51
|
Morrison RE, Mushimiyimana Y, Stoinski TS, Eckardt W. Rapid transmission of respiratory infections within but not between mountain gorilla groups. Sci Rep 2021; 11:19622. [PMID: 34620899 PMCID: PMC8497490 DOI: 10.1038/s41598-021-98969-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Minimizing disease transmission between humans and wild apes and controlling outbreaks in ape populations is vital to both ape conservation and human health, but information on the transmission of real infections in wild populations is rare. We analyzed respiratory outbreaks in a subpopulation of wild mountain gorillas (Gorilla beringei beringei) between 2004 and 2020. We investigated transmission within groups during 7 outbreaks using social networks based on contact and proximity, and transmission between groups during 15 outbreaks using inter-group encounters, transfers and home range overlap. Patterns of contact and proximity within groups were highly predictable based on gorillas' age and sex. Disease transmission within groups was rapid with a median estimated basic reproductive number (R0) of 4.18 (min = 1.74, max = 9.42), and transmission was not predicted by the social network. Between groups, encounters and transfers did not appear to have enabled disease transmission and the overlap of groups' ranges did not predict concurrent outbreaks. Our findings suggest that gorilla social structure, with many strong connections within groups and weak ties between groups, may enable rapid transmission within a group once an infection is present, but limit the transmission of infections between groups.
Collapse
Affiliation(s)
- Robin E Morrison
- Dian Fossey Gorilla Fund, Musanze, Rwanda.
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK.
| | | | | | | |
Collapse
|
52
|
Farthing TS, Dawson DE, Sanderson MW, Seger H, Lanzas C. Combining epidemiological and ecological methods to quantify social effects on Escherichia coli transmission. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210328. [PMID: 34754493 PMCID: PMC8493196 DOI: 10.1098/rsos.210328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Enteric microparasites like Escherichia coli use multiple transmission pathways to propagate within and between host populations. Characterizing the relative transmission risk attributable to host social relationships and direct physical contact between individuals is paramount for understanding how microparasites like E. coli spread within affected communities and estimating colonization rates. To measure these effects, we carried out commensal E. coli transmission experiments in two cattle (Bos taurus) herds, wherein all individuals were equipped with real-time location tracking devices. Following transmission experiments in this model system, we derived temporally dynamic social and contact networks from location data. Estimated social affiliations and dyadic contact frequencies during transmission experiments informed pairwise accelerated failure time models that we used to quantify effects of these sociobehavioural variables on weekly E. coli colonization risk in these populations. We found that sociobehavioural variables alone were ultimately poor predictors of E. coli colonization in feedlot cattle, but can have significant effects on colonization hazard rates (p ≤ 0.05). We show, however, that observed effects were not consistent between similar populations. This work demonstrates that transmission experiments can be combined with real-time location data collection and processing procedures to create an effective framework for quantifying sociobehavioural effects on microparasite transmission.
Collapse
Affiliation(s)
- Trevor S. Farthing
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Daniel E. Dawson
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mike W. Sanderson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Hannah Seger
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
53
|
Balasubramaniam KN, Kaburu SSK, Marty PR, Beisner BA, Bliss-Moreau E, Arlet ME, Ruppert N, Ismail A, Anuar Mohd Sah S, Mohan L, Rattan S, Kodandaramaiah U, McCowan B. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. J Anim Ecol 2021; 90:2819-2833. [PMID: 34453852 DOI: 10.1111/1365-2656.13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Human population expansion into wildlife habitats has increased interest in the behavioural ecology of human-wildlife interactions. To date, however, the socioecological factors that determine whether, when or where wild animals take risks by interacting with humans and anthropogenic factors still remains unclear. We adopt a comparative approach to address this gap, using social network analysis (SNA). SNA, increasingly implemented to determine human impact on wildlife ecology, can be a powerful tool to understand how animal socioecology influences the spatiotemporal distribution of human-wildlife interactions. For 10 groups of rhesus, long-tailed and bonnet macaques (Macaca spp.) living in anthropogenically impacted environments in Asia, we collected data on human-macaque interactions, animal demographics, and macaque-macaque agonistic and affiliative social interactions. We constructed 'human co-interaction networks' based on associations between macaques that interacted with humans within the same time and spatial locations, and social networks based on macaque-macaque allogrooming behaviour, affiliative behaviours of short duration (agonistic support, lip-smacking, silent bare-teeth displays and non-sexual mounting) and proximity. Pre-network permutation tests revealed that, within all macaque groups, specific individuals jointly took risks by repeatedly, consistently co-interacting with humans within and across time and space. GLMMs revealed that macaques' tendencies to co-interact with humans was positively predicted by their tendencies to engage in short-duration affiliative interactions and tolerance of conspecifics, although the latter varied across species (bonnets>rhesus>long-tailed). Male macaques were more likely to co-interact with humans than females. Neither macaques' grooming relationships nor their dominance ranks predicted their tendencies to co-interact with humans. Our findings suggest that, in challenging anthropogenic environments, less (compared to more) time-consuming forms of affiliation, and additionally greater social tolerance in less ecologically flexible species with a shorter history of exposure to humans, may be key to animals' joint propensities to take risks to gain access to resources. For males, greater exploratory tendencies and less energetically demanding long-term life-history strategies (compared to females) may also influence such joint risk-taking. From conservation and public health perspectives, wildlife connectedness within such co-interaction networks may inform interventions to mitigate zoonosis, and move human-wildlife interactions from conflict towards coexistence.
Collapse
Affiliation(s)
- Krishna N Balasubramaniam
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA
| | - Stefano S K Kaburu
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Pascal R Marty
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA.,Zoo Zürich, Zürich, Switzerland
| | - Brianne A Beisner
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA.,Animal Resources Division, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Eliza Bliss-Moreau
- Department of Psychology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Malgorzata E Arlet
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Nadine Ruppert
- School of Biological Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia.,Malaysian Primatological Society, Kulim, Kedah, Malaysia
| | - Ahmad Ismail
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Lalith Mohan
- Himachal Pradesh Forest Department, Shimla, India
| | | | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, India
| | - Brenda McCowan
- Department of Population Health & Reproduction, School of Veterinary Medicine (SVM), University of California at Davis, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
54
|
Fielding HR, Silk MJ, McKinley TJ, Delahay RJ, Wilson-Aggarwal JK, Gauvin L, Ozella L, Cattuto C, McDonald RA. Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain. Prev Vet Med 2021; 194:105443. [PMID: 34352518 PMCID: PMC8385416 DOI: 10.1016/j.prevetmed.2021.105443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 10/28/2022]
Abstract
The nature of contacts between hosts can be important in facilitating or impeding the spread of pathogens within a population. Networks constructed from contacts between hosts allow examination of how individual variation might influence the spread of infections. Studying the contact networks of livestock species managed under different conditions can additionally provide insight into their influence on these contact structures. We collected high-resolution proximity and GPS location data from nine groups of domestic cattle (mean group size = 85) in seven dairy herds employing a range of grazing and housing regimes. Networks were constructed from cattle contacts (defined by proximity) aggregated by different temporal windows (2 h, 24 h, and approximately 1 week) and by location within the farm. Networks of contacts aggregated over the whole study were highly saturated but dividing contacts by space and time revealed substantial variation in cattle interactions. Cows showed statistically significant variation in the frequency of their contacts and in the number of cows with which they were in contact. When cows were in buildings, compared to being on pasture, contact durations were longer and cows contacted more other cows. A small number of cows showed evidence of consistent relationships but the majority of cattle did not. In one group where management allowed free access to all farm areas, cows showed asynchronous space use and, while at pasture, contacted fewer other cows and showed substantially greater between-individual variation in contacts than other groups. We highlight the degree to which variations in management (e.g. grazing access, milking routine) substantially alter cattle contact patterns, with potentially major implications for infection transmission and social interactions. In particular, where individual cows have free choice of their environment, the resulting contact networks may have a less-risky structure that could reduce the likelihood of direct transmission of infections.
Collapse
Affiliation(s)
- Helen R Fielding
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | | | - Richard J Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ, UK
| | - Jared K Wilson-Aggarwal
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | | | - Laura Ozella
- ISI Foundation, Via Chisola 5, 10126, Torino, Italy
| | - Ciro Cattuto
- ISI Foundation, Via Chisola 5, 10126, Torino, Italy; Computer Science Department, University of Turin, Corso Svizzera 185, 10149, Torino, Italy
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK.
| |
Collapse
|
55
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
56
|
Yoo DS, Kim Y, Lee ES, Lim JS, Hong SK, Lee IS, Jung CS, Yoon HC, Wee SH, Pfeiffer DU, Fournié G. Transmission Dynamics of African Swine Fever Virus, South Korea, 2019. Emerg Infect Dis 2021; 27:1909-1918. [PMID: 34152953 PMCID: PMC8237864 DOI: 10.3201/eid2707.204230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
African swine fever (ASF) is a substantial concern for global food production and security. However, lack of epidemiologic data in affected areas has limited the knowledge of the main drivers of ASF virus (ASFV) transmission. To assess the role of vehicle movements and wild boar populations in spreading ASFV to pig farms in South Korea, we combined data generated by ASF surveillance on pig farms and of wild boars with nationwide global positioning system–based tracking data for vehicles involved in farming activities. Vehicle movements from infected premises were associated with a higher probability of ASFV incursion into a farm than was geographic proximity to ASFV-infected wild boar populations. Although ASFV can spill over from infected wild boars into domestic pigs, vehicles played a substantial role in spreading infection between farms, despite rapid on-farm detection and culling. This finding highlights the need for interventions targeting farm-to-farm and wildlife-to-farm interfaces.
Collapse
|
57
|
Yang A, Boughton RK, Miller RS, Wight B, Anderson WM, Beasley JC, VerCauteren KC, Pepin KM, Wittemyer G. Spatial variation in direct and indirect contact rates at the wildlife-livestock interface for informing disease management. Prev Vet Med 2021; 194:105423. [PMID: 34246115 DOI: 10.1016/j.prevetmed.2021.105423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Little is known about disease transmission relevant contact rates at the wildlife-livestock interface and the factors shaping them. Indirect contact via shared resources is thought to be important but remains unquantified in most systems, making it challenging to evaluate the impact of livestock management practices on contact networks. Free-ranging wild pigs (Sus scrofa) in North America are an invasive, socially-structured species with an expanding distribution that pose a threat to livestock health given their potential to transmit numerous livestock diseases, such as pseudorabies, brucellosis, trichinellosis, and echinococcosis, among many others. Our objective in this study was to quantify the spatial variations in direct and indirect contact rates among wild pigs and cattle on a commercial cow-calf operation in Florida, USA. Using GPS data from 20 wild pigs and 11 cattle and a continuous-time movement model, we extracted three types of spatial contacts between wild pigs and cattle, including direct contact, indirect contact in the pastoral environment (unknown naturally occurring resources), and indirect contact via anthropogenic cattle resources (feed supplements and water supply troughs). We examined the effects of sex, spatial proximity, and cattle supplement availability on contact rates at the species level and characterized wild pig usage of cattle supplements. Our results suggested daily pig-cattle direct contacts occurred only occasionally, while a significant number of pig-cattle indirect contacts occurred via natural resources distributed heterogeneously across the landscape. At cattle supplements, more indirect contacts occurred at liquid molasses than water troughs or molasses-mineral block tubs due to higher visitation rates by wild pigs. Our results can be directly used for parameterizing epidemiological models to inform risk assessment and optimal control strategies for controlling transmission of shared diseases.
Collapse
Affiliation(s)
- Anni Yang
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA; National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO, 80521, USA.
| | - Raoul K Boughton
- Wildlife Ecology and Conservation, Range Cattle Research and Education Center, University of Florida, 3401 Experiment Station, Ona, FL, 33865, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, 2150 Centre Avenue, Fort Collins, CO, 80526, USA
| | - Bethany Wight
- Wildlife Ecology and Conservation, Range Cattle Research and Education Center, University of Florida, 3401 Experiment Station, Ona, FL, 33865, USA
| | - Wesley M Anderson
- Wildlife Ecology and Conservation, Range Cattle Research and Education Center, University of Florida, 3401 Experiment Station, Ona, FL, 33865, USA
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, PO Drawer E, Aiken, SC, 29802, USA
| | - Kurt C VerCauteren
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO, 80521, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO, 80521, USA
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
58
|
Group-size effects on virus prevalence depend on the presence of an invasive species. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03040-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Khanyari M, Robinson S, Morgan ER, Brown T, Singh NJ, Salemgareyev A, Zuther S, Kock R, Milner‐Gulland EJ. Building an ecologically founded disease risk prioritization framework for migratory wildlife species based on contact with livestock. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Munib Khanyari
- Department of Biological Sciences University of Bristol Bristol UK
- Interdisciplinary Centre for Conservation Sciences (ICCS) Department of Zoology University of Oxford Oxford UK
- Nature Conservation Foundation Mysore India
| | - Sarah Robinson
- Interdisciplinary Centre for Conservation Sciences (ICCS) Department of Zoology University of Oxford Oxford UK
| | - Eric R. Morgan
- Department of Biological Sciences University of Bristol Bristol UK
- School of Biological Sciences Queen's University Belfast Belfast UK
| | - Tony Brown
- School of Biological Sciences Queen's University Belfast Belfast UK
| | | | - Albert Salemgareyev
- Association for the Conservation of Biodiversity of Kazakhstan Astana Kazakhstan
| | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan Astana Kazakhstan
- Frankfurt Zoological Society Frankfurt Germany
| | | | - E. J. Milner‐Gulland
- Interdisciplinary Centre for Conservation Sciences (ICCS) Department of Zoology University of Oxford Oxford UK
| |
Collapse
|
60
|
Kriegel ER, Cherney DJR, Kiffner C. Conventional knowledge, general attitudes and risk perceptions towards zoonotic diseases among Maasai in northern Tanzania. Heliyon 2021; 7:e07041. [PMID: 34041394 PMCID: PMC8144003 DOI: 10.1016/j.heliyon.2021.e07041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding factors influencing conventional medical knowledge (CMK), general attitudes and risk perceptions of zoonotic diseases among rural residents who face risk of exposure to such diseases is important for human, livestock, and wildlife health. Focusing on Maasai from Makame, Kiteto District (Tanzania) who largely maintained a semi-nomadic lifestyle, we evaluated respondents’ CMK of causes, symptoms, treatments, and prevention methods of rabies, brucellosis, and anthrax. In addition, we identified socio-demographic correlates of CMK with respect to the target zoonoses. Finally, we assessed the relative frequency of practices that increase the risk of pathogen transmission, and compared the risk perception of the three diseases. We conducted structured interviews with Maasai respondents (n = 46) in six sub-villages of Makame and considered education, gender, age, and wealth (indicated by standardized number of livestock) as potential correlates of CMK. Respondents had greater CMK of rabies and anthrax, but feared anthrax the most. Receiving formal education increased rabies CMK (p ≤ 0.05). The CMK of anthrax and brucellosis was not associated with any of the tested variables (p > 0.05). Risk perceptions were correlated with knowledge scores for rabies and anthrax (p ≤ 0.05), and multiple interviewees reported engaging in practices that potentially enhance pathogen transmission. Specific socio-demographic attributes (i.e., formal education) may explain the observed variation in CMK of zoonotic diseases. This information can be used to develop and tailor health education programs for specific at-risk groups.
Collapse
Affiliation(s)
- E R Kriegel
- Department of Animal Science, Cornell University, Ithaca, NY 14853-4801 USA
| | - D J R Cherney
- Department of Animal Science, Cornell University, Ithaca, NY 14853-4801 USA
| | - C Kiffner
- Center for Wildlife Management Studies, The School for Field Studies, PO Box 304, Karatu, Tanzania.,Junior Research Group Human-Wildlife Conflict & Coexistence, Leibniz Centre for Agricultural Landscape Research (ZALF), Research Area Land Use and Governance, Müncheberg, Germany
| |
Collapse
|
61
|
Riascos AP, Sanders DP. Mean encounter times for multiple random walkers on networks. Phys Rev E 2021; 103:042312. [PMID: 34005853 DOI: 10.1103/physreve.103.042312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
We introduce a general approach for the study of the collective dynamics of noninteracting random walkers on connected networks. We analyze the movement of R independent (Markovian) walkers, each defined by its own transition matrix. By using the eigenvalues and eigenvectors of the R independent transition matrices, we deduce analytical expressions for the collective stationary distribution and the average number of steps needed by the random walkers to start in a particular configuration and reach specific nodes the first time (mean first-passage times), as well as global times that characterize the global activity. We apply these results to the study of mean first-encounter times for local and nonlocal random walk strategies on different types of networks, with both synchronous and asynchronous motion.
Collapse
Affiliation(s)
- Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - David P Sanders
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico and Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
62
|
Trojan hosts: the menace of invasive vertebrates as vectors of pathogens in the Southern Cone of South America. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
63
|
Kim Y, Métras R, Dommergues L, Youssouffi C, Combo S, Le Godais G, Pfeiffer DU, Cêtre-Sossah C, Cardinale E, Filleul L, Youssouf H, Subiros M, Fournié G. The role of livestock movements in the spread of Rift Valley fever virus in animals and humans in Mayotte, 2018-19. PLoS Negl Trop Dis 2021; 15:e0009202. [PMID: 33684126 PMCID: PMC7939299 DOI: 10.1371/journal.pntd.0009202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne viral disease of major animal and public health importance. In 2018–19, it caused an epidemic in both livestock and human populations of the island of Mayotte. Using Bayesian modelling approaches, we assessed the spatio-temporal pattern of RVF virus (RVFV) infection in livestock and human populations across the island, and factors shaping it. First, we assessed if (i) livestock movements, (ii) spatial proximity from communes with infected animals, and (iii) livestock density were associated with the temporal sequence of RVFV introduction into Mayotte communes’ livestock populations. Second, we assessed whether the rate of human infection was associated with (a) spatial proximity from and (b) livestock density of communes with infected animals. Our analyses showed that the temporal sequence of RVFV introduction into communes’ livestock populations was associated with livestock movements and spatial proximity from communes with infected animals, with livestock movements being associated with the best model fit. Moreover, the pattern of human cases was associated with their spatial proximity from communes with infected animals, with the risk of human infection sharply increasing if livestock in the same or close communes were infected. This study highlights the importance of understanding livestock movement networks in informing the design of risk-based RVF surveillance programs. Rift Valley fever (RVF) is a vector-borne zoonotic disease, endemic in many sub-Saharan Africa regions with substantial outbreaks. RVF virus (RVFV) is transmitted to animals primarily by the bite of infected mosquitos, whereas direct or indirect contact with infected animals forms the primary route of RVFV transmission to humans. In 2018–19, Mayotte, an archipelago in the Indian Ocean between Madagascar and the coast of Eastern Africa, experienced an RVF epidemic in both livestock and humans. In this study, we investigated factors shaping the spatio-temporal pattern of RVFV infection in livestock and human populations across Mayotte. The diffusion of RVFV through Mayotte’s livestock population was associated with livestock movements and, potentially to a lesser extent, spatial proximity from communes with infected animals. Moreover, the pressure of infection on humans was the highest if nearby livestock were infected. This study highlights the value of accounting for the structure of livestock movement networks in the surveillance of zoonotic diseases at the human-animal interface, and the need for One Health approaches.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- * E-mail:
| | - Raphaëlle Métras
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique (UMRS-1136), Paris, France
| | | | | | - Soihibou Combo
- Direction de l’Alimentation, de l’Agriculture et de la Forêt de Mayotte, Mamoudzou, France
| | - Gilles Le Godais
- Direction de l’Alimentation, de l’Agriculture et de la Forêt de Mayotte, Mamoudzou, France
| | - Dirk U. Pfeiffer
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Veterinary Epidemiology, Economics and Public Health group, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Sainte Clotilde, La Réunion, France
- ASTRE, CIRAD, Univ Montpellier, INRAE, Montpellier, France
| | - Eric Cardinale
- CIRAD, UMR ASTRE, Sainte Clotilde, La Réunion, France
- ASTRE, CIRAD, Univ Montpellier, INRAE, Montpellier, France
| | | | | | | | - Guillaume Fournié
- Veterinary Epidemiology, Economics and Public Health group, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
64
|
Russell RE, Walsh DP, Samuel MD, Grunnill MD, Rocke TE. Space matters: host spatial structure and the dynamics of plague transmission. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
65
|
Parasitism and host social behaviour: a meta-analysis of insights derived from social network analysis. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Pepin KM, Golnar A, Podgórski T. Social structure defines spatial transmission of African swine fever in wild boar. J R Soc Interface 2021; 18:20200761. [PMID: 33468025 DOI: 10.1098/rsif.2020.0761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spatial spread of infectious disease is determined by spatial and social processes such as animal space use and family group structure. Yet, the impacts of social processes on spatial spread remain poorly understood and estimates of spatial transmission kernels (STKs) often exclude social structure. Understanding the impacts of social structure on STKs is important for obtaining robust inferences for policy decisions and optimizing response plans. We fit spatially explicit transmission models with different assumptions about contact structure to African swine fever virus surveillance data from eastern Poland from 2014 to 2015 and evaluated how social structure affected inference of STKs and spatial spread. The model with social structure provided better inference of spatial spread, predicted that approximately 80% of transmission events occurred within family groups, and that transmission was weakly female-biased (other models predicted weakly male-biased transmission). In all models, most transmission events were within 1.5 km, with some rare events at longer distances. Effective reproductive numbers were between 1.1 and 2.5 (maximum values between 4 and 8). Social structure can modify spatial transmission dynamics. Accounting for this additional contact heterogeneity in spatial transmission models could provide more robust inferences of STKs for policy decisions, identify best control targets and improve transparency in model uncertainty.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO 80526, USA
| | - Andrew Golnar
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, CO 80526, USA
| | - Tomasz Podgórski
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, 17-230 Białowieża, Poland.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 00 Praha 6, Czech Republic
| |
Collapse
|
67
|
Yang A, Schlichting P, Wight B, Anderson WM, Chinn SM, Wilber MQ, Miller RS, Beasley JC, Boughton RK, VerCauteren KC, Wittemyer G, Pepin KM. Effects of social structure and management on risk of disease establishment in wild pigs. J Anim Ecol 2021; 90:820-833. [PMID: 33340089 DOI: 10.1111/1365-2656.13412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
Contact heterogeneity among hosts determines invasion and spreading dynamics of infectious disease, thus its characterization is essential for identifying effective disease control strategies. Yet, little is known about the factors shaping contact networks in many wildlife species and how wildlife management actions might affect contact networks. Wild pigs in North America are an invasive, socially structured species that pose a health concern for domestic swine given their ability to transmit numerous devastating diseases such as African swine fever (ASF). Using proximity loggers and GPS data from 48 wild pigs in Florida and South Carolina, USA, we employed a probabilistic framework to estimate weighted contact networks. We determined the effects of sex, social group and spatial distribution (monthly home-range overlap and distance) on wild pig contact. We also estimated the impacts of management-induced perturbations on contact and inferred their effects on ASF establishment in wild pigs with simulation. Social group membership was the primary factor influencing contacts. Between-group contacts depended primarily on space use characteristics, with fewer contacts among groups separated by >2 km and no contacts among groups >4 km apart within a month. Modelling ASF dynamics on the contact network demonstrated that indirect contacts resulting from baiting (a typical method of attracting wild pigs or game species to a site to enhance recreational hunting) increased the risk of disease establishment by ~33% relative to direct contact. Low-intensity population reduction (<5.9% of the population) had no detectable impact on contact structure but reduced predicted ASF establishment risk relative to no population reduction. We demonstrate an approach for understanding the relative role of spatial, social and individual-level characteristics in shaping contact networks and predicting their effects on disease establishment risk, thus providing insight for optimizing disease control in spatially and socially structured wildlife species.
Collapse
Affiliation(s)
- Anni Yang
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.,National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Peter Schlichting
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - Bethany Wight
- Wildlife Ecology and Conservation, Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| | - Wesley M Anderson
- Wildlife Ecology and Conservation, Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| | - Sarah M Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - Mark Q Wilber
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Service, Fort Collins, CO, USA
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - Raoul K Boughton
- Wildlife Ecology and Conservation, Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| | - Kurt C VerCauteren
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| |
Collapse
|
68
|
Identifying likely transmissions in Mycobacterium bovis infected populations of cattle and badgers using the Kolmogorov Forward Equations. Sci Rep 2020; 10:21980. [PMID: 33319838 PMCID: PMC7738532 DOI: 10.1038/s41598-020-78900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
Established methods for whole-genome-sequencing (WGS) technology allow for the detection of single-nucleotide polymorphisms (SNPs) in the pathogen genomes sourced from host samples. The information obtained can be used to track the pathogen’s evolution in time and potentially identify ‘who-infected-whom’ with unprecedented accuracy. Successful methods include ‘phylodynamic approaches’ that integrate evolutionary and epidemiological data. However, they are typically computationally intensive, require extensive data, and are best applied when there is a strong molecular clock signal and substantial pathogen diversity. To determine how much transmission information can be inferred when pathogen genetic diversity is low and metadata limited, we propose an analytical approach that combines pathogen WGS data and sampling times from infected hosts. It accounts for ‘between-scale’ processes, in particular within-host pathogen evolution and between-host transmission. We applied this to a well-characterised population with an endemic Mycobacterium bovis (the causative agent of bovine/zoonotic tuberculosis, bTB) infection. Our results show that, even with such limited data and low diversity, the computation of the transmission probability between host pairs can help discriminate between likely and unlikely infection pathways and therefore help to identify potential transmission networks. However, the method can be sensitive to assumptions about within-host evolution.
Collapse
|
69
|
Animal board invited review: OneARK: Strengthening the links between animal production science and animal ecology. Animal 2020; 15:100053. [PMID: 33515992 DOI: 10.1016/j.animal.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.
Collapse
|
70
|
Sandel AA, Rushmore J, Negrey JD, Mitani JC, Lyons DM, Caillaud D. Social Network Predicts Exposure to Respiratory Infection in a Wild Chimpanzee Group. ECOHEALTH 2020; 17:437-448. [PMID: 33404931 PMCID: PMC7786864 DOI: 10.1007/s10393-020-01507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Respiratory pathogens are expected to spread through social contacts, but outbreaks often occur quickly and unpredictably, making it challenging to simultaneously record social contact and disease incidence data, especially in wildlife. Thus, the role of social contacts in the spread of infectious disease is often treated as an assumption in disease simulation studies, and few studies have empirically demonstrated how pathogens spread through social networks. In July-August 2015, an outbreak of respiratory disease was observed in a wild chimpanzee community in Kibale National Park, Uganda, during an ongoing behavioral study of male chimpanzees, offering a rare opportunity to evaluate how social behavior affects individual exposure to socially transmissible diseases. From May to August 2015, we identified adult and adolescent male chimpanzees displaying coughs and rhinorrhea and recorded 5-m proximity data on males (N = 40). Using the network k-test, we found significant relationships between male network connectivity and the distribution of cases within the network, supporting the importance of short-distance contacts for the spread of the respiratory outbreak. Additionally, chimpanzees central to the network were more likely to display clinical signs than those with fewer connections. Although our analyses were limited to male chimpanzees, these findings underscore the value of social connectivity data in predicting disease outcomes and elucidate a potential evolutionary cost of being social.
Collapse
Affiliation(s)
- Aaron A Sandel
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA.
| | - Julie Rushmore
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
- Epicenter for Disease Dynamics, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jacob D Negrey
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
| | - John C Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Damien Caillaud
- Department of Anthropology, University of California, Davis, CA, USA
| |
Collapse
|
71
|
Hedman HD, Varga C, Duquette J, Novakofski J, Mateus-Pinilla NE. Food Safety Considerations Related to the Consumption and Handling of Game Meat in North America. Vet Sci 2020; 7:vetsci7040188. [PMID: 33255599 PMCID: PMC7712377 DOI: 10.3390/vetsci7040188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Emerging foodborne pathogens present a threat to public health. It is now recognized that several foodborne pathogens originate from wildlife as demonstrated by recent global disease outbreaks. Zoonotic spillover events are closely related to the ubiquity of parasitic, bacterial, and viral pathogens present within human and animal populations and their surrounding environment. Foodborne diseases have economic and international trade impacts, incentivizing effective wildlife disease management. In North America, there are no food safety standards for handling and consumption of free-ranging game meat. Game meat consumption continues to rise in North America; however, this growing practice could place recreational hunters and game meat consumers at increased risk of foodborne diseases. Recreational hunters should follow effective game meat food hygiene practices from harvest to storage and consumption. Here, we provide a synthesis review that evaluates the ecological and epidemiological drivers of foodborne disease risk in North American hunter populations that are associated with the harvest and consumption of terrestrial mammal game meat. We anticipate this work could serve as a foundation of preventive measures that mitigate foodborne disease transmission between free-ranging mammalian and human populations.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA; (H.D.H.); (J.N.)
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Jared Duquette
- Illinois Department of Natural Resources, Division of Wildlife Resources; Champaign, IL 62702, USA;
| | - Jan Novakofski
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA; (H.D.H.); (J.N.)
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nohra E. Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA; (H.D.H.); (J.N.)
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
72
|
White LA, Siva-Jothy JA, Craft ME, Vale PF. Genotype and sex-based host variation in behaviour and susceptibility drives population disease dynamics. Proc Biol Sci 2020; 287:20201653. [PMID: 33171094 DOI: 10.1098/rspb.2020.1653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus as a model system, we integrated experimental measurements of social aggregation, virus shedding, and disease-induced mortality from different genetic lines and sexes into a disease modelling framework. The experimentally measured host heterogeneity produced substantial differences in simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease dynamics at a population level. While this was true for homogeneous populations of single sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, viral shedding and mortality, we compared simulations where we allowed these traits to vary, as measured experimentally, to simulations where we constrained variation in these traits to the population mean. In this context, variation in infectiousness, followed by social aggregation, was the most influential component of transmission. Overall, we show that host heterogeneity in three host traits dramatically affects population-level transmission, but the relative impact of this variation depends on both the susceptible population diversity and the distribution of population-level variation.
Collapse
Affiliation(s)
- Lauren A White
- National Socio-Environmental Synthesis Center SESYNC, 1 Park Place, Suite 300, Annapolis, MD 21401, USA.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55126, USA
| | - Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Labs, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN 55126, USA
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Labs, Charlotte Auerbach Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
73
|
|
74
|
Bacigalupo SA, Dixon LK, Gubbins S, Kucharski AJ, Drewe JA. Towards a unified generic framework to define and observe contacts between livestock and wildlife: a systematic review. PeerJ 2020; 8:e10221. [PMID: 33173619 PMCID: PMC7594637 DOI: 10.7717/peerj.10221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022] Open
Abstract
Wild animals are the source of many pathogens of livestock and humans. Concerns about the potential transmission of economically important and zoonotic diseases from wildlife have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, a consensus on the definition of what constitutes a 'contact' between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 30,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined cattle contacts with badgers or with deer; studies involving wild pig contacts with cattle or with domestic pigs were the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.
Collapse
Affiliation(s)
| | | | - Simon Gubbins
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Adam J. Kucharski
- London School of Hygiene & Tropical Medicine, University of London, London, United Kingdom
| | | |
Collapse
|
75
|
Smith JE, Pinter-Wollman N. Observing the unwatchable: Integrating automated sensing, naturalistic observations and animal social network analysis in the age of big data. J Anim Ecol 2020; 90:62-75. [PMID: 33020914 DOI: 10.1111/1365-2656.13362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
In the 4.5 decades since Altmann (1974) published her seminal paper on the methods for the observational study of behaviour, automated detection and analysis of social interaction networks have fundamentally transformed the ways that ecologists study social behaviour. Methodological developments for collecting data remotely on social behaviour involve indirect inference of associations, direct recordings of interactions and machine vision. These recent technological advances are improving the scale and resolution with which we can dissect interactions among animals. They are also revealing new intricacies of animal social interactions at spatial and temporal resolutions as well as in ecological contexts that have been hidden from humans, making the unwatchable seeable. We first outline how these technological applications are permitting researchers to collect exquisitely detailed information with little observer bias. We further recognize new emerging challenges from these new reality-mining approaches. While technological advances in automating data collection and its analysis are moving at an unprecedented rate, we urge ecologists to thoughtfully combine these new tools with classic behavioural and ecological monitoring methods to place our understanding of animal social networks within fundamental biological contexts.
Collapse
Affiliation(s)
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
76
|
Albery GF, Kirkpatrick L, Firth JA, Bansal S. Unifying spatial and social network analysis in disease ecology. J Anim Ecol 2020; 90:45-61. [DOI: 10.1111/1365-2656.13356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/24/2020] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Josh A. Firth
- Department of Zoology Edward Grey Institute University of Oxford Oxford UK
- Merton College Oxford University Oxford UK
| | - Shweta Bansal
- Department of Biology Georgetown University Washington DC USA
| |
Collapse
|
77
|
Penk SR, Bodner K, Vargas Soto JS, Chenery ES, Nascou A, Molnár PK. Mechanistic models can reveal infection pathways from prevalence data: the mysterious case of polar bears
Ursus maritimus
and
Trichinella nativa. OIKOS 2020. [DOI: 10.1111/oik.07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephanie R. Penk
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Korryn Bodner
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Juan S. Vargas Soto
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Emily S. Chenery
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Alexander Nascou
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Péter K. Molnár
- Laboratory of Quantitative Global Change Ecology, Dept of Biological Sciences, Univ. of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto 25 Willcocks Street Toronto ON M5S 3B2 Canada
| |
Collapse
|
78
|
Dell BM, Souza MJ, Willcox AS. Attitudes, practices, and zoonoses awareness of community members involved in the bushmeat trade near Murchison Falls National Park, northern Uganda. PLoS One 2020; 15:e0239599. [PMID: 32986741 PMCID: PMC7521682 DOI: 10.1371/journal.pone.0239599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/10/2020] [Indexed: 01/22/2023] Open
Abstract
The harvest of bushmeat is widespread in the tropics and sub-tropics. Often in these communities, there is a dependence on bushmeat for both food security and basic income. Despite the importance of bushmeat for households worldwide, the practice raises concern for transmission of zoonotic pathogens through hunting, food preparation, and consumption. In Uganda, harvest of wildlife is illegal, but bushmeat hunting, is commonplace. We interviewed 292 women who cook for their households and 180 self-identified hunters from 21 villages bordering Murchison Falls National Park in Uganda to gain insights into bushmeat preferences, opportunity for zoonotic pathogen transmission, and awareness of common wildlife-associated zoonoses. Both hunters and women who cook considered primates to be the most likely wildlife species to carry diseases humans can catch. Among common zoonotic pathogens, the greatest proportions of women who cook and hunters believed that pathogens causing stomach ache or diarrhea and monkeypox can be transmitted by wildlife. Neither women who cook nor hunters report being frequently injury during cooking, butchering, or hunting, and few report taking precautions while handling bushmeat. The majority of women who cook believe that hunters and dealers never or rarely disguise primate meat as another kind of meat in market, while the majority of hunters report that they usually disguise primate meat as another kind of meat. These data play a crucial role in our understanding of potential for exposure to and infection with zoonotic pathogens in the bushmeat trade. Expanding our knowledge of awareness, perceptions and risks enables us to identify opportunities to mitigate infections and injury risk and promote safe handling practices.
Collapse
Affiliation(s)
- BreeAnna M. Dell
- Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail: ,
| | - Marcy J. Souza
- Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Adam S. Willcox
- Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
79
|
Fielding HR, McKinley TJ, Delahay RJ, Silk MJ, McDonald RA. Characterization of potential superspreader farms for bovine tuberculosis: A review. Vet Med Sci 2020; 7:310-321. [PMID: 32937038 PMCID: PMC8025614 DOI: 10.1002/vms3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 08/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Variation in host attributes that influence their contact rates and infectiousness can lead some individuals to make disproportionate contributions to the spread of infections. Understanding the roles of such ‘superspreaders’ can be crucial in deciding where to direct disease surveillance and controls to greatest effect. In the epidemiology of bovine tuberculosis (bTB) in Great Britain, it has been suggested that a minority of cattle farms or herds might make disproportionate contributions to the spread of Mycobacterium bovis, and hence might be considered ‘superspreader farms’. Objectives and Methods We review the literature to identify the characteristics of farms that have the potential to contribute to exceptional values in the three main components of the farm reproductive number ‐ Rf: contact rate, infectiousness and duration of infectiousness, and therefore might characterize potential superspreader farms for bovine tuberculosis in Great Britain. Results Farms exhibit marked heterogeneity in contact rates arising from between‐farm trading of cattle. A minority of farms act as trading hubs that greatly augment connections within cattle trading networks. Herd infectiousness might be increased by high within‐herd transmission or the presence of supershedding individuals, or infectiousness might be prolonged due to undetected infections or by repeated local transmission, via wildlife or fomites. Conclusions Targeting control methods on putative superspreader farms might yield disproportionate benefits in controlling endemic bovine tuberculosis in Great Britain. However, real‐time identification of any such farms, and integration of controls with industry practices, present analytical, operational and policy challenges.
Collapse
Affiliation(s)
- Helen R Fielding
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | | | - Richard J Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Stonehouse, Gloucestershire, UK
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Robbie A McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
80
|
Kinsley AC, Rossi G, Silk MJ, VanderWaal K. Multilayer and Multiplex Networks: An Introduction to Their Use in Veterinary Epidemiology. Front Vet Sci 2020; 7:596. [PMID: 33088828 PMCID: PMC7500177 DOI: 10.3389/fvets.2020.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Contact network analysis has become a vital tool for conceptualizing the spread of pathogens in animal populations and is particularly useful for understanding the implications of heterogeneity in contact patterns for transmission. However, the transmission of most pathogens cannot be simplified to a single mode of transmission and, thus, a single definition of contact. In addition, host-pathogen interactions occur in a community context, with many pathogens infecting multiple host species and most hosts being infected by multiple pathogens. Multilayer networks provide a formal framework for researching host-pathogen systems in which multiple types of transmission-relevant interactions, defined as network layers, can be analyzed jointly. Here, we provide an overview of multilayer network analysis and review applications of this novel method to epidemiological research questions. We then demonstrate the use of this technique to analyze heterogeneity in direct and indirect contact patterns amongst swine farms in the United States. When contact among nodes can be defined in multiple ways, a multilayer approach can advance our ability to use networks in epidemiological research by providing an improved approach for defining epidemiologically relevant groups of interacting nodes and changing the way we identify epidemiologically important individuals such as superspreaders.
Collapse
Affiliation(s)
- Amy C Kinsley
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Gianluigi Rossi
- Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew J Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, United Kingdom.,Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
81
|
Kozakiewicz CP, Ricci L, Patton AH, Stahlke AR, Hendricks SA, Margres MJ, Ruiz-Aravena M, Hamilton DG, Hamede R, McCallum H, Jones ME, Hohenlohe PA, Storfer A. Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (Sarcophilus harrisii) and their transmissible tumour. Mol Ecol 2020; 29:3217-3233. [PMID: 32682353 PMCID: PMC9805799 DOI: 10.1111/mec.15558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad-scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.
Collapse
Affiliation(s)
| | - Lauren Ricci
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Austin H. Patton
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Amanda R. Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Sarah A. Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Mark J. Margres
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia,Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - David G. Hamilton
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Menna E. Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, USA,corresponding author: Andrew Storfer, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
82
|
Kiffner C, Kioko J, Baylis J, Beckwith C, Brunner C, Burns C, Chavez‐Molina V, Cotton S, Glazik L, Loftis E, Moran M, O'Neill C, Theisinger O, Kissui B. Long-term persistence of wildlife populations in a pastoral area. Ecol Evol 2020; 10:10000-10016. [PMID: 33005359 PMCID: PMC7520174 DOI: 10.1002/ece3.6658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023] Open
Abstract
Facilitating coexistence between people and wildlife is a major conservation challenge in East Africa. Some conservation models aim to balance the needs of people and wildlife, but the effectiveness of these models is rarely assessed. Using a case-study approach, we assessed the ecological performance of a pastoral area in northern Tanzania (Manyara Ranch) and established a long-term wildlife population monitoring program (carried out intermittently from 2003 to 2008 and regularly from 2011 to 2019) embedded in a distance sampling framework. By comparing density estimates of the road transect-based long-term monitoring to estimates derived from systematically distributed transects, we found that the bias associated with nonrandom placement of transects was nonsignificant. Overall, cattle and sheep and goat reached the greatest densities and several wildlife species occurred at densities similar (zebra, wildebeest, waterbuck, Kirk's dik-dik) or possibly even greater (giraffe, eland, lesser kudu, Grant's gazelle, Thomson's gazelle) than in adjacent national parks in the same ecosystem. Generalized linear mixed models suggested that most wildlife species (8 out of 14) reached greatest densities during the dry season, that wildlife population densities either remained constant or increased over the 17-year period, and that herbivorous livestock species remained constant, while domestic dog population decreased over time. Cross-species correlations did not provide evidence for interference competition between grazing or mixed livestock species and wildlife species but indicate possible negative relationships between domestic dog and warthog populations. Overall, wildlife and livestock populations in Manyara Ranch appear to coexist over the 17-year span. Most likely, this is facilitated by existing connectivity to adjacent protected areas, effective anti-poaching efforts, spatio-temporal grazing restrictions, favorable environmental conditions of the ranch, and spatial heterogeneity of surface water and habitats. This long-term case study illustrates the potential of rangelands to simultaneously support wildlife conservation and human livelihood goals if livestock grazing is restricted in space, time, and numbers.
Collapse
Affiliation(s)
- Christian Kiffner
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - John Kioko
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - Jack Baylis
- Department of Environmental Studies and SciencesSanta Clara UniversitySanta ClaraCAUSA
| | | | - Craig Brunner
- Psychology DepartmentWhitman CollegeWalla WallaWAUSA
| | - Christine Burns
- Department of Environmental ScienceDickinson CollegeCarlislePAUSA
| | | | - Sara Cotton
- Neuroscience and Behavior DepartmentVassar CollegePoughkeepsieNYUSA
| | - Laura Glazik
- Department of Animal ScienceUniversity of Illinois, Urbana‐ChampaignChampaignILUSA
| | - Ellen Loftis
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVTUSA
| | - Megan Moran
- Biology DepartmentCollege of the Holy CrossWorcesterMAUSA
| | - Caitlin O'Neill
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMDUSA
| | - Ole Theisinger
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| | - Bernard Kissui
- Center for Wildlife Management StudiesThe School For Field StudiesKaratuTanzania
| |
Collapse
|
83
|
Witte C, Hungerford LL, Rideout BA, Papendick R, Fowler JH. Spatiotemporal network structure among "friends of friends" reveals contagious disease process. PLoS One 2020; 15:e0237168. [PMID: 32760155 PMCID: PMC7410232 DOI: 10.1371/journal.pone.0237168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/21/2020] [Indexed: 12/05/2022] Open
Abstract
Disease transmission can be identified in a social network from the structural patterns of contact. However, it is difficult to separate contagious processes from those driven by homophily, and multiple pathways of transmission or inexact information on the timing of infection can obscure the detection of true transmission events. Here, we analyze the dynamic social network of a large, and near-complete population of 16,430 zoo birds tracked daily over 22 years to test a novel “friends-of-friends” strategy for detecting contagion in a social network. The results show that cases of avian mycobacteriosis were significantly clustered among pairs of birds that had been in direct contact. However, since these clusters might result due to correlated traits or a shared environment, we also analyzed pairs of birds that had never been in direct contact but were indirectly connected in the network via other birds. The disease was also significantly clustered among these friends of friends and a reverse-time placebo test shows that homophily could not be causing the clustering. These results provide empirical evidence that at least some avian mycobacteriosis infections are transmitted between birds, and provide new methods for detecting contagious processes in large-scale global network structures with indirect contacts, even when transmission pathways, timing of cases, or etiologic agents are unknown.
Collapse
Affiliation(s)
- Carmel Witte
- Disease Investigations, San Diego Zoo Global, San Diego, California, United States of America
- Department of Family Medicine and Public Health, University of California, La Jolla, California, United States of America
- Graduate School of Public Health, San Diego State University, San Diego, California, United States of America
- * E-mail:
| | - Laura L. Hungerford
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Bruce A. Rideout
- Disease Investigations, San Diego Zoo Global, San Diego, California, United States of America
| | - Rebecca Papendick
- Disease Investigations, San Diego Zoo Global, San Diego, California, United States of America
| | - James H. Fowler
- Department of Political Science, University of California, San Diego, La Jolla, California, United States of America
- Division of Global Public Health, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
84
|
Quadros DG, Johnson TL, Whitney TR, Oliver JD, Oliva Chávez AS. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? INSECTS 2020; 11:insects11080490. [PMID: 32752256 PMCID: PMC7469192 DOI: 10.3390/insects11080490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022]
Abstract
Ticks and tick-borne diseases are a significant economic hindrance for livestock production and a menace to public health. The expansion of tick populations into new areas, the occurrence of acaricide resistance to synthetic chemical treatments, the potentially toxic contamination of food supplies, and the difficulty of applying chemical control in wild-animal populations have created greater interest in developing new tick control alternatives. Plant compounds represent a promising avenue for the discovery of such alternatives. Several plant extracts and secondary metabolites have repellent and acaricidal effects. However, very little is known about their mode of action, and their commercialization is faced with multiple hurdles, from the determination of an adequate formulation to field validation and public availability. Further, the applicability of these compounds to control ticks in wild-animal populations is restrained by inadequate delivery systems that cannot guarantee accurate dosage delivery at the right time to the target animal populations. More work, financial support, and collaboration with regulatory authorities, research groups, and private companies are needed to overcome these obstacles. Here, we review the advancements on known plant-derived natural compounds with acaricidal potential and discuss the road ahead toward the implementation of organic control in managing ticks and tick-borne diseases.
Collapse
Affiliation(s)
- Danilo G. Quadros
- Texas A&M AgriLife Research, San Angelo, TX 76901, USA; (D.G.Q.); (T.R.W.)
| | - Tammi L. Johnson
- Department of Rangelands, Wildlife and Fisheries Management, Texas A&M AgriLife Research, Texas A&M University, Uvalde, TX 78801, USA;
| | - Travis R. Whitney
- Texas A&M AgriLife Research, San Angelo, TX 76901, USA; (D.G.Q.); (T.R.W.)
| | - Jonathan D. Oliver
- Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Adela S. Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-979-845-1946
| |
Collapse
|
85
|
Evans JC, Silk MJ, Boogert NJ, Hodgson DJ. Infected or informed? Social structure and the simultaneous transmission of information and infectious disease. OIKOS 2020. [DOI: 10.1111/oik.07148] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Julian C. Evans
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich Switzerland
| | - Matthew J. Silk
- Centre for Ecology and Conservation, Univ. of Exeter Penryn Campus UK
- Environment and Sustainability Inst., Univ. of Exeter Penryn Campus UK
| | | | - David J. Hodgson
- Centre for Ecology and Conservation, Univ. of Exeter Penryn Campus UK
| |
Collapse
|
86
|
Stokes HS, Martens JM, Jelocnik M, Walder K, Segal Y, Berg ML, Bennett ATD. Chlamydial diversity and predictors of infection in a wild Australian parrot, the Crimson Rosella (Platycercus elegans). Transbound Emerg Dis 2020; 68:487-498. [PMID: 32603529 DOI: 10.1111/tbed.13703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Members of the Chlamydia genus are known to cause disease in both humans and animals. A variety of other species in the order Chlamydiales are increasingly being discovered and emerging as potential pathogens, yet there are scarce data on the diversity, prevalence and impacts of these pathogens in wild birds. To address this gap, we investigated which Chlamydiales species are present in a wild population of a common Australian parrot, the Crimson Rosella (Platycercus elegans). We collected cloacal swabs and serum from 136 individuals in south-eastern Australia, over two years, and tested several predictors of prevalence: age, sex, season and breeding status. We used multiple PCR assays to determine bacterial prevalence in cloacal swabs and a solid-phase ELISA to determine seroprevalence. We found Chlamydiales PCR prevalence of 27.7% (95% CI 20.2, 36.2) and identified at least two families (Chlamydiaceae and Parachlamydiaceae). Regarding known chlamydial avian pathogens, we found C. psittaci at 6.2% (95% CI 2.7, 11.8) and C. gallinacea at 4.6% (95% CI 1.7, 9.8) prevalence. We also identified at least two potentially novel Chlamydiales species, of unknown pathogenicity. Sex and breeding status predicted Chlamydiales PCR prevalence, with females more likely to be infected than males, and non-breeding birds more likely to be infected than breeding birds. Seroprevalence was 16% (95% CI 8.8, 25.9). Season and breeding status were strong predictors of seroprevalence, with highest seroprevalence in autumn and in non-breeding birds. Our results reveal a diversity of Chlamydiales species in this abundant wild host, and indicate that host-specific and temporal factors are associated with infection risk. Our findings suggest that wild parrots are a reservoir of both known and novel Chlamydiales lineages, of zoonotic and pathogenic potential.
Collapse
Affiliation(s)
- Helena S Stokes
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Johanne M Martens
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Yonatan Segal
- Department of Jobs, Precincts and Regions, Attwood, VIC, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Andrew T D Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
87
|
Kanankege KST, Alvarez J, Zhang L, Perez AM. An Introductory Framework for Choosing Spatiotemporal Analytical Tools in Population-Level Eco-Epidemiological Research. Front Vet Sci 2020; 7:339. [PMID: 32733923 PMCID: PMC7358365 DOI: 10.3389/fvets.2020.00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/15/2020] [Indexed: 12/04/2022] Open
Abstract
Spatiotemporal visualization and analytical tools (SATs) are increasingly being applied to risk-based surveillance/monitoring of adverse health events affecting humans, animals, and ecosystems. Different disciplines use diverse SATs to address similar research questions. The juxtaposition of these diverse techniques provides a list of options for researchers who are new to population-level spatial eco-epidemiology. Here, we are conducting a narrative review to provide an overview of the multiple available SATs, and introducing a framework for choosing among them when addressing common research questions across disciplines. The framework is comprised of three stages: (a) pre-hypothesis testing stage, in which hypotheses regarding the spatial dependence of events are generated; (b) primary hypothesis testing stage, in which the existence of spatial dependence and patterns are tested; and (c) secondary-hypothesis testing and spatial modeling stage, in which predictions and inferences were made based on the identified spatial dependences and associated covariates. In this step-wise process, six key research questions are formulated, and the answers to those questions should lead researchers to select one or more methods from four broad categories of SATs: (T1) visualization and descriptive analysis; (T2) spatial/spatiotemporal dependence and pattern recognition; (T3) spatial smoothing and interpolation; and (T4) geographic correlation studies (i.e., spatial modeling and regression). The SATs described here include both those used for decades and also other relatively new tools. Through this framework review, we intend to facilitate the choice among available SATs and promote their interdisciplinary use to support improving human, animal, and ecosystem health.
Collapse
Affiliation(s)
- Kaushi S. T. Kanankege
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Julio Alvarez
- Departamento de Sanidad Animal, Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
88
|
Aleta A, Ferraz de Arruda G, Moreno Y. Data-driven contact structures: From homogeneous mixing to multilayer networks. PLoS Comput Biol 2020; 16:e1008035. [PMID: 32673307 PMCID: PMC7386617 DOI: 10.1371/journal.pcbi.1008035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
The modeling of the spreading of communicable diseases has experienced significant advances in the last two decades or so. This has been possible due to the proliferation of data and the development of new methods to gather, mine and analyze it. A key role has also been played by the latest advances in new disciplines like network science. Nonetheless, current models still lack a faithful representation of all possible heterogeneities and features that can be extracted from data. Here, we bridge a current gap in the mathematical modeling of infectious diseases and develop a framework that allows to account simultaneously for both the connectivity of individuals and the age-structure of the population. We compare different scenarios, namely, i) the homogeneous mixing setting, ii) one in which only the social mixing is taken into account, iii) a setting that considers the connectivity of individuals alone, and finally, iv) a multilayer representation in which both the social mixing and the number of contacts are included in the model. We analytically show that the thresholds obtained for these four scenarios are different. In addition, we conduct extensive numerical simulations and conclude that heterogeneities in the contact network are important for a proper determination of the epidemic threshold, whereas the age-structure plays a bigger role beyond the onset of the outbreak. Altogether, when it comes to evaluate interventions such as vaccination, both sources of individual heterogeneity are important and should be concurrently considered. Our results also provide an indication of the errors incurred in situations in which one cannot access all needed information in terms of connectivity and age of the population.
Collapse
Affiliation(s)
| | | | - Yamir Moreno
- ISI Foundation, Turin, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
89
|
McClure KM, Gilbert AT, Chipman RB, Rees EE, Pepin KM. Variation in host home range size decreases rabies vaccination effectiveness by increasing the spatial spread of rabies virus. J Anim Ecol 2020; 89:1375-1386. [PMID: 31957005 PMCID: PMC7317853 DOI: 10.1111/1365-2656.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Animal movement influences the spatial spread of directly transmitted wildlife disease through host-host contact structure. Wildlife disease hosts vary in home range-associated foraging and social behaviours, which may increase the spread and intensity of disease outbreaks. The consequences of variation in host home range movement and space use on wildlife disease dynamics are poorly understood, but could help to predict disease spread and determine more effective disease management strategies. We developed a spatially explicit individual-based model to examine the effect of spatiotemporal variation in host home range size on the spatial spread rate, persistence and incidence of rabies virus (RABV) in raccoons (Procyon lotor). We tested the hypothesis that variation in home range size increases RABV spread and decreases vaccination effectiveness in host populations following pathogen invasion into a vaccination zone. We simulated raccoon demography and RABV dynamics across a range of magnitudes and variances in weekly home range size for raccoons. We examined how variable home range size influenced the relative effectiveness of three components of oral rabies vaccination (ORV) programmes targeting raccoons-timing and frequency of bait delivery, width of the ORV zone and proportion of hosts immunized. Variability in weekly home range size increased RABV spread rates by 1.2-fold to 5.2-fold compared to simulations that assumed a fixed home range size. More variable host home range sizes decreased relative vaccination effectiveness by 71% compared to less variable host home range sizes under conventional vaccination conditions. We found that vaccination timing was more influential for vaccination effectiveness than vaccination frequency or vaccination zone width. Our results suggest that variation in wildlife home range movement behaviour increases the spatial spread and incidence of RABV. Our vaccination results underscore the importance of prioritizing individual-level space use and movement data collection to understand wildlife disease dynamics and plan their effective control and elimination.
Collapse
Affiliation(s)
- Katherine M. McClure
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsCOUSA
- Present address:
Cornell Atkinson Center for Sustainability and the Cornell Wildlife Health CenterCornell UniversityIthacaNYUSA
| | - Amy T. Gilbert
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
| | - Richard B. Chipman
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Rabies Management ProgramConcordNHUSA
| | - Erin E. Rees
- Land and Sea Systems Analysis Inc.GranbyQCCanada
- National Microbiology LaboratoryPublic Health Risk Sciences DivisionPublic Health Agency of CanadaSaint‐HyacintheQCCanada
| | - Kim M. Pepin
- United States Department of Agriculture, Animal and Plant Health Inspection ServiceNational Wildlife Research CenterFort CollinsCOUSA
| |
Collapse
|
90
|
Farthing TS, Dawson DE, Sanderson MW, Lanzas C. Accounting for space and uncertainty in real-time location system-derived contact networks. Ecol Evol 2020; 10:4702-4715. [PMID: 32551054 PMCID: PMC7297745 DOI: 10.1002/ece3.6225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/27/2019] [Accepted: 03/08/2020] [Indexed: 11/25/2022] Open
Abstract
Point data obtained from real-time location systems (RTLSs) can be processed into animal contact networks, describing instances of interaction between tracked individuals. Proximity-based definitions of interanimal "contact," however, may be inadequate for describing epidemiologically and sociologically relevant interactions involving body parts or other physical spaces relatively far from tracking devices. This weakness can be overcome by using polygons, rather than points, to represent tracked individuals and defining "contact" as polygon intersections.We present novel procedures for deriving polygons from RTLS point data while maintaining distances and orientations associated with individuals' relocation events. We demonstrate the versatility of this methodology for network modeling using two contact network creation examples, wherein we use this procedure to create (a) interanimal physical contact networks and (b) a visual contact network. Additionally, in creating our networks, we establish another procedure to adjust definitions of "contact" to account for RTLS positional accuracy, ensuring all true contacts are likely captured and represented in our networks.Using the methods described herein and the associated R package we have developed, called contact, researchers can derive polygons from RTLS points. Furthermore, we show that these polygons are highly versatile for contact network creation and can be used to answer a wide variety of epidemiological, ethological, and sociological research questions.By introducing these methodologies and providing the means to easily apply them through the contact R package, we hope to vastly improve network-model realism and researchers' ability to draw inferences from RTLS data.
Collapse
Affiliation(s)
- Trevor S. Farthing
- Department of Population Health and PathobiologyCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Daniel E. Dawson
- Department of Population Health and PathobiologyCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Michael W. Sanderson
- Department of Diagnostic Medicine and PathobiologyCollege of Veterinary MedicineCenter for Outcomes Research and EpidemiologyKansas State UniversityManhattanKSUSA
| | - Cristina Lanzas
- Department of Population Health and PathobiologyCollege of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
91
|
Wilson SN, Sindi SS, Brooks HZ, Hohn ME, Price CR, Radunskaya AE, Williams ND, Fefferman NH. How Emergent Social Patterns in Allogrooming Combat Parasitic Infections. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
92
|
Hall RJ. Modeling the Effects of Resource-Driven Immune Defense on Parasite Transmission in Heterogeneous Host Populations. Integr Comp Biol 2020; 59:1253-1263. [PMID: 31127280 DOI: 10.1093/icb/icz074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Individuals experience heterogeneous environmental conditions that can affect within-host processes such as immune defense against parasite infection. Variation among individuals in parasite shedding can cause some hosts to contribute disproportionately to population-level transmission, but we currently lack mechanistic theory that predicts when environmental conditions can result in large disease outbreaks through the formation of immunocompromised superspreading individuals. Here, I present a within-host model of a microparasite's interaction with the immune system that links an individual host's resource intake to its infectious period. For environmental scenarios driving population-level heterogeneity in resource intake (resource scarcity and resource subsidy relative to baseline availability), I generate a distribution of infectious periods and simulate epidemics on these heterogeneous populations. I find that resource scarcity can result in large epidemics through creation of superspreading individuals, while resource subsidies can reduce or prevent transmission of parasites close to their invasion threshold by homogenizing resource allocation to immune defense. Importantly, failure to account for heterogeneity in competence can result in under-prediction of outbreak size, especially when parasites are close to their invasion threshold. More generally, this framework suggests that differences in conditions experienced by individual hosts can lead to superspreading via differences in resource allocation to immune defense alone, even in the absence of other heterogeneites such as host contacts.
Collapse
Affiliation(s)
- Richard J Hall
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
93
|
Scherer C, Radchuk V, Franz M, Thulke H, Lange M, Grimm V, Kramer‐Schadt S. Moving infections: individual movement decisions drive disease persistence in spatially structured landscapes. OIKOS 2020. [DOI: 10.1111/oik.07002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cédric Scherer
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | - Viktoriia Radchuk
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | - Mathias Franz
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
| | | | - Martin Lange
- Helmholtz Centre for Environmental Research–UFZ Leipzig Germany
| | - Volker Grimm
- Helmholtz Centre for Environmental Research–UFZ Leipzig Germany
| | - Stephanie Kramer‐Schadt
- Leibniz Inst. for Zoo and Wildlife Research (IZW) Alfred‐Kowalke‐Str. 17 DE‐10315 Berlin Germany
- Dept of Ecology, Technische Univ. Berlin Berlin Germany
| |
Collapse
|
94
|
Gilbertson MLJ, White LA, Craft ME. Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife. Methods Ecol Evol 2020; 12:76-87. [PMID: 33692875 DOI: 10.1111/2041-210x.13355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Network analysis of infectious disease in wildlife can reveal traits or individuals critical to pathogen transmission and help inform disease management strategies. However, estimates of contact between animals are notoriously difficult to acquire. Researchers commonly use telemetry technologies to identify animal associations; but such data may have different sampling intervals and often captures a small subset of the population. The objectives of this study were to outline best practices for telemetry sampling in network studies of infectious disease by determining (1) the consequences of telemetry sampling on our ability to estimate network structure, (2) whether contact networks can be approximated using purely spatial contact definitions, and (3) how wildlife spatial configurations may influence telemetry sampling requirements.We simulated individual movement trajectories for wildlife populations using a home range-like movement model, creating full location datasets and corresponding "complete" networks. To mimic telemetry data, we created "sample" networks by subsampling the population (10-100% of individuals) with a range of sampling intervals (every minute to every three days). We varied the definition of contact for sample networks, using either spatiotemporal or spatial overlap, and varied the spatial configuration of populations (random, lattice, or clustered). To compare complete and sample networks, we calculated seven network metrics important for disease transmission and assessed mean ranked correlation coefficients and percent error between complete and sample network metrics.Telemetry sampling severely reduced our ability to calculate global node-level network metrics, but had less impact on local and network-level metrics. Even so, in populations with infrequent associations, high intensity telemetry sampling may still be necessary. Defining contact in terms of spatial overlap generally resulted in overly connected networks, but in some instances, could compensate for otherwise coarse telemetry data.By synthesizing movement and disease ecology with computational approaches, we characterized trade-offs important for using wildlife telemetry data beyond ecological studies of individual movement, and found that careful use of telemetry data has the potential to inform network models. Thus, with informed application of telemetry data, we can make significant advances in leveraging its use for a better understanding and management of wildlife infectious disease.
Collapse
Affiliation(s)
- Marie L J Gilbertson
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - Lauren A White
- National Socio-Environmental Synthesis Center, Annapolis, MD, USA
| | - Meggan E Craft
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
95
|
Primate Infectious Disease Ecology: Insights and Future Directions at the Human-Macaque Interface. THE BEHAVIORAL ECOLOGY OF THE TIBETAN MACAQUE 2020. [PMCID: PMC7123869 DOI: 10.1007/978-3-030-27920-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Global population expansion has increased interactions and conflicts between humans and nonhuman primates over shared ecological space and resources. Such ecological overlap, along with our shared evolutionary histories, makes human-nonhuman primate interfaces hot spots for the acquisition and transmission of parasites. In this chapter, we bring to light the importance of human-macaque interfaces in particular as hot spots for infectious disease ecological and epidemiological assessments. We first outline the significance and broader objectives behind research related to the subfield of primate infectious disease ecology and epidemiology. We then reveal how members of the genus Macaca, being among the most socioecologically flexible and invasive of all primate taxa, live under varying degrees of overlap with humans in anthropogenic landscapes. Thus, human-macaque interfaces may favor the bidirectional exchange of parasites. We then review studies that have isolated various types of parasites at human-macaque interfaces, using information from the Global Mammal Parasite Database (GMPD: http://www.mammalparasites.org/). Finally, we elaborate on avenues through which the implementation of both novel conceptual frameworks (e.g., Coupled Systems, One Health) and quantitative network-based approaches (e.g., social and bipartite networks, agent-based modeling) may potentially address some of the critical gaps in our current knowledge of infectious disease ecology at human-primate interfaces.
Collapse
|
96
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
97
|
Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Effects of long-term crowding stress on neuro-endocrine-immune network of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2019; 95:180-189. [PMID: 31600595 DOI: 10.1016/j.fsi.2019.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/24/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Low levels of stresses cause eustress while high stressful situations result in distress. Female rainbow trout (Oncorhynchus mykiss) was reared under crowded conditions to mimic the stressful environment of intensive fishery production. Trout was stocked for 300 days with initial densities of 4.6 ± 0.02 (final: 31.1 ± 0.62), 6.6 ± 0.03 (final: 40.6 ± 0.77), and 8.6 ± 0.04 (final: 49.3 ± 1.09) kg/m3 as SD1, SD2 and SD3. We assessed molecular, cellular and organismal parameters to understand the flexibility of neuro-endocrine-immune network during stress. Trout with higher initial density (SD3) displayed the slightly activated hypothalamus-pituitary-interrenal (HPI) axis with positively increased antioxidant enzyme activities and anti-inflammatory cytokine transcriptions on day 60 or 120. These results indicated that low level of stress was capable of exerting eustress by activating neuro-endocrine-immune network with beneficial adaptation. Transition from eustress to distress was induced by the increased intensity and duration of crowding stress on day 240 and 300. The prolonged activation of HPI axis resulted in suppressed growth hormone-insulin-like growth factor (GH-IGF) axis, up-regulated cytokine transcriptions and severe reactive oxygen species stress. Stress means reset of neuro-endocrine-immune network with energy expenditure and redistribution. Digestive ability of trout with distress was also inhibited on day 240 and 300, indicating a decreased total energy supplement and energy distribution for functions are not necessary for surviving such as growth and reproduction. Consequently, we observed the dyshomeostasis of energy balance and neuro-endocrine-immune network of trout during long-term crowding conditions.
Collapse
Affiliation(s)
- Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Qingdao, China
| | - Hai-Shen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Qingdao, China.
| | - Ji-Fang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Qingdao, China
| | - Feng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Qingdao, China
| |
Collapse
|
98
|
Gaughran A, MacWhite T, Mullen E, Maher P, Kelly DJ, Good M, Marples NM. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol Evol 2019; 9:13142-13152. [PMID: 31871635 PMCID: PMC6912907 DOI: 10.1002/ece3.5753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/26/2019] [Accepted: 09/15/2019] [Indexed: 11/12/2022] Open
Abstract
European badgers (Meles meles) are group-living mustelids implicated in the spread of bovine tuberculosis (TB) to cattle and act as a wildlife reservoir for the disease. In badgers, only a minority of individuals disperse from their natal social group. However, dispersal may be extremely important for the spread of TB, as dispersers could act as hubs for disease transmission. We monitored a population of 139 wild badgers over 7 years in a medium-density population (1.8 individuals/km2). GPS tracking collars were applied to 80 different individuals. Of these, we identified 25 dispersers, 14 of which were wearing collars as they dispersed. This allowed us to record the process of dispersal in much greater detail than ever before. We show that dispersal is an extremely complex process, and measurements of straight-line distance between old and new social groups can severely underestimate how far dispersers travel. Assumptions of straight-line travel can also underestimate direct and indirect interactions and the potential for disease transmission. For example, one female disperser which eventually settled 1.5 km from her natal territory traveled 308 km and passed through 22 different territories during dispersal. Knowledge of badgers' ranging behavior during dispersal is crucial to understanding the dynamics of TB transmission, and for designing appropriate interventions, such as vaccination.
Collapse
Affiliation(s)
- Aoibheann Gaughran
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| | | | - Enda Mullen
- Department of Culture, Heritage and the GaeltachtNational Parks and Wildlife ServiceDublinIreland
| | - Peter Maher
- Department of Agriculture, Food and the MarineDublinIreland
| | - David J. Kelly
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| | - Margaret Good
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| | - Nicola M. Marples
- Department of ZoologySchool of Natural SciencesTrinity College DublinDublinIreland
- Trinity Centre for Biodiversity ResearchTrinity College DublinDublinIreland
| |
Collapse
|
99
|
Silk MJ, Hodgson DJ, Rozins C, Croft DP, Delahay RJ, Boots M, McDonald RA. Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180211. [PMID: 31352885 PMCID: PMC6710568 DOI: 10.1098/rstb.2018.0211] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 02/03/2023] Open
Abstract
The emergence and spread of infections can contribute to the decline and extinction of populations, particularly in conjunction with anthropogenic environmental change. The importance of heterogeneity in processes of transmission, resistance and tolerance is increasingly well understood in theory, but empirical studies that consider both the demographic and behavioural implications of infection are scarce. Non-random mixing of host individuals can impact the demographic thresholds that determine the amplification or attenuation of disease prevalence. Risk assessment and management of disease in threatened wildlife populations must therefore consider not just host density, but also the social structure of host populations. Here we integrate the most recent developments in epidemiological research from a demographic and social network perspective, and synthesize the latest developments in social network modelling for wildlife disease, to explore their applications to disease management in populations in decline and at risk of extinction. We use simulated examples to support our key points and reveal how disease-management strategies can and should exploit both behavioural and demographic information to prevent or control the spread of disease. Our synthesis highlights the importance of considering the combined impacts of demographic and behavioural processes in epidemics to successful disease management in a conservation context. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Matthew J. Silk
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - David J. Hodgson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Carly Rozins
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Darren P. Croft
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Richard J. Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Nympsfield, UK
| | - Mike Boots
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Robbie A. McDonald
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| |
Collapse
|
100
|
Using contact networks and next-generation sequencing for wildlife epidemiology. C R Biol 2019. [DOI: 10.1016/j.crvi.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|