of Pantoea in Diaphorina citri (Hemiptera: Liviidae): Vector of Citrus Huanglongbing Disease. Curr Microbiol 2020; 77:1525-1531. [DOI: 10.1007/s00284-020-01969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
|
56
|
Abstract
AbstractA microbiome rife with enemies of the host should cause selection for defensive traits in symbionts, yet such complex environments are also predicted to select for greater symbiont virulence. Why then do we so often observe defensive mutualists that protect hosts while causing little to no damage? To address this question, we build a symbiont-centered model that incorporates the evolution of two independent symbiont traits: defense and virulence. Virulence is modeled as a continuous trait spanning parasitism (positive virulence) and mutualism (negative virulence), thus accounting for the entire range of direct effects that symbionts have on host mortality. Defense is modeled as a continuous trait that ameliorates the costs to the host associated with infection by a deleterious parasite. We show that the evolution of increased defense in one symbiont may lead to the evolution of lower virulence in both symbionts and even facilitate pathogens evolving to mutualism. However, results are context dependent, and when defensive traits are costly, the evolution of greater defense may also lead to the evolution of greater virulence, breaking the common expectation that defensive symbionts are necessarily mutualists toward the host.
Collapse
|
57
|
Rouïl J, Jousselin E, Coeur d’acier A, Cruaud C, Manzano-Marín A. The Protector within: Comparative Genomics of APSE Phages across Aphids Reveals Rampant Recombination and Diverse Toxin Arsenals. Genome Biol Evol 2020; 12:878-889. [PMID: 32386316 PMCID: PMC7313666 DOI: 10.1093/gbe/evaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Phages can fundamentally alter the physiology and metabolism of their hosts. Although these phages are ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception is the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called "types." In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across ten insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.
Collapse
Affiliation(s)
- Jeff Rouïl
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Armelle Coeur d’acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | | |
Collapse
|
58
|
Hafer-Hahmann N, Vorburger C. Parasitoids as drivers of symbiont diversity in an insect host. Ecol Lett 2020; 23:1232-1241. [PMID: 32375203 DOI: 10.1111/ele.13526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Immune systems have repeatedly diversified in response to parasite diversity. Many animals have outsourced part of their immune defence to defensive symbionts, which should be affected by similar evolutionary pressures as the host's own immune system. Protective symbionts provide efficient and specific protection and respond to changing selection pressure by parasites. Here we use the aphid Aphis fabae, its protective symbiont Hamiltonella defensa, and its parasitoid Lysiphlebus fabarum to test whether parasite diversity can maintain diversity in protective symbionts. We exposed aphid populations with the same initial symbiont composition to parasitoid populations that differed in their diversity. As expected, single parasitoid genotypes mostly favoured a single symbiont that was most protective against that particular parasitoid, while multiple symbionts persisted in aphids exposed to more diverse parasitoid populations, which in turn affected aphid population density and rates of parasitism. Parasite diversity may be crucial to maintaining symbiont diversity in nature.
Collapse
Affiliation(s)
- Nina Hafer-Hahmann
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Christoph Vorburger
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
59
|
Brumin M, Lebedev G, Kontsedalov S, Ghanim M. Levels of the endosymbiont Rickettsia in the whitefly Bemisia tabaci are influenced by the expression of vitellogenin. INSECT MOLECULAR BIOLOGY 2020; 29:241-255. [PMID: 31825546 DOI: 10.1111/imb.12629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Bacterial endosymbionts play essential roles in the biology of their arthropod hosts by interacting with internal factors in the host. The whitefly Bemisia tabaci is a worldwide agricultural pest and a supervector for more than 100 plant viruses. Like many other arthropods, Be. tabaci harbours a primary endosymbiont, Porteira aleyrodidarum, and an array of secondary endosymbionts that coexist with Portiera inside bacteriocyte cells. Unlike all of the other secondary symbionts that infect Be. tabaci, Rickettsia has been shown to be an exception by infecting insect organs and not colocalizing with Portiera, and has been shown to significantly impact the insect biology and its interactions with the environment. Little is known about the molecular interactions that underlie insect-symbiont interactions in general, and particularly Be. tabaci-Rickettsia interactions. Here we performed transcriptomic analysis and identified vitellogenin as an important protein that influences the levels of Rickettsia in Be. tabaci. Vitellogenin expression levels were lower in whole insects, but higher in midguts of Rickettsia-infected insects. Immunocapture-PCR assay showed interaction between vitellogenin and Rickettsia, whereas silencing of vitellogenin resulted in nearly complete disappearance of Rickettsia from midguts. Altogether, these results suggest that vitellogenin plays an important role in influencing the levels of Rickettsia in Be. tabaci.
Collapse
Affiliation(s)
- M Brumin
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - G Lebedev
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - S Kontsedalov
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - M Ghanim
- Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
60
|
Preedy KF, Chaplain MAJ, Leybourne DJ, Marion G, Karley AJ. Learning-induced switching costs in a parasitoid can maintain diversity of host aphid phenotypes although biocontrol is destabilized under abiotic stress. J Anim Ecol 2020; 89:1216-1229. [PMID: 32096554 DOI: 10.1111/1365-2656.13189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/01/2019] [Indexed: 11/27/2022]
Abstract
Aphid populations frequently include phenotypes that are resistant to parasitism by hymenopterous parasitoid wasps, which is often attributed to the presence of 'protective' facultative endosymbionts residing in aphid tissues, particularly Hamiltonella defensa. In field conditions, under parasitoid pressure, the observed coexistence of aphids with and without protective symbionts cannot be explained by their difference in fitness alone. Using the cereal aphid Rhopalosiphum padi as a model, we propose an alternative mechanism whereby parasitoids are more efficient at finding common phenotypes of aphid and experience a fitness cost when switching to the less common phenotype. We construct a model based on delay differential equations and parameterize and validate the model with values within the ranges obtained from experimental studies. We then use it to explore the possible effects on system dynamics under conditions of environmental stress, using our existing data on the effects of drought stress in crops as an example. We show the 'switching penalty' incurred by parasitoids leads to stable coexistence of aphids with and without H. defensa and provides a potential mechanism for maintaining phenotypic diversity among host organisms. We show that drought-induced reduction in aphid development time has little impact. However, greater reduction in fecundity on droughted plants of symbiont-protected aphids can cause insect population cycles when the system would be stable in the absence of drought stress. The stabilizing effect of the increased efficiency in dealing with more commonly encountered host phenotypes is applicable to a broad range of consumer-resource systems and could explain stable coexistence in competitive environments. The loss of stable coexistence when drought has different effects on the competing aphid phenotypes highlights the importance of scenario testing when considering biocontrol for pest management.
Collapse
Affiliation(s)
| | - Mark A J Chaplain
- Department of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | | | - Glenn Marion
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | |
Collapse
|
61
|
Ives AR, Barton BT, Penczykowski RM, Harmon JP, Kim KL, Oliver K, Radeloff VC. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat Ecol Evol 2020; 4:702-711. [DOI: 10.1038/s41559-020-1155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
|
62
|
More Is Not Always Better: Coinfections with Defensive Symbionts Generate Highly Variable Outcomes. Appl Environ Microbiol 2020; 86:AEM.02537-19. [PMID: 31862723 DOI: 10.1128/aem.02537-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum, host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola, across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa, but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa-imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status.IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella, produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with "Swiss army knife" defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.
Collapse
|
63
|
Brown JJ, Mihaljevic JR, Des Marteaux L, Hrček J. Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol Evol 2020; 10:1703-1721. [PMID: 32076545 PMCID: PMC7029081 DOI: 10.1002/ece3.5754] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined "communities of communities" linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host-associated microbial systems. Successfully incorporating microbiota into community-level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Joseph R. Mihaljevic
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZUSA
| | - Lauren Des Marteaux
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| | - Jan Hrček
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| |
Collapse
|
64
|
Ayoubi A, Talebi AA, Fathipour Y, Mehrabadi M. Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). INSECT SCIENCE 2020; 27:86-98. [PMID: 29749703 DOI: 10.1111/1744-7917.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 04/03/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Bacterial endosymbionts play important roles in ecological traits of aphids. In this study, we characterize the bacterial endosymbionts of A. gossypii collected in Karaj, Iran and their role in the performance of the aphid. Our results indicated that beside Buchnera aphidicola, A. gossypii, also harbors both Hamiltonella defensa and Arsenophonus sp. Quantitative PCR (qPCR) results revealed that the populations of the endosymbionts increased throughout nymphal development up to adult emergence; thereafter, populations of Buchnera and Arsenophonus were diminished while the density of H. defensa constantly increased. Buchnera reduction caused prolonged development and no progeny production. Furthermore, secondary symbiont reduction led to reduction of the total life span and intrinsic rate of natural increase as well as appearance of the deformed dead offspring in comparison with the control insects. Reduction of the secondary symbionts did not affect parasitism rate of the aphid by the parasitic wasp Aphidius matricariae. Together these findings showed that H. defensa and Arsenophonus contributed to the fitness of A. gossypii by enhancing its performance, but not through parasitoid resistance.
Collapse
Affiliation(s)
- Aida Ayoubi
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghar Talebi
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Faculty of Agriculture, Department of Entomology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
65
|
Bockoven AA, Bondy EC, Flores MJ, Kelly SE, Ravenscraft AM, Hunter MS. What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its Decline a Decade Later. MICROBIAL ECOLOGY 2020; 79:482-494. [PMID: 31407021 DOI: 10.1007/s00248-019-01417-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Facultative, intracellular bacterial symbionts of arthropods may dramatically affect host biology and reproduction. The length of these symbiont-host associations may be thousands to millions of years, and while symbiont loss is predicted, there have been very few observations of a decline of symbiont infection rates. In a population of the sweet potato whitefly species (Bemisia tabaci MEAM1) in Arizona, USA, we documented the frequency decline of a strain of Rickettsia in the Rickettsia bellii clade from near-fixation in 2011 to 36% of whiteflies infected in 2017. In previous studies, Rickettsia had been shown to increase from 1 to 97% from 2000 to 2006 and remained at high frequency for at least five years. At that time, Rickettsia infection was associated with both fitness benefits and female bias. In the current study, we established matrilines of whiteflies from the field (2016, Rickettsia infection frequency = 58%) and studied (a) Rickettsia vertical transmission, (b) fitness and sex ratios associated with Rickettsia infection, (c) symbiont titer, and (d) bacterial communities within whiteflies. The vertical transmission rate was high, approximately 98%. Rickettsia infection in the matrilines was not associated with fitness benefits or sex ratio bias and appeared to be slightly costly, as more Rickettsia-infected individuals produced non-hatching eggs. Overall, the titer of Rickettsia in the matrilines was lower in 2016 than in the whiteflies collected in 2011, but the titer distribution appeared bimodal, with high- and low-titer lines, and constancy of the average titer within lines over three generations. We found neither association between Rickettsia titer and fitness benefits or sex ratio bias nor evidence that Rickettsia was replaced by another secondary symbiont. The change in the interaction between symbiont and host in 2016 whiteflies may explain the drop in symbiont frequency we observed.
Collapse
Affiliation(s)
- Alison A Bockoven
- Center for Insect Science, The University of Arizona, P.O. Box 210106, Tucson, AZ, 85721, USA
| | - Elizabeth C Bondy
- Graduate Interdisciplinary Program in Entomology and Insect Science, The University of Arizona, P.O. Box 210036, Tucson, AZ, 85721, USA
| | - Matthew J Flores
- Department of Biological Sciences, Virginia Tech University, Derring Hall Room 2125, 926 West Campus Drive, Mail Code 0406, Blacksburg, VA, 24061, USA
| | - Suzanne E Kelly
- Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Alison M Ravenscraft
- Center for Insect Science, The University of Arizona, P.O. Box 210106, Tucson, AZ, 85721, USA
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Dr, Arlington, TX, 76019, USA
| | - Martha S Hunter
- Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA.
| |
Collapse
|
66
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
67
|
Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS. The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc Biol Sci 2019; 286:20191677. [PMID: 31744432 PMCID: PMC6892053 DOI: 10.1098/rspb.2019.1677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
In many intracellular symbioses, the microbial symbionts provide nutrients advantageous to the host. However, the function of Hamiltonella defensa, a symbiotic bacterium localized in specialized host cells (bacteriocytes) of a whitefly Bemisia tabaci, is uncertain. We eliminate this bacterium from its whitefly host by two alternative methods: heat treatment and antibiotics. The sex ratio of the host progeny and subsequent generations of Hamiltonella-free females was skewed from 1 : 1 (male : female) to an excess of males, often exceeding a ratio of 20 : 1. B. tabaci is haplodiploid, with diploid females derived from fertilized eggs and haploid males from unfertilized eggs. The Hamiltonella status of the insect did not affect copulation frequency or sperm reserve in the spermathecae, indicating that the male-biased sex ratio is unlikely due to the limitation of sperm but likely to be associated with events subsequent to sperm transfer to the female insects, such as failure in fertilization. The host reproductive response to Hamiltonella elimination is consistent with two alternative processes: adaptive shift in sex allocation by females and a constitutive compensatory response of the insect to Hamiltonella-mediated manipulation. Our findings suggest that a bacteriocyte symbiont influences the reproductive output of female progeny in a haplodiploid insect.
Collapse
Affiliation(s)
- Hong-Wei Shan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun-Bo Luan
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
68
|
Fitness costs of the cultivable symbiont Serratia symbiotica and its phenotypic consequences to aphids in presence of environmental stressors. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
69
|
Muhammad A, Habineza P, Ji T, Hou Y, Shi Z. Intestinal Microbiota Confer Protection by Priming the Immune System of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). Front Physiol 2019; 10:1303. [PMID: 31681013 PMCID: PMC6805723 DOI: 10.3389/fphys.2019.01303] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
The immune system of animals, including insects, is the vital factor to maintain the symbiotic interactions between animals and their associated microbes. However, the effects of gut microbiota on insect immunity remain mostly elusive. Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, is a destructive pest of palm trees worldwide, which has forged alliances with its gut microbiota. Here, we found that the aposymbiotic insects succumbed at a significantly faster rate than conventionally reared (CR) ones upon bacterial infection. Physiological assays confirmed that CR insects had stronger antimicrobial activity and higher phenoloxidase activity in contrast to germfree (GF) ones, indicating that the systemic immune responses of GF individuals were compromised markedly. Interestingly, under the bacterial challenge conditions, the reassociation of gut microbiota with GF insects could enhance their survival rate by rescuing their immunocompetence. Furthermore, comparative transcriptome analysis uncovered that 35 immune-related genes, including pathogen recognition receptors, effectors and immune signaling pathway, were significantly downregulated in GF insects as compared to CR ones. Collectively, our findings corrobate that intestinal commensal bacteria have profound immunostimulatory effects on RPW larvae. Therefore, knowledge on the effects of gut microbiota on RPW immune defenses may contribute to of set up efficient control strategies of this pest.
Collapse
Affiliation(s)
- Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Prosper Habineza
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianliang Ji
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
70
|
Lynn-Bell NL, Strand MR, Oliver KM. Bacteriophage acquisition restores protective mutualism. Microbiology (Reading) 2019; 165:985-989. [DOI: 10.1099/mic.0.000816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
71
|
Sochard C, Leclair M, Simon JC, Outreman Y. Host plant effects on the outcomes of defensive symbioses in the pea aphid complex. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10005-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
72
|
Khojandi N, Haselkorn TS, Eschbach MN, Naser RA, DiSalvo S. Intracellular Burkholderia Symbionts induce extracellular secondary infections; driving diverse host outcomes that vary by genotype and environment. THE ISME JOURNAL 2019; 13:2068-2081. [PMID: 31019270 PMCID: PMC6776111 DOI: 10.1038/s41396-019-0419-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Symbiotic associations impact and are impacted by their surrounding ecosystem. The association between Burkholderia bacteria and the soil amoeba Dictyostelium discoideum is a tractable model to unravel the biology underlying symbiont-endowed phenotypes and their impacts. Several Burkholderia species stably associate with D. discoideum and typically reduce host fitness in food-rich environments while increasing fitness in food-scarce environments. Burkholderia symbionts are themselves inedible to their hosts but induce co-infections with secondary bacteria that can serve as a food source. Thus, Burkholderia hosts are "farmers" that carry food bacteria to new environments, providing a benefit when food is scarce. We examined the ability of specific Burkholderia genotypes to induce secondary co-infections and assessed host fitness under a range of co-infection conditions and environmental contexts. Although all Burkholderia symbionts intracellularly infected Dictyostelium, we found that co-infections are predominantly extracellular, suggesting that farming benefits are derived from extracellular infection of host structures. Furthermore, levels of secondary infection are linked to conditional host fitness; B. agricolaris infected hosts have the highest level of co-infection and have the highest fitness in food-scarce environments. This study illuminates the phenomenon of co-infection induction across Dictyostelium associated Burkholderia species and exemplifies the contextual complexity of these associations.
Collapse
Affiliation(s)
- Niloufar Khojandi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO, 63104, USA
| | - Tamara S Haselkorn
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR, 72035, USA
| | - Madison N Eschbach
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Rana A Naser
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
73
|
Hajek AE, Morris EE, Hendry TA. Context-dependent interactions of insects and defensive symbionts: insights from a novel system in siricid woodwasps. CURRENT OPINION IN INSECT SCIENCE 2019; 33:77-83. [PMID: 31358200 DOI: 10.1016/j.cois.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Many insect species derive fitness benefits from associations with defensive microbial symbionts that confer protection against pathogens and parasites. These relationships are varied and diverse, but a number of studies highlight important trends. The effects of defensive symbionts can be context-dependent and influenced by variable selection imposed by the organism against which the symbiont protects. Additionally, genetic variation in both hosts and symbionts can greatly influence the outcome of these interactions. Here, we describe interactions between siricid woodwasps, their fungal symbionts and parasitic nematodes and show how defense by symbionts in this system is also context-dependent. The species or strain of the white rot fungus used as a symbiont by Sirex can influence parasitism of these hosts by Deladenus nematodes.
Collapse
Affiliation(s)
- Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601, USA.
| | - Elizabeth Erin Morris
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03823, USA
| | - Tory A Hendry
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
74
|
New Insights into the Nature of Symbiotic Associations in Aphids: Infection Process, Biological Effects, and Transmission Mode of Cultivable Serratia symbiotica Bacteria. Appl Environ Microbiol 2019; 85:AEM.02445-18. [PMID: 30850430 DOI: 10.1128/aem.02445-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 11/20/2022] Open
Abstract
Symbiotic microorganisms are widespread in nature and can play a major role in the ecology and evolution of animals. The aphid-Serratia symbiotica bacterium interaction provides a valuable model to study the mechanisms behind these symbiotic associations. The recent discovery of cultivable S. symbiotica strains with a free-living lifestyle allowed us to simulate their environmental acquisition by aphids to examine the mechanisms involved in this infection pathway. Here, after oral ingestion, we analyzed the infection dynamics of cultivable S. symbiotica during the host's lifetime using quantitative PCR and fluorescence techniques and determined the immediate fitness consequences of these bacteria on their new host. We further examined the transmission behavior and phylogenetic position of cultivable strains. Our study revealed that cultivable S. symbiotica bacteria are predisposed to establish a symbiotic association with a new aphid host, settling in its gut. We show that cultivable S. symbiotica bacteria colonize the entire aphid digestive tract following infection, after which the bacteria multiply exponentially during aphid development. Our results further reveal that gut colonization by the bacteria induces a fitness cost to their hosts. Nevertheless, it appeared that the bacteria also offer an immediate protection against parasitoids. Interestingly, cultivable S. symbiotica strains seem to be extracellularly transmitted, possibly through the honeydew, while S. symbiotica is generally considered a maternally transmitted bacterium living within the aphid body cavity and bringing some benefits to its hosts, despite its costs. These findings provide new insights into the nature of symbiosis in aphids and the mechanisms underpinning these interactions.IMPORTANCE S. symbiotica is one of the most common symbionts among aphid populations and includes a wide variety of strains whose degree of interdependence on the host may vary considerably. S. symbiotica strains with a free-living capacity have recently been isolated from aphids. By using these strains, we established artificial associations by simulating new bacterial acquisitions involved in aphid gut infections to decipher their infection processes and biological effects on their new hosts. Our results showed the early stages involved in this route of infection. So far, S. symbiotica has been considered a maternally transmitted aphid endosymbiont. Nevertheless, we show that our cultivable S. symbiotica strains occupy and replicate in the aphid gut and seem to be transmitted over generations through an environmental transmission mechanism. Moreover, cultivable S. symbiotica bacteria are both parasites and mutualists given the context, as are many aphid endosymbionts. Our findings give new perception of the associations involved in bacterial mutualism in aphids.
Collapse
|
75
|
Mathé-Hubert H, Kaech H, Ganesanandamoorthy P, Vorburger C. Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids. Evolution 2019; 73:1466-1481. [PMID: 30990223 DOI: 10.1111/evo.13740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
The heritable endosymbiont Spiroplasma infects many insects and has repeatedly evolved the ability to protect its hosts against different parasites. Defenses do not come for free to the host, and theory predicts that more costly symbionts need to provide stronger benefits to persist in host populations. We investigated the costs and benefits of Spiroplasma infections in pea aphids (Acyrthosiphon pisum), testing 12 bacterial strains from three different clades. Virtually all strains decreased aphid lifespan and reproduction, but only two had a (weak) protective effect against the parasitoid Aphidius ervi, an important natural enemy of pea aphids. Spiroplasma-induced fitness costs were variable, with strains from the most slowly evolving clade reaching higher titers and curtailing aphid lifespan more strongly than other strains. Some Spiroplasma strains shared their host with a second endosymbiont, Regiella insecticola. Although the result of an unfortunate handling error, these co-infections proved instructive, because they showed that the cost of infection with Spiroplasma may be attenuated in the presence of Regiella. These results suggest that mechanisms other than protection against A. ervi maintain pea aphid infections with diverse strains of Spiroplasma, and that studying them in isolation will not provide a complete picture of their effects on host fitness.
Collapse
Affiliation(s)
- Hugo Mathé-Hubert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Current Address: LIEC UMR 7360, Université de Lorraine and CNRS, Metz, France
| | - Heidi Kaech
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092, Zürich, Switzerland
| | - Pravin Ganesanandamoorthy
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
76
|
Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.). Sci Rep 2019; 9:5766. [PMID: 30962510 PMCID: PMC6453963 DOI: 10.1038/s41598-019-42232-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
Insects harbor a wide variety of microorganisms that form complex and changing communities and play an important role in the biology and evolution of their hosts. Aphids have been used as model organisms to study microorganism-insect interactions. Almost all aphids are infected with the obligate endosymbiont Buchnera aphidicola and can host different bacteria that allow them to acquire traits of agronomic importance, such as resistance to high temperatures and/or defense against natural enemies. However, the bacterial communities of most aphid species remain poorly characterized. In this study, we used high-throughput DNA sequencing to characterize the bacterial communities of Aphis gossypii and Myzus persicae from two cultivable pepper species, Capsicum frutescens (Tabasco variety) and C. annuum (Cayenne variety), in four localities of southwestern Colombia. In addition, we evaluated the dynamics of A. gossypii-associated microorganisms on a seasonal basis. Our results show that the bacterial communities of A. gossypii and M. persicae are dominated by the primary endosymbiont B. aphidicola, while the presence of the facultative symbiont Arsenophonus sp. was only detected in one A. gossypii population from cayenne pepper. In addition to these two known symbionts, eight bacterial OTUs were identified that presented a frequency of 1% or more in at least one of the analyzed populations. The results show that the bacterial communities of aphids associated with pepper crops appears to be structured according to the host aphid species and the geographical location, while no differences were observed in the diversity of bacteria between host plants. Finally, the diversity and abundance of the A. gossypii bacterial community was variable among the four sampling points evaluated over the year and showed a relation with the aphid’s population dynamics. This study represents the first approach to the knowledge of the bacterial community present in chili pepper aphids from Colombia. Nevertheless, more in-depth studies, including replicates, are required to confirm the patterns observed in the microbial communities of aphids from pepper crops.
Collapse
|
77
|
Hafer N, Vorburger C. Diversity begets diversity: do parasites promote variation in protective symbionts? CURRENT OPINION IN INSECT SCIENCE 2019; 32:8-14. [PMID: 31113636 DOI: 10.1016/j.cois.2018.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Insects commonly possess heritable microbial symbionts that increase their resistance to particular parasites. A diverse community of defensive symbionts may thus provide hosts with effective and specific protection against multiple parasites, although costs might constrain the accumulation of many symbionts. In parallel to the allelic diversity in the MHC complex of the vertebrate immune system, parasite diversity could be the driving force behind symbiont diversity. There is indeed evidence that parasites have the ability to drive frequencies of defensive symbionts in their hosts, and that these symbionts influence parasite communities, but direct evidence that parasite diversity can promote symbiont diversity is still lacking. We provide suggestions to investigate this potential link.
Collapse
Affiliation(s)
- Nina Hafer
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - Christoph Vorburger
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
78
|
Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. CURRENT OPINION IN INSECT SCIENCE 2019; 32:1-7. [PMID: 31113620 DOI: 10.1016/j.cois.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Protective mutualisms are common in nature and include insect infections with cryptic symbionts that defend against pathogens and parasites. An archetypal defensive symbiont, Hamiltonella defensa protects aphids against parasitoids by disabling wasp development. Successful defense requires H. defensa infection with bacteriophages (APSEs), which play other key roles in mutualism maintenance. Genomes of H. defensa strains are highly similar in gene inventories, varying primarily in mobile element content. Protective phenotypes are highly variable across aphid models depending on H. defensa/APSE, aphid and wasp genotypes. Infection frequencies of H. defensa are highly dynamic in field populations, influenced by a variety of selective and non-selective factors confounding biological control implications. Overall, H. defensa infections likely represent a global aphid protection network with effects radiating outward from focal interactions.
Collapse
Affiliation(s)
- Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
79
|
McLean AH. Cascading effects of defensive endosymbionts. CURRENT OPINION IN INSECT SCIENCE 2019; 32:42-46. [PMID: 31113630 DOI: 10.1016/j.cois.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Defensive endosymbionts are now understood to be widespread among insects, targeting many different threats, including predators, parasites and disease. The effects on natural enemies can be significant, resulting in dramatic changes in the outcome of interactions between insects and their attackers. Evidence is now emerging from laboratory and field work that defensive symbionts can have important effects on the surrounding insect community, as well as on vulnerable enemy species; for example, by reducing prey available for the trophic level above the enemy. However, there is a need for more experimental work across a greater taxonomic range of species in order to understand the different ways in which defensive symbionts influence insect communities.
Collapse
Affiliation(s)
- Ailsa Hc McLean
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom.
| |
Collapse
|
80
|
Guo J, Liu X, Poncelet N, He K, Francis F, Wang Z. Detection and geographic distribution of seven facultative endosymbionts in two Rhopalosiphum aphid species. Microbiologyopen 2019; 8:e00817. [PMID: 30912316 PMCID: PMC6692527 DOI: 10.1002/mbo3.817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
Study of the mutualistic associations between facultative symbionts and aphids are developed only in a few models. That survey on the situation and distribution of the symbionts in a certain area is helpful to obtain clues for the acquisition and spread of them as well as their roles played in host evolution. To understand the infection patterns of seven facultative symbionts (Serratia symbiotica, Hamiltonella defensa, Regiella insecticola, Rickettsia, Spiroplasma, Wolbachia, and Arsenophonus) in Rhopalosiphum padi (Linnaeus) and Rhopalosiphum maidis (Fitch), we collected 882 R. maidis samples (37 geographical populations) from China and 585 R. padi samples (32 geographical populations) from China and Europe. Results showed that both species were widely infected with various symbionts and totally 50.8% of R. maidis and 50.1% of R. padi were multi‐infected with targeted symbionts. However, very few Rhopalosiphum aphids were infected with S. symbiotica. The infection frequencies of some symbionts were related to the latitude of collecting sites, suggesting the importance of environmental factors in shaping the geographic distribution of facultative symbionts. Also, R. maidis and R. padi were infected with different H. defensa strains based on phylogenetic analysis which may be determined by host ×symbiont genotype interactions. According to our results, the ubiquitous symbionts may play important roles in the evolution of their host aphid and their impacts on adaptation of R. padi and R. maidis were discussed as well.
Collapse
Affiliation(s)
- Jianqing Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.,College of Agriculture and Forestry, Hebei North University, Zhangjiakou, China
| | - Xuewei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nicolas Poncelet
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
81
|
Asselin AK, Villegas-Ospina S, Hoffmann AA, Brownlie JC, Johnson KN. Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific Wolbachia Strains from Drosophila pandora. Appl Environ Microbiol 2019; 85:e02290-18. [PMID: 30552191 PMCID: PMC6384105 DOI: 10.1128/aem.02290-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Wolbachia infections can present different phenotypes in hosts, including different forms of reproductive manipulation and antiviral protection, which may influence infection dynamics within host populations. In populations of Drosophila pandora two distinct Wolbachia strains coexist, each manipulating host reproduction: strain wPanCI causes cytoplasmic incompatibility (CI), whereas strain wPanMK causes male killing (MK). CI occurs when a Wolbachia-infected male mates with a female not infected with a compatible type of Wolbachia, leading to nonviable offspring. wPanMK can rescue wPanCI-induced CI but is unable to induce CI. The antiviral protection phenotypes provided by the wPanCI and wPanMK infections were characterized; the strains showed differential protection phenotypes, whereby cricket paralysis virus (CrPV)-induced mortality was delayed in flies infected with wPanMK but enhanced in flies infected with wPanCI compared to their respective Wolbachia-cured counterparts. Homologs of the cifA and cifB genes involved in CI identified in wPanMK and wPanCI showed a high degree of conservation; however, the CifB protein in wPanMK is truncated and is likely nonfunctional. The presence of a likely functional CifA in wPanMK and wPanMK's ability to rescue wPanCI-induced CI are consistent with the recent confirmation of CifA's involvement in CI rescue, and the absence of a functional CifB protein further supports its involvement as a CI modification factor. Taken together, these findings indicate that wPanCI and wPanMK have different relationships with their hosts in terms of their protective and CI phenotypes. It is therefore likely that different factors influence the prevalence and dynamics of these coinfections in natural Drosophila pandora hosts.IMPORTANCEWolbachia strains are common endosymbionts in insects, with multiple strains often coexisting in the same species. The coexistence of multiple strains is poorly understood but may rely on Wolbachia organisms having diverse phenotypic effects on their hosts. As Wolbachia is increasingly being developed as a tool to control disease transmission and suppress pest populations, it is important to understand the ways in which multiple Wolbachia strains persist in natural populations and how these might then be manipulated. We have therefore investigated viral protection and the molecular basis of cytoplasmic incompatibility in two coexisting Wolbachia strains with contrasting effects on host reproduction.
Collapse
Affiliation(s)
- Angelique K Asselin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Simon Villegas-Ospina
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
82
|
Fakhour S, Ambroise J, Renoz F, Foray V, Gala JL, Hance T. A large-scale field study of bacterial communities in cereal aphid populations across Morocco. FEMS Microbiol Ecol 2019; 94:4810747. [PMID: 29346623 DOI: 10.1093/femsec/fiy003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Insects are frequently associated with bacteria that can have significant ecological and evolutionary impacts on their hosts. To date, few studies have examined the influence of environmental factors to microbiome composition of aphids. The current work assessed the diversity of bacterial communities of five cereal aphid species (Sitobion avenae, Rhopalosiphum padi, R. maidis, Sipha maydis and Diuraphis noxia) collected across Morocco, covering a wide range of environmental conditions. We aimed to test whether symbiont combinations are host or environment specific. Deep 16S rRNA sequencing enabled us to identify 17 bacterial operational taxonomic units (OTUs). The obligate symbiont Buchnera aphidicola was represented by five OTUs with multiple haplotypes in many single samples. Facultative endosymbionts were presented by a high prevalence of Regiella insecticola and Serratia symbiotica in S. avenae and Si. maydis, respectively. In addition to these symbiotic partners, Pseudomonas, Acinetobacter, Pantoea, Erwinia and Staphyloccocus were also identified in aphids, suggesting that the aphid microbiome is not limited to the presence of endosymbiotic bacteria. Beside a significant association between host species and bacterial communities, an inverse correlation was also found between altitude and α-diversity. Overall, our results support that symbiont combinations are mainly host specific.
Collapse
Affiliation(s)
- Samir Fakhour
- National Institute of Agronomic Research (INRA), Km 18, 23000 Béni-Mellal, Morocco.,Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biologie cellulaire de Montpellier, (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
83
|
Zhao D, Hoffmann AA, Zhang Z, Niu H, Guo H. Interactions Between Facultative Symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera: Aleyrodoidea): Cooperation or Conflict? JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2660-2666. [PMID: 30265339 DOI: 10.1093/jee/toy261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Maternally-inherited facultative symbionts are widespread in most insect species, and it is common that several symbionts coexist in the same host individual. Hence, the symbionts may compete or share for the limited resources and space in the host. The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodoidea), harbors a diverse array of facultative symbionts, among which Hamiltonella sp. and Cardinium sp. are abundant species. Hamiltonella alone increases host fitness, while Cardinium alone confers lower fitness. Locking those different partners together creates ideal situations for the evolution of interactions between symbionts. In this study, we compared the fitness effects of whiteflies infected with only Hamiltonella to Hamiltonella-Cardnium co-infected whiteflies and measured the density of Hamiltonella and Cardinium during host aging, aiming to explore Hamiltonella-Cardinium interactions in B. tabaci. Our results illustrated that Hamiltonella-Cardinium coinfection induced lower fecundity, egg hatchability and number of female offspring, leading to a male-biased sex ratio in offspring, while there is no evidence for reproductive incompatibility between the infections. We also found an antagonistic interaction between Hamiltonella and Cardinium given that the density of the latter increased across time and led to a decrease of Hamiltonella density, which may be the underlying causes of the fitness cost in double-infected B. tabaci. Exploring the ecological consequences of co-infections of these different symbionts helps us to understand the nature of host-symbiont interactions in this species and potential for evolutionary conflict.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio 21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
84
|
Li S, Liu D, Zhang R, Zhai Y, Huang X, Wang D, Shi X. Effects of a presumably protective endosymbiont on life-history characters and their plasticity for its host aphid on three plants. Ecol Evol 2018; 8:13004-13013. [PMID: 30619600 PMCID: PMC6308870 DOI: 10.1002/ece3.4754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022] Open
Abstract
Hamiltonella defensa is well known for its protective roles against parasitoids for its aphid hosts, but its functional roles in insect-plant interactions are less understood. Thus, the impact of H. defensa infections on life-history characters and the underlying genetic variation for the grain aphid, Sitobion avenae (Fabricius), was explored on three plants (i.e., wheat, oat, and rye). Compared to cured lines, H. defensa infected lines of S. avenae had lower fecundity on wheat and oat, but not on rye, suggesting an infection cost for the aphid on susceptible host plants. However, when tested on rye, the infected lines showed a shorter developmental time for the nymphal stage than corresponding cured lines, showing some benefit for S. avenae carrying the endosymbiont on resistant host plants. The infection of H. defensa altered genetic variation underlying its host S. avenea's life-history characters, which was shown by differences in heritabilities and genetic correlations of life-history characters between S. avenae lines infected and cured of the endosymbiont. This was further substantiated by disparity in G-matrices of their life-history characters for the two types of aphid lines. The G-matrices for life-history characters of aphid lines infected with and cured of H. defensa were significantly different from each other on rye, but not on oat, suggesting strong plant-dependent effects. The developmental durations of infected S. avenae lines showed a lower plasticity compared with those of corresponding cured lines, and this could mean higher adaptability for the infected lines.Overall, our results showed novel functional roles of a common secondary endosymbiont (i.e., H. defensa) in plant-insect interactions, and its infections could have significant consequences for the evolutionary ecology of its host insect populations in nature.
Collapse
Affiliation(s)
- Shirong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Rongfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Yingting Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xianliang Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| |
Collapse
|
85
|
Faria VG, Martins NE, Schlötterer C, Sucena É. Readapting to DCV Infection without Wolbachia: Frequency Changes of Drosophila Antiviral Alleles Can Replace Endosymbiont Protection. Genome Biol Evol 2018; 10:1783-1791. [PMID: 29947761 PMCID: PMC6054199 DOI: 10.1093/gbe/evy137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
There is now ample evidence that endosymbionts can contribute to host adaptation to environmental challenges. However, how endosymbiont presence affects the adaptive trajectory and outcome of the host is yet largely unexplored. In Drosophila, Wolbachia confers protection to RNA virus infection, an effect that differs between Wolbachia strains and can be targeted by selection. Adaptation to RNA virus infections is mediated by both Wolbachia and the host, raising the question of whether adaptive genetic changes in the host vary with the presence/absence of the endosymbiont. Here, we address this question using a polymorphic D. melanogaster population previously adapted to DCV infection for 35 generations in the presence of Wolbachia, from which we removed the endosymbiont and followed survival over the subsequent 20 generations of infection. After an initial severe drop, survival frequencies upon DCV selection increased significantly, as seen before in the presence of Wolbachia. Whole-genome sequencing, revealed that the major genes involved in the first selection experiment, pastrel and Ubc-E2H, continued to be selected in Wolbachia-free D. melanogaster, with the frequencies of protective alleles being closer to fixation in the absence of Wolbachia. Our results suggest that heterogeneity in Wolbachia infection status may be sufficient to maintain polymorphisms even in the absence of costs.
Collapse
Affiliation(s)
- Vitor G Faria
- Instituto Gulbenkian de Ciência, Rua da quinta grande 6, 2780-156 Oeiras, Portugal.,Zoological Institute, Basel University, Basel, Switzerland
| | - Nelson E Martins
- Instituto Gulbenkian de Ciência, Rua da quinta grande 6, 2780-156 Oeiras, Portugal.,CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Rua da quinta grande 6, 2780-156 Oeiras, Portugal.,Departamento de Biologia Animal, edifício C2, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
86
|
Bertoloni Meli S, Bashey F. Trade-off between reproductive and anti-competitor abilities in an insect-parasitic nematode-bacteria symbiosis. Ecol Evol 2018; 8:10847-10856. [PMID: 30519411 PMCID: PMC6262920 DOI: 10.1002/ece3.4538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/27/2018] [Accepted: 08/18/2018] [Indexed: 11/29/2022] Open
Abstract
Mutualistic symbionts can provide diverse benefits to their hosts and often supply key trait variation for host adaptation. The bacterial symbionts of entomopathogenic nematodes play a crucial role in successful colonization of and reproduction in the insect host. Additionally, these symbionts can produce a diverse array of antimicrobial compounds to deter within-host competitors. Natural isolates of the symbiont, Xenorhabdus bovienii, show considerable variation in their ability to target sympatric competitors via bacteriocins, which can inhibit the growth of sensitive Xenorhabdus strains. Both the bacteria and its nematode partner have been shown to benefit from bacteriocin production when within-host competition with a sensitive competitor occurs. Despite this benefit, several isolates of Xenorhabdus do not inhibit sympatric strains. To understand how this variation in allelopathy could be maintained, we tested the hypothesis that inhibiting isolates face a reproductive cost in the absence of competition. We tested this hypothesis by examining the reproductive success of inhibiting and non-inhibiting isolates coupled with their natural nematode host in a non-competitive context. We found that nematodes carrying non-inhibitors killed the insect host more rapidly and were more likely to successfully reproduce than nematodes carrying inhibitors. Lower reproductive success of inhibiting isolates was repeatable across nematode generations and across insect host species. However, no difference in insect mortality was observed between inhibiting and non-inhibiting isolates when bacteria were injected into insects without their nematode partners. Our results indicate a trade-off between the competitive and reproductive roles of symbionts, such that inhibiting isolates, which are better in the face of within-host competition, pay a reproductive cost in the absence of competition. Furthermore, our results support the hypothesis that symbiont variation within populations can be maintained through context-dependent fitness benefits conferred to their hosts. As such, our study offers novel insights into the selective forces maintaining variation within a single host-symbiont population and highlights the role of competition in mutualism evolution.
Collapse
Affiliation(s)
| | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
87
|
Skaljac M, Kirfel P, Grotmann J, Vilcinskas A. Fitness costs of infection with Serratia symbiotica are associated with greater susceptibility to insecticides in the pea aphid Acyrthosiphon pisum. PEST MANAGEMENT SCIENCE 2018; 74:1829-1836. [PMID: 29443436 DOI: 10.1002/ps.4881] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Aphids are agricultural pests that damage crops by direct feeding and by vectoring important plant viruses. Bacterial symbionts can influence aphid biology, e.g. by providing essential nutrients or facilitating adaptations to biotic and abiotic stress. RESULTS We investigated the pea aphid (Acyrthosiphon pisum Harris) and its commonly associated secondary bacterial symbiont Serratia symbiotica to study the effect of this symbiont on host fitness and susceptibility to the insecticides imidacloprid, chlorpyrifos methyl, methomyl, cyantraniliprole and spirotetramat. There is emerging evidence that members of the genus Serratia can degrade and/or detoxify diverse insecticides. Therefore, we hypothesized that S. symbiotica may promote resistance to these artificial stress agents in aphids. Our results showed that Serratia-infected aphids were more susceptible to most of the tested insecticides than non-infected aphids. This probably reflects the severe fitness costs associated with S. symbiotica, which negatively affects development, reproduction and body weight. CONCLUSION Our study demonstrates that S. symbiotica plays an important role in the ability of aphid hosts to tolerate insecticides. These results provide insight into the potential changes in tolerance to insecticides in the field because there is a continuous and dynamic process of symbiont acquisition and loss that may directly affect host biology. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marisa Skaljac
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Phillipp Kirfel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Jens Grotmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
88
|
Cavazos BR, Bohner TF, Donald ML, Sneck ME, Shadow A, Omacini M, Rudgers JA, Miller TEX. Testing the roles of vertical transmission and drought stress in the prevalence of heritable fungal endophytes in annual grass populations. THE NEW PHYTOLOGIST 2018; 219:1075-1084. [PMID: 29786864 DOI: 10.1111/nph.15215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/08/2018] [Indexed: 05/22/2023]
Abstract
Beneficial inherited symbionts are expected to reach high prevalence in host populations, yet many are observed at intermediate prevalence. Theory predicts that a balance of fitness benefits and efficiency of vertical transmission may interact to stabilize intermediate prevalence. We established populations of grass hosts (Lolium multiflorum) that varied in prevalence of a heritable fungal endophyte (Epichloё occultans), allowing us to infer long-term equilibria by tracking change in prevalence over one generation. We manipulated an environmental stressor (elevated precipitation), which we hypothesized would reduce the fitness benefits of symbiosis, and altered the efficiency of vertical transmission by replacing endophyte-positive seeds with endophyte-free seeds. Endophytes and elevated precipitation both increased host fitness, but symbiont effects were not stronger in the drier treatment, suggesting that benefits of symbiosis were unrelated to drought tolerance. Reduced transmission suppressed the inferred equilibrium prevalence from 42.6% to 11.7%. However, elevated precipitation did not modify prevalence, consistent with the result that it did not modify fitness benefits. Our results demonstrate that failed transmission can influence the prevalence of heritable microbes and that intermediate prevalence can be a stable equilibrium due to forces that allow symbionts to increase (fitness benefits) but prevent them from reaching fixation (failed transmission).
Collapse
Affiliation(s)
- Brittany R Cavazos
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Teresa F Bohner
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Marion L Donald
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Michelle E Sneck
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| | - Alan Shadow
- USDA NRCS East Texas Plant Materials Center, 6598 FM 2782, Nacogdoches, TX, 75964, USA
| | - Marina Omacini
- IFEVA - Facultad de Agronomıa, Universidad de Buenos Aires, CONICET, Av. San Martın 4453, Buenos Aires, C1417DSE, Argentina
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tom E X Miller
- Department of BioSciences, Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
89
|
Ye Z, Vollhardt IMG, Parth N, Rubbmark O, Traugott M. Facultative bacterial endosymbionts shape parasitoid food webs in natural host populations: A correlative analysis. J Anim Ecol 2018; 87:1440-1451. [PMID: 29928757 PMCID: PMC6099228 DOI: 10.1111/1365-2656.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
Facultative bacterial endosymbionts can protect their aphid hosts from natural enemies such as hymenopteran parasitoids. As such, they have the capability to modulate interactions between aphids, parasitoids and hyperparasitoids. However, the magnitude of these effects in natural aphid populations and their associated parasitoid communities is currently unknown. Moreover, environmental factors such as plant fertilization and landscape complexity are known to affect aphid–parasitoid interactions but it remains unclear how such environmental factors affect the interplay between aphids, parasitoids and endosymbionts. Here, we tested whether facultative endosymbionts confer protection to parasitoids in natural populations of the English grain aphid, Sitobion avenae, and if this is affected by plant fertilization and landscape complexity. Furthermore, we examined whether the effects of facultative endosymbionts can cascade up to the hyperparasitoid level and increase primary‐hyperparasitoid food web specialization. Living aphids and mummies were collected in fertilized and unfertilized plots within 13 wheat fields in Central Germany. We assessed the occurrence of primary parasitoid, hyperparasitoid and endosymbiont species in aphids and mummies using a newly established molecular approach. Facultative endosymbiont infection rates were high across fields (~80%), independent of whether aphids were parasitized or unparasitized. Aphid mummies exhibited a significantly lower share of facultative endosymbiont infection (~38%). These findings suggest that facultative endosymbionts do not affect parasitoid oviposition behaviour, but decrease parasitoid survival in the host. Facultative endosymbiont infection rates were lower in mummies collected from fertilized compared to unfertilized plants, indicating that plant fertilization boosts the facultative endosymbiont protective effect. Furthermore, we found strong evidence for species‐specific and negative cascading effects of facultative endosymbionts on primary and hyperparasitoids, respectively. Facultative endosymbionts impacted parasitoid assemblages and increased the specialization of primary‐hyperparasitoid food webs: these effects were independent from and much stronger than other environmental factors. The current findings strongly suggest that facultative endosymbionts act as a driving force in aphid–parasitoid–hyperparasitoid networks: they shape insect community composition at different trophic levels and modulate, directly and indirectly, the interactions between aphids, parasitoids and their environment.
Collapse
Affiliation(s)
- Zhengpei Ye
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Ines M G Vollhardt
- Agroecology, Department of Crop Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Nadia Parth
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Oskar Rubbmark
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
90
|
Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc Biol Sci 2018; 284:rspb.2017.1925. [PMID: 29093227 DOI: 10.1098/rspb.2017.1925] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022] Open
Abstract
Heritable symbionts are common in insects with many contributing to host defence. Hamiltonella defensa is a facultative, bacterial symbiont of the pea aphid, Acyrthosiphon pisum that provides protection against the endoparasitoid wasp Aphidius ervi Protection levels vary among strains of H. defensa that are differentially infected by bacteriophages named APSEs. By contrast, little is known about mechanism(s) of resistance owing to the intractability of host-restricted microbes for functional study. Here, we developed methods for culturing strains of H. defensa that varied in the presence and type of APSE. Most H. defensa strains proliferated at 27°C in co-cultures with the TN5 cell line or as pure cultures with no insect cells. The strain infected by APSE3, which provides high levels of protection in vivo, produced a soluble factor(s) that disabled development of A. ervi embryos independent of any aphid factors. Experimental transfer of APSE3 also conferred the ability to disable A. ervi development to a phage-free strain of H. defensa Altogether, these results provide a critical foundation for characterizing symbiont-derived factor(s) involved in host protection and other functions. Our results also demonstrate that phage-mediated transfer of traits provides a mechanism for innovation in host restricted symbionts.
Collapse
Affiliation(s)
- Jayce W Brandt
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
91
|
Lenhart PA, Jackson KA, White JA. Heritable variation in prey defence provides refuge for subdominant predators. Proc Biol Sci 2018; 285:rspb.2018.0523. [PMID: 29848647 DOI: 10.1098/rspb.2018.0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
Generalist predators with broadly overlapping niches commonly coexist on seemingly identical sets of prey. Here, we provide empirical demonstration that predators can differentially exploit fine-grained niches generated by variable, heritable and selective defences within a single prey species. Some, but not all, clones of the aphid Aphis craccivora are toxic towards the dominant invasive predatory ladybeetle, Harmonia axyridis However, other less competitive ladybeetle species are not affected by the aphid's toxic trait. In laboratory and open field experiments, we show: (i) that subdominant ladybeetle species were able to exploit the toxic aphids, benefitting from the suppression of the dominant predator; and (ii) that this narrow-spectrum toxicity can function as an anti-predator defence for the aphid, but depends on enemy community context. Our results demonstrate that niche differentiation among generalist predators may hinge upon previously underappreciated heritable variation in prey defence, which, in turn, may promote diversity and stability of enemy communities invaded by a dominant predator.
Collapse
Affiliation(s)
- Paul A Lenhart
- Department of Entomology, S-225 Agricultural Science Center N, University of Kentucky, Lexington, KY, USA
| | - Kelly A Jackson
- Department of Entomology, S-225 Agricultural Science Center N, University of Kentucky, Lexington, KY, USA
| | - Jennifer A White
- Department of Entomology, S-225 Agricultural Science Center N, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
92
|
Hrček J, Parker BJ, McLean AHC, Simon JC, Mann CM, Godfray HCJ. Hosts do not simply outsource pathogen resistance to protective symbionts. Evolution 2018; 72:1488-1499. [PMID: 29808565 DOI: 10.1111/evo.13512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
Microbial symbionts commonly protect their hosts from natural enemies, but it is unclear how protective symbionts influence the evolution of host immunity to pathogens. One possibility is that 'extrinsic' protection provided by symbionts allows hosts to reduce investment in 'intrinsic' immunological resistance mechanisms. We tested this idea using pea aphids (Acyrthosiphon pisum) and their facultative bacterial symbionts that increase host resistance to the fungal pathogen Pandora neoaphidis. The pea aphid taxon is composed of multiple host plant associated populations called biotypes, which harbor characteristic communities of symbionts. We found that biotypes that more frequently carry protective symbionts have higher, rather than lower, levels of intrinsic resistance. Within a biotype there was no difference in intrinsic resistance between clones that did and did not carry a protective symbiont. The host plant on which an aphid feeds did not strongly influence intrinsic resistance. We describe a simple conceptual model of the interaction between intrinsic and extrinsic resistance and suggest that our results may be explained by selection favoring both the acquisition of protective symbionts and enhanced intrinsic resistance in habitats with high pathogen pressure. Such combined protection is potentially more robust than intrinsic resistance alone.
Collapse
Affiliation(s)
- Jan Hrček
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
- Current address: Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branisovska 31, Ceske Budejovice 37005, Czech Republic
| | - Benjamin J Parker
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
- Present address: Department of Biology, University of Rochester, Hutchison Hall, Box 270211, Rochester, New York 14627
| | - Ailsa H C McLean
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| | - Jean-Christophe Simon
- Institut de Génétique, Environnement et Protection des Plantes, UMR 1349 INRA, Agrocampus Ouest, Université Rennes 1, 35653 Le Rheu Cedex 5, France
| | - Ciara M Mann
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
93
|
Murfin KE, Ginete DR, Bashey F, Goodrich-Blair H. Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae. Environ Microbiol 2018; 21:10.1111/1462-2920.14278. [PMID: 29799156 PMCID: PMC6252146 DOI: 10.1111/1462-2920.14278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 01/05/2023]
Abstract
Bacterial symbionts can affect several biotic interactions of their hosts, including their competition with other species. Nematodes in the genus Steinernema utilize Xenorhabdus bacterial symbionts for insect host killing and nutritional bioconversion. Here, we establish that the Xenorhabdus bovienii bacterial symbiont (Xb-Sa-78) of Steinernema affine nematodes can impact competition between S. affine and S. feltiae by a novel mechanism, directly attacking its nematode competitor. Through co-injection and natural infection assays we demonstrate the causal role of Xb-Sa-78 in the superiority of S. affine over S. feltiae nematodes during competition. Survival assays revealed that Xb-Sa-78 bacteria kill reproductive life stages of S. feltiae. Microscopy and timed infection assays indicate that Xb-Sa-78 bacteria colonize S. feltiae nematode intestines, which alters morphology of the intestine. These data suggest that Xb-Sa-78 may be an intestinal pathogen of the non-native S. feltiae nematode, although it is a nonharmful colonizer of the native nematode host, S. affine. Screening additional X. bovienii isolates revealed that intestinal infection and killing of S. feltiae is conserved among isolates from nematodes closely related to S. affine, although the underlying killing mechanisms may vary. Together, these data demonstrate that bacterial symbionts can modulate competition between their hosts, and reinforce specificity in mutualistic interactions.
Collapse
Affiliation(s)
- Kristen E Murfin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daren R Ginete
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Farrah Bashey
- Department of Biology, Indiana University, Bloomington, IN, 47405-3700, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
94
|
Vorburger C, Perlman SJ. The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 2018; 93:1747-1764. [PMID: 29663622 DOI: 10.1111/brv.12417] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Understanding the coevolution of hosts and parasites is a long-standing goal of evolutionary biology. There is a well-developed theoretical framework to describe the evolution of host-parasite interactions under the assumption of direct, two-species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host-parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade-off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three-species interactions to assess the role of defensive symbionts in host-parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear-cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont-conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont-mediated coevolution between hosts and parasites.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092, Zürich, Switzerland
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
95
|
Zouari S, Ben Halima MK, Reyes-Prieto M, Latorre A, Gil R. Natural Occurrence of Secondary Bacterial Symbionts in Aphids from Tunisia, with a Focus on Genus Hyalopterus. ENVIRONMENTAL ENTOMOLOGY 2018; 47:325-333. [PMID: 29506121 DOI: 10.1093/ee/nvy005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aphids (Hemiptera: Aphididae) can harbor two types of bacterial symbionts. In addition to the obligate endosymbiont Buchnera aphidicola Munson, Baumann and Kinsey 1991 (Enterobacteriales: Enterobacteriaceae), several facultative symbiotic bacteria, called secondary (S) symbionts, have been identified among many important pest aphid species. To determine interpopulational diversity of S-symbionts, we carried out a survey in a total of 18 populations of six aphid species collected from six localities in Tunisia, by performing a diagnostic polymerase chain reaction analysis of partial 16S-23S rRNA operon sequences. While 61.7% of individuals contained only Buchnera, three S-symbionts were found at different frequencies. Arsenophonus sp. Gherna et al. 1991 (Enterobacteriales: Enterobacteriaceae) was found in all species under study except for Acyrtosiphon pisum (Harris 1776) (Aphidinae: Macrosiphini); Serratia symbiotica Moran et al. 2005 (Enterobacteriales: Enterobacteriaceae) was present in all analyzed individuals of A. pisum but only sporadically in Aphis spiraecola (Patch 1914) (Aphidinae: Aphidini) and Hyalopterus amygdali (Blanchard 1840) (Aphidinae: Aphidini), while Hamiltonella defensa Moran et al. 2005 (Enterobacteriales: Enterobacteriaceae) was found in all analyzed individuals of one population of Aphis gossypii (Glover 1877) (Aphidinae: Aphidini) and sporadically in two populations of Hyalopterus. The lysogenic bacteriophage APSE-1 (A. pisum secondary endosymbiont, type 1) was detected in the three populations infected with H. defensa. This bacteriophage has been associated with moderate protection against braconid parasitoids in pea aphids. The high prevalence of Arsenophonus sp. in our samples is in accordance with previous studies indicating that, among gammaproteobacteria, this genus is one of the most widespread insect facultative symbionts.
Collapse
Affiliation(s)
- Sana Zouari
- UR13AGRO3: Cultures maraîchères conventionnelles et biologiques. Institut Supérieur Agronomique (ISA) de Chott Mariem, Université de Sousse Tunisie, Chott Mariem, Tunisia
| | - Monia Kamel Ben Halima
- UR13AGRO3: Cultures maraîchères conventionnelles et biologiques. Institut Supérieur Agronomique (ISA) de Chott Mariem, Université de Sousse Tunisie, Chott Mariem, Tunisia
| | - Mariana Reyes-Prieto
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Paterna (Valencia) Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Paterna (Valencia) Spain
- Área de Genómica y Salud, FISABIO - Salud Pública, València, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Paterna (Valencia) Spain
| |
Collapse
|
96
|
Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O'Connor M, Oliver KM, Russell JA. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol 2018; 27:2039-2056. [PMID: 29215202 DOI: 10.1111/mec.14449] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023]
Abstract
Animal-associated microbiomes are often comprised of structured, multispecies communities, with particular microbes showing trends of co-occurrence or exclusion. Such structure suggests variable community stability, or variable costs and benefits-possibilities with implications for symbiont-driven host adaptation. In this study, we performed systematic screening for maternally transmitted, facultative endosymbionts of the pea aphid, Acyrthosiphon pisum. Sampling across six locales, with up to 5 years of collection in each, netted significant and consistent trends of community structure. Co-infections between Serratia symbiotica and Rickettsiella viridis were more common than expected, while Rickettsia and X-type symbionts colonized aphids with Hamiltonella defensa more often than expected. Spiroplasma co-infected with other endosymbionts quite rarely, showing tendencies to colonize as a single species monoculture. Field estimates of maternal transmission rates help to explain our findings: while Serratia and Rickettsiella improved each other's transmission, Spiroplasma reduced transmission rates of co-infecting endosymbionts. In summary, our findings show that North American pea aphids harbour recurring combinations of facultative endosymbionts. Common symbiont partners play distinct roles in pea aphid biology, suggesting the creation of "generalist" aphids receiving symbiont-based defence against multiple ecological stressors. Multimodal selection, at the host level, may thus partially explain our results. But more conclusively, our findings show that within-host microbe interactions, and their resulting impacts on transmission rates, are an important determinant of community structure. Widespread distributions of heritable symbionts across plants and invertebrates hint at the far-reaching implications for these findings, and our work further shows the benefits of symbiosis research within a natural context.
Collapse
Affiliation(s)
- Danielle I Rock
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Amie Albertus
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Narayan Wong
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
97
|
Qian L, Jia F, Jingxuan S, Manqun W, Julian C. Effect of the Secondary Symbiont Hamiltonella defensa on Fitness and Relative Abundance of Buchnera aphidicola of Wheat Aphid, Sitobion miscanthi. Front Microbiol 2018; 9:582. [PMID: 29651279 PMCID: PMC5884939 DOI: 10.3389/fmicb.2018.00582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/14/2018] [Indexed: 01/15/2023] Open
Abstract
Bacterial symbionts associated with insects are often involved in host development and ecological fitness. In aphids, the role of these symbionts is variable and not fully understood across different host species. Here, we investigated the symbiont diversity of the grain aphid, Sitobion miscanthi (Takahashi), from 17 different geographical areas. Of these, two strains with the same symbiont profile, except for the presence of Hamiltonella defensa, were selected using PCR. The Hamiltonella-infected strain, YX, was collected from a Yuxi wheat field in Yunnan Province, China. The Hamiltonella-free strain, DZ, was collected from a Dezhou wheat field in Shandong Province, China. Using artificial infection with H. defensa and antibiotic treatment, a Hamiltonella-re-infected strain (DZ-H) and Hamiltonella-significantly decreased strain (DZ-HT) were established and compared to the Hamiltonella-free DZ strain in terms of ecological fitness. Infection with the DZ-H strain increased the fitness of S. miscanthi, which led to increases in adult weight, percent of wingless individuals, and number of offspring. Meanwhile, decreased abundance of H. defensa (DZ-HT strain) resulted in a lower adult weight and wingless aphid rate compared to the DZ-H strain. However, the indices of longevity in both the DZ-H and DZ-HT strains decreased slightly, but were not significantly different, compared to the DZ strain. Furthermore, quantitative PCR showed that the relative abundance of the primary symbiont Buchnera aphidicola in the DZ-H strain was significantly higher than in the DZ strain in all but the first developmental stage. These results indicate that H. defensa may indirectly improve the fitness of S. miscanthi by stimulating the proliferation of B. aphidicola.
Collapse
Affiliation(s)
- Li Qian
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Jia
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sun Jingxuan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Manqun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Julian
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
98
|
Zhang Y, Yang K, Zhu Y, Hong X. Symbiont-conferred reproduction and fitness benefits can favour their host occurrence. Ecol Evol 2018; 8:1626-1633. [PMID: 29435238 PMCID: PMC5792590 DOI: 10.1002/ece3.3784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022] Open
Abstract
Double infections of Wolbachia and Spiroplasma are frequent in natural populations of Tetranychus truncatus, a polyphagous mite species that has been a dominant species in China since 2009. However, little is known about the causes and ecological importance of such coexistences. In this study, we established T. truncatus strains with different infection types and then inferred the impact of the two endosymbionts on host reproduction and fitness. Double infection induced cytoplasmic incompatibility, which was demonstrated by reduction in egg hatchability of incompatible crosses. However, doubly infected females produced more eggs relative to other strains. Wolbachia and Spiroplasma did not affect host survival, whereas doubly infected females and males developed faster than other strains. Such reproduction and fitness benefits provided by double infections may be associated with the lower densities of each symbiont, and the quantitative results also confirmed competition between Wolbachia and Spiroplasma in doubly infected females. These symbiont-conferred beneficial effects maintain stable prevalence of the symbionts and also help drive T. truncatus outbreaks in combination with other environmental factors.
Collapse
Affiliation(s)
- Yan‐Kai Zhang
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
- College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Kun Yang
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Yu‐Xi Zhu
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Xiao‐Yue Hong
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
99
|
Hertäg C, Vorburger C. Defensive symbionts mediate species coexistence in phytophagous insects. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Corinne Hertäg
- EawagSwiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- D‐USYSDepartment of Environmental Systems ScienceETH Zürich Zürich Switzerland
| | - Christoph Vorburger
- EawagSwiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- D‐USYSDepartment of Environmental Systems ScienceETH Zürich Zürich Switzerland
| |
Collapse
|
100
|
Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 2018; 40:855-874. [PMID: 28204477 PMCID: PMC5091035 DOI: 10.1093/femsre/fuw028] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023] Open
Abstract
Symbiosis between organisms is an important driving force in evolution. Among the diverse relationships described, extensive progress has been made in insect–bacteria symbiosis, which improved our understanding of the genome evolution in host-associated bacteria. Particularly, investigations on several obligate mutualists have pushed the limits of what we know about the minimal genomes for sustaining cellular life. To bridge the gap between those obligate symbionts with extremely reduced genomes and their non-host-restricted ancestors, this review focuses on the recent progress in genome characterization of facultative insect symbionts. Notable cases representing various types and stages of host associations, including those from multiple genera in the family Enterobacteriaceae (class Gammaproteobacteria), Wolbachia (Alphaproteobacteria) and Spiroplasma (Mollicutes), are discussed. Although several general patterns of genome reduction associated with the adoption of symbiotic relationships could be identified, extensive variation was found among these facultative symbionts. These findings are incorporated into the established conceptual frameworks to develop a more detailed evolutionary model for the discussion of possible trajectories. In summary, transitions from facultative to obligate symbiosis do not appear to be a universal one-way street; switches between hosts and lifestyles (e.g. commensalism, parasitism or mutualism) occur frequently and could be facilitated by horizontal gene transfer. This review synthesizes the recent progress in genome characterization of insect-symbiotic bacteria, the emphases include (i) patterns of genome organization, (ii) evolutionary models and trajectories, and (iii) comparisons between facultative and obligate symbionts.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|