51
|
Satterfield DA, Marra PP, Sillett TS, Altizer S. Responses of migratory species and their pathogens to supplemental feeding. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531149 DOI: 10.1098/rstb.2017.0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Migratory animals undergo seasonal and often spectacular movements and perform crucial ecosystem services. In response to anthropogenic changes, including food subsidies, some migratory animals are now migrating shorter distances or halting migration altogether and forming resident populations. Recent studies suggest that shifts in migratory behaviour can alter the risk of infection for wildlife. Although migration is commonly assumed to enhance pathogen spread, for many species, migration has the opposite effect of lowering infection risk, if animals escape from habitats where pathogen stages have accumulated or if strenuous journeys cull infected hosts. Here, we summarize responses of migratory species to supplemental feeding and review modelling and empirical work that provides support for mechanisms through which resource-induced changes in migration can alter pathogen transmission. In particular, we focus on the well-studied example of monarch butterflies and their protozoan parasites in North America. We also identify areas for future research, including combining new technologies for tracking animal movements with pathogen surveillance and exploring potential evolutionary responses of hosts and pathogens to changing movement patterns. Given that many migratory animals harbour pathogens of conservation concern and zoonotic potential, studies that document ongoing shifts in migratory behaviour and infection risk are vitally needed.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Peter P Marra
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
52
|
Altizer S, Becker DJ, Epstein JH, Forbes KM, Gillespie TR, Hall RJ, Hawley DM, Hernandez SM, Martin LB, Plowright RK, Satterfield DA, Streicker DG. Food for contagion: synthesis and future directions for studying host-parasite responses to resource shifts in anthropogenic environments. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531154 DOI: 10.1098/rstb.2017.0102] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA .,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel J Becker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | - Kristian M Forbes
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Biology, The Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, College of Veterinary Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - Daniel G Streicker
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
53
|
Decker LE, Soule AJ, de Roode JC, Hunter MD. Phytochemical changes in milkweed induced by elevated CO
2
alter wing morphology but not toxin sequestration in monarch butterflies. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leslie E. Decker
- Department of Biology Stanford University Stanford California
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| | - Abrianna J. Soule
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
- Department of Biology University of Utah Salt Lake City Utah
| | | | - Mark D. Hunter
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| |
Collapse
|
54
|
Ries L, Neupane N, Baum KA, Zipkin EF. Flying through hurricane central: impacts of hurricanes on migrants with a focus on monarch butterflies. ANIMAL MIGRATION 2018. [DOI: 10.1515/ami-2018-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hurricanes are becoming more frequent and intense, so understanding the consequences for biodiversity, including migratory species, has become critical. Studies suggest that migrants may avoid most of the direct harm of hurricanes by shifting their flight trajectories to less-impacted regions, but the majority of this research has focused on birds. We review the literature on migratory bird responses to hurricanes and also describe other taxa likely to be affected. We then focus on the monarch butterfly (Danaus plexippus), whose fall migratory pathway goes through Texas during hurricane season. Like birds, monarchs may be able to avoid direct damage from hurricanes. However, it may be more important to determine how they respond to shifts in availability of critical resources during migration. In fall, when a storm-triggered flush of out-of-season vegetation growth is especially likely, hurricanes could reasonably cause indirect impacts that could be positive (increased nectar) or negative (out-of-season host plants that could disrupt migration), or both. The monarch butterfly is an especially good target for this research because of its distinct migratory phases, the importance of hurricane-impacted zones to its annual cycle, and the large quantity of data available through an extensive network of citizen science programs.
Collapse
|
55
|
Shaw AK, Sherman J, Barker FK, Zuk M. Metrics matter: the effect of parasite richness, intensity and prevalence on the evolution of host migration. Proc Biol Sci 2018; 285:rspb.2018.2147. [PMID: 30429312 DOI: 10.1098/rspb.2018.2147] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
Parasites have long been thought to influence the evolution of migration, but precisely determining the conditions under which this occurs by quantifying costs of infection remains a challenge. Here we developed a model that demonstrates how the metric used to describe infection (richness/diversity, prevalence or intensity) shapes the prediction of whether migration will evolve. The model shows that predictions based on minimizing richness yield opposite results compared to those based on minimizing prevalence, with migration only selected for when minimizing prevalence. Consistent with these findings, empirical studies that measure parasite diversity typically find that migrants are worse off than residents, while those measuring prevalence or intensity find the opposite. Our own empirical analysis of fish parasite data finds that migrants (of all types) have higher parasite richness than residents, but with no significant difference in either prevalence or intensity.
Collapse
Affiliation(s)
- Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Julie Sherman
- Department of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| | - F Keith Barker
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA.,Bell Museum of Natural History, University of Minnesota, St Paul, MN 55108, USA
| | - Marlene Zuk
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
56
|
Brower LP, Williams EH, Dunford KS, Dunford JC, Knight AL, Daniels J, Cohen JA, Van Hook T, Saarinen E, Standridge MJ, Epstein SW, Zalucki MP, Malcolm SB. A long-term survey of spring monarch butterflies in north-central Florida. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1510057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | | | - James C. Dunford
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Amy L. Knight
- Florida Natural Areas Inventory, Florida State University, Tallahassee, FL, USA
| | - Jaret Daniels
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - James A. Cohen
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Tonya Van Hook
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Emily Saarinen
- Division of Natural Sciences, New College of Florida, Sarasota, FL, USA
| | - Matthew J. Standridge
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Samantha W. Epstein
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Stephen B. Malcolm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
57
|
Satterfield DA, Maerz JC, Hunter MD, Flockhart DTT, Hobson KA, Norris DR, Streit H, de Roode JC, Altizer S. Migratory monarchs that encounter resident monarchs show life-history differences and higher rates of parasite infection. Ecol Lett 2018; 21:1670-1680. [PMID: 30152196 DOI: 10.1111/ele.13144] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 01/24/2023]
Abstract
Environmental change induces some wildlife populations to shift from migratory to resident behaviours. Newly formed resident populations could influence the health and behaviour of remaining migrants. We investigated migrant-resident interactions among monarch butterflies and consequences for life history and parasitism. Eastern North American monarchs migrate annually to Mexico, but some now breed year-round on exotic milkweed in the southern US and experience high infection prevalence of protozoan parasites. Using stable isotopes (δ2 H, δ13 C) and cardenolide profiles to estimate natal origins, we show that migrant and resident monarchs overlap during fall and spring migration. Migrants at sites with residents were 13 times more likely to have infections and three times more likely to be reproductive (outside normal breeding season) compared to other migrants. Exotic milkweed might either attract migrants that are already infected or reproductive, or alternatively, induce these states. Increased migrant-resident interactions could affect monarch parasitism, migratory success and long-term conservation.
Collapse
Affiliation(s)
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - D T Tyler Flockhart
- Departmment of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Keith A Hobson
- Department of Biology, Western University, London, ON, N6A5B7, Canada
| | - D Ryan Norris
- Departmment of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Hillary Streit
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
58
|
Becker DJ, Snedden CE, Altizer S, Hall RJ. Host Dispersal Responses to Resource Supplementation Determine Pathogen Spread in Wildlife Metapopulations. Am Nat 2018; 192:503-517. [PMID: 30205031 DOI: 10.1086/699477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many wildlife species occupy landscapes that vary in the distribution, abundance, and quality of food resources. Increasingly, urbanized and agricultural habitats provide supplemental food resources that can have profound consequences for host distributions, movement patterns, and pathogen exposure. Understanding how host and pathogen dispersal across landscapes is affected by the spatial extent of food-supplemented habitats is therefore important for predicting the consequences for pathogen spread and impacts on host occupancy. Here we develop a generalizable metapopulation model to understand how the relative abundance of provisioned habitats across the landscape and how the host dispersal responses to provisioning and infection influence patch occupancy by hosts and their pathogens. We find that pathogen invasion and landscape-level infection prevalence are greatest when provisioning increases patch attractiveness and disperser production and when infection has minimal costs on dispersal success. Alternatively, if provisioning promotes site fidelity or reduces disperser production, increasing the fraction of food-supplemented habitats can reduce landscape-scale infection prevalence and minimize disease-induced declines in host occupancy. This work highlights the importance of considering how resources and infection jointly influence host dispersal for predicting how changing resource distributions influence the spread of infectious diseases.
Collapse
|
59
|
Daversa DR, Fenton A, Dell AI, Garner TWJ, Manica A. Infections on the move: how transient phases of host movement influence disease spread. Proc Biol Sci 2018; 284:rspb.2017.1807. [PMID: 29263283 PMCID: PMC5745403 DOI: 10.1098/rspb.2017.1807] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes.
Collapse
Affiliation(s)
- D R Daversa
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - A Fenton
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - A I Dell
- National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA.,Department of Biology, Washington University in St Louis, 1 Brookings Dr, St Louis, MO 63130, USA
| | - T W J Garner
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK
| | - A Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
60
|
Myers AC, Decoteau DR, Marini R, Davis DD. Sensitivity of Eleven Milkweed (Asclepias) Species to Ozone. Northeast Nat (Steuben) 2018. [DOI: 10.1656/045.025.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Abigail C. Myers
- Former Graduate Student in Environmental Pollution Control, The Pennsylvania State University, University Park, PA 16802
| | - Dennis R Decoteau
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Richard Marini
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Donald D. Davis
- Department of Plant Pathology and Environmental Microbiology, and Penn State Institutes of Energy and the Environment, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
61
|
Kronfeld-Schor N, Visser ME, Salis L, van Gils JA. Chronobiology of interspecific interactions in a changing world. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0248. [PMID: 28993492 DOI: 10.1098/rstb.2016.0248] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 01/10/2023] Open
Abstract
Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly. Here, we review examples where the internal timing system is used to predict interspecific interactions, and how these interactions affect the internal timing system and activity patterns. We then ask how plastic these mechanisms are, how this plasticity differs between and within species and how this variability in plasticity affects interspecific interactions in a changing world, in which light, the major synchronizer of the biological clock, is no longer a reliable cue owing to the rapidly changing climate, the use of artificial light and urbanization.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
| | - Lucia Salis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 59, Den Burg 1790 AB, The Netherlands
| |
Collapse
|
62
|
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 2018; 6:e4629. [PMID: 29761037 PMCID: PMC5947162 DOI: 10.7717/peerj.4629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species.
Collapse
Affiliation(s)
- Anne Duplouy
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily A Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
63
|
Brown LM, Hall RJ. Consequences of resource supplementation for disease risk in a partially migratory population. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170095. [PMID: 29531150 PMCID: PMC5883001 DOI: 10.1098/rstb.2017.0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2017] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic landscape features such as urban parks and gardens, landfills and farmlands can provide novel, seasonally reliable food sources that impact wildlife ecology and distributions. In historically migratory species, food subsidies can cause individuals to forgo migration and form partially migratory or entirely sedentary populations, eroding a crucial benefit of migration: pathogen avoidance through seasonal abandonment of transmission sites and mortality of infected individuals during migration. Since many migratory taxa are declining, and wildlife populations in urban areas can harbour zoonotic pathogens, understanding the mechanisms by which anthropogenic resource subsidies influence infection dynamics and the persistence of migration is important for wildlife conservation and public health. We developed a mathematical model for a partially migratory population and a vector-borne pathogen transmitted at a shared breeding ground, where food subsidies increase the nonbreeding survival of residents. We found that higher resident nonbreeding survival increased infection prevalence in residents and migrants, and lowered the fraction of the population that migrated. The persistence of migration may be especially threatened if residency permits emergence of more virulent pathogens, if resource subsidies reduce costs of infection for residents, and if infection reduces individual migratory propensity.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Leone M Brown
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602, USA
| | - Richard J Hall
- Odum School of Ecology, University of Georgia, 140 E. Green St., Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 E. Green St., Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr., Athens, GA 30602, USA
| |
Collapse
|
64
|
Faldyn MJ, Hunter MD, Elderd BD. Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies. Ecology 2018; 99:1031-1038. [PMID: 29618170 DOI: 10.1002/ecy.2198] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Abstract
While it is well established that climate change affects species distributions and abundances, the impacts of climate change on species interactions has not been extensively studied. This is particularly important for specialists whose interactions are tightly linked, such as between the monarch butterfly (Danaus plexippus) and the plant genus Asclepias, on which it depends. We used open-top chambers (OTCs) to increase temperatures in experimental plots and placed either nonnative Asclepias curassavica or native A. incarnata in each plot along with monarch larvae. We found, under current climatic conditions, adult monarchs had higher survival and mass when feeding on A. curassavica. However, under future conditions, monarchs fared much worse on A. curassavica. The decrease in adult survival and mass was associated with increasing cardenolide concentrations under warmer temperatures. Increased temperatures alone reduced monarch forewing length. Cardenolide concentrations in A. curassavica may have transitioned from beneficial to detrimental as temperature increased. Thus, the increasing cardenolide concentrations may have pushed the larvae over a tipping point into an ecological trap; whereby past environmental cues associated with increased fitness give misleading information. Given the ubiquity of specialist plant-herbivore interactions, the potential for such ecological traps to emerge as temperatures increase may have far-reaching consequences.
Collapse
Affiliation(s)
- Matthew J Faldyn
- Department of Biological Sciences, Louisiana State University, 202 Louisiana State University Life Sciences Building, Baton Rouge, Louisiana, 70803, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology and School of Natural Resources and Environment, University of Michigan, 2053 Natural Sciences Building, 830 North University, Ann Arbor, Michigan, 48109-1048, USA
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, 202 Louisiana State University Life Sciences Building, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
65
|
Luder K, Knop E, Menz MHM. Contrasting responses in community structure and phenology of migratory and non-migratory pollinators to urbanization. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12735] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Katrin Luder
- Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - Eva Knop
- Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - Myles H. M. Menz
- Institute of Ecology and Evolution; University of Bern; Bern Switzerland
- School of Biological Sciences; The University of Western Australia; Crawley WA Australia
| |
Collapse
|
66
|
Peacock SJ, Bouhours J, Lewis MA, Molnár PK. Macroparasite dynamics of migratory host populations. Theor Popul Biol 2018; 120:29-41. [DOI: 10.1016/j.tpb.2017.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 10/30/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
|
67
|
Malcolm SB. Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:277-302. [PMID: 28977776 DOI: 10.1146/annurev-ento-020117-043241] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Monarch butterflies (Danaus plexippus) are familiar herbivores of milkweeds of the genus Asclepias, and most monarchs migrate each year to locate these host plants across North American ecosystems now dominated by agriculture. Eastern migrants overwinter in high-elevation forests in Mexico, and western monarchs overwinter in trees on the coast of California. Both populations face three primary threats to their viability: (a) loss of milkweed resources for larvae due to genetically modified crops, pesticides, and fertilizers; (b) loss of nectar resources from flowering plants; and (c) degraded overwintering forest habitats due to commercially motivated deforestation and other economic activities. Secondary threats to population viability include (d) climate change effects on milkweed host plants and the dynamics of breeding, overwintering, and migration; (e) the influence of invasive plants and natural enemies; (f) habitat fragmentation and coalescence that promote homogeneous, species-depleted landscapes; and (g) deliberate culture and release of monarchs and invasive milkweeds.
Collapse
Affiliation(s)
- Stephen B Malcolm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008;
| |
Collapse
|
68
|
Fritzsche McKay A, Hoye BJ. Are Migratory Animals Superspreaders of Infection? Integr Comp Biol 2017; 56:260-7. [PMID: 27462034 DOI: 10.1093/icb/icw054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Migratory animals are simultaneously challenged by the physiological demands of long-distance movements and the need to avoid natural enemies including parasites and pathogens. The potential for animal migrations to disperse pathogens across large geographic areas has prompted a growing body of research investigating the interactions between migration and infection. However, the phenomenon of animal migration is yet to be incorporated into broader theories in disease ecology. Because migrations may expose animals to a greater number and diversity of pathogens, increase contact rates between hosts, and render them more susceptible to infection via changes to immune function, migration has the potential to generate both "superspreader species" and infection "hotspots". However, migration has also been shown to reduce transmission in some species, by facilitating parasite avoidance ("migratory escape") and weeding out infected individuals ("migratory culling"). This symposium was convened in an effort to characterize more broadly the role that animal migrations play in the dynamics of infectious disease, by integrating a range of approaches and scales across host taxa. We began with questions related to within-host processes, focusing on the consequences of nutritional constraints and strenuous movement for individual immune capability, and of parasite infection for movement capacity. We then scaled-up to between-host processes to identify what types, distances, or patterns of host movements are associated with the spread of infectious agents. Finally, we discussed landscape-scale relationships between migration and infectious disease, and how these may be altered as a result of anthropogenic changes to climate and land use. We are just beginning to scratch the surface of the interactions between infection and animal migrations; yet, with so many migrations now under threat, there is an urgent need to develop a holistic understanding of the potential for migrations to both increase and reduce infection risk.
Collapse
Affiliation(s)
| | - Bethany J Hoye
- †School of Life & Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
69
|
Johnson PTJ, Stanton DE, Forshay KJ, Calhoun DM. Vertically challenged: How disease suppresses Daphnia vertical migration behavior. LIMNOLOGY AND OCEANOGRAPHY 2017; 63:886-896. [PMID: 32704187 PMCID: PMC7377221 DOI: 10.1002/lno.10676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Parasitic infections are increasingly recognized as influential forces in the migratory behaviors of hosts ranging from butterflies to whales. In aquatic zooplankton, diel vertical migrations (DVMs) are among the most recurrent behaviors with implications for predator-prey interactions, nutrient cycling, and energy flow, yet how parasitism affects such migrations remains an open question. Here, we tested the effects of sporangia cluster disease (SCD) on DVM of the large-bodied Daphnia pulicaria, which is often considered a key component of lake food webs. By collecting depth-specific zooplankton samples across diel cycles, between years, and among lakes, we show that infection is associated with strong inhibition of host DVM; while all Daphnia tended to occur deeper during the day, uninfected Daphnia and especially gravid individuals migrated to shallower waters at night. In contrast, infected hosts-which could comprise 40% of the population-were more likely to remain deep regardless of time of day. Among infected hosts, the intensity of SCD (sporangia count per host) predicted the degree of DVM inhibition. These observations-coupled with lab-based assays showing that infected hosts exhibited fewer swimming movements and persisted at lower depths than uninfected conspecifics-suggest that parasite-induced inhibition of DVM is a "sickness behavior" resulting from increasing morbidity and energy depletion as the infection intensifies toward host death. Considering the importance of large-bodied Daphnia as regulators of water clarity and prey for fishes, parasite-induced alterations of host migratory behavior have broad potential to affect the redistribution of energy and nutrients within lake ecosystems.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado
| | - Daniel E Stanton
- Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, Minnesota
| | - Kenneth J Forshay
- Groundwater and Ecosystem Restoration Division, U.S. Environmental Protection Agency, Ada, Oklahoma
| | - Dana M Calhoun
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado
| |
Collapse
|
70
|
Pfeiler E, Nazario-Yepiz NO, Pérez-Gálvez F, Chávez-Mora CA, Laclette MRL, Rendón-Salinas E, Markow TA. Population Genetics of Overwintering Monarch Butterflies, Danaus plexippus (Linnaeus), from Central Mexico Inferred from Mitochondrial DNA and Microsatellite Markers. J Hered 2017; 108:163-175. [PMID: 28003372 PMCID: PMC5434545 DOI: 10.1093/jhered/esw071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/02/2016] [Indexed: 12/11/2022] Open
Abstract
Population genetic variation and demographic history in Danaus plexippus (L.), from Mexico were assessed based on analyses of mitochondrial cytochrome c oxidase subunit I (COI; 658 bp) and subunit II (COII; 503 bp) gene segments and 7 microsatellite loci. The sample of 133 individuals included both migratory monarchs, mainly from 4 overwintering sites within the Monarch Butterfly Biosphere Reserve (MBBR) in central Mexico (states of Michoacán and México), and a nonmigratory population from Irapuato, Guanajuato. Haplotype (h) and nucleotide (π) diversities were relatively low, averaging 0.466 and 0.00073, respectively, for COI, and 0.629 and 0.00245 for COII. Analysis of molecular variance of the COI data set, which included additional GenBank sequences from a nonmigratory Costa Rican population, showed significant population structure between Mexican migratory monarchs and nonmigratory monarchs from both Mexico and Costa Rica, suggesting limited gene flow between the 2 behaviorally distinct groups. Interestingly, while the COI haplotype frequencies of the nonmigratory populations differed from the migratory, they were similar to each other, despite the great physical distance between them. Microsatellite analyses, however, suggested a lack of structure between the 2 groups, possibly owing to the number of significant deviations from Hardy–Weinberg equilibrium resulting from heterzoygote deficiencies found for most of the loci. Estimates of demographic history of the combined migratory MBBR monarch population, based on the mismatch distribution and Bayesian skyline analyses of the concatenated COI and COII data set (n = 89) suggested a population expansion dating to the late Pleistocene (~35000–40000 years before present) followed by a stable effective female population size (Nef) of about 6 million over the last 10000 years.
Collapse
Affiliation(s)
- Edward Pfeiler
- Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Guaymas, Guaymas, Sonora, México
| | | | | | | | | | | | - Therese Ann Markow
- Irapuato, Guanajuato, México.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
71
|
Wille M, Lindqvist K, Muradrasoli S, Olsen B, Järhult JD. Urbanization and the dynamics of RNA viruses in Mallards (Anas platyrhynchos). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 51:89-97. [PMID: 28323070 PMCID: PMC7106234 DOI: 10.1016/j.meegid.2017.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/08/2017] [Accepted: 03/16/2017] [Indexed: 11/26/2022]
Abstract
Urbanization is intensifying worldwide, and affects the epidemiology of infectious diseases. However, the effect of urbanization on natural host-pathogen systems remains poorly understood. Urban ducks occupy an interesting niche in that they directly interact with both humans and wild migratory birds, and either directly or indirectly with food production birds. Here we have collected samples from Mallards (Anas platyrhynchos) residing in a pond in central Uppsala, Sweden, from January 2013 to January 2014. This artificial pond is kept ice-free during the winter months, and is a popular location where the ducks are fed, resulting in a resident population of ducks year-round. Nine hundred and seventy seven (977) fecal samples were screened for RNA viruses including: influenza A virus (IAV), avian paramyxovirus 1, avian coronavirus (CoV), and avian astrovirus (AstroV). This intra-annual dataset illustrates that these RNA viruses exhibit similar annual patterns to IAV, suggesting similar ecological factors are at play. Furthermore, in comparison to wild ducks, autumnal prevalence of IAV and CoV are lower in this urban population. We also demonstrate that AstroV might be a larger burden to urban ducks than IAV, and should be better assessed to demonstrate the degree to which wild birds contribute to the epidemiology of these viruses. The presence of economically relevant viruses in urban Mallards highlights the importance of elucidating the ecology of wildlife pathogens in urban environments, which will become increasingly important for managing disease risks to wildlife, food production animals, and humans.
Collapse
Affiliation(s)
- Michelle Wille
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Kristine Lindqvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shaman Muradrasoli
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
72
|
Flockhart DTT, Brower LP, Ramirez MI, Hobson KA, Wassenaar LI, Altizer S, Norris DR. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. GLOBAL CHANGE BIOLOGY 2017; 23:2565-2576. [PMID: 28045226 DOI: 10.1111/gcb.13589] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long-distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate-related factors best-predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was the US Midwest (mean annual proportion = 0.38; 95% CI: 0.36-0.41) followed by the north-central (0.17; 0.14-0.18), northeast (0.15; 0.11-0.16), northwest (0.12; 0.12-0.16), southwest (0.11; 0.08-0.12), and southeast (0.08; 0.07-0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid-1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional-specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long-term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns.
Collapse
Affiliation(s)
- D T Tyler Flockhart
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lincoln P Brower
- Department of Biology, Sweet Briar College, Sweet Briar, VA, 24595, USA
| | - M Isabel Ramirez
- Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, C.P. 58190, Morelia, Michoacán, Mexico
| | - Keith A Hobson
- Environment Canada, Saskatoon, Saskatchewan, S7N 3H5, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Leonard I Wassenaar
- International Atomic Energy Agency, Department of Nuclear Sciences and Applications, A-1400, Vienna, Austria
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
73
|
Gnanadesikan GE, Pearse WD, Shaw AK. Evolution of mammalian migrations for refuge, breeding, and food. Ecol Evol 2017; 7:5891-5900. [PMID: 28808552 PMCID: PMC5551087 DOI: 10.1002/ece3.3120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Many organisms migrate between distinct habitats, exploiting variable resources while profoundly affecting ecosystem services, disease spread, and human welfare. However, the very characteristics that make migration captivating and significant also make it difficult to study, and we lack a comprehensive understanding of which species migrate and why. Here we show that, among mammals, migration is concentrated within Cetacea and Artiodactyla but also diffusely spread throughout the class (found in 12 of 27 orders). We synthesize the many ecological drivers of round‐trip migration into three types of movement—between breeding and foraging sites, between breeding and refuge sites, and continuous tracking of forage/prey—each associated with different traits (body mass, diet, locomotion, and conservation status). Our results provide only partial support for the hypothesis that migration occurs without phylogenetic constraint. Furthermore, our findings suggest that categorizing migration into these three types may aid predictions of migrants’ responses to environmental changes.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA.,Present address: School of Anthropology University of Arizona Tucson AZ USA
| | - William D Pearse
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul MN USA.,Department of Biology McGill University Montréal QC Canada.,Département des Sciences Biologiques Université du Québec à Montréal Montréal QC Canada.,Department of Biology & Ecology Center Utah State University Logan UT USA
| | - Allison K Shaw
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA.,Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul MN USA.,Division of Evolution, Ecology and Genetics, Research School of Biology Australian National University Canberra ACT Australia
| |
Collapse
|
74
|
Satterfield DA, Altizer S, Williams MK, Hall RJ. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen. PLoS One 2017; 12:e0169982. [PMID: 28099501 PMCID: PMC5242512 DOI: 10.1371/journal.pone.0169982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/27/2016] [Indexed: 11/19/2022] Open
Abstract
Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha) that infects monarch butterflies (Danaus plexippus). We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect.
Collapse
Affiliation(s)
- Dara A. Satterfield
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Mary-Kate Williams
- Biological Sciences, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Richard J. Hall
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
75
|
Gehman ALM, Grabowski JH, Hughes AR, Kimbro DL, Piehler MF, Byers JE. Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite. Oecologia 2016; 183:139-149. [PMID: 27722800 DOI: 10.1007/s00442-016-3744-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/29/2016] [Indexed: 02/02/2023]
Abstract
Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.
Collapse
Affiliation(s)
- Alyssa-Lois M Gehman
- Odum School of Ecology, University of Georgia, 140 E. Green St, 30602, Athens, GA, USA.
| | | | | | | | - Michael F Piehler
- Institute of Marine Sciences, University of North Carolina, Morehead City, NC, 28557, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, 30602, Athens, GA, USA
| |
Collapse
|
76
|
Hoverman JT, Searle CL. Behavioural influences on disease risk: implications for conservation and management. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
77
|
|
78
|
McKay AF, Ezenwa VO, Altizer S. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies. Physiol Biochem Zool 2016; 89:389-401. [DOI: 10.1086/687989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
79
|
Hoye BJ, Munster VJ, Huig N, de Vries P, Oosterbeek K, Tijsen W, Klaassen M, Fouchier RAM, van Gils JA. Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integr Comp Biol 2016; 56:317-29. [PMID: 27252210 PMCID: PMC5007603 DOI: 10.1093/icb/icw038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection. Although a handful of studies have investigated the short-term, transmission-relevant behaviors of wild birds infected with low-pathogenic avian influenza viruses (LPAIV), the ecological consequences of LPAIV for the hosts themselves remain largely unknown. Here, we assessed the potential effects of naturally-acquired LPAIV infections in Bewick's swans, a long-distance migratory species that experiences relatively low incidence of LPAIV infection during early winter. We monitored both foraging and movement behavior in the winter of infection, as well as subsequent breeding behavior and inter-annual resighting probability over 3 years. Incorporating data on infection history we hypothesized that any effects would be most apparent in naïve individuals experiencing their first LPAIV infection. Indeed, significant effects of infection were only seen in birds that were infected but lacked antibodies indicative of prior infection. Swans that were infected but had survived a previous infection were indistinguishable from uninfected birds in each of the ecological performance metrics. Despite showing reduced foraging rates, individuals in the naïve-infected category had similar accumulated body stores to re-infected and uninfected individuals prior to departure on spring migration, possibly as a result of having higher scaled mass at the time of infection. And yet individuals in the naïve-infected category were unlikely to be resighted 1 year after infection, with 6 out of 7 individuals that never resighted again compared to 20 out of 63 uninfected individuals and 5 out of 12 individuals in the re-infected category. Collectively, our findings indicate that acute and superficially harmless infection with LPAIV may have indirect effects on individual performance and recruitment in migratory Bewick's swans. Our results also highlight the potential for infection history to play an important role in shaping ecological constraints throughout the annual cycle.
Collapse
Affiliation(s)
- Bethany J Hoye
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Vincent J Munster
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naomi Huig
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Peter de Vries
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kees Oosterbeek
- SOVON Texel, Dutch Center for Field Ornithology, Den Burg (Texel), The Netherlands
| | - Wim Tijsen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ron A M Fouchier
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg (Texel), The Netherlands
| |
Collapse
|
80
|
Satterfield DA, Villablanca FX, Maerz JC, Altizer S. Migratory monarchs wintering in California experience low infection risk compared to monarchs breeding year-round on non-native milkweed. Integr Comp Biol 2016; 56:343-52. [PMID: 27252207 DOI: 10.1093/icb/icw030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-distance migration can lower infection risk for animal populations by removing infected individuals during strenuous journeys, spatially separating susceptible age classes, or allowing migrants to periodically escape from contaminated habitats. Many seasonal migrations are changing due to human activities including climate change and habitat alteration. Moreover, for some migratory populations, sedentary behaviors are becoming more common as migrants abandon or shorten their journeys in response to supplemental feeding or warming temperatures. Exploring the consequences of reduced movement for host-parasite interactions is needed to predict future responses of animal pathogens to anthropogenic change. Monarch butterflies (Danaus plexippus) and their specialist protozoan parasite Ophryocystis elektroscirrha (OE) provide a model system for examining how long-distance migration affects infectious disease processes in a rapidly changing world. Annual monarch migration from eastern North America to Mexico is known to reduce protozoan infection prevalence, and more recent work suggests that monarchs that forego migration to breed year-round on non-native milkweeds in the southeastern and south central Unites States face extremely high risk of infection. Here, we examined the prevalence of OE infection from 2013 to 2016 in western North America, and compared monarchs exhibiting migratory behavior (overwintering annually along the California coast) with those that exhibit year-round breeding. Data from field collections and a joint citizen science program of Monarch Health and Monarch Alert showed that infection frequency was over nine times higher for monarchs sampled in gardens with year-round milkweed as compared to migratory monarchs sampled at overwintering sites. Results here underscore the importance of animal migrations for lowering infection risk and motivate future studies of pathogen transmission in migratory species affected by environmental change.
Collapse
Affiliation(s)
| | - Francis X Villablanca
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Sonia Altizer
- *Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
81
|
Hall RJ, Brown LM, Altizer S. Modeling vector-borne disease risk in migratory animals under climate change. Integr Comp Biol 2016; 56:353-64. [PMID: 27252225 DOI: 10.1093/icb/icw049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent theory suggests that animals that migrate to breed at higher latitudes may benefit from reduced pressure from natural enemies, including pathogens ("migratory escape"), and that migration itself weeds out infected individuals and lowers infection prevalence ("migratory culling"). The distribution and activity period of arthropod disease vectors in temperate regions is expected to respond rapidly to climate change, which could reduce the potential for migratory escape. However, climate change could have the opposite effect of reducing transmission if differential responses in the phenology and distribution of migrants and disease vectors reduce their overlap in space and time. Here we outline a simple modeling framework for exploring the influence of climate change on vector-borne disease dynamics in a migratory host. We investigate two scenarios under which pathogen transmission dynamics might be mediated by climate change: (1) vectors respond more rapidly than migrants to advancing phenology at temperate breeding sites, causing peak susceptible host density and vector emergence to diverge ("migratory mismatch") and (2) reduced migratory propensity allows increased nonbreeding survival of infected hosts and larger breeding-site epidemics (loss of migratory culling, here referred to as "sedentary amplification"). Our results highlight the need for continued surveillance of climate-induced changes to migratory behavior and vector activity to predict pathogen prevalence and its impacts on migratory animals.
Collapse
Affiliation(s)
- Richard J Hall
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine (both University of Georgia, Athens, GA, 30602 USA). The Odum School of Ecology affiliation is correct for co-authors Brown and Altizer
| | - Leone M Brown
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine (both University of Georgia, Athens, GA, 30602 USA). The Odum School of Ecology affiliation is correct for co-authors Brown and Altizer
| | - Sonia Altizer
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine (both University of Georgia, Athens, GA, 30602 USA). The Odum School of Ecology affiliation is correct for co-authors Brown and Altizer
| |
Collapse
|
82
|
Gibson AK, Jokela J, Lively CM. Fine-Scale Spatial Covariation between Infection Prevalence and Susceptibility in a Natural Population. Am Nat 2016; 188:1-14. [PMID: 27322117 DOI: 10.1086/686767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The prevalence of infection varies dramatically on a fine spatial scale. Many evolutionary hypotheses are founded on the assumption that this variation is due to host genetics, such that sites with a high frequency of alleles conferring susceptibility are associated with higher infection prevalence. This assumption is largely untested and may be compromised at finer spatial scales where gene flow between sites is high. We put this assumption to the test in a natural snail-trematode interaction in which host susceptibility is known to have a strong genetic basis. A decade of field sampling revealed substantial spatial variation in infection prevalence between 13 sites around a small lake. Laboratory assays replicated over 3 years demonstrate striking variation in host susceptibility among sites in spite of high levels of gene flow between sites. We find that mean susceptibility can explain more than one-third of the observed variation in mean infection prevalence among sites. We estimate that variation in susceptibility and exposure together can explain the majority of variation in prevalence. Overall, our findings in this natural host-parasite system argue that spatial variation in infection prevalence covaries strongly with variation in the distribution of genetically based susceptibility, even at a fine spatial scale.
Collapse
|
83
|
|
84
|
Yoho RA, Vanmali BH. Controversy in Biology Classrooms-Citizen Science Approaches to Evolution and Applications to Climate Change Discussions. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2016; 17:110-114. [PMID: 27047604 PMCID: PMC4798790 DOI: 10.1128/jmbe.v17i1.1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biological sciences encompass topics considered controversial by the American public, such as evolution and climate change. We believe that the development of climate change education in the biology classroom is better informed by an understanding of the history of the teaching of evolution. A common goal for science educators should be to engender a greater respect for and appreciation of science among students while teaching specific content knowledge. Citizen science has emerged as a viable yet underdeveloped method for engaging students of all ages in key scientific issues that impact society through authentic data-driven scientific research. Where successful, citizen science may open avenues of communication and engagement with the scientific process that would otherwise be more difficult to achieve. Citizen science projects demonstrate versatility in education and the ability to test hypotheses by collecting large amounts of often publishable data. We find a great possibility for science education research in the incorporation of citizen science projects in curriculum, especially with respect to "hot topics" of socioscientific debate based on our review of the findings of other authors. Journal of Microbiology & Biology Education.
Collapse
Affiliation(s)
- Rachel A. Yoho
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, Tempe, AZ 85287
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709
| | - Binaben H. Vanmali
- Arizona Science Education Collaborative, Arizona State University, Tempe, AZ 85287-6505
- Human Dimensions of Biology, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501
- Learning Sciences Institute, Arizona State University, Tempe, AZ 85287-2111
| |
Collapse
|
85
|
Leong M, Ponisio LC, Kremen C, Thorp RW, Roderick GK. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes. GLOBAL CHANGE BIOLOGY 2016; 22:1046-53. [PMID: 26663622 DOI: 10.1111/gcb.13141] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 05/08/2023]
Abstract
Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.
Collapse
Affiliation(s)
- Misha Leong
- Institute of Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, CA, USA
| | - Lauren C Ponisio
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Claire Kremen
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Robbin W Thorp
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| |
Collapse
|
86
|
Clark NJ, Clegg SM, Klaassen M. Migration strategy and pathogen risk: non-breeding distribution drives malaria prevalence in migratory waders. OIKOS 2016. [DOI: 10.1111/oik.03220] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nicholas J. Clark
- Environmental Futures Research Inst., School of Environment, Griffith Univ.; Gold Coast Campus QLD 4222 Australia
- Natural Environments Program, Queensland Museum; PO Box 3300 South Brisbane Queensland 4101 Australia
| | - Sonya M. Clegg
- Environmental Futures Research Inst., School of Environment, Griffith Univ.; Gold Coast Campus QLD 4222 Australia
- Edward Grey Inst., Dept of Zoology, Univ. of Oxford; Oxford OX1 3PS UK
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin Univ.; Geelong VIC Australia
| |
Collapse
|
87
|
Myers JH, Cory JS. Ecology and evolution of pathogens in natural populations of Lepidoptera. Evol Appl 2016; 9:231-47. [PMID: 27087850 PMCID: PMC4780379 DOI: 10.1111/eva.12328] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/19/2015] [Indexed: 01/25/2023] Open
Abstract
Pathogens are ubiquitous in insect populations and yet few studies examine their dynamics and impacts on host populations. We discuss four lepidopteran systems and explore their contributions to disease ecology and evolution. More specifically, we elucidate the role of pathogens in insect population dynamics. For three species, western tent caterpillars, African armyworm and introduced populations of gypsy moth, infection by nucleopolyhedrovirus (NPV) clearly regulates host populations or reduces their outbreaks. Transmission of NPV is largely horizontal although low levels of vertical transmission occur, and high levels of covert infection in some cases suggest that the virus can persist in a nonsymptomatic form. The prevalence of a mostly vertically transmitted protozoan parasite, Ophryocystis elektroscirrha, in monarch butterflies is intimately related to their migratory behaviour that culls highly infected individuals. Virulence and transmission are positively related among genotypes of this parasite. These systems clearly demonstrate that the interactions between insects and pathogens are highly context dependent. Not only is the outcome a consequence of changes in density and genetic diversity: environmental factors, particularly diet, can have strong impacts on virulence, transmission and host resistance or tolerance. What maintains the high level of host and pathogen diversity in these systems, however, remains a question.
Collapse
Affiliation(s)
- Judith H. Myers
- Department of ZoologyUniversity of British ColumbiaVancouverBCCanada
| | - Jenny S. Cory
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
88
|
Plummer KE, Siriwardena GM, Conway GJ, Risely K, Toms MP. Is supplementary feeding in gardens a driver of evolutionary change in a migratory bird species? GLOBAL CHANGE BIOLOGY 2015; 21:4353-4363. [PMID: 26400594 DOI: 10.1111/gcb.13070] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/09/2015] [Indexed: 06/05/2023]
Abstract
Human activities are causing rapid environmental change at a global scale. Urbanization is responsible for some of the most extreme human-altered habitats and is a known driver of evolutionary change, but evidence and understanding of these processes is limited. Here, we investigate the potential underlying mechanisms contributing to the contemporary evolution of migration behaviour in the Eurasian blackcap (Sylvia atricapilla). Blackcaps from central Europe have been wintering in urban areas of Britain with increasing frequency over the past 60 years, rather than migrating south to the Mediterranean. It has been hypothesized that the popularization of providing supplementary foods for wild birds within Britain may have influenced this marked migratory change, but quantifying the selective forces shaping evolutionary changes remains challenging. Using a long-term national scale data set, we examine both the spatial distribution and interannual variation in blackcap wintering behaviour in Britain in relation to supplementary food availability and local climate. Over a 12-year period, we show that blackcaps are becoming increasingly associated with the provision of supplementary foods in British gardens, and that the reliability of bird food supplies is influencing their winter distribution at a national scale. In addition, local climatic temperatures and broader scale weather variation are also important determinants of blackcap wintering patterns once they arrive in Britain. Based on our findings, we conclude that a synergistic effect of increased availability of feeding resources, in the form of garden bird food, coupled with climatic amelioration, has enabled a successful new wintering population to become established in Britain. As global biodiversity is threatened by human-induced environmental change, this study presents new and timely evidence of the role human activities can play in shaping evolutionary trajectories.
Collapse
Affiliation(s)
- Kate E Plummer
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
| | | | - Greg J Conway
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
| | - Kate Risely
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
| | - Mike P Toms
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP24 2PU, UK
| |
Collapse
|
89
|
Altizer S, Hobson KA, Davis AK, De Roode JC, Wassenaar LI. Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico. PLoS One 2015; 10:e0141371. [PMID: 26606389 PMCID: PMC4659535 DOI: 10.1371/journal.pone.0141371] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.
Collapse
Affiliation(s)
- Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Keith A. Hobson
- Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Andrew K. Davis
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Jacobus C. De Roode
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | | |
Collapse
|
90
|
Becker DJ, Hall RJ. Heterogeneity in patch quality buffers metapopulations from pathogen impacts. THEOR ECOL-NETH 2015. [DOI: 10.1007/s12080-015-0284-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
91
|
Tao L, Gowler CD, Ahmad A, Hunter MD, de Roode JC. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions. Proc Biol Sci 2015; 282:20151993. [PMID: 26468247 PMCID: PMC4633881 DOI: 10.1098/rspb.2015.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 11/12/2022] Open
Abstract
Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems.
Collapse
Affiliation(s)
- Leiling Tao
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Camden D Gowler
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA Department of Ecology and Evolutionary Biology, University of Michigan, 830 N University, Ann Arbor, MI 48109, USA
| | - Aamina Ahmad
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N University, Ann Arbor, MI 48109, USA
| | - Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
92
|
|
93
|
Martinez-Bakker M, Helm B. The influence of biological rhythms on host-parasite interactions. Trends Ecol Evol 2015; 30:314-26. [PMID: 25907430 DOI: 10.1016/j.tree.2015.03.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/22/2015] [Accepted: 03/12/2015] [Indexed: 01/09/2023]
Abstract
Biological rhythms, from circadian control of cellular processes to annual cycles in life history, are a main structural element of biology. Biological rhythms are considered adaptive because they enable organisms to partition activities to cope with, and take advantage of, predictable fluctuations in environmental conditions. A flourishing area of immunology is uncovering rhythms in the immune system of animals, including humans. Given the temporal structure of immunity, and rhythms in parasite activity and disease incidence, we propose that the intersection of chronobiology, disease ecology, and evolutionary biology holds the key to understanding host-parasite interactions. Here, we review host-parasite interactions while explicitly considering biological rhythms, and propose that rhythms: influence within-host infection dynamics and transmission between hosts, might account for diel and annual periodicity in host-parasite systems, and can lead to a host-parasite arms race in the temporal domain.
Collapse
Affiliation(s)
- Micaela Martinez-Bakker
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Barbara Helm
- Institute for Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|