51
|
Carruthers M, Yurchenko AA, Augley JJ, Adams CE, Herzyk P, Elmer KR. De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 2018; 19:32. [PMID: 29310597 PMCID: PMC5759245 DOI: 10.1186/s12864-017-4379-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Salmonid fishes exhibit high levels of phenotypic and ecological variation and are thus ideal model systems for studying evolutionary processes of adaptive divergence and speciation. Furthermore, salmonids are of major interest in fisheries, aquaculture, and conservation research. Improving understanding of the genetic mechanisms underlying traits in these species would significantly progress research in these fields. Here we generate high quality de novo transcriptomes for four salmonid species: Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Arctic charr (Salvelinus alpinus), and European whitefish (Coregonus lavaretus). All species except Atlantic salmon have no reference genome publicly available and few if any genomic studies to date. Results We used paired-end RNA-seq on Illumina to generate high coverage sequencing of multiple individuals, yielding between 180 and 210 M reads per species. After initial assembly, strict filtering was used to remove duplicated, redundant, and low confidence transcripts. The final assemblies consisted of 36,505 protein-coding transcripts for Atlantic salmon, 35,736 for brown trout, 33,126 for Arctic charr, and 33,697 for European whitefish and are made publicly available. Assembly completeness was assessed using three approaches, all of which supported high quality of the assemblies: 1) ~78% of Actinopterygian single-copy orthologs were successfully captured in our assemblies, 2) orthogroup inference identified high overlap in the protein sequences present across all four species (40% shared across all four and 84% shared by at least two), and 3) comparison with the published Atlantic salmon genome suggests that our assemblies represent well covered (~98%) protein-coding transcriptomes. Thorough comparison of the generated assemblies found that 84-90% of transcripts in each assembly were orthologous with at least one of the other three species. We also identified 34-37% of transcripts in each assembly as paralogs. We further compare completeness and annotation statistics of our new assemblies to available related species. Conclusion New, high-confidence protein-coding transcriptomes were generated for four ecologically and economically important species of salmonids. This offers a high quality pipeline for such complex genomes, represents a valuable contribution to the existing genomic resources for these species and provides robust tools for future investigation of gene expression and sequence evolution in these and other salmonid species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4379-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madeleine Carruthers
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Andrey A Yurchenko
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Julian J Augley
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK.,Present Address: Fios Genomics Ltd., Nine Edinburgh Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Pawel Herzyk
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK.,Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
52
|
Heterogeneous Patterns of Genetic Diversity and Differentiation in European and Siberian Chiffchaff ( Phylloscopus collybita abietinus/P. tristis). G3-GENES GENOMES GENETICS 2017; 7:3983-3998. [PMID: 29054864 PMCID: PMC5714495 DOI: 10.1534/g3.117.300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)—two recently diverged species which differ in morphology, plumage, song, habitat, and migration—to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.
Collapse
|
53
|
Kahilainen KK, Thomas SM, Nystedt EKM, Keva O, Malinen T, Hayden B. Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1768-1778. [PMID: 28545204 DOI: 10.1016/j.scitotenv.2017.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Resource polymorphism, whereby ancestral trophic generalists undergo divergence into multiple specialist morphs, is common in salmonid fish populations inhabiting subarctic lakes. However, the extent to which such resource specialization into the three principal lake habitats (littoral, profundal, and pelagic) affects patterns of contaminant bioaccumulation remains largely unexplored. We assessed total mercury concentrations (THg) of European whitefish (Coregonus lavaretus (L.)) and their invertebrate prey in relation to potential explanatory variables across 6 subarctic lakes, of which three are inhabited by polymorphic (comprised of four morphs) and three by monomorphic populations. Among invertebrate prey, the highest THg concentrations were observed in profundal benthic macroinvertebrates, followed by pelagic zooplankton, with concentrations lowest in littoral benthic macroinvertebrates in both lake types. Broadly similar patterns were apparent in whitefish in polymorphic systems, where average age-corrected THg concentrations and bioaccumulation rates were the highest in pelagic morphs, intermediate in the profundal morph, and the lowest in the littoral morph. In monomorphic systems, age-corrected THg concentrations were generally lower, and showed pronounced lake-specific variation. In the polymorphic systems, we found significant relationships between whitefish muscle tissue THg concentration and gill raker count, resource use, lipid content and maximum length, whilst no such relationships were apparent in the monomorphic systems. Across all polymorphic lakes, the major variables explaining THg in whitefish were gill raker count and age, whereas in monomorphic systems, the factors were lake-specific. Whitefish resource polymorphism across the three main lake habitats therefore appears to have profound impacts on THg concentration and bioaccumulation rate. This highlights the importance of recognizing such intraspecific diversity in both future scientific studies and mercury monitoring programs.
Collapse
Affiliation(s)
- Kimmo K Kahilainen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland; Kilpisjärvi Biological Station, Käsivarrentie 14622, FIN-99490 Kilpisjärvi, Finland.
| | - Stephen M Thomas
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Elina K M Nystedt
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Ossi Keva
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Tommi Malinen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
54
|
Rose NH, Bay RA, Morikawa MK, Palumbi SR. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution 2017; 72:82-94. [DOI: 10.1111/evo.13385] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Noah H. Rose
- Hopkins Marine Station, Department of Biology; Stanford University; Pacific Grove California 93950
- Current Address: Department of Ecology and Evolutionary Biology; Princeton University; Princeton New Jersey
| | - Rachael A. Bay
- Institute of the Environment and Sustainability; University of California; Los Angeles California 90095
| | - Megan K. Morikawa
- Hopkins Marine Station, Department of Biology; Stanford University; Pacific Grove California 93950
| | - Stephen R. Palumbi
- Hopkins Marine Station, Department of Biology; Stanford University; Pacific Grove California 93950
| |
Collapse
|
55
|
Jacobs A, Womack R, Chen M, Gharbi K, Elmer KR. Significant Synteny and Colocalization of Ecologically Relevant Quantitative Trait Loci Within and Across Species of Salmonid Fishes. Genetics 2017; 207:741-754. [PMID: 28760747 PMCID: PMC5629336 DOI: 10.1534/genetics.117.300093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/21/2017] [Indexed: 11/18/2022] Open
Abstract
The organization of functional regions within genomes has important implications for evolutionary potential. Considerable research effort has gone toward identifying the genomic basis of phenotypic traits of interest through quantitative trait loci (QTL) analyses. Less research has assessed the arrangement of QTL in the genome within and across species. To investigate the distribution, extent of colocalization, and the synteny of QTL for ecologically relevant traits, we used a comparative genomic mapping approach within and across a range of salmonid species. We compiled 943 QTL from all available species [lake whitefish (Coregonus clupeaformis), coho salmon (Oncorhynchus kisutch), rainbow trout (O. mykiss), Chinook salmon (O. tshawytscha), Atlantic salmon (Salmo salar), and Arctic charr (Salvelinus alpinus)]. We developed a novel analytical framework for mapping and testing the distribution of these QTL. We found no correlation between QTL density and gene density at the chromosome level but did at the fine-scale. Two chromosomes were significantly enriched for QTL. We found multiple synteny blocks for morphological, life history, and physiological traits across species, but only morphology and physiology had significantly more than expected. Two or three pairs of traits were significantly colocalized in three species (lake whitefish, coho salmon, and rainbow trout). Colocalization and fine-scale synteny suggest genetic linkage between traits within species and a conserved genetic basis across species. However, this pattern was weak overall, with colocalization and synteny being relatively rare. These findings advance our understanding of the role of genomic organization in the renowned ecological and phenotypic variability of salmonid fishes.
Collapse
Affiliation(s)
- Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Robyn Womack
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Mel Chen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, G12 8QQ, UK
| | - Karim Gharbi
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, EH9 3FL, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
56
|
Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator. Sci Rep 2017; 7:8765. [PMID: 28821736 PMCID: PMC5562900 DOI: 10.1038/s41598-017-08263-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ecological speciation – whereby an ancestral founder species diversifies to fill vacant niches – is a phenomenon characteristic of newly formed ecosystems. Despite such ubiquity, ecosystem-level effects of such divergence remain poorly understood. Here, we compared the trophic niche of European whitefish (Coregonus lavaretus) and their predators in a series of contrasting subarctic lakes where this species had either diversified into four ecomorphologically distinct morphs or instead formed monomorphic populations. We found that the trophic niche of whitefish was almost three times larger in the polymorphic than in the monomorphic lakes, due to an increase in intraspecific specialisation. This trophic niche expansion was mirrored in brown trout (Salmo trutta), a major predator of whitefish. This represents amongst the first evidence for ecological speciation directly altering the trophic niche of a predator. We suggest such mechanisms may be a common and important – though presently overlooked – factor regulating trophic interactions in diverse ecosystems globally.
Collapse
|
57
|
Limborg MT, Larson WA, Seeb LW, Seeb JE. Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome. Mol Ecol 2017; 26:4509-4522. [DOI: 10.1111/mec.14201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
58
|
Pujolar JM, Ferchaud AL, Bekkevold D, Hansen MM. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations. JOURNAL OF FISH BIOLOGY 2017; 91:175-194. [PMID: 28516498 DOI: 10.1111/jfb.13336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
This work investigated whether multiple freshwater populations of three-spined stickleback Gasterosteus aculeatus in different freshwater catchments in the Jutland Peninsula, Denmark, derived from the same marine populations show repeated adaptive responses. A total of 327 G. aculeatus collected at 13 sampling locations were screened for genetic variation using a combination of 70 genes putatively under selection and 26 neutral genes along with a marker linked to the ectodysplasin gene (eda), which is strongly correlated with plate armour morphs in the species. A highly significant genetic differentiation was found that was higher among different freshwater samples than between marine-freshwater samples. Tests for selection between marine and freshwater populations showed a very low degree of parallelism and no single nucleotide polymorphism was detected as outlier in all freshwater-marine pairwise comparisons, including the eda. This suggests that G. aculeatus is not necessarily the prime example of parallel local adaptation suggested in much of the literature and that important exceptions exist (i.e. the Jutland Peninsula). While marine populations in the results described here showed a high phenotype-genotype correlation at eda, a low association was found for most of the freshwater populations. The most extreme case was found in the freshwater Lake Hald where all low-plated phenotypes were either homozygotes for the allele supposed to be associated with completely plated morphs or heterozygotes, but none were homozygotes for the putative low-plated allele. Re-examination of data from seven G. aculeatus studies agrees in showing a high but partial association between phenotype-genotype at eda in G. aculeatus freshwater populations and that mismatches occur everywhere in the European regions studied (higher in some areas, i.e. Denmark). This is independent of the eda marker used.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
| | - A L Ferchaud
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
- Département de Bioscience, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, G1V 0A6, Canada
| | - D Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, DK-8600, Silkeborg, Denmark
| | - M M Hansen
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
59
|
Limborg MT, Larson WA, Shedd K, Seeb LW, Seeb JE. Novel RAD sequence data reveal a lack of genomic divergence between dietary ecotypes in a landlocked salmonid population. CONSERV GENET RESOUR 2017. [DOI: 10.1007/s12686-017-0791-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
60
|
Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L, Bergseth S, Davidson WS, Gallardo-Escárate C, Goldammer T, Guiguen Y, Iturra P, Kijas JW, Koop BF, Lien S, Maass A, Martin SAM, McGinnity P, Montecino M, Naish KA, Nichols KM, Ólafsson K, Omholt SW, Palti Y, Plastow GS, Rexroad CE, Rise ML, Ritchie RJ, Sandve SR, Schulte PM, Tello A, Vidal R, Vik JO, Wargelius A, Yáñez JM. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics 2017; 18:484. [PMID: 28655320 PMCID: PMC5488370 DOI: 10.1186/s12864-017-3862-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/14/2017] [Indexed: 11/21/2022] Open
Abstract
We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.
Collapse
Affiliation(s)
- Daniel J. Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Craig R. Primmer
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, TAS Australia
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6 Canada
| | - Steinar Bergseth
- The Research Council of Norway, Drammensveien 288, P.O. Box 564, NO-1327 Lysaker, Norway
| | - William S. Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, Department of Oceanography, Universidad de Concepción, 4030000 Concepción, Chile
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Patricia Iturra
- Human Genetics Program ICBM Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Ben F. Koop
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Alejandro Maass
- Center for Mathematical Modelling, Department of Mathematical Engineering, University of Chile, 8370456 Santiago, Chile
- Center for Genome Regulation, University of Chile, 8370456 Santiago, Chile
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ UK
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Martin Montecino
- Center for Biomedical Research, Universidad Andres Bello, 8370146 Santiago, Chile
- FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, 8370146 Santiago, Chile
| | - Kerry A. Naish
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195 USA
| | - Krista M. Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112 USA
| | | | - Stig W. Omholt
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, USDA ARS, 11861 Leetown Road, Kearneysville, WV 25430 USA
| | - Graham S. Plastow
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Caird E. Rexroad
- Office of National Programs, USDA ARS, 5601 Sunnyside Avenue, Beltsville, MD 20705-5148 USA
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John’s, NL A1C 5S7 Canada
| | - Rachael J. Ritchie
- Genome British Columbia, Suite 400 – 575, West 8th Avenue, Vancouver, BC V5Z 0C4 Canada
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Patricia M. Schulte
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4 Canada
| | - Alfredo Tello
- Instituto Tecnológico del Salmón S.A., INTESAL de SalmonChile, Puerto Montt, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics, and Evolutionary Studies, Department of Biology, University of Santiago, 9170022 Santiago, Chile
| | - Jon Olav Vik
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Anna Wargelius
- Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817 Bergen, Norway
| | - José Manuel Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile, Av. Santa Rosa 11735, Santiago, Chile & Aquainnovo, Cardonal s/n, Puerto Montt, Chile
| |
Collapse
|
61
|
Recknagel H, Hooker OE, Adams CE, Elmer KR. Ecosystem size predicts eco-morphological variability in a postglacial diversification. Ecol Evol 2017; 7:5560-5570. [PMID: 28811875 PMCID: PMC5552947 DOI: 10.1002/ece3.3013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 03/26/2017] [Indexed: 02/03/2023] Open
Abstract
Identifying the processes by which new phenotypes and species emerge has been a long‐standing effort in evolutionary biology. Young adaptive radiations provide a model to study patterns of morphological and ecological diversification in environmental context. Here, we use the recent radiation (ca. 12k years old) of the freshwater fish Arctic charr (Salvelinus alpinus) to identify abiotic and biotic environmental factors associated with adaptive morphological variation. Arctic charr are exceptionally diverse, and in postglacial lakes there is strong evidence of repeated parallel evolution of similar morphologies associated with foraging. We measured head depth (a trait reflecting general eco‐morphology and foraging ecology) of 1,091 individuals across 30 lake populations to test whether fish morphological variation was associated with lake bathymetry and/or ecological parameters. Across populations, we found a significant relationship between the variation in head depth of the charr and abiotic environmental characteristics: positively with ecosystem size (i.e., lake volume, surface area, depth) and negatively with the amount of littoral zone. In addition, extremely robust‐headed phenotypes tended to be associated with larger and deeper lakes. We identified no influence of co‐existing biotic community on Arctic charr trophic morphology. This study evidences the role of the extrinsic environment as a facilitator of rapid eco‐morphological diversification.
Collapse
Affiliation(s)
- Hans Recknagel
- Institute of Biodiversity Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Oliver E Hooker
- Institute of Biodiversity Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK.,PR Statistics Glasgow UK
| | - Colin E Adams
- Institute of Biodiversity Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Kathryn R Elmer
- Institute of Biodiversity Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
62
|
Huuskonen H, Shikano T, Mehtätalo L, Kettunen J, Eronen R, Toiviainen A, Kekäläinen J. Anthropogenic environmental changes induce introgression in sympatric whitefish ecotypes. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
63
|
Chirgwin E, Marshall DJ, Sgrò CM, Monro K. The other 96%: Can neglected sources of fitness variation offer new insights into adaptation to global change? Evol Appl 2017; 10:267-275. [PMID: 28250811 PMCID: PMC5322406 DOI: 10.1111/eva.12447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Mounting research considers whether populations may adapt to global change based on additive genetic variance in fitness. Yet selection acts on phenotypes, not additive genetic variance alone, meaning that persistence and evolutionary potential in the near term, at least, may be influenced by other sources of fitness variation, including nonadditive genetic and maternal environmental effects. The fitness consequences of these effects, and their environmental sensitivity, are largely unknown. Here, applying a quantitative genetic breeding design to an ecologically important marine tubeworm, we examined nonadditive genetic and maternal environmental effects on fitness (larval survival) across three thermal environments. We found that these effects are nontrivial and environment dependent, explaining at least 44% of all parentally derived effects on survival at any temperature and 96% of parental effects at the most stressful temperature. Unlike maternal environmental effects, which manifested at the latter temperature only, nonadditive genetic effects were consistently significant and covaried positively across temperatures (i.e., parental combinations that enhanced survival at one temperature also enhanced survival at elevated temperatures). Thus, while nonadditive genetic and maternal environmental effects have long been neglected because their evolutionary consequences are complex, unpredictable, or seen as transient, we argue that they warrant further attention in a rapidly warming world.
Collapse
Affiliation(s)
- Evatt Chirgwin
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Dustin J. Marshall
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| | - Keyne Monro
- Centre for Geometric BiologyMonash UniversityMelbourneVICAustralia
- School of Biological SciencesMonash UniversityMelbourneVICAustralia
| |
Collapse
|
64
|
Ishikawa A, Kusakabe M, Yoshida K, Ravinet M, Makino T, Toyoda A, Fujiyama A, Kitano J. Different contributions of local- and distant-regulatory changes to transcriptome divergence between stickleback ecotypes. Evolution 2017; 71:565-581. [PMID: 28075479 DOI: 10.1111/evo.13175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
Differential gene expression can play an important role in phenotypic evolution and divergent adaptation. Although differential gene expression can be caused by both local- and distant-regulatory changes, we know little about their relative contribution to transcriptome evolution in natural populations. Here, we conducted expression quantitative trait loci (eQTL) analysis to investigate the genetic architecture underlying transcriptome divergence between marine and stream ecotypes of threespine sticklebacks (Gasterosteus aculeatus). We identified both local and distant eQTLs, some of which constitute hotspots, regions with a disproportionate number of significant eQTLs relative to the genomic background. The majority of local eQTLs including those in the hotspots caused expression changes consistent with the direction of transcriptomic divergence between ecotypes. Genome scan analysis showed that many local eQTLs overlapped with genomic regions of high differentiation. In contrast, nearly half of the distant eQTLs including those in the hotspots caused opposite expression changes, and few overlapped with regions of high differentiation, indicating that distant eQTLs may act as a constraint of transcriptome evolution. Finally, a comparison between two salinity conditions revealed that nearly half of eQTL hotspots were environment specific, suggesting that analysis of genetic architecture in multiple conditions is essential for predicting response to selection.
Collapse
Affiliation(s)
- Asano Ishikawa
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Makoto Kusakabe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.,Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Kohta Yoshida
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Mark Ravinet
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan.,Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Takashi Makino
- Division of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Jun Kitano
- Division of Ecological Genetics, National Institute of Genetics, Shizuoka, Japan
| |
Collapse
|
65
|
Hansen MM, Rogers SM. Recipient of the 2016 Molecular Ecology Prize: Louis Bernatchez - advancing the conservation of aquatic resources with his contributions on the ecological genomics of adaptation and speciation. Mol Ecol 2017; 26:413-419. [PMID: 28130941 DOI: 10.1111/mec.13941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 116., DK-8000, Aarhus C, Denmark
| | - Sean M Rogers
- Department of Biological Sciences, University of Calgary, 2500 University Dr., NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
66
|
Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus. G3-GENES GENOMES GENETICS 2017; 7:165-178. [PMID: 27836907 PMCID: PMC5217106 DOI: 10.1534/g3.116.033241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.
Collapse
|
67
|
Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. JOURNAL OF FISH BIOLOGY 2016; 89:2519-2556. [PMID: 27687146 DOI: 10.1111/jfb.13145] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/23/2016] [Indexed: 05/18/2023]
Abstract
The first goal of this paper was to overview modern approaches to local adaptation, with a focus on the use of population genomics data to detect signals of natural selection in fishes. Several mechanisms are discussed that may enhance the maintenance of genetic variation and evolutionary potential, which have been overlooked and should be considered in future theoretical development and predictive models: the prevalence of soft sweeps, polygenic basis of adaptation, balancing selection and transient polymorphisms, parallel evolution, as well as epigenetic variation. Research on fish population genomics has provided ample evidence for local adaptation at the genome level. Pervasive adaptive evolution, however, seems to almost never involve the fixation of beneficial alleles. Instead, adaptation apparently proceeds most commonly by soft sweeps entailing shifts in frequencies of alleles being shared between differentially adapted populations. One obvious factor contributing to the maintenance of standing genetic variation in the face of selective pressures is that adaptive phenotypic traits are most often highly polygenic, and consequently the response to selection should derive mostly from allelic co-variances among causative loci rather than pronounced allele frequency changes. Balancing selection in its various forms may also play an important role in maintaining adaptive genetic variation and the evolutionary potential of species to cope with environmental change. A large body of literature on fishes also shows that repeated evolution of adaptive phenotypes is a ubiquitous evolutionary phenomenon that seems to occur most often via different genetic solutions, further adding to the potential options of species to cope with a changing environment. Moreover, a paradox is emerging from recent fish studies whereby populations of highly reduced effective population sizes and impoverished genetic diversity can apparently retain their adaptive potential in some circumstances. Although more empirical support is needed, several recent studies suggest that epigenetic variation could account for this apparent paradox. Therefore, epigenetic variation should be fully integrated with considerations pertaining to role of soft sweeps, polygenic and balancing selection, as well as repeated adaptation involving different genetic basis towards improving models predicting the evolutionary potential of species to cope with a changing world.
Collapse
Affiliation(s)
- L Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1Y 2T8, Canada
| |
Collapse
|
68
|
Kusakabe M, Ishikawa A, Ravinet M, Yoshida K, Makino T, Toyoda A, Fujiyama A, Kitano J. Genetic basis for variation in salinity tolerance between stickleback ecotypes. Mol Ecol 2016; 26:304-319. [DOI: 10.1111/mec.13875] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Makoto Kusakabe
- Atmosphere and Ocean Research Institute; The University of Tokyo; Kashiwanoha 5-1-5 Kashiwa Chiba 277-8564 Japan
- Department of Biological Science; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Mark Ravinet
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box 1066 Blindern Oslo NO-0316 Oslo Norway
| | - Kohta Yoshida
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| |
Collapse
|
69
|
Dalziel AC, Laporte M, Rougeux C, Guderley H, Bernatchez L. Convergence in organ size but not energy metabolism enzyme activities among wild Lake Whitefish (Coregonus clupeaformis) species pairs. Mol Ecol 2016; 26:225-244. [DOI: 10.1111/mec.13847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Anne C. Dalziel
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
- Department of Biology; Saint Mary's University; 923 Robie Street Halifax Nova Scotia Canada B3H 3C3
| | - Martin Laporte
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| | - Clément Rougeux
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| | - Helga Guderley
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| | - Louis Bernatchez
- Department of Biology; Institut de Biologie Intégrative et des Systèmes; 1030 Avenue de la Médecine Université Laval Québec City Québec Canada G1V 0A6
| |
Collapse
|
70
|
Dion-Côté AM, Symonová R, Lamaze FC, Pelikánová Š, Ráb P, Bernatchez L. Standing chromosomal variation in Lake Whitefish species pairs: the role of historical contingency and relevance for speciation. Mol Ecol 2016; 26:178-192. [PMID: 27545583 DOI: 10.1111/mec.13816] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
The role of chromosome changes in speciation remains a debated topic, although demographic conditions associated with divergence should promote their appearance. We tested a potential relationship between chromosome changes and speciation by studying two Lake Whitefish (Coregonus clupeaformis) lineages that recently colonized postglacial lakes following allopatry. A dwarf limnetic species evolved repeatedly from the normal benthic species, becoming reproductively isolated. Lake Whitefish hybrids experience mitotic and meiotic instability, which may result from structurally divergent chromosomes. Motivated by this observation, we test the hypothesis that chromosome organization differs between Lake Whitefish species pairs using cytogenetics. While chromosome and fundamental numbers are conserved between the species (2n = 80, NF = 98), we observe extensive polymorphism of subtle karyotype traits. We describe intrachromosomal differences associated with heterochromatin and repetitive DNA, and test for parallelism among three sympatric species pairs. Multivariate analyses support the hypothesis that differentiation at the level of subchromosomal markers mostly appeared during allopatry. Yet we find no evidence for parallelism between species pairs among lakes, consistent with colonization effect or postcolonization differentiation. The reported intrachromosomal polymorphisms do not appear to play a central role in driving adaptive divergence between normal and dwarf Lake Whitefish. We discuss how chromosomal differentiation in the Lake Whitefish system may contribute to the destabilization of mitotic and meiotic chromosome segregation in hybrids, as documented previously. The chromosome structures detected here are still difficult to sequence and assemble, demonstrating the value of cytogenetics as a complementary approach to understand the genomic bases of speciation.
Collapse
Affiliation(s)
- Anne-Marie Dion-Côté
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, Québec, Canada, G1V 0A6
| | - Radka Symonová
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, A-5310, Mondsee, Austria
| | - Fabien C Lamaze
- Ontario Institut for Cancer Research, MaRS Centre, 661 University Avenue, Suite 510, Toronto, Ontario, Canada, M5G 0A3
| | - Šárka Pelikánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, vvi, Liběchov, 277 21, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, AS CR, vvi, Liběchov, 277 21, Czech Republic
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, 1030, Avenue de la Médecine, Québec, Québec, Canada, G1V 0A6
| |
Collapse
|
71
|
Adaptation and acclimation of traits associated with swimming capacity in Lake Whitefish (coregonus clupeaformis) ecotypes. BMC Evol Biol 2016; 16:160. [PMID: 27514685 PMCID: PMC4982116 DOI: 10.1186/s12862-016-0732-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Improved performance in a given ecological niche can occur through local adaptation, phenotypic plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake Whitefish (Coregonus clupeaformis) representing the’normal’ (benthic form) and the ‘dwarf’ (derived limnetic form) ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits consistent with reductions in the energetic costs of swimming and maintenance metabolism. Results We found differences in traits predicted to decrease the costs of prolonged swimming and standard metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme activities. Conclusion Results support the view that local adaptation has contributed to the genetically-based divergence of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these ecotype pairs may have favoured repeated local adaptation to the limnetic niches. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0732-y) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Le Moan A, Gagnaire PA, Bonhomme F. Parallel genetic divergence among coastal-marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol Ecol 2016; 25:3187-202. [PMID: 27027737 DOI: 10.1111/mec.13627] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/28/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Ecophenotypic differentiation among replicate ecotype pairs within a species complex is often attributed to independent outcomes of parallel divergence driven by adaptation to similar environmental contrasts. However, the extent to which parallel phenotypic and genetic divergence patterns have emerged independently is increasingly questioned by population genomic studies. Here, we document the extent of genetic differentiation within and among two geographic replicates of the coastal and marine ecotypes of the European anchovy (Engraulis encrasicolus) gathered from Atlantic and Mediterranean locations. Using a genome-wide data set of RAD-derived SNPs, we show that habitat type (marine vs. coastal) is the most important component of genetic differentiation among populations of anchovy. By analysing the joint allele frequency spectrum of each coastal-marine ecotype pair, we show that genomic divergence patterns between ecotypes can be explained by a postglacial secondary contact following a long period of allopatric isolation (c. 300 kyrs). We found strong support for a model including heterogeneous migration among loci, suggesting that secondary gene flow has eroded past differentiation at different rates across the genome. Markers experiencing reduced introgression exhibited strongly correlated differentiation levels among Atlantic and Mediterranean regions. These results support that partial reproductive isolation and parallel genetic differentiation among replicate pairs of anchovy ecotypes are largely due to a common divergence history prior to secondary contact. They moreover provide comprehensive insights into the origin of a surprisingly strong fine-scale genetic structuring in a high gene flow marine fish, which should improve stock management and conservation actions.
Collapse
Affiliation(s)
- A Le Moan
- Université Montpellier 2, Place Eugène Bataillon, Montpellier, 34095, France.,ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| | - P-A Gagnaire
- Université Montpellier 2, Place Eugène Bataillon, Montpellier, 34095, France.,ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| | - F Bonhomme
- Université Montpellier 2, Place Eugène Bataillon, Montpellier, 34095, France.,ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| |
Collapse
|
73
|
Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel. Sci Rep 2016; 6:26632. [PMID: 27226078 PMCID: PMC4880927 DOI: 10.1038/srep26632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/06/2016] [Indexed: 12/26/2022] Open
Abstract
Heritable phenotypic differences between populations, caused by the selective effects of distinct environmental conditions, are of commonplace occurrence in nature. However, the actual genomic targets of this kind of selection are still poorly understood. We conducted a quantitative trait locus (QTL) mapping study to identify genomic regions responsible for morphometric differentiation between genetically and phenotypically divergent marine and freshwater nine-spined stickleback (Pungitius pungitius) populations. Using a dense panel of SNP-markers obtained by restriction site associated DNA sequencing of an F2 recombinant cross, we found 22 QTL that explained 3.5-12.9% of phenotypic variance in the traits under investigation. We detected one fairly large-effect (PVE = 9.6%) QTL for caudal peduncle length-a trait with a well-established adaptive function showing clear differentiation among marine and freshwater populations. We also identified two large-effect QTL for lateral plate numbers, which are different from the lateral plate QTL reported in earlier studies of this and related species. Hence, apart from identifying several large-effect QTL in shape traits showing adaptive differentiation in response to different environmental conditions, the results suggest intra- and interspecific heterogeneity in the genomic basis of lateral plate number variation.
Collapse
|
74
|
Dowling TE, Markle DF, Tranah GJ, Carson EW, Wagman DW, May BP. Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes. PLoS One 2016; 11:e0149884. [PMID: 26959681 PMCID: PMC4784955 DOI: 10.1371/journal.pone.0149884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/06/2016] [Indexed: 12/13/2022] Open
Abstract
Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids.
Collapse
Affiliation(s)
- Thomas E. Dowling
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| | - Douglas F. Markle
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of America
| | - Greg J. Tranah
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Evan W. Carson
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - David W. Wagman
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of America
| | - Bernard P. May
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| |
Collapse
|
75
|
Graham CF, Eberts RL, Morgan TD, Boreham DR, Lance SL, Manzon RG, Martino JA, Rogers SM, Wilson JY, Somers CM. Fine-Scale Ecological and Genetic Population Structure of Two Whitefish (Coregoninae) Species in the Vicinity of Industrial Thermal Emissions. PLoS One 2016; 11:e0146656. [PMID: 26807722 PMCID: PMC4726566 DOI: 10.1371/journal.pone.0146656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.
Collapse
Affiliation(s)
- Carly F. Graham
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Rebecca L. Eberts
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Thomas D. Morgan
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Greater Sudbury, Ontario, Canada
| | - Stacey L. Lance
- Savannah River Ecology Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Richard G. Manzon
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Jessica A. Martino
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Sean M. Rogers
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joanna Y. Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
76
|
Lenz TL. Transcription in space--environmental vs. genetic effects on differential immune gene expression. Mol Ecol 2015; 24:4583-5. [PMID: 26374665 DOI: 10.1111/mec.13356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
Understanding how organisms adapt to their local environment is one of the key goals in molecular ecology. Adaptation can be achieved through qualitative changes in the coding sequence and/or quantitative changes in gene expression, where the optimal dosage of a gene's product in a given environment is being selected for. Differences in gene expression among populations inhabiting distinct environments can be suggestive of locally adapted gene regulation and have thus been studied in different species (Whitehead & Crawford ; Hodgins-Davis & Townsend ). However, in contrast to a gene's coding sequence, its expression level at a given point in time may depend on various factors, including the current environment. Although critical for understanding the extent of local adaptation, it is usually difficult to disentangle the heritable differences in gene regulation from environmental effects. In this issue of Molecular Ecology, Stutz et al. () describe an experiment in which they reciprocally transplanted three-spined sticklebacks (Gasterosteus aculeatus) between independent pairs of small and large lakes. Their experimental design allows them to attribute differences in gene expression among sticklebacks either to lake of origin or destination lake. Interestingly, they find that translocated sticklebacks show a pattern of gene expression more similar to individuals from the destination lake than to individuals from the lake of origin, suggesting that expression of the targeted genes is more strongly regulated by environmental effects than by genetics. The environmental effect by itself is not entirely surprising; however, the relative extent of it is. Especially when put in the context of local adaptation and population differentiation, as done here, these findings cast a new light onto the heritability of differential gene expression and specifically its relative importance during population divergence and ultimately ecological speciation.
Collapse
Affiliation(s)
- Tobias L Lenz
- Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| |
Collapse
|
77
|
Chebib J, Renaut S, Bernatchez L, Rogers SM. Genetic structure and within-generation genome scan analysis of fisheries-induced evolution in a Lake Whitefish (Coregonus clupeaformis) population. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0797-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
78
|
Genetic Architecture of the Variation in Male-Specific Ossified Processes on the Anal Fins of Japanese Medaka. G3-GENES GENOMES GENETICS 2015; 5:2875-84. [PMID: 26511497 PMCID: PMC4683658 DOI: 10.1534/g3.115.021956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traits involved in reproduction evolve rapidly and show great diversity among closely related species. However, the genetic mechanisms that underlie the diversification of courtship traits are mostly unknown. Japanese medaka fishes (Oryzias latipes) use anal fins to attract females and to grasp females during courtship; the males have longer anal fins with male-specific ossified papillary processes on the fin rays. However, anal fin morphology varies between populations: the southern populations tend to have longer anal fins and more processes than the northern populations. In the present study, we conducted quantitative trait locus (QTL) mapping to investigate the genetic architecture underlying the variation in the number of papillary processes of Japanese medaka fish and compared the QTL with previously identified QTL controlling anal fin length. First, we found that only a few QTL were shared between anal fin length and papillary process number. Second, we found that the numbers of papillary processes on different fin rays often were controlled by different QTL. Finally, we produced another independent cross and found that some QTL were repeatable between the two crosses, whereas others were specific to only one cross. These results suggest that variation in the number of papillary processes is polygenic and controlled by QTL that are distinct from those controlling anal fin length. Thus, different courtship traits in Japanese medaka share a small number of QTL and have the potential for independent evolution.
Collapse
|
79
|
Konijnendijk N, Shikano T, Daneels D, Volckaert FAM, Raeymaekers JAM. Signatures of selection in the three-spined stickleback along a small-scale brackish water - freshwater transition zone. Ecol Evol 2015; 5:4174-86. [PMID: 26445666 PMCID: PMC4588664 DOI: 10.1002/ece3.1671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 01/31/2023] Open
Abstract
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.
Collapse
Affiliation(s)
- Nellie Konijnendijk
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| | - Takahito Shikano
- Ecological Genetics Research Unit Department of Biosciences University of Helsinki P.O. Box 65 FI-000 14 Helsinki Finland
| | - Dorien Daneels
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| | - Filip A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| | - Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics University of Leuven Ch. Deberiotstraat 32, B-3000 Leuven Belgium
| |
Collapse
|
80
|
Parks M, Subramanian S, Baroni C, Salvatore MC, Zhang G, Millar CD, Lambert DM. Ancient population genomics and the study of evolution. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130381. [PMID: 25487332 DOI: 10.1098/rstb.2013.0381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, the study of ancient DNA (aDNA) has been greatly enhanced by the development of second-generation DNA sequencing technologies and targeted enrichment strategies. These developments have allowed the recovery of several complete ancient genomes, a result that would have been considered virtually impossible only a decade ago. Prior to these developments, aDNA research was largely focused on the recovery of short DNA sequences and their use in the study of phylogenetic relationships, molecular rates, species identification and population structure. However, it is now possible to sequence a large number of modern and ancient complete genomes from a single species and thereby study the genomic patterns of evolutionary change over time. Such a study would herald the beginnings of ancient population genomics and its use in the study of evolution. Species that are amenable to such large-scale studies warrant increased research effort. We report here progress on a population genomic study of the Adélie penguin (Pygoscelis adeliae). This species is ideally suited to ancient population genomic research because both modern and ancient samples are abundant in the permafrost conditions of Antarctica. This species will enable us to directly address many of the fundamental questions in ecology and evolution.
Collapse
Affiliation(s)
- M Parks
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - S Subramanian
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| | - C Baroni
- Dipartimento di Scienze della Terra, Universita di Pisa, Pisa, Italy
| | - M C Salvatore
- Dipartimento di Scienze della Terra, Universita di Pisa, Pisa, Italy
| | - G Zhang
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, Republic of China Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - C D Millar
- Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - D M Lambert
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
| |
Collapse
|
81
|
Dalziel AC, Martin N, Laporte M, Guderley H, Bernatchez L. Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis). Evolution 2015; 69:2167-86. [PMID: 26177840 DOI: 10.1111/evo.12727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I-IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ.
Collapse
Affiliation(s)
- Anne C Dalziel
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.
| | - Nicolas Martin
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.,School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Martin Laporte
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Helga Guderley
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.,Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street PO BOX 15000, Halifax, NS, Canada, B3H 4R2
| | - Louis Bernatchez
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6
| |
Collapse
|
82
|
Czypionka T, Krugman T, Altmüller J, Blaustein L, Steinfartz S, Templeton AR, Nolte AW. Ecological transcriptomics – a non‐lethal sampling approach for endangered fire salamanders. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Till Czypionka
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology 24306 Plön Germany
| | - Tamar Krugman
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Janine Altmüller
- Cologne Centre for Genomics University of Cologne Weyertal 115b 50931 Köln Germany
| | - Leon Blaustein
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Sebastian Steinfartz
- Department of Evolutionary Biology Unit Molecular Ecology Technische Universität Braunschweig 38106 Braunschweig Germany
| | - Alan R. Templeton
- Institute of Evolution and Department of Evolutionary and Environmental Biology University of Haifa Haifa 3498838 Israel
| | - Arne W. Nolte
- Department of Evolutionary Genetics Max Planck Institute for Evolutionary Biology 24306 Plön Germany
| |
Collapse
|
83
|
Karvonen A, Lucek K, Marques DA, Seehausen O. Divergent Macroparasite Infections in Parapatric Swiss Lake-Stream Pairs of Threespine Stickleback (Gasterosteus aculeatus). PLoS One 2015; 10:e0130579. [PMID: 26086778 PMCID: PMC4472517 DOI: 10.1371/journal.pone.0130579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
Collapse
Affiliation(s)
- Anssi Karvonen
- University of Jyväskylä, Department of Biological and Environmental Science, FI-40014 University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Kay Lucek
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David A. Marques
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
84
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charrSalvelinus alpinuspopulations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr.The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, includinglysozymeandnatterin-likewhich was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr.The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
|
85
|
Mee JA, Bernatchez L, Reist JD, Rogers SM, Taylor EB. Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.). Evol Appl 2015; 8:423-41. [PMID: 26029257 PMCID: PMC4430767 DOI: 10.1111/eva.12247] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/05/2015] [Indexed: 01/19/2023] Open
Abstract
The concept of the designatable unit (DU) affords a practical approach to identifying diversity below the species level for conservation prioritization. However, its suitability for defining conservation units in ecologically diverse, geographically widespread and taxonomically challenging species complexes has not been broadly evaluated. The lake whitefish species complex (Coregonus spp.) is geographically widespread in the Northern Hemisphere, and it contains a great deal of variability in ecology and evolutionary legacy within and among populations, as well as a great deal of taxonomic ambiguity. Here, we employ a set of hierarchical criteria to identify DUs within the Canadian distribution of the lake whitefish species complex. We identified 36 DUs based on (i) reproductive isolation, (ii) phylogeographic groupings, (iii) local adaptation and (iv) biogeographic regions. The identification of DUs is required for clear discussion regarding the conservation prioritization of lake whitefish populations. We suggest conservation priorities among lake whitefish DUs based on biological consequences of extinction, risk of extinction and distinctiveness. Our results exemplify the need for extensive genetic and biogeographic analyses for any species with broad geographic distributions and the need for detailed evaluation of evolutionary history and adaptive ecological divergence when defining intraspecific conservation units.
Collapse
Affiliation(s)
- Jonathan A Mee
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébec, QC, Canada
| | | | - Sean M Rogers
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Eric B Taylor
- Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
86
|
Gudbrandsson J, Ahi EP, Franzdottir SR, Kapralova KH, Kristjansson BK, Steinhaeuser SS, Maier VH, Johannesson IM, Snorrason SS, Jonsson ZO, Palsson A. The developmental transcriptome of contrasting Arctic charr ( Salvelinus alpinus) morphs. F1000Res 2015; 4:136. [PMID: 27635217 PMCID: PMC5007756 DOI: 10.12688/f1000research.6402.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Species and populations with parallel evolution of specific traits can help illuminate how predictable adaptations and divergence are at the molecular and developmental level. Following the last glacial period, dwarfism and specialized bottom feeding morphology evolved rapidly in several landlocked Arctic charr
Salvelinus alpinus populations in Iceland. To study the genetic divergence between small benthic morphs and limnetic morphs, we conducted RNA-sequencing charr embryos at four stages in early development. We studied two stocks with contrasting morphologies: the small benthic (SB) charr from Lake Thingvallavatn and Holar aquaculture (AC) charr. The data reveal significant differences in expression of several biological pathways during charr development. There was also an expression difference between SB- and AC-charr in genes involved in energy metabolism and blood coagulation genes. We confirmed differing expression of five genes in whole embryos with qPCR, including
lysozyme and
natterin-like which was previously identified as a fish-toxin of a lectin family that may be a putative immunopeptide. We also verified differential expression of 7 genes in the developing head that associated consistently with benthic v.s.limnetic morphology (studied in 4 morphs). Comparison of single nucleotide polymorphism (SNP) frequencies reveals extensive genetic differentiation between the SB and AC-charr (~1300 with more than 50% frequency difference). Curiously, three derived alleles in the otherwise conserved 12s and 16s mitochondrial ribosomal RNA genes are found in benthic charr. The data implicate multiple genes and molecular pathways in divergence of small benthic charr and/or the response of aquaculture charr to domestication. Functional, genetic and population genetic studies on more freshwater and anadromous populations are needed to confirm the specific loci and mutations relating to specific ecological traits in Arctic charr.
Collapse
Affiliation(s)
- Johannes Gudbrandsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Ehsan P Ahi
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigridur R Franzdottir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Kalina H Kapralova
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | | | - S Sophie Steinhaeuser
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Valerie H Maier
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Isak M Johannesson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Sigurdur S Snorrason
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Zophonias O Jonsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Arnar Palsson
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavik, 101, Iceland
| |
Collapse
|
87
|
RAD-QTL Mapping Reveals Both Genome-Level Parallelism and Different Genetic Architecture Underlying the Evolution of Body Shape in Lake Whitefish (Coregonus clupeaformis) Species Pairs. G3-GENES GENOMES GENETICS 2015; 5:1481-91. [PMID: 26002924 PMCID: PMC4502382 DOI: 10.1534/g3.115.019067] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parallel changes in body shape may evolve in response to similar environmental conditions, but whether such parallel phenotypic changes share a common genetic basis is still debated. The goal of this study was to assess whether parallel phenotypic changes could be explained by genetic parallelism, multiple genetic routes, or both. We first provide evidence for parallelism in fish shape by using geometric morphometrics among 300 fish representing five species pairs of Lake Whitefish. Using a genetic map comprising 3438 restriction site−associated DNA sequencing single-nucleotide polymorphisms, we then identified quantitative trait loci underlying body shape traits in a backcross family reared in the laboratory. A total of 138 body shape quantitative trait loci were identified in this cross, thus revealing a highly polygenic architecture of body shape in Lake Whitefish. Third, we tested for evidence of genetic parallelism among independent wild populations using both a single-locus method (outlier analysis) and a polygenic approach (analysis of covariation among markers). The single-locus approach provided limited evidence for genetic parallelism. However, the polygenic analysis revealed genetic parallelism for three of the five lakes, which differed from the two other lakes. These results provide evidence for both genetic parallelism and multiple genetic routes underlying parallel phenotypic evolution in fish shape among populations occupying similar ecological niches.
Collapse
|
88
|
Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 2015; 90:20-33. [PMID: 25929788 DOI: 10.1016/j.ympev.2015.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/23/2022]
Abstract
Rhinogobius fishes (Gobiidae) are distributed widely in East and Southeast Asia, and represent the most species-rich group of freshwater gobies with diversified life histories (i.e., amphidromous, fluvial, and lentic). To reveal their phylogenetic relationships and life history evolution patterns, we sequenced six nuclear and three mitochondrial DNA (mtDNA) loci from 18 species, mainly from the mainland of Japan and the Ryukyu Archipelago. Our phylogenetic tree based on nuclear genes resolved three major clades, including several distinct subclades. The mtDNA and nuclear DNA phylogenies showed large discordance, which strongly suggested mitochondrial introgression through large-scale interspecific hybridization in these regions. On the basis of the molecular dating using geological data as calibration points, the hybridization occurred in the early to middle Pleistocene. Reconstruction of the ancestral states of life history traits based on nuclear DNA phylogeny suggests that the evolutionary change from amphidromous to freshwater life, accompanied by egg size change, occurred independently in at least three lineages. One of these lineages showed two life history alterations, i.e., from amphidromous (small egg) to fluvial (large egg) to lentic (small egg). Although more inclusive analysis using species outside Japan should be further conducted, the present results suggest the importance of the life history evolution associated with high adaptability to freshwater environments in the remarkable species diversification in this group. Such life history divergences may have contributed to the development of reproductive isolation.
Collapse
|
89
|
Lee-Yaw JA, Irwin DE. The importance (or lack thereof) of niche divergence to the maintenance of a northern species complex: the case of the long-toed salamander (Ambystoma macrodactylum
Baird). J Evol Biol 2015; 28:917-30. [DOI: 10.1111/jeb.12619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/08/2015] [Accepted: 03/10/2015] [Indexed: 01/15/2023]
Affiliation(s)
- J. A. Lee-Yaw
- Faculté des sciences; Université de Neuchâtel; Neuchâtel Switzerland
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| | - D. E. Irwin
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
90
|
Graham CF, Glenn TC, McArthur AG, Boreham DR, Kieran T, Lance S, Manzon RG, Martino JA, Pierson T, Rogers SM, Wilson JY, Somers CM. Impacts of degraded
DNA
on restriction enzyme associated
DNA
sequencing (
RADS
eq). Mol Ecol Resour 2015; 15:1304-15. [DOI: 10.1111/1755-0998.12404] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Carly F. Graham
- Department of Biology University of Regina Regina Saskatchewan S4S 0A2 Canada
| | - Travis C. Glenn
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Andrew G. McArthur
- M.G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences DeGroote School of Medicine McMaster University 1280 Main Street West Hamilton Ontario L8S 4K1 Canada
| | - Douglas R. Boreham
- Medical Sciences Northern Ontario School of Medicine Greater Sudbury Ontario P0M Canada
| | - Troy Kieran
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Stacey Lance
- Savannah River Ecology Laboratory University of Georgia Athens GA 30602 USA
| | - Richard G. Manzon
- Department of Biology University of Regina Regina Saskatchewan S4S 0A2 Canada
| | - Jessica A. Martino
- Department of Biology University of Regina Regina Saskatchewan S4S 0A2 Canada
| | - Todd Pierson
- College of Public Health University of Georgia Athens GA 30602 USA
| | - Sean M. Rogers
- Department of Biological Sciences University of Calgary Calgary Alberta T2N 1N4 Canada
| | - Joanna Y. Wilson
- Department of Biology McMaster University Hamilton Ontario L8S 4M1 Canada
| | | |
Collapse
|
91
|
Dion-Côté AM, Symonová R, Ráb P, Bernatchez L. Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring. Proc Biol Sci 2015; 282:20142862. [PMID: 25608885 PMCID: PMC4344159 DOI: 10.1098/rspb.2014.2862] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/15/2014] [Indexed: 11/12/2022] Open
Abstract
Speciation may occur when the genomes of two populations accumulate genetic incompatibilities and/or chromosomal rearrangements that prevent inter-breeding in nature. Chromosome stability is critical for survival and faithful transmission of the genome, and hybridization can compromise this. However, the role of chromosomal stability on hybrid incompatibilities has rarely been tested in recently diverged populations. Here, we test for chromosomal instability in hybrids between nascent species, the 'dwarf' and 'normal' lake whitefish (Coregonus clupeaformis). We examined chromosomes in pure embryos, and healthy and malformed backcross embryos. While pure individuals displayed chromosome numbers corresponding to the expected diploid number (2n = 80), healthy backcrosses showed evidence of mitotic instability through an increased variance of chromosome numbers within an individual. In malformed backcrosses, extensive aneuploidy corresponding to multiples of the haploid number (1n = 40, 2n = 80, 3n = 120) was found, suggesting meiotic breakdown in their F1 parent. However, no detectable chromosome rearrangements between parental forms were identified. Genomic instability through aneuploidy thus appears to contribute to reproductive isolation between dwarf and normal lake whitefish, despite their very recent divergence (approx. 15-20 000 generations). Our data suggest that genetic incompatibilities may accumulate early during speciation and limit hybridization between nascent species.
Collapse
Affiliation(s)
- Anne-Marie Dion-Côté
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada G1V 0A6
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Libe˘chov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Libe˘chov, Czech Republic
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
92
|
York RA, Patil C, Hulsey CD, Streelman JT, Fernald RD. Evolution of bower building in Lake Malawi cichlid fish: phylogeny, morphology, and behavior. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
93
|
Lemay MA, Russello MA. Genetic evidence for ecological divergence in kokanee salmon. Mol Ecol 2015; 24:798-811. [PMID: 25580953 DOI: 10.1111/mec.13066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 01/16/2023]
Abstract
The evolution of locally adapted phenotypes among populations that experience divergent selective pressures is a central mechanism for generating and maintaining biodiversity. Recently, the advent of high-throughput DNA sequencing technology has provided tools for investigating the genetic basis of this process in natural populations of nonmodel organisms. Kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), occurs as two reproductive ecotypes, which differ in spawning habitat (tributaries vs. shorelines); however, outside of the spawning season the two ecotypes co-occur in many lakes and lack diagnostic morphological characteristics. We used restriction site-associated DNA (RAD) sequencing to identify 6145 SNPs and genotype kokanee from multiple spawning sites in Okanagan Lake (British Columbia, Canada). Outlier tests revealed 18 loci putatively under divergent selection between ecotypes, all of which exhibited temporally stable allele frequencies within ecotypes. Six outliers were annotated to sequences in the NCBI database, two of which matched genes associated with early development. There was no evidence for neutral genetic differentiation; however, outlier loci demonstrated significant structure with respect to ecotype and had high assignment accuracy in mixed composition simulations. The absence of neutral structure combined with a small number of highly divergent outlier loci is consistent with theoretical predictions for the early stages of ecological divergence. These outlier loci were then applied to a realistic fisheries scenario in which additional RAD sequencing was used to genotype kokanee collected by trawl in Okanagan Lake, providing preliminary evidence that this approach may be an effective tool for conservation and management.
Collapse
Affiliation(s)
- Matthew A Lemay
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | | |
Collapse
|
94
|
Faulks L, Svanbäck R, Eklöv P, Östman Ö. Genetic and morphological divergence along the littoral-pelagic axis in two common and sympatric fishes: perch,Perca fluviatilis(Percidae) and roach,Rutilus rutilus(Cyprinidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12452] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Leanne Faulks
- Department of Ecology and Genetics - Animal Ecology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Richard Svanbäck
- Department of Ecology and Genetics - Limnology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Peter Eklöv
- Department of Ecology and Genetics - Limnology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - Örjan Östman
- Department of Ecology and Genetics - Animal Ecology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| |
Collapse
|
95
|
Beheregaray LB, Cooke GM, Chao NL, Landguth EL. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Front Genet 2015; 5:477. [PMID: 25653668 PMCID: PMC4301025 DOI: 10.3389/fgene.2014.00477] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/29/2014] [Indexed: 11/26/2022] Open
Abstract
Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas.
Collapse
Affiliation(s)
- Luciano B Beheregaray
- Molecular Ecology Lab, School of Biological Sciences, Flinders University Adelaide, SA, Australia
| | - Georgina M Cooke
- The Australian Museum, The Australian Museum Research Institute Sydney, NSW, Australia
| | - Ning L Chao
- Departamento de Ciências Pesqueiras, Universidade Federal do Amazonas Manaus, Brazil ; National Museum of Marine Biology and Aquarium Pintung, Taiwan
| | - Erin L Landguth
- Division of Biological Sciences, University of Montana Missoula, MT, USA
| |
Collapse
|
96
|
Wellborn GA, Langerhans RB. Ecological opportunity and the adaptive diversification of lineages. Ecol Evol 2015; 5:176-95. [PMID: 25628875 PMCID: PMC4298445 DOI: 10.1002/ece3.1347] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022] Open
Abstract
The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche-related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species-rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity - but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying the four major components of the concept of ecological opportunity.
Collapse
Affiliation(s)
- Gary A Wellborn
- Department of Biology, University of OklahomaNorman, Oklahoma, 73019
| | - R Brian Langerhans
- Department of Biological Sciences and W.M. Keck Center for Behavioral Biology, North Carolina State UniversityCampus Box 7617, Raleigh, North Carolina, 27695
| |
Collapse
|
97
|
Kahilainen KK, Patterson WP, Sonninen E, Harrod C, Kiljunen M. Adaptive radiation along a thermal gradient: preliminary results of habitat use and respiration rate divergence among whitefish morphs. PLoS One 2014; 9:e112085. [PMID: 25405979 PMCID: PMC4236043 DOI: 10.1371/journal.pone.0112085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.
Collapse
Affiliation(s)
- Kimmo Kalevi Kahilainen
- Kilpisjärvi Biological Station, University of Helsinki, Kilpisjärvi, Finland
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - William Paul Patterson
- Department of Geological Sciences, Saskatchewan, Isotope Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eloni Sonninen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Chris Harrod
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Mikko Kiljunen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
98
|
Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 2014; 7:1008-25. [PMID: 25553064 PMCID: PMC4231592 DOI: 10.1111/eva.12149] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework.
Collapse
Affiliation(s)
| | - Alexandra Pavlova
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| | | | - Paul Sunnucks
- School of Biological Sciences, Monash UniversityMelbourne, Vic., Australia
| |
Collapse
|
99
|
Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat Commun 2014; 5:5168. [DOI: 10.1038/ncomms6168] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022] Open
|
100
|
Bicskei B, Bron JE, Glover KA, Taggart JB. A comparison of gene transcription profiles of domesticated and wild Atlantic salmon (Salmo salar L.) at early life stages, reared under controlled conditions. BMC Genomics 2014; 15:884. [PMID: 25301270 PMCID: PMC4210632 DOI: 10.1186/1471-2164-15-884] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/29/2014] [Indexed: 01/16/2023] Open
Abstract
Background Atlantic salmon have been subject to domestication for approximately ten generations, beginning in the early 1970s. This process of artificial selection will have created various genetic differences between wild and farmed stocks. Each year, hundreds of thousands of farmed fish escape into the wild. These escapees may interbreed with wild conspecifics raising concerns for both the fish-farming industry and fisheries managers. Thus, a better understanding of the interactions between domesticated and wild salmon is essential to the continued sustainability of the aquaculture industry and to the maintenance of healthy wild stocks. Results We compared the transcriptomes of a wild Norwegian Atlantic salmon population (Figgjo) and a Norwegian farmed strain (Mowi) at two life stages: yolk sac fry and post first-feeding fry. The analysis employed 44 k oligo-microarrays to analyse gene expression of 36 farmed, wild and hybrid (farmed dam x wild sire) individuals reared under identical hatchery conditions. Although some of the transcriptional differences detected overlapped between sampling points, our results highlighted the importance of studying various life stages. Compared to the wild population, the Mowi strain displayed up-regulation in mRNA translation-related and down regulation in nervous and immune system -related pathways in the sac fry, whereas up-regulation of digestive and endocrine activities, carbohydrate, energy, amino acid and lipid metabolism and down-regulation of environmental information processing and immune system pathways were evident in the feeding fry. Differentially regulated pathways that were common among life stages generally belonged to environmental information processing and immune system functional groups. In addition, we found indications of strong maternal effects, reinforcing the importance of including reciprocal hybrids in the analysis. Conclusions In agreement with previous studies we showed that domestication has caused changes in the transcriptome of wild Atlantic salmon and that many of the affected pathways are life-stage specific We highlighted the importance of reciprocal hybrids to the deconvolution of maternal/paternal effects and our data support the view that the genetic architecture of the strains studied highly influences the genes differentially expressed between wild and domesticated fish. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-884) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatrix Bicskei
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | | | | | | |
Collapse
|