51
|
Clewe O, Aulin L, Hu Y, Coates ARM, Simonsson USH. A multistate tuberculosis pharmacometric model: a framework for studying anti-tubercular drug effects in vitro. J Antimicrob Chemother 2016; 71:964-74. [PMID: 26702921 PMCID: PMC4790616 DOI: 10.1093/jac/dkv416] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis can exist in different states in vitro, which can be denoted as fast multiplying, slow multiplying and non-multiplying. Characterizing the natural growth of M. tuberculosis could provide a framework for accurate characterization of drug effects on the different bacterial states. METHODS The natural growth data of M. tuberculosis H37Rv used in this study consisted of viability defined as cfu versus time based on data from an in vitro hypoxia system. External validation of the natural growth model was conducted using data representing the rate of incorporation of radiolabelled methionine into proteins by the bacteria. Rifampicin time-kill curves from log-phase (0.25-16 mg/L) and stationary-phase (0.5-64 mg/L) cultures were used to assess the model's ability to describe drug effects by evaluating different linear and non-linear exposure-response relationships. RESULTS The final pharmacometric model consisted of a three-compartment differential equation system representing fast-, slow- and non-multiplying bacteria. Model predictions correlated well with the external data (R(2) = 0.98). The rifampicin effects on log-phase and stationary-phase cultures were separately and simultaneously described by including the drug effect on the different bacterial states. The predicted reduction in log10 cfu after 14 days and at 0.5 mg/L was 2.2 and 0.8 in the log-phase and stationary-phase systems, respectively. CONCLUSIONS The model provides predictions of the change in bacterial numbers for the different bacterial states with and without drug effect and could thus be used as a framework for studying anti-tubercular drug effects in vitro.
Collapse
Affiliation(s)
- Oskar Clewe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Linda Aulin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Yanmin Hu
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Anthony R M Coates
- Institute for Infection and Immunity, St George's University of London, London, UK
| | | |
Collapse
|
52
|
Abstract
The complex cell envelope is a hallmark of mycobacteria and is anchored by the peptidoglycan layer, which is similar to that of Escherichia coli and a number of other bacteria but with modifications to the monomeric units and other structural complexities that are likely related to a role for the peptidoglycan in stabilizing the mycolyl-arabinogalactan-peptidoglycan complex (MAPc). In this article, we will review the genetics of several aspects of peptidoglycan biosynthesis in mycobacteria, including the production of monomeric precursors in the cytoplasm, assembly of the monomers into the mature wall, cell wall turnover, and cell division. Finally, we will touch upon the resistance of mycobacteria to β-lactam antibiotics, an important class of drugs that, until recently, have not been extensively exploited as potential antimycobacterial agents. We will also note areas of research where there are still unanswered questions.
Collapse
|
53
|
Su X, Guo L, Ding L, Qu K, Shen C. Induction of Viable but Nonculturable State in Rhodococcus and Transcriptome Analysis Using RNA-seq. PLoS One 2016; 11:e0147593. [PMID: 26808070 PMCID: PMC4725852 DOI: 10.1371/journal.pone.0147593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/06/2016] [Indexed: 11/23/2022] Open
Abstract
Viable but nonculturable (VBNC) bacteria, which maintain the viability with loss of culturability, universally exist in contaminated and non-contaminated environments. In this study, two strains, Rhodococcus sp. TG13 and TN3, which were isolated from PCB-contaminated sediment and non-contaminated sediment respectively, were investigated under low temperature and oligotrophic conditions. The results indicated that the two strains TG13 and TN3 could enter into the VBNC state with different incubation times, and could recover culturability by reversal of unfavourable factors and addition of resuscitation-promoting factor (Rpf), respectively. Furthermore, the gene expression variations in the VBNC response were clarified by Illumina high throughput RNA-sequencing. Genome-wide transcriptional analysis demonstrated that up-regulated genes in the VBNC cells of the strain TG13 related to protein modification, ATP accumulation and RNA polymerase, while all differentially expressed genes (DEGs) in the VBNC cells of the strain TN3 were down-regulated. However, the down-regulated genes in both the two strains mainly encoded NADH dehydrogenase subunit, catalase, oxidoreductase, which further verified that cold-induced loss of ability to defend oxidative stress may play an important role in induction of the VBNC state. This study further verified that the molecular mechanisms underlying the VBNC state varied with various bacterial species. Study on the VBNC state of non-pathogenic bacteria will provide new insights into the limitation of environmental micro-bioremediation and the cultivation of unculturable species.
Collapse
Affiliation(s)
- Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety in Zhejiang Province, Hangzhou 310058, China
| | - Li Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety in Zhejiang Province, Hangzhou 310058, China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kun Qu
- School of Medicine, Stanford Universtiy, Stanford, California 94305, USA
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Water Pollution Control and Environmental Safety in Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
54
|
Arroyo L, Rojas M, Ortíz BL, Franken KLMC, García LF, Ottenhoff THM, Barrera LF. Dynamics of the T cell response to Mycobacterium tuberculosis DosR and Rpf antigens in a Colombian population of household contacts of recently diagnosed pulmonary tuberculosis patients. Tuberculosis (Edinb) 2016; 97:97-107. [PMID: 26980501 DOI: 10.1016/j.tube.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/28/2022]
Abstract
Immune response to DosR and Rpf antigens from Mycobacterium tuberculosis (Mtb) seems to be important for latency maintenance. Little is known about the dynamics of the immune response to these antigens in an endemic community. Thus, the IFNγ response and cytokine production in response to PPD, Esat6-Cfp10 (E6-C10), DosR and Rpf antigens in healthy HHC of tuberculosis (TB) patients over a 12 (T12) months period (short-term, stLTBI) was investigated. This response was compared with a group of LTBI, who have remained healthy for 5-7 years (long-term, ltLTBI). According to the IFNγ response, two groups of HHCs were identified in stLTBI in response to E6-C10. At T12, E6-C10(+) HHCs displayed a decrease in the IFNγ levels and a generalized decrease in cytokines production. The E6-C10(-) HHC showed an increase in the IFNγ response and cytokine levels. In stLTBI, the responses to E6-C10, DosR, and Rpf may be interpreted as a protective immune response controlling Mtb infection and may be leading to a state of latent infection. Comparing the response of stLTBI and ltLTBI, we observed significant changes in the proportions of CD45RO(+)CD27(+) T cells to specific DosR and Rpf, which may indicate a persistent immune response to Mtb antigens in ltLTBI.
Collapse
Affiliation(s)
- Leonar Arroyo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia.
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Blanca L Ortíz
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands.
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Colombia; Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
55
|
Ignatov DV, Salina EG, Fursov MV, Skvortsov TA, Azhikina TL, Kaprelyants AS. Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA. BMC Genomics 2015; 16:954. [PMID: 26573524 PMCID: PMC4647672 DOI: 10.1186/s12864-015-2197-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Background Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K+-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K+ reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. Results RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30–50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This ‘dormant transcriptome’ demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. Conclusions Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2197-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dmitriy V Ignatov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Elena G Salina
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Mikhail V Fursov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| | - Timofey A Skvortsov
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation. .,Current address: The Queen's University of Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya 16/10, GSP-7, Moscow, Russian Federation.
| | - Arseny S Kaprelyants
- A.N. Bakh Institute of Biochemistry, Russian Academy of Science, 119071, Leninsky prospekt 33, Build. 2, Moscow, Russian Federation.
| |
Collapse
|
56
|
Differential influence of nutrient-starved Mycobacterium tuberculosis on adaptive immunity results in progressive tuberculosis disease and pathology. Infect Immun 2015; 83:4731-9. [PMID: 26416911 DOI: 10.1128/iai.01055-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022] Open
Abstract
When infected with Mycobacterium tuberculosis, most individuals will remain clinically healthy but latently infected. Latent infection has been proposed to partially involve M. tuberculosis in a nonreplicating stage, which therefore represents an M. tuberculosis phenotype that the immune system most likely will encounter during latency. It is therefore relevant to examine how this particular nonreplicating form of M. tuberculosis interacts with the host immune system. To study this, we first induced a state of nonreplication through prolonged nutrient starvation of M. tuberculosis in vitro. This resulted in nonreplicating persistence even after prolonged culture in phosphate-buffered saline. Infection with either exponentially growing M. tuberculosis or nutrient-starved M. tuberculosis resulted in similar lung CFU levels in the first phase of the infection. However, between week 3 and 6 postinfection, there was a very pronounced increase in bacterial levels and associated lung pathology in nutrient-starved-M. tuberculosis-infected mice. This was associated with a shift from CD4 T cells that coexpressed gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) or IFN-γ, TNF-α, and interleukin-2 to T cells that only expressed IFN-γ. Thus, nonreplicating M. tuberculosis induced through nutrient starvation promotes a bacterial form that is genetically identical to exponentially growing M. tuberculosis yet characterized by a differential impact on the immune system that may be involved in undermining host antimycobacterial immunity and facilitate increased pathology and transmission.
Collapse
|
57
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
58
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
59
|
Hu Y, Liu A, Ortega-Muro F, Alameda-Martin L, Mitchison D, Coates A. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbiol 2015; 6:641. [PMID: 26157437 PMCID: PMC4477163 DOI: 10.3389/fmicb.2015.00641] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/12/2015] [Indexed: 11/21/2022] Open
Abstract
Although high-dose rifampicin holds promise for improving tuberculosis control by potentially shortening treatment duration, these effects attributed to eradication of persistent bacteria are unclear. The presence of persistent Mycobacterium tuberculosis was examined using resuscitation promoting factors (RPFs) in both in vitro hypoxia and in vivo murine tuberculosis models before and after treatment with incremental doses of rifampicin. Pharmacokinetic parameters and dose-dependent profile of rifampicin in the murine model were determined. The Cornell mouse model was used to test efficacy of high-dose rifampicin in combination with isoniazid and pyrazinamide and to measure relapse rate. There were large numbers of RPF-dependent persisters in vitro and in vivo. Stationary phase cultures were tolerant to rifampicin while higher concentrations of rifampicin eradicated plate count positive but not RPF-dependent persistent bacteria. In murine infection model, incremental doses of rifampicin exhibited a dose-dependent eradication of RPF-dependent persisters. Increasing the dose of rifampicin significantly reduced the risk of antibiotic resistance emergence. In Cornell model, mice treated with high-dose rifampicin regimen resulted in faster visceral clearance; organs were M. tuberculosis free 8 weeks post-treatment compared to 14 weeks with standard-dose rifampicin regimen. Organ sterility, plate count and RPF-dependent persister negative, was achieved. There was no disease relapse compared to the standard dose regimen (87.5%). High-dose rifampicin therapy results in eradication of RPF-dependent persisters, allowing shorter treatment duration without disease relapse. Optimizing rifampicin to its maximal efficacy with acceptable side-effect profiles will provide valuable information in human studies and can potentially improve current tuberculosis chemotherapy.
Collapse
Affiliation(s)
- Yanmin Hu
- Institute for Infection and Immunity, St George's, University of London London, UK
| | - Alexander Liu
- Centre for Clinical Magnetic Resonance Research, University of Oxford Oxford, UK
| | - Fatima Ortega-Muro
- GlaxoSmithKline Research and Development, Diseases of Developing World Madrid, Spain
| | - Laura Alameda-Martin
- GlaxoSmithKline Research and Development, Diseases of Developing World Madrid, Spain
| | - Denis Mitchison
- Institute for Infection and Immunity, St George's, University of London London, UK
| | - Anthony Coates
- Institute for Infection and Immunity, St George's, University of London London, UK
| |
Collapse
|
60
|
Puspita ID, Kitagawa W, Kamagata Y, Tanaka M, Nakatsu CH. Increase in Bacterial Colony Formation from a Permafrost Ice Wedge Dosed with a Tomitella biformata Recombinant Resuscitation-Promoting Factor Protein. Microbes Environ 2015; 30:151-6. [PMID: 25843055 PMCID: PMC4462925 DOI: 10.1264/jsme2.me14119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Resuscitation-promoting factor (Rpf) is a protein that has been found in a number of different Actinobacteria species and has been shown to promote the growth of active cells and resuscitate dormant (non-dividing) cells. We previously reported the biological activity of an Rpf protein in Tomitella biformata AHU 1821T, an Actinobacteria isolated from a permafrost ice wedge. This protein is excreted outside the cell; however, few studies have investigated its contribution in environmental samples to the growth or resuscitation of bacteria other than the original host. Therefore, the aim of the present study was to determine whether Rpf from T. biformata impacted the cultivation of other bacteria from the permafrost ice wedge from which it was originally isolated. All experiments used recombinant Rpf proteins produced using a Rhodococcus erythropolis expression system. Dilutions of melted surface sterilized ice wedge samples mixed with different doses of the purified recombinant Rpf (rRpf) protein indicated that the highest concentration tested, 1250 pM, had a significantly (p <0.05) higher number of CFUs on agar plates after 8 d, approximately 14-fold higher than that on control plates without rRpf. 16S rRNA gene sequences revealed that all the colonies on plates were mainly related to Brevibacterium antiquum strain VKM Ac-2118 (AY243344), with 98–99% sequence identity. This species is also a member of the phylum Actinobacteria and was originally isolated from Siberian permafrost sediments. The results of the present study demonstrated that rRpf not only promoted the growth of T. biformata from which it was isolated, but also enhanced colony formation by another Actinobacteria in an environmental sample.
Collapse
|
61
|
Su XM, Liu YD, Hashmi MZ, Ding LX, Shen CF. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb Biotechnol 2015; 8:569-78. [PMID: 25675850 PMCID: PMC4408189 DOI: 10.1111/1751-7915.12266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/04/2015] [Indexed: 01/10/2023] Open
Abstract
Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from Micrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the composition of bacterial community was investigated by combining with culture-dependent and culture-independent methods. The obtained results indicate that Proteobacteria and Actinobacteria were predominant community in the PCB-contaminated sediment. EOM from M. luteus could stimulate the activity of some potentially difficult-to-culture BP degraders, which contribute to significant enhancement of BP biodegradation. The potentially difficult-to-culture bacteria in response to EOM addition were mainly Rhodococcus and Pseudomonas belonging to Gammaproteobacteria and Actinobacteria respectively. This study provides new insights into exploration of functional difficult-to-culture bacteria with EOM addition and points out broader BP/PCB degrading, which could be employed for enhancing PCB-bioremediation processes.
Collapse
Affiliation(s)
- Xiao-Mei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
62
|
Zhao S, Song X, Zhao Y, Qiu Y, Mao F, Zhang C, Bai B, Zhang H, Wu S, Shi C. Protective and therapeutic effects of the resuscitation-promoting factor domain and its mutants against Mycobacterium tuberculosis in mice. Pathog Dis 2015; 73:ftu025. [DOI: 10.1093/femspd/ftu025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
63
|
Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, Sreevatsan S. A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS One 2014; 9:e114622. [PMID: 25536105 PMCID: PMC4275185 DOI: 10.1371/journal.pone.0114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1-106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
Collapse
Affiliation(s)
- Elise A. Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ping Wang
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Klaudyna Borewicz
- Molecular Ecology Group, Wageningen University, Dreijenplen 10, 6703HB, Wageningen, Netherlands
| | - Ahmed Abdallah
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Richard E. Isaacson
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
64
|
Shleeva M, Kondratieva T, Rubakova E, Vostroknutova G, Kaprelyants A, Apt A. Reactivation of dormant "non-culturable" Mycobacterium tuberculosis developed in vitro after injection in mice: both the dormancy depth and host genetics influence the outcome. Microb Pathog 2014; 78:63-6. [PMID: 25434928 DOI: 10.1016/j.micpath.2014.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Three stocks of Mycobacterium tuberculosis H37Rv were cultured in vitro under prolonged hypoxic or acidified conditions until partial or complete loss of the capacity to form colonies on agar medium was achieved. Such dormant "non-culturable" mycobacteria were assessed for the growth resuscitation after intra-tracheal injection into mice of the two inbred strains with different genetic susceptibility to M. tuberculosis-triggered disease: hyper-susceptible I/St and relatively resistant B6. The results indicate that bacteria which are able to resuscitate spontaneously in liquid medium in vitro started to multiply in organs of infected mice, and that the outcome of such infection strongly depended upon the level of genetic TB susceptibility. However, dormant bacteria required inducers for resuscitation in vitro lost the capacity to multiply even in genetically susceptible mice. The established model of dormancy/reactivation is suitable for the studying host-pathogen interactions and testing vaccine and drug candidates specifically targeting latent TB.
Collapse
Affiliation(s)
- Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | - Galina Vostroknutova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
65
|
Bowness R, Boeree MJ, Aarnoutse R, Dawson R, Diacon A, Mangu C, Heinrich N, Ntinginya NE, Kohlenberg A, Mtafya B, Phillips PPJ, Rachow A, Plemper van Balen G, Gillespie SH. The relationship between Mycobacterium tuberculosis MGIT time to positivity and cfu in sputum samples demonstrates changing bacterial phenotypes potentially reflecting the impact of chemotherapy on critical sub-populations. J Antimicrob Chemother 2014; 70:448-55. [PMID: 25344806 DOI: 10.1093/jac/dku415] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The relationship between cfu and Mycobacterial Growth Indicator Tube (MGIT) time to positivity (TTP) is uncertain. We attempted to understand this relationship and create a mathematical model to relate these two methods of determining mycobacterial load. METHODS Sequential bacteriological load data from clinical trials determined by MGIT and cfu were collected and mathematical models derived. All model fittings were conducted in the R statistical software environment (version 3.0.2), using the lm and nls functions. RESULTS TTP showed a negative correlation with log10 cfu on all 14 days of the study. There was an increasing gradient of the regression line and y-intercept as treatment progressed. There was also a trend towards an increasing gradient with higher doses of rifampicin. CONCLUSIONS These data suggest that there is a population of mycobacterial cells that are more numerous when detected in liquid than on solid medium. Increasing doses of rifampicin differentially kill this group of organisms. These findings support the idea that increased doses of rifampicin are more effective.
Collapse
Affiliation(s)
- Ruth Bowness
- School of Medicine, University of St Andrews, Fife KY16 9AJ, UK
| | - Martin J Boeree
- Radboud University Medical Center, Department of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Rob Aarnoutse
- Radboud University Medical Center, Department of Clinical Pharmacy, Nijmegen, The Netherlands
| | - Rodney Dawson
- Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Andreas Diacon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chacha Mangu
- NIMR-Mbeya Medical Research Centre, PO Box 2410, Mbeya, Tanzania
| | - Norbert Heinrich
- Department for Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany DZIF German Centre for Infection Research, Munich, Germany
| | | | - Anke Kohlenberg
- NIMR-Mbeya Medical Research Centre, PO Box 2410, Mbeya, Tanzania Department for Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany
| | - Bariki Mtafya
- NIMR-Mbeya Medical Research Centre, PO Box 2410, Mbeya, Tanzania
| | | | - Andrea Rachow
- Department for Infectious Diseases and Tropical Medicine, University of Munich, Munich, Germany DZIF German Centre for Infection Research, Munich, Germany
| | | | | |
Collapse
|
66
|
Su X, Zhang Q, Hu J, Hashmi MZ, Ding L, Shen C. Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Appl Microbiol Biotechnol 2014; 99:1989-2000. [DOI: 10.1007/s00253-014-6108-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/31/2022]
|
67
|
Salina EG, Waddell SJ, Hoffmann N, Rosenkrands I, Butcher PD, Kaprelyants AS. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biol 2014; 4:140106. [PMID: 25320096 PMCID: PMC4221891 DOI: 10.1098/rsob.140106] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection.
Collapse
Affiliation(s)
- Elena G Salina
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Nadine Hoffmann
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Philip D Butcher
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Arseny S Kaprelyants
- Institution of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry RAS, Moscow, Russia
| |
Collapse
|
68
|
Metabolomics: a window into the adaptive physiology of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:538-43. [PMID: 25172023 DOI: 10.1016/j.tube.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB) and second leading cause of human mortality due to a single infectious agent. This is mostly because of M. tuberculosis' ability to adapt its metabolism to the host environment and regulate entry into and exit from cell cycle. Knowledge of the specific metabolic changes accompanying these transitions however is incomplete. Metabolomics has emerged as a new biochemical window into M. tuberculosis physiology. This review highlights recent insights from the application of such technologies to studies of the M. tuberculosis lifecycle.
Collapse
|
69
|
Vijay S, Mukkayyan N, Ajitkumar P. Highly Deviated Asymmetric Division in Very Low Proportion of Mycobacterial Mid-log Phase Cells. Open Microbiol J 2014; 8:40-50. [PMID: 24949109 PMCID: PMC4062944 DOI: 10.2174/1874285801408010040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/08/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022] Open
Abstract
In this study, we show that about 20% of the septating Mycobacterium smegmatis and Mycobacterium xenopi cells in the exponential phase populationdivideasymmetrically, with an unusually high deviation (17 ± 4%) in the division site from the median, to generate short cells and long cells, thereby generating population heterogeneity. This mode of division is very different from the symmetric division of themajority (about 80%) of the septating cells in the Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG exponential phase population, with 5-10% deviation in the division site from the mid-cell site, as reported by recent studies. The short cells and the long cells further grew and divided to generate a population. We speculate that the generation of the short cells and the long cells through the highly deviated asymmetric divisionin the low proportions of mycobacterial population may have a role in stress tolerance.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012,Karnataka,India
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012,Karnataka,India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012,Karnataka,India
| |
Collapse
|
70
|
The molecular bacterial load assay replaces solid culture for measuring early bactericidal response to antituberculosis treatment. J Clin Microbiol 2014; 52:3064-7. [PMID: 24871215 DOI: 10.1128/jcm.01128-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the use of the molecular bacterial load (MBL) assay, for measuring viable Mycobacterium tuberculosis in sputum, in comparison with solid agar and liquid culture. The MBL assay provides early information on the rate of decline in bacterial load and has technical advantages over culture in either form.
Collapse
|
71
|
Dworkin J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol 2014; 68:137-54. [PMID: 24847956 DOI: 10.1146/annurev-micro-091213-112844] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptidoglycan serves as a key structure of the bacterial cell by determining cell shape and providing resistance to internal turgor pressure. However, in addition to these essential and well-studied functions, bacterial signaling by peptidoglycan fragments, or muropeptides, has been demonstrated by recent work. Actively growing bacteria release muropeptides as a consequence of cell wall remodeling during elongation and division. Therefore, the presence of muropeptide synthesis is indicative of growth-promoting conditions and may serve as a broadly conserved signal for nongrowing cells to reinitiate growth. In addition, muropeptides serve as signals between bacteria and eukaryotic organisms during both pathogenic and symbiotic interactions. The increasingly appreciated role of the microbiota in metazoan organisms suggests that muropeptide signaling likely has important implications for homeostatic mammalian physiology.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|
72
|
Demidenok OI, Kaprelyants AS, Goncharenko AV. Toxin-antitoxinvapBClocus participates in formation of the dormant state inMycobacterium smegmatis. FEMS Microbiol Lett 2014; 352:69-77. [DOI: 10.1111/1574-6968.12380] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/31/2013] [Accepted: 12/31/2013] [Indexed: 01/01/2023] Open
Affiliation(s)
- Oksana I. Demidenok
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| | - Arseny S. Kaprelyants
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| | - Anna V. Goncharenko
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
73
|
Asymmetric cell division in Mycobacterium tuberculosis and its unique features. Arch Microbiol 2014; 196:157-68. [DOI: 10.1007/s00203-014-0953-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/06/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
|
74
|
Shleeva M, Goncharenko A, Kudykina Y, Young D, Young M, Kaprelyants A. Cyclic AMP-dependent resuscitation of dormant Mycobacteria by exogenous free fatty acids. PLoS One 2013; 8:e82914. [PMID: 24376605 PMCID: PMC3871856 DOI: 10.1371/journal.pone.0082914] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
One third of the world population carries a latent tuberculosis (TB) infection, which may reactivate leading to active disease. Although TB latency has been known for many years it remains poorly understood. In particular, substances of host origin, which may induce the resuscitation of dormant mycobacteria, have not yet been described. In vitro models of dormant ("non-culturable") cells of Mycobacterium smegmatis (mc(2)155) and Mycobacterium tuberculosis H37Rv were used. We found that the resuscitation of dormant M. smegmatis and M. tuberculosis cells in liquid medium was stimulated by adding free unsaturated fatty acids (FA), including arachidonic acid, at concentrations of 1.6-10 µM. FA addition enhanced cAMP levels in reactivating M. smegmatis cells and exogenously added cAMP (3-10 mM) or dibutyryl-cAMP (0.5-1 mM) substituted for FA, causing resuscitation of M. smegmatis and M. tuberculosis dormant cells. A M. smegmatis null-mutant lacking MSMEG_4279, which encodes a FA-activated adenylyl cyclase (AC), could not be resuscitated by FA but it was resuscitated by cAMP. M. smegmatis and M. tuberculosis cells hyper-expressing AC were unable to form non-culturable cells and a specific inhibitor of AC (8-bromo-cAMP) prevented FA-dependent resuscitation. RT-PCR analysis revealed that rpfA (coding for resuscitation promoting factor A) is up-regulated in M. smegmatis in the beginning of exponential growth following the cAMP increase in lag phase caused by FA-induced cell activation. A specific Rpf inhibitor (4-benzoyl-2-nitrophenylthiocyanate) suppressed FA-induced resuscitation. We propose a novel pathway for the resuscitation of dormant mycobacteria involving the activation of adenylyl cyclase MSMEG_4279 by FAs resulted in activation of cellular metabolism followed later by increase of RpfA activity which stimulates cell multiplication in exponential phase. The study reveals a probable role for lipids of host origin in the resuscitation of dormant mycobacteria, which may function during the reactivation of latent TB.
Collapse
Affiliation(s)
- Margarita Shleeva
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| | - Anna Goncharenko
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| | - Yuliya Kudykina
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| | - Danielle Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Arseny Kaprelyants
- Bach Institute of Biochemistry Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
75
|
Magombedze G, Dowdy D, Mulder N. Latent Tuberculosis: Models, Computational Efforts and the Pathogen's Regulatory Mechanisms during Dormancy. Front Bioeng Biotechnol 2013; 1:4. [PMID: 25023946 PMCID: PMC4090907 DOI: 10.3389/fbioe.2013.00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/12/2013] [Indexed: 01/07/2023] Open
Abstract
Latent tuberculosis is a clinical syndrome that occurs after an individual has been exposed to the Mycobacterium tuberculosis (Mtb) Bacillus, the infection has been established and an immune response has been generated to control the pathogen and force it into a quiescent state. Mtb can exit this quiescent state where it is unresponsive to treatment and elusive to the immune response, and enter a rapid replicating state, hence causing infection reactivation. It remains a gray area to understand how the pathogen causes a persistent infection and it is unclear whether the organism will be in a slow replicating state or a dormant non-replicating state. The ability of the pathogen to adapt to changing host immune response mechanisms, in which it is exposed to hypoxia, low pH, nitric oxide (NO), nutrient starvation, and several other anti-microbial effectors, is associated with a high metabolic plasticity that enables it to metabolize under these different conditions. Adaptive gene regulatory mechanisms are thought to coordinate how the pathogen changes their metabolic pathways through mechanisms that sense changes in oxygen tension and other stress factors, hence stimulating the pathogen to make necessary adjustments to ensure survival. Here, we review studies that give insights into latency/dormancy regulatory mechanisms that enable infection persistence and pathogen adaptation to different stress conditions. We highlight what mathematical and computational models can do and what they should do to enhance our current understanding of TB latency.
Collapse
Affiliation(s)
- Gesham Magombedze
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - David Dowdy
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicola Mulder
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
76
|
Caceres N, Vilaplana C, Prats C, Marzo E, Llopis I, Valls J, Lopez D, Cardona PJ. Evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures. Tuberculosis (Edinb) 2013; 93:690-8. [PMID: 24011631 DOI: 10.1016/j.tube.2013.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/17/2013] [Accepted: 08/05/2013] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate the evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures according to growth time and conditions. Thus, in standard culture using aerated 7H9 Middlebrook broth supplemented with 0.05% Tween 80, a dramatic CFU decrease was observed at the end of the exponential phase. This phase was followed by a stable stationary phase that led to dissociation between the optical density (O.D.) and CFU values, together with the formation of opaque colonies in solid culture. Further analysis revealed that this was due to cording. Scanning electron microscopy showed that cording led to the formation of very stable coiled structures and corded cell aggregations which proved impossible to disrupt by any of the physical means tested. Modulation of cording with a high but non-toxic concentration of Tween 80 led to a slower growth rate, avoidance of a sudden drop-off to the stationary phase, the formation of weaker cording structures and the absence of opaque colonies, together with a lower survival at later time-points. An innovative automated image analysis technique has been devised to characterize the cording process. This analysis has led to important practical consequences for the elaboration of M. tuberculosis inocula and suggests the importance of biofilm formation in survival of the bacilli in the extracellular milieu.
Collapse
Affiliation(s)
- Neus Caceres
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Crtra. de Can Ruti, Camí de les Escoles s/n, Edifici Escoles, 08916 Badalona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Kassem II, Chandrashekhar K, Rajashekara G. Of energy and survival incognito: a relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni. Front Microbiol 2013; 4:183. [PMID: 23847606 PMCID: PMC3705167 DOI: 10.3389/fmicb.2013.00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a Gram-negative food-borne bacterium that can cause mild to serious diseases in humans. A variety of stress conditions including exposure to formic acid, a weak organic acid, can cause C. jejuni to form viable but non-culturable cells (VBNC), which was proposed as a potential survival mechanism. The inability to detect C. jejuni VBNC using standard culturing techniques may increase the risk of exposure to foods contaminated with this pathogen. However, little is known about the cellular mechanisms and triggers governing VBNC formation. Here, we discuss novel mechanisms that potentially affect VBNC formation in C. jejuni and emphasize the impact of formic acid on this process. Specifically, we highlight findings that show that impairing inorganic polyphosphate (poly-P) metabolism reduces the ability of C. jejuni to form VBNC in a medium containing formic acid. We also discuss the potential effect of poly-P and formate metabolism on energy homeostasis and cognate VBNC formation. The relationship between poly-P metabolism and VBNC formation under acid stress has only recently been identified and may represent a breakthrough in understanding this phenomenon and its impact on food safety.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University Wooster, OH, USA
| | | | | |
Collapse
|
78
|
Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 2013; 29:2213-8. [PMID: 23733177 DOI: 10.1007/s11274-013-1390-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/28/2013] [Indexed: 12/25/2022]
Abstract
A conventional plate count is the most commonly employed method to estimate the number of living bacteria in environmental samples. In fact, judging the level of viable culture by plate count is limited, because it is often several orders of magnitude less than the number of living bacteria actually present. Most of the bacteria are in "viable but non-culturable" (VBNC) state, whose cells are intact and alive and can resuscitate when surrounding conditions are more favorable. The most exciting recent development in resuscitating VBNC bacteria is a bacterial cytokine, namely, the resuscitation-promoting factor (Rpf), secreted by Micrococcus luteus, which promotes the resuscitation and growth of high G+C Gram-positive organisms, including some species of the genus Mycobacterium. However, most of studies deal with VBNC bacteria only from the point of view of medicine and epidemiology. It is therefore of great significance to research whether these VBNC state bacteria also possess some useful environmental capabilities, such as degradation, flocculation, etc. Further studies are needed to elucidate the possible environmental role of the VBNC bacteria, rather than only considering their role as potential pathogens from the point view of epidemiology and public health. We have studied the resuscitation of these VBNC bacteria in polluted environments by adding culture supernatant containing Rpf from M. luteus, and it was found that, as a huge microbial resource, VBNC bacteria could provide important answers to dealing with existing problems of environmental pollution. This mini-review will provide new insight for considering the potentially environmental functions of VBNC bacteria.
Collapse
|
79
|
Kidenya BR, Kabangila R, Peck RN, Mshana SE, Webster LE, Koenig SP, Johnson WD, Fitzgerald DW. Early and efficient detection of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures. PLoS One 2013; 8:e57527. [PMID: 23469014 PMCID: PMC3585352 DOI: 10.1371/journal.pone.0057527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
Early, efficient and inexpensive methods for the detection of pulmonary tuberculosis are urgently needed for effective patient management as well as to interrupt transmission. These methods to detect M. tuberculosis in a timely and affordable way are not yet widely available in resource-limited settings. In a developing-country setting, we prospectively evaluated two methods for culturing and detecting M. tuberculosis in sputum. Sputum samples were cultured in liquid assay (micro broth culture) in microplate wells and growth was detected by microscopic observation, or in Löwenstein-Jensen (LJ) solid media where growth was detected by visual inspection for colonies. Sputum samples were collected from 321 tuberculosis (TB) suspects attending Bugando Medical Centre, in Mwanza, Tanzania, and were cultured in parallel. Pulmonary tuberculosis cases were diagnosed using the American Thoracic Society diagnostic standards. There were a total of 200 (62.3%) pulmonary tuberculosis cases. Liquid assay with microscopic detection detected a significantly higher proportion of cases than LJ solid culture: 89.0% (95% confidence interval [CI], 84.7% to 93.3%) versus 77.0% (95% CI, 71.2% to 82.8%) (p = 0.0007). The median turn around time to diagnose tuberculosis was significantly shorter for micro broth culture than for the LJ solid culture, 9 days (interquartile range [IQR] 7-13), versus 21 days (IQR 14-28) (p<0.0001). The cost for micro broth culture (labor inclusive) in our study was US $4.56 per sample, versus US $11.35 per sample for the LJ solid culture. The liquid assay (micro broth culture) is an early, feasible, and inexpensive method for detection of pulmonary tuberculosis in resource limited settings.
Collapse
Affiliation(s)
- Benson R Kidenya
- Department of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Czepluch W, Dunn AC, Everitt CL, Dorer D, Saunderson SC, Aldwell FE, McLellan AD. Extracellular forms of Mycobacterium bovis BCG in the mucosal lymphatic tissues following oral vaccination. Int J Mycobacteriol 2012; 2:44-50. [PMID: 26785788 DOI: 10.1016/j.ijmyco.2012.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 10/27/2022] Open
Abstract
Oral vaccination with BCG provides protective systemic immunity against pathogenic mycobacterial challenge. In this study, the anatomical distribution of Mycobacterium bovis BCG following oral vaccination was investigated. Replicating bacteria in the Peyer's patches and mesenteric lymph nodes were present as solitary rods or clusters of two to three bacteria, the majority of which were isolated ex vivo as extracellular forms. Only a minority were shown to be associated with typical antigen-presenting cells. Acid-fast staining of mast cell granules in lymphoid tissues revealed a potential pitfall for these analyses and may explain previous reports of acid-fast 'coccoid' forms of mycobacteria in tissues.
Collapse
Affiliation(s)
- Wenzel Czepluch
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Amy C Dunn
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Charlotte L Everitt
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Dominik Dorer
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Sarah C Saunderson
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Frank E Aldwell
- Immune Solutions, Centre for Innovation, University of Otago
| | - Alexander D McLellan
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
81
|
Dewi Puspita I, Uehara M, Katayama T, Kikuchi Y, Kitagawa W, Kamagata Y, Asano K, Nakatsu CH, Tanaka M. Resuscitation promoting factor (Rpf) from Tomitella biformata AHU 1821(T) promotes growth and resuscitates non-dividing cells. Microbes Environ 2012; 28:58-64. [PMID: 23100022 PMCID: PMC4070687 DOI: 10.1264/jsme2.me12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional variation of Rpf, a growth factor found exclusively in Actinobacteria, is differentiated by its source and amino acid sequences. Only purified Rpf proteins from three species have been studied so far. To seek new Rpfs for use in future studies to understand their role in Actinobacteria, the objective of this study was to identify rpf gene homologs in Tomitella biformata AHU 1821T, a novel Actinobacteria isolated from permafrost ice wedge. Amplification using degenerate primers targeting the essential Rpf domain led to the discovery of a new rpf gene in T. biformata. Gene structure and the deduced Rpf domain amino acid sequence indicated that this rpf gene was not identical to previously studied Rpf. Phylogenetic analysis placed T. biformata Rpf in a monophyletic branch in the RpfB subfamily. The deduced amino acid sequence was 44.9% identical to RpfB in Mycobacterium tuberculosis, the closest functionally tested Rpf. The gene was cloned and expressed in Escherichia coli; the recombinant Rpf protein (rRpf) promoted the growth of dividing cells and resuscitated non-dividing cells of T. biformata. Compared to other studies, this Rpf was required at higher concentrations to promote its growth and to resuscitate itself from a non-dividing state. The resuscitation function was likely due to the highly conserved Rpf domain. This study provides evidence that a genetically unique but functional Rpf can be found in novel members of Actinobacteria and can lead to a better understanding of bacterial cytokines in this phylum.
Collapse
|
82
|
Abstract
If discovery of new antibiotics continues to falter while resistance to drugs in clinical use continues to spread, society's medicine chest will soon lack effective treatments for many infections. Heritable antibiotic resistance emerges in bacteria from nonheritable resistance, also called phenotypic tolerance. This widespread phenomenon is closely linked to nonproliferative states in ways that scientists are just beginning to understand. A deeper understanding of the mechanisms of phenotypic tolerance may reveal new drug targets in the infecting organisms. At the same time, researchers must investigate ways to target the host in order to influence host-pathogen relationships. Government must reform the regulatory process for approval of new antibiotics. The private sector, government, and academia must undertake multiple, organized, multidisciplinary, parallel efforts to improve the ways in which antibiotics are discovered, tested, approved, and conserved, or it will be difficult to sustain the modern practice of medicine.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
83
|
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable? Microbes Environ 2012; 27:356-66. [PMID: 23059723 PMCID: PMC4103542 DOI: 10.1264/jsme2.me12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.
Collapse
Affiliation(s)
- Indun Dewi Puspita
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062–8517,
Japan
| | - Michiko Tanaka
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Cindy H. Nakatsu
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
84
|
Culture- and quantitative IS900 real-time PCR-based analysis of the persistence of Mycobacterium avium subsp. paratuberculosis in a controlled dairy cow farm environment. Appl Environ Microbiol 2012; 78:6608-14. [PMID: 22773642 DOI: 10.1128/aem.01264-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to monitor the persistence of Mycobacterium avium subsp. paratuberculosis in environmental samples taken from a Holstein farm with a long history of clinical paratuberculosis. A herd of 606 head was eradicated, and mechanical cleaning and disinfection with chloramine B with ammonium (4%) was carried out on the farm; in the surrounding areas (on the field and field midden) lime was applied. Environmental samples were collected before and over a period of 24 months after destocking. Only one sample out of 48 (2%) examined on the farm (originating from a waste pit and collected before destocking) was positive for M. avium subsp. paratuberculosis by cultivation on solid medium (Herrold's egg yolk medium). The results using real-time quantitative PCR (qPCR) showed that a total of 81% of environmental samples with an average mean M. avium subsp. paratuberculosis cell number of 3.09 × 10(3) were positive for M. avium subsp. paratuberculosis before destocking compared to 43% with an average mean M. avium subsp. paratuberculosis cell number of 5.86 × 10(2) after 24 months. M. avium subsp. paratuberculosis-positive samples were detected in the cattle barn as well as in the calf barn and surrounding areas. M. avium subsp. paratuberculosis was detected from different matrices: floor and instrument scrapings, sediment, or scraping from watering troughs, waste pits, and cobwebs. M. avium subsp. paratuberculosis DNA was also detected in soil and plants collected on the field midden and the field 24 months after destocking. Although the proportion of positive samples decreased from 64% to 23% over time, the numbers of M. avium subsp. paratuberculosis cells were comparable.
Collapse
|
85
|
Abstract
The history of the development of modern chemotherapy for tuberculosis (TB), largely due to the British Medical Research Council, is first described. There is a current need to shorten the duration of treatment and to prevent and cure drug-resistant disease. These aims will only be achieved if the way in which multidrug treatment prevents resistance from emerging and the reasons for the very slow response to chemotherapy are understood. Consideration of mutation rates to resistance and the size of bacterial populations in lesions makes it very unlikely that resistance would emerge spontaneously, leaving irregularity in drug taking and inadequate dosage as the main reasons for its occurrence. Slow response to treatment seems due to the presence of persister populations whose natural history is only partly known. In the future, we need to explore the persister state in patients and in experimental murine TB, and to take it into account in the design of future mouse experiments. The activity of rifamycins and pyrazinamide is being increased by a rise in rifamycin dosage and the inhalation of pyrazinoic acid. New drugs are gradually being brought into use, initially TMC207 and the nitroimadazoles, PA824 and OPC67683. They will need to be tested in new combination regimens for drug-susceptible and multi- and extensively drug-resistant disease.
Collapse
Affiliation(s)
- D Mitchison
- Department of Cellular & Molecular Medicine, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
86
|
Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 2012; 36:514-32. [PMID: 22320122 PMCID: PMC3319523 DOI: 10.1111/j.1574-6976.2012.00331.x] [Citation(s) in RCA: 503] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host-pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
Collapse
Affiliation(s)
- Martin Gengenbacher
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
87
|
Epidemiological significance of the domestic black pig (Sus scrofa) in maintenance of bovine tuberculosis in Sicily. J Clin Microbiol 2012; 50:1209-18. [PMID: 22322347 DOI: 10.1128/jcm.06544-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine tuberculosis (bTB) is an emerging disease among wild animals in many parts of the world. Wildlife reservoir hosts may thus represent a potential source of infection for livestock and humans. We investigated the role played by the Sicilian black pig, an autochthonous free- or semi-free-ranging domestic pig breed, as a potential source of bTB infection in an area where bTB prevalence in cattle is high. We initially performed a preliminary field study to assess the occurrence of bTB in such animals. We sampled 119 pigs at abattoir and found 6.7% and 3.4% of them to be affected by gross tuberculous-like lesions (TBL) and Mycobacterium bovis culture positive, respectively. We then proceeded to investigate the dissemination and characteristics of lesions in a second field study performed on 100 animals sampled from infected herds. Here, tissues collected at the abattoir were examined macroscopically, microscopically, and by culture tests. Most pigs with TBL showed generalized lesions in both gross and histological examinations (53% and 65.5%, respectively). Head lymph nodes were the most frequently affected in both localized and generalized TB cases observed macroscopically and microscopically. M. bovis was the most frequently isolated etiologic agent. The molecular characterization of isolates from both field studies by spoligotyping and analysis of 12 mycobacterial interspersed repetitive-unit-variable number tandem repeat (MIRU-VNTR) loci, followed by their comparison to isolates of cattle origin, suggested a potential transmission of mycobacteria from domestic animals to black pigs and vice versa. Our findings, along with ethological, ecological, and management considerations, suggest that the black pig might act as a bTB reservoir in the ecosystem under study. However, additional studies will be necessary to establish the true epidemiological significance of the Sicilian black pig.
Collapse
|
88
|
Cerca F, Andrade F, França Â, Andrade EB, Ribeiro A, Almeida AA, Cerca N, Pier G, Azeredo J, Vilanova M. Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. J Med Microbiol 2011; 60:1717-1724. [PMID: 21799197 PMCID: PMC10727147 DOI: 10.1099/jmm.0.031922-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/22/2011] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen and, due to its ability to establish biofilms, is a leading causative agent of indwelling medical device-associated infection. The presence of high amounts of dormant bacteria is a hallmark of biofilms, making them more tolerant to antimicrobials and to the host immune response. We observed that S. epidermidis biofilms grown in excess glucose accumulated high amounts of viable but non-culturable (VBNC) bacteria, as assessed by their low ratio of culturable bacteria over the number of viable bacteria. This effect, which was a consequence of the accumulation of acidic compounds due to glucose metabolism, was counteracted by high extracellular levels of calcium and magnesium added to the culture medium allowing modulation of the proportions of VBNC bacteria within S. epidermidis biofilms. Using bacterial inocula obtained from biofilms with high and low proportions of VBNC bacteria, their stimulatory effect on murine macrophages was evaluated in vitro and in vivo. The inoculum enriched in VBNC bacteria induced in vitro a lower production of tumour necrosis factor alpha, interleukin-1 and interleukin-6 by bone-marrow-derived murine macrophages and, in vivo, a lower stimulatory effect on peritoneal macrophages, assessed by increased surface expression of Gr1 and major histocompatibility complex class II molecules. Overall, these results show that environmental conditions, such as pH and extracellular levels of calcium and magnesium, can induce dormancy in S. epidermidis biofilms. Moreover, they show that bacterial suspensions enriched in dormant cells are less inflammatory, suggesting that dormancy can contribute to the immune evasion of biofilms.
Collapse
Affiliation(s)
- Filipe Cerca
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Rua do Campo Alegre
83, Porto, Portugal
| | - Filipa Andrade
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
| | - Ângela França
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- CEB-IBB, Campus de Gualtar, Universidade do Minho, 4710-057 Braga,
Portugal
| | - Elva Bonifácio Andrade
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Rua do Campo Alegre
83, Porto, Portugal
| | - Adília Ribeiro
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
| | - Agostinho A. Almeida
- REQUIMTE, Departamento de Química–Física, Faculdade de Farmácia,
Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
| | - Nuno Cerca
- CEB-IBB, Campus de Gualtar, Universidade do Minho, 4710-057 Braga,
Portugal
| | - Gerald Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's
Hospital, Boston, MA 02115, USA
| | - Joana Azeredo
- CEB-IBB, Campus de Gualtar, Universidade do Minho, 4710-057 Braga,
Portugal
| | - Manuel Vilanova
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Largo do
Professor Abel Salazar 2, 4099-003 Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Rua do Campo Alegre
83, Porto, Portugal
| |
Collapse
|
89
|
Molecular bacterial load assay, a culture-free biomarker for rapid and accurate quantification of sputum Mycobacterium tuberculosis bacillary load during treatment. J Clin Microbiol 2011; 49:3905-11. [PMID: 21900522 DOI: 10.1128/jcm.00547-11] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular assay to quantify Mycobacterium tuberculosis is described. In vitro, 98% (n = 96) of sputum samples with a known number of bacilli (10(7) to 10(2) bacilli) could be enumerated within 0.5 log(10). In comparison to culture, the molecular bacterial load (MBL) assay is unaffected by other microorganisms present in the sample, results are obtained more quickly (within 24 h) and are seldom inhibited (0.7% samples), and the MBL assay critically shows the same biphasic decline as observed longitudinally during treatment. As a biomarker of treatment response, the MBL assay responds rapidly, with a mean decline in bacterial load for 111 subjects of 0.99 log(10) (95% confidence interval [95% CI], 0.81 to 1.17) after 3 days of chemotherapy. There was a significant association between the rate of bacterial decline during the same 3 days and bacilli ml(-1) sputum at day 0 (linear regression, P = 0.0003) and a 3.62 increased odds ratio of relapse for every 1 log(10) increase in pretreatment bacterial load (95% CI, 1.53 to 8.59).
Collapse
|
90
|
Lipoarabinomannan localization and abundance during growth of Mycobacterium smegmatis. J Bacteriol 2011; 193:5802-9. [PMID: 21840972 DOI: 10.1128/jb.05299-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoarabinomannan (LAM) is a structurally heterogeneous amphipathic lipoglycan present in Mycobacterium spp. and other actinomycetes, which constitutes a major component of the cell wall and exhibits a wide spectrum of immunomodulatory effects. Analysis of Mycobacterium smegmatis subcellular fractions and spheroplasts showed that LAM and lipomannan (LM) were primarily found in a cell wall-enriched subcellular fraction and correlated with the presence (or absence) of the mycolic acids in spheroplast preparations, suggesting that LAM and LM are primarily associated with the putative outer membrane of mycobacteria. During the course of these studies significant changes in the LAM/LM content of the cell wall were noted relative to the age of the culture. The LAM content of the M. smegmatis cell wall was dramatically reduced as the bacilli approached stationary phase, whereas LM, mycolic acid, and arabinogalactan content appeared to be unchanged. In addition, cell morphology and acid-fast staining characteristics showed variations with growth phase of the bacteria. In the logarithmic phase, the bacteria were found to be classic rod-shaped acid-fast bacilli, while in the stationary phase M. smegmatis lost the characteristic rod shape and developed a punctate acid-fast staining pattern with carbolfuchsin. The number of viable bacteria was independent of LAM content and phenotype. Taken together, the results presented here suggest that LAM is primarily localized with the mycolic acids in the cell wall and that the cellular concentration of LAM in M. smegmatis is selectively modulated with the growth phase.
Collapse
|
91
|
Gupta RK, Srivastava R. Resuscitation promoting factors: a family of microbial proteins in survival and resuscitation of dormant mycobacteria. Indian J Microbiol 2011; 52:114-21. [PMID: 23729870 DOI: 10.1007/s12088-011-0202-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/26/2010] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an extraordinarily successful pathogen of humankind. It has been estimated that up to one-third of the world's population is infected with M. tuberculosis, and this population is an important reservoir for disease reactivation. Resuscitation promoting factor (Rpf) is a secretory protein, which was first reported in Micrococcus luteus. There are five functionally redundant Rpf-like proteins found in M. tuberculosis. Rpf promotes the resuscitation of dormant bacilli to yield normal, viable colony forming bacteria. All Rpfs share a conserved domain of about 70 amino acids and possess a lysozyme-like activity. The structural studies of the conserved domain suggest that Rpfs could be considered as a c-type lysozyme and lytic transglycosylases. Recently a novel class of nitrophenylthiocyanates (NPT) inhibitors of the muralytic activity of Rpf were reported which opens a new approach in the study of cell-wall hydrolyzing enzymes. This review describes molecular and structural studies conducted on Rpf proteins, their role in the resuscitation of dormant bacteria, in the reactivation of latent infection and identification of low molecular weight inhibitors of resuscitation promoting factors.
Collapse
Affiliation(s)
- Ravi Kr Gupta
- Microbiology Division, Central Drug Research Institute (CSIR), Lucknow, 226001 India
| | | |
Collapse
|
92
|
Optimal resting-growth strategies of microbial populations in fluctuating environments. PLoS One 2011; 6:e18622. [PMID: 21525975 PMCID: PMC3078108 DOI: 10.1371/journal.pone.0018622] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.
Collapse
|
93
|
Shleeva MO, Kudykina YK, Vostroknutova GN, Suzina NE, Mulyukin AL, Kaprelyants AS. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis (Edinb) 2011; 91:146-54. [PMID: 21262587 DOI: 10.1016/j.tube.2010.12.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 01/31/2023]
Abstract
It is believed that latent tuberculosis is associated with the persistence of Mycobacterium tuberculosis (MTB) in a dormant-like state. Dormant cells of MTB with coccoid morphology were produced in some in vivo studies, but similar forms were not produced in the known in vitro models in sufficient amounts to permit their characterization. This work demonstrates the efficient formation of phase-dark ovoid cells in MTB cultures within 150 days after the onset of stationary phase. During this time the medium underwent gradual acidification (pH 8.5 → 4.7) as a result of cellular metabolism. A rapid change in the external pH resulted in cell degradation and death. In common with the dormant forms found in other organisms, the ovoid cells had thickened cell walls, a low metabolic activity and elevated resistance to antibiotics and heating. The ovoid cells had lost the ability to form colonies on solid medium and were thus regarded as operationally «non-culturable». At an early stage in the acidification process (about 40 days post inoculation), the ovoid cells self-resuscitated when placed in fresh liquid medium. However, ovoid cells, stored for a prolonged time, required supernatant from active MTB cells, or externally added recombinant form of resuscitation promoting factor (Rpf) for successful resuscitation. It is suggested that the adaptation of cellular metabolism leading to gradual acidification of the external medium results in the formation of morphologically distinct dormant MTB cells in vitro. The model of MTB dormancy developed here could be a useful tool for the development of new drugs against latent TB.
Collapse
Affiliation(s)
- Margarita O Shleeva
- AN Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr 33, Moscow 119071, Russia.
| | | | | | | | | | | |
Collapse
|
94
|
Solyanikova IP, Mulyukin AL, Suzina NE, El-Registan GI, Golovleva LA. Improved xenobiotic-degrading activity of Rhodococcus opacus strain 1cp after dormancy. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:638-647. [PMID: 21749252 DOI: 10.1080/03601234.2011.594380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The goals of the present work were as follows: to obtain the dormant forms of R. opacus 1cp; to study the phenotypic variability during their germination; to compare phenotypic variants during the growth on selective and elective media; and to reveal changes in the ability of the strain to destruct xenobiotics that had not been degradable before dormancy. It was shown that Rhodococcus opacus 1cp (the strain degrading chlorinated phenols) became able to utilize a broader spectrum of xenobiotics after storage in the dormant state. Germination of the dormant forms of R. opacus 1cp on an agarized medium was followed by emergence and development of phenotypic variants that could grow on 4-chlorophenol and 2,4,6-trichlorophenol without adaptation. The cells of R. opacus 1cp phenotypic variants also utilized all of the tested chlorinated phenols: 2,3-, 2,5-, and 2,6-dichloro-, 2,3,4- and 2,4,5-trichloro-, pentachlorophenol, and 1,2,4,5-tetrachlorobenzene in concentrations up to 60 mg/L, though at the lower rates than 4-CP and 2,4,6-TCP. The improved degradation of chlorinated phenols by R. opacus strain 1cp exposed to the growth arrest conditions demonstrates the significance of dormancy for further manifestation of the adaptive potential of populations. A new principle of selection of variants with improved biodegradative properties was proposed. It embraces introduction of the dormancy stage into the cell life cycle with subsequent direct inoculation of morphologically different colonies into the media with different toxicants, including those previously not degraded by the strain.
Collapse
Affiliation(s)
- Inna P Solyanikova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
95
|
Affiliation(s)
- Hyejin Kim
- Korean Institute of Tuberculosis, Osong, Chungcheongbuk-do, Korea
| | - Sungweon Ryoo
- Korean Institute of Tuberculosis, Osong, Chungcheongbuk-do, Korea
| |
Collapse
|
96
|
Abstract
Mycobacterium tuberculosis, which causes tuberculosis, remains a major human public health threat. This is largely due to a sizeable reservoir of latently infected individuals, who may relapse into active disease decades after first acquiring the infection. Furthermore, patients have a very slow response to treatment of active disease. Latency and antibiotic tolerance are commonly taken as a proxy for dormancy, a stable nonreplicative state. However, latency is a clinical term that is solely defined by a lack of disease indicators. The actual state of the bacterium in human latency is not well understood. Here we evaluate the results of several in vitro models of dormancy and consider the applicability of various animal models for studying aspects of human latency and resistance to killing by antibiotics. Furthermore, we propose a model for the initiation of dormancy and resuscitation during infection.
Collapse
Affiliation(s)
- Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
97
|
Abstract
The human mouth is host to a diverse collection of microorganisms including bacteria, viruses, fungi and protozoa. Recent advances using molecular methods for the analysis of complex bacterial communities have demonstrated the richness of the oral bacterial biota and the presence of numerous previously undescribed lineages. Dental plaque forms in a structured way with pioneer species able to colonise pellicle-coated enamel followed by secondary plaque formers such as Fusobacterium nucleatum that have the capability of coaggregating with a range of other genera and species. The mature plaque biofilm has many features of multicellular organisms with the constituent organisms cooperating to make nutrients available and resist environmental stresses, and communicating to regulate their overall numbers. Control of the oral microbiota to prevent disease has conventionally been by mechanical means augmented with toothpastes and mouthrinses, but improved knowledge of oral microbial ecology is allowing the development of pre and pro-biotic approaches. Other possibilities include interference with the plaque formation process and the perturbation of bacterial communication networks.
Collapse
|
98
|
Abstract
Bacteria can exist in metabolically inactive states that allow them to survive conditions that are not conducive for growth. Such dormant cells may sense when conditions have improved and re-initiate growth, lest they be outcompeted by their neighbours. Growing bacteria turn over and release large quantities of their cell walls into the environment. Drawing from recent work on the germination of Bacillus subtilis spores, we propose that many microorganisms exit dormancy in response to cell wall muropeptides.
Collapse
|
99
|
Fanget NVJ, Foley S. Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis. Arch Microbiol 2010; 193:1-13. [DOI: 10.1007/s00203-010-0638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/12/2010] [Accepted: 09/30/2010] [Indexed: 11/24/2022]
|
100
|
Bru A, Cardona PJ. Mathematical modeling of tuberculosis bacillary counts and cellular populations in the organs of infected mice. PLoS One 2010; 5:e12985. [PMID: 20886087 PMCID: PMC2944881 DOI: 10.1371/journal.pone.0012985] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/28/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis is a particularly aggressive microorganism and the host's defense is based on the induction of cellular immunity, in which the creation of a granulomatous structure has an important role. METHODOLOGY We present here a new 2D cellular automata model based on the concept of a multifunctional process that includes key factors such as the chemokine attraction of the cells; the role of innate immunity triggered by natural killers; the presence of neutrophils; apoptosis and necrosis of infected macrophages; the removal of dead cells by macrophages, which induces the production of foamy macrophages (FMs); the life cycle of the bacilli as a determinant for the evolution of infected macrophages; and the immune response. RESULTS The results obtained after the inclusion of two degrees of tolerance to the inflammatory response triggered by the infection shows that the model can cover a wide spectrum, ranging from highly-tolerant (i.e. mice) to poorly-tolerant hosts (i.e. mini-pigs or humans). CONCLUSIONS This model suggest that stopping bacillary growth at the onset of the infection might be difficult and the important role played by FMs in bacillary drainage in poorly-tolerant hosts together with apoptosis and innate lymphocytes. It also shows the poor ability of the cellular immunity to control the infection, provides a clear protective character to the granuloma, due its ability to attract a sufficient number of cells, and explains why an already infected host can be constantly reinfected.
Collapse
Affiliation(s)
- Antonio Bru
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Fundació Institut per a la Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Centro de Investigación Biomédica en Red (CIBER) Enfermedades Respiratorias, Instituto Carlos III, Palma de Mallorca, Spain
- * E-mail:
| |
Collapse
|