51
|
Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP. Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 2010; 24:1190-201. [PMID: 20570721 PMCID: PMC2939290 DOI: 10.1016/j.bbi.2010.05.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/27/2010] [Accepted: 05/31/2010] [Indexed: 12/22/2022] Open
Abstract
Fractalkine (CX(3)CL1) to fractalkine receptor (CX(3)CR1) interactions in the brain are involved in the modulation of microglial activation. Our recent findings indicate that there is microglial hyperactivity in the aged brain during an inflammatory challenge. The underlying cause of this amplified microglial response in the aged brain is unknown. Therefore, the purpose of this study was to determine the degree to which age-associated impairments of CX(3)CL1 and CX(3)CR1 in the brain contribute to exaggerated microglial activation after intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). Here we show that CX(3)CL1 protein was reduced in the brain of aged (18-22 mo) BALB/c mice compared to adult (3-6 mo) controls. CX(3)CL1 protein, however, was unaltered by LPS injection. Next, CX(3)CR1 levels were determined in microglia (CD11b(+)/CD45(low)) isolated by Percoll density gradient separation at 4 and 24h after LPS injection. Flow cytometric and mRNA analyses of these microglia showed that LPS injection caused a marked decrease of CX(3)CR1 and a simultaneous increase of IL-1β at 4h after LPS injection. While surface expression of CX(3)CR1 was enhanced on microglia of adult mice by 24h, it was still significantly downregulated on a subset of microglia from aged mice. This protracted reduction of CX(3)CR1 corresponded with a delayed recovery from sickness behavior, prolonged IL-1β induction, and decreased TGFß expression in the aged brain. In the last set of studies BV2 microglia were used to determine effect of TGFß on CX(3)CR1. These results showed that TGFβ enhanced CX(3)CR1 expression and attenuated the LPS-induced increase in IL-1β expression.
Collapse
Affiliation(s)
- Angela M Wynne
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
| | - Christopher J. Henry
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
| | - Yan Huang
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
| | - Anthony Cleland
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
| | - Jonathan P. Godbout
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA, Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH 43210, USA, Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA,To whom correspondence should be addressed: J.P. Godbout, 259 IBMR Bld, 460 Medical Center Dr., The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 293-3456 Fax: (614) 366-2097,
| |
Collapse
|
52
|
Garelick MG, Kennedy BK. TOR on the brain. Exp Gerontol 2010; 46:155-63. [PMID: 20849946 DOI: 10.1016/j.exger.2010.08.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to life span extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer's disease, Parkinson's disease, and polyglutamine expansion syndromes such as Huntington's disease.
Collapse
Affiliation(s)
- Michael G Garelick
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
53
|
Ureshino RP, Bertoncini CR, Fernandes MJS, Abdalla FMF, Porto CS, Hsu YT, Lopes GS, Smaili SS. Alterations in calcium signaling and a decrease in Bcl-2 expression: possible correlation with apoptosis in aged striatum. J Neurosci Res 2010; 88:438-47. [PMID: 19774672 DOI: 10.1002/jnr.22214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging is a multifaceted process associated with various functional and structural deficits that might be evolved in degenerative diseases. It has been shown that neurodegenerative disorders are associated with alterations in Ca(2+) homeostasis. Thus, in the present work, we have investigated Ca(2+) signaling and apoptosis in aged striatum. Our results show that glutamate and NMDA evoke a greater Ca(2+) rise in striatum slices from aged animals. However, this difference is not present when glutamate is tested in the absence of external Ca(2+). Immunostaining of glutamate receptors shows that only NMDA receptors (NR1) are increased in the striatum of aged rats. Increases in mitochondrial Ca(2+) content and in the reactive oxygen species levels were also observed in aged animals, which could be associated with tissue vulnerability. In addition, a decrease in the Bcl-2 protein expression and an enhancement in apoptosis were also present in aged striatum. Together the results indicate that, in aged animals, alterations in Ca(2+) handling coupled to an increase in ROS accumulation and a decrease in the prosurvival protein Bcl-2 may contribute to apoptosis induction and cell death in rat striatum.
Collapse
Affiliation(s)
- R P Ureshino
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Xu K, Puchowicz MA, Sun X, LaManna JC. Decreased brainstem function following cardiac arrest and resuscitation in aged rat. Brain Res 2010; 1328:181-9. [PMID: 20211610 DOI: 10.1016/j.brainres.2010.02.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/23/2010] [Accepted: 02/28/2010] [Indexed: 11/25/2022]
Abstract
There is a high incidence of cardiac arrest and poorer post-resuscitation outcome in the elderly population. Cardiac arrest and resuscitation results in ischemia/reperfusion injury associated with oxidative stress, leading to post-resuscitation mortality and delayed selective neuronal cell loss. In this study we investigated recovery following cardiac arrest and resuscitation in the aged rat brain. Male Fischer 344 rats (6, 12 and 24 months old) underwent 7 minute cardiac arrest before resuscitation. Overall survival and hippocampal neuronal counts were determined at 4 days of recovery. Brainstem function was assessed by hypoxic ventilatory response (HVR). Mitochondria of brainstem, cortex and hippocampus were isolated and assessed for respiratory function. Effect of an antioxidant, alpha-phenyl-tert-butyl-nitrone (PBN) was used as a treatment strategy against oxidative stress in the 6 and 24-month old rats. The time course of mitochondrial function was established using 3-month old Wistar rats with 12-minute cardiac arrest. In the 24-month old rats, overall survival rate, hippocampal CA1 neuronal counts, HVR, and brain mitochondrial respiratory control ratio were significantly reduced following cardiac arrest and resuscitation compared to the younger rats, and PBN treatment improved outcome. The data suggest that (i) there was increased susceptibility to ischemia/reperfusion in aged rat brain; (ii) HVR was decreased in the aged rats; (iii) brain mitochondrial respiratory function related to coupled oxidation was decreased following cardiac arrest and resuscitation in rats, more so in the aged; and (iv) treatment with an antioxidant, such as PBN, reduced the oxidative damage following cardiac arrest and resuscitation.
Collapse
Affiliation(s)
- Kui Xu
- Department of Anatomy, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
55
|
A ketogenic diet increases succinic dehydrogenase (SDH) activity and recovers age-related decrease in numeric density of SDH-positive mitochondria in cerebellar Purkinje cells of late-adult rats. Micron 2010; 41:143-8. [DOI: 10.1016/j.micron.2009.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/24/2009] [Accepted: 08/26/2009] [Indexed: 01/14/2023]
|
56
|
Colloca G, Santoro M, Gambassi G. Age-related physiologic changes and perioperative management of elderly patients. Surg Oncol 2009; 19:124-30. [PMID: 20004566 DOI: 10.1016/j.suronc.2009.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging itself only minimally increases operative risk, but with aging, there is an increase of the prevalence of chronic diseases and a progressive deterioration of organ function. Aging is associated with a progressive decrease in heart, lung and kidney performance. Under normal conditions, these physiologic changes do not produce any problems for the elderly, but when these patients are subjected to the stress of surgery or its complications, there may be inadequate functional reserve. It is very important to know age-related patho-physiological changes in order to be able to better evaluate elderly patients undergoing surgery, and to prevent and manage preoperative complications. In this review we try to identify and to describe the most frequent physiological changes in the elderly, how those impact pharmacodynamic and pharmacokinetic parameters, and how to assess and manage them.
Collapse
Affiliation(s)
- Giuseppe Colloca
- Centro Medicina Invecchiamento, Università Cattolica Sacro Cuore, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | | | | |
Collapse
|
57
|
Overexpression of type I adenylyl cyclase in the forebrain impairs spatial memory in aged but not young mice. J Neurosci 2009; 29:10835-42. [PMID: 19726641 DOI: 10.1523/jneurosci.0553-09.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hippocampus-dependent memory requires a cAMP signal that is generated by Ca2+-stimulated adenylyl cyclases (AC1, AC8). Young transgenic mice overexpressing AC1 in the forebrain (AC1+ mice) have enhanced hippocampal long-term potentiation, superior memory for novel object recognition and more persistent remote contextual memory. To determine whether increasing AC1 expression improves memory when older mice are trained, we analyzed fear, recognition, and spatial memory in mice aged to 25 months. Here we report that young adult AC1+ mice have enhanced social recognition memory, and normal fear and spatial memory. Surprisingly, aged AC1+ mice had poorer spatial memory than age-matched wild-type littermates. These data suggest that the decrease in Ca2+-stimulated adenylyl cyclase activity during aging of wild-type mice may be an adaptive mechanism required to maintain spatial memory function.
Collapse
|
58
|
|
59
|
Finley LW, Haigis MC. The coordination of nuclear and mitochondrial communication during aging and calorie restriction. Ageing Res Rev 2009; 8:173-88. [PMID: 19491041 DOI: 10.1016/j.arr.2009.03.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 12/24/2022]
Abstract
Mitochondria are dynamic organelles that integrate environmental signals to regulate energy production, apoptosis and Ca(2+) homeostasis. Not surprisingly, mitochondrial dysfunction is associated with aging and the pathologies observed in age-related diseases. The vast majority of mitochondrial proteins are encoded in the nuclear genome, and so communication between the nucleus and mitochondria is essential for maintenance of appropriate mitochondrial function. Several proteins have emerged as major regulators of mitochondrial gene expression, capable of increasing transcription of mitochondrial genes in response to the physiological demands of the cell. In this review, we will focus on PGC-1alpha, SIRT1, AMPK and mTOR and discuss how these proteins regulate mitochondrial function and their potential involvement in aging, calorie restriction and age-related disease. We will also discuss the pathways through which mitochondria signal to the nucleus. Although such retrograde signaling is not well studied in mammals, there is growing evidence to suggest that it may be an important area for future aging research. Greater understanding of the mechanisms by which mitochondria and the nucleus communicate will facilitate efforts to slow or reverse the mitochondrial dysfunction that occurs during aging.
Collapse
|
60
|
Chan CS, Gertler TS, Surmeier DJ. Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends Neurosci 2009; 32:249-56. [PMID: 19307031 DOI: 10.1016/j.tins.2009.01.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/21/2008] [Accepted: 01/05/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of which the core motor symptoms are attributable to the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Recent work has revealed that the engagement of L-type Ca(2+) channels during autonomous pacemaking renders SNc DA neurons susceptible to mitochondrial toxins used to create animal models of PD, indicating that homeostatic Ca(2+) stress could be a determinant of their selective vulnerability. This view is buttressed by the central role of mitochondria and the endoplasmic reticulum (linchpins of current theories about the origins of PD) in Ca(2+) homeostasis. Here, we summarize this evidence and suggest the dual roles had by these organelles could compromise their function, leading to accelerated aging of SNc DA neurons, particularly in the face of genetic or environmental stress. We conclude with a discussion of potential therapeutic strategies for slowing the progression of PD.
Collapse
Affiliation(s)
- C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
61
|
DiMartini A, Chopra K. The importance of hepatic encephalopathy: pre-transplant and post-transplant. Liver Transpl 2009; 15:121-3. [PMID: 19177448 DOI: 10.1002/lt.21638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Shi C, Xu J. Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging. J Bioenerg Biomembr 2009; 40:625-30. [PMID: 19139976 DOI: 10.1007/s10863-008-9195-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/18/2008] [Indexed: 02/06/2023]
Abstract
In the present study, to determine whether aging could increase the vulnerability of the brain to estrogen withdrawal-induced mitochondrial dysfunction, we measured the cytochrome c oxidase (COX) activity and mitochondrial adenosine triphosphate (ATP) content in hippocampi of 2 groups of ovariectomized (OVX) Wistar rats aged 2 months (young) and 9 months (middle-aged), respectively. In addition, effects of genistein and estradiol benzoate (EB) were tested also. We observed only a transient alteration of COX activity and mitochondrial ATP content in hippocampi of young OVX rats but a prolonged lowering of COX activity and mitochondrial ATP content in hippocampi of middle-aged OVX rats. This suggested that with aging compensatory mechanisms of mitochondrial function were attenuated, thus exacerbated estrogen withdrawal-induced mitochondrial dysfunction in hippocampi. Significantly, EB/genistein treatment reversed this estrogen withdrawal-induced mitochondrial dysfunction in both young and middle-aged rats suggesting that genistein may be used as a substitute for estradiol to prevent age-related disease such as Alzheimer's disease in post-menopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | | |
Collapse
|
63
|
Balietti M, Giorgetti B, Fattoretti P, Grossi Y, Di Stefano G, Casoli T, Platano D, Solazzi M, Orlando F, Aicardi G, Bertoni-Freddari C. Ketogenic diets cause opposing changes in synaptic morphology in CA1 hippocampus and dentate gyrus of late-adult rats. Rejuvenation Res 2008; 11:631-40. [PMID: 18593281 DOI: 10.1089/rej.2007.0650] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ketogenic diets (KDs) have beneficial effects on several diseases, such as epilepsy, mitochondriopathies, cancer, and neurodegeneration. However, little is known about their effects on aging individuals. In the present study, late-adult (19-month-old) rats were fed for 8 weeks with two medium chain triglycerides (MCT)-KDs, and the following morphologic parameters reflecting synaptic plasticity were evaluated in stratum moleculare of hippocampal CA1 region (SM CA1) and outer molecular layer of hippocampal dentate gyrus (OML DG): average area (S), numeric density (Nv(s)), and surface density (Sv) of synapses, and average volume (V), numeric density (Nv(m)), and volume density (Vv) of synaptic mitochondria. In SM CA1, MCT-KDs induced the early appearance of the morphologic patterns typical of old animals (higher S and V, and lower Nv(s) and Nv(m)). On the contrary, in OML DG, Sv and Vv of MCT-KDs-fed rats were higher (as a result of higher Nv(s) and Nv(m)) versus controls; these modifications are known to improve synaptic function and metabolic supply. The opposite effects of MCT-KDs might reflect the different susceptibility to aging processes: OML DG is less vulnerable than SM CA1, and the reactivation of ketone bodies uptake and catabolism might occur more efficiently in this region, allowing the exploitation of their peculiar metabolic properties. Present findings provide the first evidence that MCT-KDs may cause opposite morphologic modifications, being potentially harmful for SM CA1 and potentially advantageous for OML DG. This implies risks but also promising potentialities for their therapeutic use during aging.
Collapse
Affiliation(s)
- Marta Balietti
- Neurobiology of Aging Laboratory, INRCA Research Department, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
On the key role played by altered protein conformation in Parkinson’s disease. J Neural Transm (Vienna) 2008; 115:1285-99. [DOI: 10.1007/s00702-008-0072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/14/2008] [Indexed: 12/29/2022]
|
65
|
DiMartini A, Fontes P, Dew MA, Lotrich FE, DeVera M. Age, model for end-stage liver disease score, and organ functioning predict posttransplant tacrolimus neurotoxicity. Liver Transpl 2008; 14:815-22. [PMID: 18508372 PMCID: PMC2900193 DOI: 10.1002/lt.21427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcineurin-inhibiting immunosuppressive medications are the mainstay of posttransplant immunosuppression. Although these highly beneficial drugs are critical for posttransplant survival, significant numbers of transplant recipients experience side effects, some requiring a switch to a different immunosuppressive regimen. Neurotoxicity is one of the most debilitating side effects because of its impact on mental status and cognition. As our center uses tacrolimus as the initial immunosuppressant for all liver transplant (LTX) recipients, we were interested in those patients who required a switch because of neurotoxic side effects. Over a 5-year period, 827 adult LTX recipients received their first graft at our center. Ninety-four patients were no longer on tacrolimus by 2 months post-LTX (86 switched because of concerns over neurotoxicity, and 8 switched because of renal function concerns). Of those experiencing neurotoxic side effects, the majority (64%) had altered mental status, and 26% had seizures (first onset post-LTX). On the basis of our prior work, we hypothesized that patients with a pre-LTX history of excessive alcohol use would be at higher risk for neurotoxic effects. We also hypothesized that the elderly and those who had more advanced illness (that is, higher Model for End-Stage Liver Disease scores) at LTX would be at risk as well. We found that patients with a pre-LTX diagnosis of alcoholic liver disease were not more likely to be switched from tacrolimus. Furthermore, we found that in addition to older age and higher Model for End-Stage Liver Disease scores, poorer hepatic functioning was significantly associated with a switch from tacrolimus. We discuss the implications of these findings and the relevance for future clinical care in these high-risk patients.
Collapse
Affiliation(s)
- Andrea DiMartini
- Department of Psychiatry, University of Pittsburgh Medical Center, Department of Transplantation Surgery, University of Pittsburgh Medical Center, Starzl Transplant Institute
| | - Paulo Fontes
- Department of Transplantation Surgery, University of Pittsburgh Medical Center, Starzl Transplant Institute
| | - Mary Amanda Dew
- Department of Psychiatry, University of Pittsburgh Medical Center, Department of Psychology, University of Pittsburgh Medical Center, Department of Epidemiology, University of Pittsburgh Medical Center
| | | | - Michael DeVera
- Department of Transplantation Surgery, University of Pittsburgh Medical Center, Starzl Transplant Institute
| |
Collapse
|
66
|
White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci 2008; 28:1479-89. [PMID: 18256269 DOI: 10.1523/jneurosci.5137-07.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stroke incidence increases with age and this has been attributed to vascular factors. We show here that CNS white matter (WM) is intrinsically more vulnerable to ischemic injury in older animals and that the mechanisms of WM injury change as a function of age. The mouse optic nerve was used to study WM function. WM function in older animals (12 months) was not protected from ischemic injury by removal of extracellular Ca2+ or by blockade of reverse Na+/Ca2+ exchange, as is the case with young adults. Ischemic WM injury in older mice is predominately mediated by glutamate release and activation of AMPA/kainate-type glutamate receptors. Glutamate release, attributable to reverse glutamate transport, occurs earlier and is more robust in older mice that show greater expression of the glutamate transporter. The observation that WM vulnerability to ischemic injury is age dependent has possible implications for the pathogenesis of other age-related CNS conditions.
Collapse
|
67
|
Takeda A, Sakurada N, Kanno S, Ando M, Oku N. Vulnerability to Seizures Induced by Potassium Dyshomeostasis in the Hippocampus in Aged Rats. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naomi Sakurada
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shingo Kanno
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Masaki Ando
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
68
|
Abstract
In this review, the evidence for changes in the human brain with ageing at both the macroscopic and microscopic levels is summarized. Loss of neurons is now recognized to be more modest than initial studies suggested and only affects some neuron populations. Accompanying loss of neurons is some reduction in the size of remaining neurons. This reflects a reduced size of dendritic and axonal arborizations. Some of the likely causes of these changes, including free radical damage resulting from a high rate of oxidative metabolism in neurons, glycation and dysregulation of intracellular calcium homeostasis, are discussed. The roles of genes and environmental factors in causing and responding to ageing changes are explored.
Collapse
Affiliation(s)
- M M Esiri
- Department of Clinical Neurology, University of Oxford, and Department of Neuropathology, Oxford Radcliffe NHS Trust, Oxford, UK
| |
Collapse
|
69
|
Schumacher M, Guennoun R, Stein DG, De Nicola AF. Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77-106. [PMID: 17659348 DOI: 10.1016/j.pharmthera.2007.06.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Progesterone and its metabolites promote the viability of neurons in the brain and spinal cord. Their neuroprotective effects have been documented in different lesion models, including traumatic brain injury (TBI), experimentally induced ischemia, spinal cord lesions and a genetic model of motoneuron disease. Progesterone plays an important role in developmental myelination and in myelin repair, and the aging nervous system appears to remain sensitive to some of progesterone's beneficial effects. Thus, the hormone may promote neuroregeneration by several different actions by reducing inflammation, swelling and apoptosis, thereby increasing the survival of neurons, and by promoting the formation of new myelin sheaths. Recognition of the important pleiotropic effects of progesterone opens novel perspectives for the treatment of brain lesions and diseases of the nervous system. Over the last decade, there have been a growing number of studies showing that exogenous administration of progesterone or some of its metabolites can be successfully used to treat traumatic brain and spinal cord injury, as well as ischemic stroke. Progesterone can also be synthesized by neurons and by glial cells within the nervous system. This finding opens the way for a promising therapeutic strategy, the use of pharmacological agents, such as ligands of the translocator protein (18 kDa) (TSPO; the former peripheral benzodiazepine receptor or PBR), to locally increase the synthesis of steroids with neuroprotective and neuroregenerative properties. A concept is emerging that progesterone may exert different actions and use different signaling mechanisms in normal and injured neural tissue.
Collapse
|
70
|
McMorris T, Mielcarz G, Harris RC, Swain JP, Howard A. Creatine Supplementation and Cognitive Performance in Elderly Individuals. AGING NEUROPSYCHOLOGY AND COGNITION 2007; 14:517-28. [PMID: 17828627 DOI: 10.1080/13825580600788100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to examine the effect of creatine supplementation on the cognitive performance of elderly people. Participants were divided into two groups, which were tested on random number generation, forward and backward number and spatial recall, and long-term memory tasks to establish a baseline level. Group 1 (n = 15) were given 5 g four times a day of placebo for 1 week, followed by the same dosage of creatine for the second week. Group 2 (n = 17) were given placebo both weeks. Participants were retested at the end of each week. Results showed a significant effect of creatine supplementation on all tasks except backward number recall. It was concluded that creatine supplementation aids cognition in the elderly.
Collapse
Affiliation(s)
- Terry McMorris
- School of Sport, Exercise and Health Sciences, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, UK.
| | | | | | | | | |
Collapse
|
71
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Murchison D, Griffith WH. Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell 2007; 6:297-305. [PMID: 17517040 PMCID: PMC2810842 DOI: 10.1111/j.1474-9726.2007.00293.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Disturbances of neuronal Ca2+ homeostasis are considered to be important determinants of age-related cognitive impairment. Cholinergic neurons of the basal forebrain (BF) are principal targets of decline associated with aging and dementia. During the last several years, we have attempted to link these concepts in a rat model of 'normal' aging. In this review, we will describe some changes that we have observed in Ca2+ signaling of aged BF neurons and the reversal of one of these changes by dietary caloric restriction. Our evidence supports a scenario in which subtle changes in the properties of voltage-gated Ca2+ channels result in increased Ca2+ influx during aging. This increased Ca2+, in turn, triggers an increase in rapid Ca2+ buffering in the somatic compartment of aged BF neurons. However, this nominal 'compensation', along with other changes in Ca2+ handling machinery (notably mitochondria) alters the Ca2+ signal with age in a way that is dependent on the magnitude of the Ca2+ load. By combining whole-cell patch clamp electrophysiology, ratiometric Ca2+-sensitive microfluorimetry and single-cell reverse transcription-polymerase chain reaction, we have determined that age-related rapid buffering changes are present in identified cholinergic BF neurons and that these changes can be prevented by a caloric restriction dietary regimen. Because caloric restriction extends lifespan and retards the progression of age-related dysfunction, these findings suggest that increased Ca2+ buffering in cholinergic neurons may be relevant to cognitive decline during normal aging. Importantly, calcium homeostatic mechanisms of BF cholinergic neurons are amenable to dietary interventions that could promote cognitive health during aging.
Collapse
Affiliation(s)
- David Murchison
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
73
|
Buchholz JN, Behringer EJ, Pottorf WJ, Pearce WJ, Vanterpool CK. Age-dependent changes in Ca2+ homeostasis in peripheral neurones: implications for changes in function. Aging Cell 2007; 6:285-96. [PMID: 17517039 PMCID: PMC1974774 DOI: 10.1111/j.1474-9726.2007.00298.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones.
Collapse
Affiliation(s)
- John N Buchholz
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|
74
|
Petersen OH, Spät A, Verkhratsky A. Introduction: reactive oxygen species in health and disease. Philos Trans R Soc Lond B Biol Sci 2005. [DOI: 10.1098/rstb.2005.1776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ole H Petersen
- MRC Group, The Physiological Laboratory, University of LiverpoolLiverpool L69 3BX, UK
| | - Andras Spät
- Department of Physiology, Semmelweis University and Hungarian Academy of SciencesBudapest, Hungary
| | - Alexej Verkhratsky
- Faculty of Life Sciences, University of ManchesterManchester M13 9PT, UK
| |
Collapse
|