51
|
Peng R, Huang Y, Huang P, Liu L, Cheng L, Peng X. The paradoxical role of transforming growth factor-β in controlling oral squamous cell carcinoma development. Cancer Biomark 2024; 40:241-250. [PMID: 39213051 PMCID: PMC11380267 DOI: 10.3233/cbm-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that plays a vital role in regulating cell growth, differentiation and survival in various tissues. It participates in a variety of cellular processes, including cell apoptosis, cell migration and evasion, and plays a paradoxical role in tumor genesis and development. In the early stage of tumor, TGF-β inhibits the occurrence of tumor by inhibiting cell proliferation and regulating cell apoptosis. In the advanced stage of tumor, TGF-β promotes tumor development and affects prognosis by promoting cell survival and proliferation, cell migration and invasion, participates in immune escape, etc. In this article, we will review the paradoxical role of TGF-β on the occurrence and development of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ruiting Peng
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Yun Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Ping Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Linyi Liu
- Maine Health Institute for Research, Scarborough, ME, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
52
|
Gu J, Ding B. Cross-talk of pyroptosis-based subtypes, the development of a risk classifier and immune responses in cervical cancer. J Gene Med 2024; 26:e3566. [PMID: 37469224 DOI: 10.1002/jgm.3566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is one of the most common gynecology malignancies and has a dismal survival outcome. The prognostic value of pyroptosis and its role in the regulation of immune metabolism in CC remain unclear. METHODS Two independent CC cohorts collected from public databases were integrated for unsupervised cluster analysis. All CC cases were assigned to different subsets based on the pyroptosis-related genes (PRGs). The differentially expressed genes (DEGs) between different subclusters were included in stepwise Cox regression for the risk classifier establishment. Next, single-cell sequencing analysis was conducted to explore the cellular location of each model gene. The CIBERSORT algorithm was applied to estimate immunocytes infiltration. Finally, a series of functional experiments were performed to detect the role of CDH3 in CC. RESULTS Based on the 52 PRGs, the combined CC cohort was clustered into two subsets (C1 (n = 259) and C2 (n = 242)). Survival and Cox regression methods were used to create a pyroptosis-based risk classifier including four PRGs (PEG3, FSCN1, CDH3 and SLC2A1). For the immune environment in CC, the high-risk group had a lower infiltration level of B cells, memory-activated CD4 T cells and CD8 T cells and a higher infiltration abundance of neutrophils. The expression pattern of model genes was confirmed in CC cell lines by PCR assay. Furthermore, we observed that knockdown of CDH3 could suppress CC cell proliferation. CONCLUSION Our project could offer promising reference for prognosis assessment, immune metabolism prediction and clinical decision-making of patients with CC.
Collapse
Affiliation(s)
- Jiamin Gu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
53
|
Tokizaki S, Podyma‐Inoue KA, Matsumoto T, Takahashi K, Kobayashi M, Ibi H, Uchida S, Iwabuchi S, Harada H, Hashimoto S, Miyazono K, Shirouzu M, Watabe T. Inhibition of transforming growth factor-β signals suppresses tumor formation by regulation of tumor microenvironment networks. Cancer Sci 2024; 115:211-226. [PMID: 37972575 PMCID: PMC10823284 DOI: 10.1111/cas.16006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-β (TGF-β) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-β receptor containing both TGF-β type I (TβRI) and type II (TβRII) receptors (TβRI-TβRII-Fc), which trapped all TGF-β isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TβRI-TβRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TβRI-TβRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TβRI-TβRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1β (IL-1β) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1β and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-β signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1β/EREG pathways and that TβRI-TβRII-Fc protein is a promising tool for targeting the TME networks.
Collapse
Affiliation(s)
- Shiori Tokizaki
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Haruka Ibi
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical MedicineAalborg UniversityCopenhagenDenmark
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
- RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | | | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
54
|
Kalyvianaki K, Salampasi EM, Katsoulieris EN, Boukla E, Vogiatzoglou AP, Notas G, Castanas E, Kampa M. 5-Oxo-ETE/OXER1: A Link between Tumor Cells and Macrophages Leading to Regulation of Migration. Molecules 2023; 29:224. [PMID: 38202807 PMCID: PMC10780139 DOI: 10.3390/molecules29010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammation is an important factor in the development of cancer. Macrophages found in tumors, known as tumor associated macrophages (TAMs), are key players in this process, promoting tumor growth through humoral and cellular mechanisms. 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), an arachidonic acid metabolite, has been described to possess a potent chemoattractant activity for human white blood cells (WBCs). The biological actions of 5-oxo-ETE are mediated through the GPCR 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor (OXER1). In addition, we have previously reported OXER1 as one of the membrane androgen receptors with testosterone antagonizing 5-oxo-ETE's actions. OXER1 is highly expressed in inflammatory cells and many normal and cancer tissues and cells, including prostate and breast cancer, promoting cancer cell survival. In the present study we investigate the expression and role of OXER1 in WBCs, THP-1 monocytes, and THP-1 derived macrophages, as well as its possible role in the interaction between macrophages and cancer cells (DU-145 and T47D). We report that OXER1 is differentially expressed between WBCs and macrophages and that receptor expression is modified by LPS treatment. Our results show that testosterone and 5-oxo-ETE can act in an antagonistic way affecting Ca2+ movements, migration, and cytokines' expression in immune-related cells, in a differentiation-dependent manner. Finally, we report that 5-oxo-ETE, through OXER1, can attract macrophages to the tumor site while tumor cells' OXER1 activation in DU-145 prostate and T47D breast cancer cells, by macrophages, induces actin cytoskeletal changes and increases their migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| |
Collapse
|
55
|
White SE, Schwartze TA, Mukundan A, Schoenherr C, Singh SP, van Dinther M, Cunningham KT, White MPJ, Campion T, Pritchard J, Hinck CS, Ten Dijke P, Inman G, Maizels RM, Hinck AP. TGM6, a helminth secretory product, mimics TGF-β binding to TβRII to antagonize TGF-β signaling in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573140. [PMID: 38187573 PMCID: PMC10769414 DOI: 10.1101/2023.12.22.573140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The murine helminth parasite Heligmosomoides polygyrus expresses a family of proteins structurally related to TGF-β Mimic 1 (TGM1), a secreted five domain protein that activates the TGF-β pathway and converts naïve T lymphocytes to immunosuppressive Tregs. TGM1 signals through the TGF-β type I and type II receptors, TβRI and TβRII, with domains 1-2 and 3 binding TβRI and TβRII, respectively, and domains 4-5 binding CD44, a co-receptor abundant on T cells. TGM6 is a homologue of TGM1 that is co-expressed with TGM1, but lacks domains 1 and 2. Herein, we show that TGM6 binds TβRII through domain 3, but does not bind TβRI, or other type I or type II receptors of the TGF-β family. In TGF-β reporter assays in fibroblasts, TGM6, but not truncated TGM6 lacking domains 4 and 5, potently inhibits TGF-β- and TGM1-induced signaling, consistent with its ability to bind TβRII but not TβRI or other receptors of the TGF-β family. However, TGM6 does not bind CD44 and is unable to inhibit TGF-β and TGM1 signaling in T cells. To understand how TGM6 binds TβRII, the X-ray crystal structure of the TGM6 domain 3 bound to TβRII was determined at 1.4 Å. This showed that TGM6 domain 3 binds TβRII through an interface remarkably similar to the TGF-β:TβRII interface. These results suggest that TGM6 has adapted its domain structure and sequence to mimic TGF-β binding to TβRII and function as a potent TGF-β and TGM1 antagonist in fibroblasts. The coexpression of TGM6, along with the immunosuppressive TGMs that activate the TGF-β pathway, may prevent tissue damage caused by the parasite as it progresses through its life cycle from the intestinal lumen to submucosal tissues and back again.
Collapse
|
56
|
Illmer J, Zauner R, Piñón Hofbauer J, Wimmer M, Gruner S, Ablinger M, Bischof J, Dorfer S, Hainzl S, Tober V, Bergson S, Sarig O, Samuelov L, Guttmann-Gruber C, Shalom-Feuerstein R, Sprecher E, Koller U, Laimer M, Bauer JW, Wally V. MicroRNA-200b-mediated reversion of a spectrum of epithelial-to-mesenchymal transition states in recessive dystrophic epidermolysis bullosa squamous cell carcinomas. Br J Dermatol 2023; 190:80-93. [PMID: 37681509 DOI: 10.1093/bjd/ljad335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.
Collapse
Affiliation(s)
- Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefanie Gruner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Vanessa Tober
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Shir Bergson
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
57
|
Zelanis A, Barcick U, Racorti NDV, Salardani M. Heterotypic communication as the promoter of phenotypic plasticity of cancer cells: The role of cancer secretomes. Proteomics 2023; 23:e2200243. [PMID: 37474490 DOI: 10.1002/pmic.202200243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of "signatures" of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.
Collapse
Affiliation(s)
- André Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Nathália de Vasconcellos Racorti
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Murilo Salardani
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, UNIFESP, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
58
|
Jiang Z, Ju YJ, Ali A, Chung PED, Wang DY, Liu JC, Li H, Vorobieva I, Mwewa E, Ghanbari-Azarnier R, Shrestha M, Ben-David Y, Zacksenhaus E. Thinking (Metastasis) outside the (Primary Tumor) Box. Cancers (Basel) 2023; 15:5315. [PMID: 38001575 PMCID: PMC10670606 DOI: 10.3390/cancers15225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Young-Jun Ju
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Amjad Ali
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Philip E. D. Chung
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Jeff C. Liu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Huiqin Li
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Ioulia Vorobieva
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ethel Mwewa
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China;
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Eldad Zacksenhaus
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
59
|
Milosevic I, Todorovic N, Filipovic A, Simic J, Markovic M, Stevanovic O, Malinic J, Katanic N, Mitrovic N, Nikolic N. HCV and HCC Tango-Deciphering the Intricate Dance of Disease: A Review Article. Int J Mol Sci 2023; 24:16048. [PMID: 38003240 PMCID: PMC10671156 DOI: 10.3390/ijms242216048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma (HCC) accounting for around one-third of all HCC cases. Prolonged inflammation in chronic hepatitis C (CHC), maintained through a variety of pro- and anti-inflammatory mediators, is one of the aspects of carcinogenesis, followed by mitochondrial dysfunction and oxidative stress. Immune response dysfunction including the innate and adaptive immunity also plays a role in the development, as well as in the recurrence of HCC after treatment. Some of the tumor suppressor genes inhibited by the HCV proteins are p53, p73, and retinoblastoma 1. Mutations in the telomerase reverse transcriptase promoter and the oncogene catenin beta 1 are two more important carcinogenic signaling pathways in HCC associated with HCV. Furthermore, in HCV-related HCC, numerous tumor suppressor and seven oncogenic genes are dysregulated by epigenetic changes. Epigenetic regulation of gene expression is considered as a lasting "epigenetic memory", suggesting that HCV-induced changes persist and are associated with liver carcinogenesis even after cure. Epigenetic changes and immune response dysfunction are recognized targets for potential therapy of HCC.
Collapse
Affiliation(s)
- Ivana Milosevic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Nevena Todorovic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Ana Filipovic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Jelena Simic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Marko Markovic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Olja Stevanovic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Jovan Malinic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Natasa Katanic
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
- Faculty of Medicine, University of Pristina Situated in Kosovska Mitrovica, 28000 Kosovska Mitrovica, Serbia
| | - Nikola Mitrovic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| | - Natasa Nikolic
- Faculty of Medicine, Department for Infectious Diseases, University of Belgrade, 11000 Belgrade, Serbia; (I.M.); (M.M.); (O.S.); (J.M.); (N.M.)
- University Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar Oslobodjenja 16, 11000 Belgrade, Serbia; (N.T.); (A.F.); (J.S.); (N.K.)
| |
Collapse
|
60
|
Weston WA, Barr AR. A cell cycle centric view of tumour dormancy. Br J Cancer 2023; 129:1535-1545. [PMID: 37608096 PMCID: PMC10645753 DOI: 10.1038/s41416-023-02401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.
Collapse
Affiliation(s)
- William A Weston
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alexis R Barr
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Rd, London, W12 0NN, UK.
| |
Collapse
|
61
|
Li H, Liu J, Qin X, Sun J, Liu Y, Jin F. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways. Cell Mol Neurobiol 2023; 43:3929-3942. [PMID: 37747595 DOI: 10.1007/s10571-023-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Gliomas are a deadly primary malignant tumor of the central nervous system, with glioblastoma (GBM) representing the most aggressive type. The clinical prognosis of GBM patients remains bleak despite the availability of multiple options for therapy, which has needed us to explore new therapeutic methods to face the rapid progression, short survival, and therapy resistance of glioblastomas. As the Human Genome Project advances, long noncoding RNAs (lncRNAs) have attracted the attention of researchers and clinicians in cancer research. Numerous studies have found aberrant expression of signaling pathways in glioma cells. For example, lncRNAs not only play an integral role in the drug resistance process by regulating the Wnt/β-catenin or PI3K/Akt signaling but are also involved in a variety of malignant biological behaviors such as glioma proliferation, migration, invasion, and tumor apoptosis. Therefore, the present review systematically assesses the existing research evidence on the malignant progression and drug resistance of glioma, focusing on the critical role and potential function of lncRNAs in the Wnt/β-catenin and PI3K/Akt classical pathways to promote and encourage further research in this field.
Collapse
Affiliation(s)
- Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jilan Liu
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xianyun Qin
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
| | - Yan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- School of Mental Health, Jining Medical University, Jining, 272013, China.
| | - Feng Jin
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
62
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
63
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
64
|
Cai X, Li M, Zhong Y, Yang W, Liang Z. COMP Improves Ang-II-Induced Atrial Fibrillation via TGF-β Signaling Pathway. Cardiovasc Toxicol 2023; 23:305-316. [PMID: 37584842 DOI: 10.1007/s12012-023-09799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) regulates transforming growth factor-β (TGF-β) signaling pathway, which has been proved to be associated with skin fibrosis and pulmonary fibrosis. Atrial fibrosis is a major factor of atrial fibrillation (AF). Nevertheless, the interaction between COMP and TGF-β as well as their role in AF remains undefined. The purpose of this study is to clarify the role of COMP in AF and explore its potential mechanism. The hub gene of AF was identified from two datasets using bioinformatics. Furthermore, it was verified by the downregulation of COMP in angiotensin-II (Ang-II)-induced AF in mice. Moreover, the effect on AF was examined using CCK8 assay, ELISA, and western blot. The involvement of TGF-β pathway was further discussed. The expression of COMP was the most significant among all these hub genes. Our experimental results revealed that the protein levels of TGF-β1, phosphorylated Smad2 (P-Smad2), and phosphorylated Smad3 (P-Smad3) were decreased after silencing COMP, which indicated that COMP knockdown could inhibit the activation of TGF-β pathway in AF cells. However, the phenomenon was reversed when the activator SRI was added. COMP acts as a major factor and can improve Ang-II-induced AF via TGF-β signaling pathway. Thus, our research enriches the understanding of the interaction between COMP and TGF-β in AF, and provides reference for the pathogenesis and diagnosis of AF.
Collapse
Affiliation(s)
- XiaoBi Cai
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Mingliang Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Ying Zhong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Wenkun Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China
| | - Zhu Liang
- Department of Cardiovascular and Thoracic Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue South, Xiashan District, Zhangjian City, 524001, Guangdong Province, China.
| |
Collapse
|
65
|
Shree B, Sharma V. Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sci 2023; 13:1376. [PMID: 37891744 PMCID: PMC10605910 DOI: 10.3390/brainsci13101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Brain tumours and Gliomas, in particular, are among the primary causes of cancer mortality worldwide. Glioma diagnosis and therapy have not significantly improved despite decades of efforts. Autocrine TGF-β signalling promotes glioma proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and drug resistance. Non-coding RNAs such as miRNA, lncRNA, and circRNAs have emerged as critical transcriptional and post-transcriptional regulators of TGF-β pathway components in glioma. Here, we summarize the complex regulatory network among regulatory ncRNAs and TGF-β pathway during Glioma pathogenesis and discuss their role as potential therapeutic targets for Gliomas.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India;
| |
Collapse
|
66
|
Tian Y, Zhou J, Chai X, Ping Z, Zhao Y, Xu X, Luo C, Sheng J. TCF12 Activates TGFB2 Expression to Promote the Malignant Progression of Melanoma. Cancers (Basel) 2023; 15:4505. [PMID: 37760480 PMCID: PMC10527220 DOI: 10.3390/cancers15184505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As one of the most common malignant tumors, melanoma is a serious threat to human health. More than half of melanoma patients have a BRAF mutation, and 90% of them have a BRAF(V600E) mutation. There is a targeted therapy for patients using a BRAF(V600E) inhibitor. However, no response to treatment is generally inevitable due to the heterogeneity of melanoma. Coupled with its high metastatic character, melanoma ultimately leads to poor overall survival. This study aimed to explore the possible mechanisms of melanoma metastasis and identify a more effective method for the treatment of melanoma. In this paper, we report that TCF12 expression is higher in melanoma, especially in metastatic tumors, through analyzing data from TCGA. Then, cell proliferation, colony formation, and transwell assays show that the upregulated expression of TCF12 can promote proliferation and metastasis of melanoma cells in vitro. The same result is confirmed in the subcutaneous tumor formation assay. Moreover, TGFB2 is identified as a direct downstream target of TCF12 by RNA-seq, qPCR, immunoblotting, ChIP, and a dual luciferase reporting assay. Interestingly, depletion of TCF12 can sensitize melanoma to BRAF inhibition both in vitro and in vivo. Overall, our results demonstrate that TCF12 promotes melanoma progression and can be a potential tumor therapeutic target.
Collapse
Affiliation(s)
- Youjia Tian
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Jiang Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China;
| | - Xinxin Chai
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Zejun Ping
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Yurong Zhao
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Xin Xu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
| | - Chi Luo
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinghao Sheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (Y.T.); (X.C.); (Z.P.); (Y.Z.); (X.X.)
- Liangzhu Laboratory, Zhejiang University, Hangzhou 310012, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Bioelectromagnetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
67
|
Xiao L, Zhang T, Zheng K, Xiao Q, Zhang W, Zhang D, Wu D, He C, Zhou Y, Liu Y. Knockdown of Secernin 1 inhibit cell invasion and migration by activating the TGF-β/Smad3 pathway in oral squamous cell carcinomas. Sci Rep 2023; 13:14922. [PMID: 37691034 PMCID: PMC10493221 DOI: 10.1038/s41598-023-41504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Secernin-1 (SCRN1) is a regulator of exocytosis in mast cells. Recently, SCRN1 was reported to be correlated with the prognosis of colorectal cancer and gastric cancer, but its functional effects on oral squamous cell carcinoma (OSCC) remain unclear. Our aim was to explore the expression pattern and the migration and invasion effects of the newly identified SCRN1 in OSCC. Western blotting (WB) was performed to measure SCRN1 expression in human OSCC tissue samples and OSCC cell lines. The effects of SCRN1 on OSCC cell proliferation, invasion and migration were analyzed by cell counting kit-8 and Transwell assays. The expression levels of TGF-β, Smad3 and phosphorylated Smad3 (p-Smad3) were measured by WB. The secretion of matrix metalloproteinase (MMP)-2 and MMP-9 was determined by the enzyme-linked immunosorbent assay. The expression of SCRN1 was significantly elevated in OSCC tissues and cell lines. SCRN1 knockdown reduced the expression of TGF-β and p-Smad3 in OSCC cells. TGF-β stimulation promoted proliferation, invasion and migration and enhanced the expression of p-Smad3 and the secretion of MMP9 in SCRN1-knockdown OSCC cell lines. Our study demonstrated that SCRN1 is upregulated in OSCC. Further analyses demonstrated that SCRN1 promotes the proliferation, invasion and migration of OSCC cells via TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Li Xiao
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Nan Chong Central Hospital, Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Ting Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Kaiyue Zheng
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Qian Xiao
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Dandan Zhang
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Dengxun Wu
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Chanjuan He
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Yifei Zhou
- Department of Stomatology, Lang Zhong People's Hospital, Langzhong, China.
| | - Ying Liu
- Affiliated Hospital of North Sichuan Medical College, Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
68
|
Liguori GL, Kralj-Iglič V. Pathological and Therapeutic Significance of Tumor-Derived Extracellular Vesicles in Cancer Cell Migration and Metastasis. Cancers (Basel) 2023; 15:4425. [PMID: 37760395 PMCID: PMC10648223 DOI: 10.3390/cancers15184425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed. Extracellular vesicles (EVs) are lipid-enveloped particles involved in inter-tissue and inter-cell communication. This review article focuses on the impact of EVs released by tumor cells, specifically on cancer cell migration and metastasis. We first introduce cell migration processes and EV subtypes, and we give an overview of how tumor-derived EVs (TDEVs) may impact cancer cell migration. Then, we discuss ongoing EV-based cancer therapeutic approaches, including the inhibition of general EV-related mechanisms as well as the use of EVs for anti-cancer drug delivery, focusing on the harnessing of TDEVs. We propose a protein-EV shuttle as a route alternative to secretion or cell membrane binding, influencing downstream signaling and the final effect on target cells, with strong implications in tumorigenesis. Finally, we highlight the pitfalls and limitations of therapeutic EV exploitation that must be overcome to realize the promise of EVs for cancer therapy.
Collapse
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
69
|
Matos AI, Peres C, Carreira B, Moura LIF, Acúrcio RC, Vogel T, Wegener E, Ribeiro F, Afonso MB, Santos FMF, Martínez‐Barriocanal Á, Arango D, Viana AS, Góis PMP, Silva LC, Rodrigues CMP, Graca L, Jordan R, Satchi‐Fainaro R, Florindo HF. Polyoxazoline-Based Nanovaccine Synergizes with Tumor-Associated Macrophage Targeting and Anti-PD-1 Immunotherapy against Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300299. [PMID: 37434063 PMCID: PMC10477894 DOI: 10.1002/advs.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-β expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.
Collapse
Affiliation(s)
- Ana I. Matos
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Carina Peres
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Barbara Carreira
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Liane I. F. Moura
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Theresa Vogel
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Erik Wegener
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Filipa Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Marta B. Afonso
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Fábio M. F. Santos
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Águeda Martínez‐Barriocanal
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d'Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
- Group of Molecular OncologyLleida Biomedical Research Institute (IRBLleida)Lleida25198Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d'Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
- Group of Molecular OncologyLleida Biomedical Research Institute (IRBLleida)Lleida25198Spain
| | - Ana S. Viana
- Centro de Química EstruturalDepartamento de Química e BioquímicaInstitute of Molecular SciencesFaculty of SciencesUniversidade de LisboaLisbon1749‐016Portugal
| | - Pedro M. P. Góis
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Liana C. Silva
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Cecília M. P. Rodrigues
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luis Graca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Rainer Jordan
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Ronit Satchi‐Fainaro
- Department of Physiology and PharmacologyFaculty of MedicineSagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | - Helena F. Florindo
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
70
|
Mostufi-Zadeh-Haghighi G, Veratti P, Zodel K, Greve G, Waterhouse M, Zeiser R, Cleary ML, Lübbert M, Duque-Afonso J. Functional Characterization of Transforming Growth Factor-β Signaling in Dasatinib Resistance and Pre-BCR + Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:4328. [PMID: 37686604 PMCID: PMC10486903 DOI: 10.3390/cancers15174328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The multi-kinase inhibitor dasatinib has been implicated to be effective in pre-B-cell receptor (pre-BCR)-positive acute lymphoblastic leukemia (ALL) expressing the E2A-PBX1 fusion oncoprotein. The TGFβ signaling pathway is involved in a wide variety of cellular processes, including embryonic development and cell homeostasis, and it can have dual roles in cancer: suppressing tumor growth at early stages and mediating tumor progression at later stages. In this study, we identified the upregulation of the TGFβ signaling pathway in our previously generated human dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells using global transcriptomic analysis. We confirm the upregulation of the TGFβ pathway member SMAD3 at the transcriptional and translational levels in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Hence, dasatinib blocks, at least partially, TGFβ-induced SMAD3 phosphorylation in several B-cell precursor (BCP) ALL cell lines as well as in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Activation of the TGFβ signaling pathway by TGF-β1 leads to growth inhibition by cell cycle arrest at the G0/G1 stage, increase in apoptosis and transcriptional changes of SMAD-targeted genes, e.g. c-MYC downregulation, in pre-BCR+/E2A-PBX1+ ALL cells. These results provide a better understanding about the role that the TGFβ signaling pathway plays in leukemogenesis of BCP-ALL as well as in secondary drug resistance to dasatinib.
Collapse
Affiliation(s)
- Gila Mostufi-Zadeh-Haghighi
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Pia Veratti
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kyra Zodel
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Gabriele Greve
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Miguel Waterhouse
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Robert Zeiser
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| | - Michael L. Cleary
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Michael Lübbert
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Jesús Duque-Afonso
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.M.-Z.-H.); (P.V.); (K.Z.); (G.G.); (M.W.); (R.Z.); (M.L.)
| |
Collapse
|
71
|
Su J, Zheng Z, Bian C, Chang S, Bao J, Yu H, Xin Y, Jiang X. Functions and mechanisms of lactylation in carcinogenesis and immunosuppression. Front Immunol 2023; 14:1253064. [PMID: 37646027 PMCID: PMC10461103 DOI: 10.3389/fimmu.2023.1253064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
As critical executors regulating many cellular operations, proteins determine whether living activities can be performed in an orderly and efficient manner. Precursor proteins are inert and must be modified posttranslationally to enable a wide range of protein types and functions. Protein posttranslational modifications (PTMs) are well recognized as being directly associated with carcinogenesis and immune modulation and have emerged as important targets for cancer detection and treatment. Lactylation (Kla), a novel PTM associated with cellular metabolism found in a wide range of cells, interacts with both histone and nonhistone proteins. Unlike other epigenetic changes, Kla has been linked to poor tumor prognosis in all current studies. Histone Kla can affect gene expression in tumors and immunological cells, thereby promoting malignancy and immunosuppression. Nonhistone proteins can also regulate tumor progression and treatment resistance through Kla. In this review, we aimed to summarize the role of Kla in the onset and progression of cancers, metabolic reprogramming, immunosuppression, and intestinal flora regulation to identify new molecular targets for cancer therapy and provide a new direction for combined targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
72
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
73
|
Malinowski D, Bochniak O, Luterek-Puszyńska K, Puszyński M, Pawlik A. Genetic Risk Factors Related to Coronary Artery Disease and Role of Transforming Growth Factor Beta 1 Polymorphisms. Genes (Basel) 2023; 14:1425. [PMID: 37510329 PMCID: PMC10379139 DOI: 10.3390/genes14071425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of mortality globally and has long been known to be heritable; however, the specific genetic factors involved have yet to be identified. Recent advances have started to unravel the genetic architecture of this disease and set high expectations about the future use of novel susceptibility variants for its prevention, diagnosis, and treatment. In the past decade, there has been major progress in this area. New tools, like common variant association studies, genome-wide association studies, meta-analyses, and genetic risk scores, allow a better understanding of the genetic risk factors driving CAD. In recent years, researchers have conducted further studies that confirmed the role of numerous genetic factors in the development of CAD. These include genes that affect lipid and carbohydrate metabolism, regulate the function of the endothelium and vascular smooth muscles, influence the coagulation system, or affect the immune system. Many CAD-associated single-nucleotide polymorphisms have been identified, although many of their functions are largely unknown. The inflammatory process that occurs in the coronary vessels is very important in the development of CAD. One important mediator of inflammation is TGFβ1. TGFβ1 plays an important role in the processes leading to CAD, such as by stimulating macrophage and fibroblast chemotaxis, as well as increasing extracellular matrix synthesis. This review discusses the genetic risk factors related to the development of CAD, with a particular focus on polymorphisms of the transforming growth factor β (TGFβ) gene and its receptor.
Collapse
Affiliation(s)
- Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Oliwia Bochniak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Katarzyna Luterek-Puszyńska
- Department of Urology and Oncological Urology, Regional Specialist Hospital in Szczecin, 71-455 Szczecin, Poland; (K.L.-P.); (M.P.)
| | - Michał Puszyński
- Department of Urology and Oncological Urology, Regional Specialist Hospital in Szczecin, 71-455 Szczecin, Poland; (K.L.-P.); (M.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| |
Collapse
|
74
|
Naik A, Dalpatraj N, Thakur N. Comparative analysis of the occupancy of Histone H3 Lysine 4 methylation in the cells treated with TGFβ and Interferonγ. Gene 2023:147601. [PMID: 37394048 DOI: 10.1016/j.gene.2023.147601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this current study, we have compared our H3K4me3 Chip-Sequencing data in PC3 cells in response to 6h and 24h TGFβ stimulation with the IFNγ stimulated/unstimulated HeLa S3 cells Since both TGFβ and IFNγ play an essential role in tumorigenesis both as a tumor promoter and tumor suppressor and known to antagonize each other's signalling, it would be of utmost importance to find out the regions undergoing histone modification changes in response to TGFβ and IFNγ and compare them to explore the genes common to both as well as the specific for each ligand. Our study has compared the genes showing H3K4me3 occupancy in response to both TGFβ and IFNγ. Several genes were found to be shared between the TGFβ and IFNγ. DAVID Functional enrichment analysis in the TGFβ and IFNγ dataset revealed association of genes with different biological processes such as miRNA-mediated gene silencing, positive regulation of ERK cascade, hypoxia-induced apoptosis repression, translational regulation and molecular functions such as TGFβR activity, GPCR activity, TGFβ binding activity. Further analysis of these genes can reveal fascinating insights into epigenetic regulation by growth factor stimulation.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Nidhi Dalpatraj
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|
75
|
Liu X, Xu J, Shen B, Xu J, Jiang J. USP33 promotes pancreatic cancer malignant phenotype through the regulation of TGFBR2/TGFβ signaling pathway. Cell Death Dis 2023; 14:362. [PMID: 37322017 PMCID: PMC10272277 DOI: 10.1038/s41419-023-05871-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Pancreatic cancer (PC) ranked fourth among cancer-related death worldwide with a survival rate less than 5%. The abnormal proliferation and distant metastasis are major obstacles for the diagnosis and treatment of pancreatic cancer, therefore, it is urgent for researchers to uncover the molecular mechanisms underlying the PC proliferation and metastasis. In current study, we found that USP33, a member of deubiquitinating enzyme family, was upregulated among PC samples and cells, meanwhile, the high expression of USP33 correlated with poor prognosis of patients. Function experiments revealed that USP33 overexpression promoted the proliferation, migration and invasion of PC cells while the inhibition of USP33 expression in PC cells exhibited the opposite effect. The mass spectrum and luciferase complementation assay screened TGFBR2 as the potential binding protein of USP33. Mechanistically, USP33 triggered the deubiquitination of TGFBR2 and prevented its degradation by lysosome, therefore promoted TGFBR2 accumulation in cell membrane and eventually contributed to the sustained activation of TGF-β signaling. Moreover, our results revealed that the activation of TGF-β targeted gene ZEB1 promoted the transcription of USP33. In conclusion, our study found that USP33 contributed to the proliferation and metastasis of pancreatic cancer through a positive feedback loop with TGF-β signaling pathway. Moreover, this study suggested that USP33 may serve as a potential prognostic and therapeutic target in PC.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jichuan Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
76
|
Ji T, Shi Q, Mei S, Xu J, Liang H, Xie L, Ren T, Sun K, Li D, Tang X, Zhang P, Guo W. Integrated analysis of single-cell and bulk RNA sequencing data reveals an immunostimulatory microenvironment in tumor thrombus of osteosarcoma. Oncogenesis 2023; 12:31. [PMID: 37244923 DOI: 10.1038/s41389-023-00474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/29/2023] Open
Abstract
Tumor thrombus of bone sarcomas represents a unique reservoir for various types of cancer and immune cells, however, the investigation of tumor thrombus at a single-cell level is very limited. And it is still an open question to identify the thrombus-specific tumor microenvironment that is associated with the tumor-adaptive immune response. Here, by analyzing bulk tissue and single-cell level transcriptome from the paired thrombus and primary tumor samples of osteosarcoma (OS) patients, we define the immunostimulatory microenvironment in tumor thrombus of OS with a higher proportion of tumor-associated macrophages with M1-like states (TAM-M1) and TAM-M1 with high expression of CCL4. OS tumor thrombus is found to have upregulated IFN-γ and TGF-β signalings that are related to immune surveillance of circulating tumor cells in blood circulation. Further multiplexed immunofluorescence staining of the CD3/CD4/CD8A/CD68/CCL4 markers validates the immune-activated state in the tumor thrombus samples. Our study first reports the transcriptome differences at a single-cell level between tumor thrombus and primary tumor in sarcoma.
Collapse
Affiliation(s)
- Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Song Mei
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Haijie Liang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Lu Xie
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Kunkun Sun
- Department of Pathology, People's Hospital, Peking University, Beijing, 100044, China
| | - Dasen Li
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
77
|
Huang LY, Sun X, Pan HX, Wang L, He CQ, Wei Q. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges. World J Stem Cells 2023; 15:385-399. [PMID: 37342219 PMCID: PMC10277963 DOI: 10.4252/wjsc.v15.i5.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with complex pathological mechanisms that lead to sensory, motor, and autonomic dysfunction below the site of injury. To date, no effective therapy is available for the treatment of SCI. Recently, bone marrow-derived mesenchymal stem cells (BMMSCs) have been considered to be the most promising source for cellular therapies following SCI. The objective of the present review is to summarize the most recent insights into the cellular and molecular mechanism using BMMSC therapy to treat SCI. In this work, we review the specific mechanism of BMMSCs in SCI repair mainly from the following aspects: Neuroprotection, axon sprouting and/or regeneration, myelin regeneration, inhibitory microenvironments, glial scar formation, immunomodulation, and angiogenesis. Additionally, we summarize the latest evidence on the application of BMMSCs in clinical trials and further discuss the challenges and future directions for stem cell therapy in SCI models.
Collapse
Affiliation(s)
- Li-Yi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Hong-Xia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu 610044, Sichuan Province, China
| |
Collapse
|
78
|
Lee Y, Kim SH, Jeong H, Kim KH, Jeon D, Cho Y, Lee D, Nam KT. Role of Nox4 in Mitigating Inflammation and Fibrosis in Dextran Sulfate Sodium-Induced Colitis. Cell Mol Gastroenterol Hepatol 2023; 16:411-429. [PMID: 37207801 PMCID: PMC10372905 DOI: 10.1016/j.jcmgh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Fibrosis development in ulcerative colitis is associated directly with the severity of mucosal inflammation, which increases the risk of colorectal cancer. The transforming growth factor-β (TGF-β) signaling pathway is an important source of tissue fibrogenesis, which is stimulated directly by reactive oxygen species produced from nicotinamide adenine dinucleotide phosphate oxidases (NOX). Among members of the NOX family, NOX4 expression is up-regulated in patients with fibrostenotic Crohn's disease (CD) and in dextran sulfate sodium (DSS)-induced murine colitis. The aim of this study was to determine whether NOX4 plays a role in fibrogenesis during inflammation in the colon using a mouse model. METHODS Acute and recovery models of colonic inflammation were performed by DSS administration to newly generated Nox4-/- mice. Pathologic analysis of colon tissues was performed, including detection of immune cells, proliferation, and fibrotic and inflammatory markers. RNA sequencing was performed to detect differentially expressed genes between Nox4-/- and wild-type mice in both the untreated and DSS-treated conditions, followed by functional enrichment analysis to explore the molecular mechanisms contributing to pathologic differences during DSS-induced colitis and after recovery. RESULTS Nox4-/- mice showed increased endogenous TGF-β signaling in the colon, increased reactive oxygen species levels, intensive inflammation, and an increased fibrotic region after DSS treatment compared with wild-type mice. Bulk RNA sequencing confirmed involvement of canonical TGF-β signaling in fibrogenesis of the DSS-induced colitis model. Up-regulation of TGF-β signaling affects collagen activation and T-cell lineage commitment, increasing the susceptibility for inflammation. CONCLUSIONS Nox4 protects against injury and plays a crucial role in fibrogenesis in DSS-induced colitis through canonical TGF-β signaling regulation, highlighting a new treatment target.
Collapse
Affiliation(s)
- Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hee Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
79
|
Sadovskaya A, Petinati N, Drize N, Smirnov I, Pobeguts O, Arapidi G, Lagarkova M, Belyavsky A, Vasilieva A, Aleshina O, Parovichnikova E. Acute Myeloid Leukemia Causes Serious and Partially Irreversible Changes in Secretomes of Bone Marrow Multipotent Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108953. [PMID: 37240298 DOI: 10.3390/ijms24108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In patients with acute myeloid leukemia (AML), malignant cells modify the properties of multipotent mesenchymal stromal cells (MSCs), reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the role of MSCs in supporting leukemia cells and the restoration of normal hematopoiesis by analyzing ex vivo MSC secretomes at the onset of AML and in remission. The study included MSCs obtained from the bone marrow of 13 AML patients and 21 healthy donors. The analysis of proteins contained in the MSCs-conditioned medium demonstrated that secretomes of patient MSCs differed little between the onset of AML and remission; pronounced differences were observed between MSC secretomes of AML patients and healthy donors. The onset of AML was accompanied by a decrease in the secretion of proteins related to ossification, transport, and immune response. In remission, but not at the onset, secretion of proteins responsible for cell adhesion, immune response, and complement was reduced compared to donors. We conclude that AML causes crucial and, to a large extent, irreversible changes in the secretome of bone marrow MSCs ex vivo. In remission, functions of MSCs remain impaired despite the absence of tumor cells and the formation of benign hematopoietic cells.
Collapse
Affiliation(s)
- Aleksandra Sadovskaya
- National Medical Research Center for Hematology, 125167 Moscow, Russia
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya Petinati
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Nina Drize
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Igor Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Olga Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Georgiy Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria Lagarkova
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Olga Aleshina
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | | |
Collapse
|
80
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
81
|
Garbarino O, Lambroia L, Basso G, Marrella V, Franceschini B, Soldani C, Pasqualini F, Giuliano D, Costa G, Peano C, Barbarossa D, Annarita D, Salvati A, Terracciano L, Torzilli G, Donadon M, Faggioli F. Spatial resolution of cellular senescence dynamics in human colorectal liver metastasis. Aging Cell 2023:e13853. [PMID: 37157887 PMCID: PMC10352575 DOI: 10.1111/acel.13853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatic metastasis is a clinical challenge for colorectal cancer (CRC). Senescent cancer cells accumulate in CRC favoring tumor dissemination. Whether this mechanism progresses also in metastasis is unexplored. Here, we integrated spatial transcriptomics, 3D-microscopy, and multicellular transcriptomics to study the role of cellular senescence in human colorectal liver metastasis (CRLM). We discovered two distinct senescent metastatic cancer cell (SMCC) subtypes, transcriptionally located at the opposite pole of epithelial (e) to mesenchymal (m) transition. SMCCs differ in chemotherapy susceptibility, biological program, and prognostic roles. Mechanistically, epithelial (e)SMCC initiation relies on nucleolar stress, whereby c-myc dependent oncogene hyperactivation induces ribosomal RPL11 accumulation and DNA damage response. In a 2D pre-clinical model, we demonstrated that RPL11 co-localized with HDM2, a p53-specific ubiquitin ligase, leading to senescence activation in (e)SMCCs. On the contrary, mesenchymal (m)SMCCs undergo TGFβ paracrine activation of NOX4-p15 effectors. SMCCs display opposing effects also in the immune regulation of neighboring cells, establishing an immunosuppressive environment or leading to an active immune workflow. Both SMCC signatures are predictive biomarkers whose unbalanced ratio determined the clinical outcome in CRLM and CRC patients. Altogether, we provide a comprehensive new understanding of the role of SMCCs in CRLM and highlight their potential as new therapeutic targets to limit CRLM progression.
Collapse
Affiliation(s)
| | - Luca Lambroia
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gianluca Basso
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Veronica Marrella
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | | | - Guido Costa
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
- Fondazione Human Technopole, Milan, Italy
| | | | - Destro Annarita
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andreina Salvati
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luigi Terracciano
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele (MI), Italy
| | - Francesca Faggioli
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Institute of Genetics and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
| |
Collapse
|
82
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
83
|
Dehner CA, Moon T, Lyu Y, Zhang X, Zhou Z, Yang K, Chrisinger JSA, Griffin A, Wunder J, Dickson BC, Hirbe AC. Mutations involving TGFB and MAPK may be associated with malignancy in granular cell tumors. Genes Chromosomes Cancer 2023; 62:301-307. [PMID: 36680529 DOI: 10.1002/gcc.23123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Granular cell tumors (GrCTs) are mesenchymal neoplasms of presumed schwannian differentiation that may present as solitary or multifocal lesions with excision usually being curative. A minority of cases, however, show histological features associated with an increased risk for metastasis and are highly aggressive leading to death in about a third of cases. While benign and malignant cases have been shown to harbor mutations in the H + ATPase genes, there is only limited data examining molecular aberrations associated with malignancy. The departmental archives were searched for cases of atypical/malignant GrCTs. Clinical and histopathological features were noted. Whole-exome sequencing was performed. Three cases of malignant GrCTs and one case of atypical GrCTs were included. All three malignant tumors metastasized to distant sites with a median disease-free survival of 16 months and an overall follow-up time of 35 months. Whole-exome sequencing showed mutations involving TGFβ and MAPK pathways in all four tumors. Although the cohort size is small, our preliminary findings suggest that mutations involving the TGFβ and MAPK pathways may be associated with tumor progression or malignant transformation in GrCT pathogenesis.
Collapse
Affiliation(s)
- Carina A Dehner
- Department of Pathology and Immunology, Division of Anatomic Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tyler Moon
- Department of Orthopedic Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Yang Lyu
- Department of Medicine, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaochun Zhang
- Department of Medicine, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhaohe Zhou
- Department of Medicine, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuangying Yang
- Department of Medicine, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John S A Chrisinger
- Department of Pathology and Immunology, Division of Anatomic Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anthony Griffin
- University Musculoskeletal Oncology Unit, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jay Wunder
- University Musculoskeletal Oncology Unit, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Angela C Hirbe
- Department of Medicine, Division of Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
84
|
Luo HY, Zhu JY, Chen M, Mu WJ, Guo L. Krüppel-like factor 10 (KLF10) as a critical signaling mediator: Versatile functions in physiological and pathophysiological processes. Genes Dis 2023; 10:915-930. [PMID: 37396542 PMCID: PMC10308129 DOI: 10.1016/j.gendis.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), also known as TGFβ-inducible early gene-1 (TIEG1), was first found in human osteoblasts. Early studies show that KLF10 plays an important role in osteogenic differentiation. Through decades of research, KLF10 has been found to have complex functions in many different cell types, and its expression and function is regulated in multiple ways. As a downstream factor of transforming growth factor β (TGFβ)/SMAD signaling, KLF10 is involved in various biological functions, including glucose and lipid metabolism in liver and adipose tissue, the maintenance of mitochondrial structure and function of the skeletal muscle, cell proliferation and apoptosis, and plays roles in multiple disease processes, such as nonalcoholic steatohepatitis (NASH) and tumor. Besides, KLF10 shows gender-dependent difference of regulation and function in many aspects. In this review, the biological functions of KLF10 and its roles in disease states is updated and discussed, which would provide new insights into the functional roles of KLF10 and a clearer view of potential therapeutic strategies by targeting KLF10.
Collapse
Affiliation(s)
- Hong-Yang Luo
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jie-Ying Zhu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Min Chen
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wang-Jing Mu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
85
|
Morita-Tanaka S, Miyagawa-Hayashino A, Yamada T, Matsui Y, Morimoto K, Hiranuma O, Masuzawa N, Yoshimura A, Iwasaku M, Tokuda S, Kaneko Y, Kim YH, Konishi E, Takayama K. Significance of localized expression of full-length growth differentiation factor-15 in cachexia of advanced non-small cell lung cancer. Support Care Cancer 2023; 31:308. [PMID: 37115357 DOI: 10.1007/s00520-023-07771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Growth differentiation factor-15 (GDF-15) is one of the key cachexia-inducing factors. Clinical trials on therapies targeting GDF-15 for cancer and cancer cachexia are underway. While the role of circulating GDF-15 in cachexia has been clarified, the effects of GDF-15 expression within cancer cells remain to be fully elucidated. Hence, the objective of this study was to investigate the expression of GDF-15 in advanced lung cancer tissues and to understand its role in cachexia. METHODS We retrospectively examined the expression level of full-length GDF-15 in advanced non-small cell lung cancer tissues and analyzed the relationship between the staining intensity and clinical data in 53 samples. RESULTS We found that 52.8% of the total samples were GDF-15 positive, and GDF-15 expression significantly correlated with improved C-reactive protein/albumin ratio (p = 0.008). It did not correlate with the existence of cancer cachexia and overall survival (p = 0.43). CONCLUSION Our findings show that GDF-15 expression significantly correlated with improved C-reactive protein/albumin ratio, but not the existence of cancer cachexia in advanced NSCLC patients.
Collapse
Affiliation(s)
- Satomi Morita-Tanaka
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Miyagawa-Hayashino
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yohei Matsui
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Hiranuma
- Department of Respiratory Medicine, Otsu City Hospital, Otsu, Japan
| | - Naoko Masuzawa
- Department of Surgical Pathology, Otsu City Hospital, Otsu, Japan
| | - Akihiro Yoshimura
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Respiratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
86
|
Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, Xu Q, Sun L, Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer 2023; 23:371. [PMID: 37088808 PMCID: PMC10124011 DOI: 10.1186/s12885-023-10832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding proteins (IGFBPs) are critical regulators of the biological activities of insulin-like growth factors. The IGFBP family plays diverse roles in different types of cancer, which we still lack comprehensive and pleiotropic understandings so far. METHODS Multi-source and multi-dimensional data, extracted from The Cancer Genome Atlas (TCGA), Oncomine, Cancer Cell Line Encyclopedia (CCLE), and the Human Protein Atlas (HPA) was used for bioinformatics analysis by R language. Immunohistochemistry and qRT-PCR were performed to validate the results of the database analysis results. Bibliometrics and literature review were used for summarizing the research progress of IGFBPs in the field of tumor. RESULTS The members of IGFBP gene family are differentially expressed in various cancer types. IGFBPs expression can affect prognosis of different cancers. The expression of IGFBPs expression is associated with multiple signal transduction pathways. The expression of IGFBPs is significantly correlated with tumor mutational burden, microsatellite instability, tumor stemness and tumor immune microenvironment. The qRT-PCR experiments verified the lower expression of IGFBP2 and IGFBP6 in gastric cancer and the lower expression of IGFBP6 in colorectal cancer. Immunohistochemistry validated a marked downregulation of IGFBP2 protein in gastric cancer tissues. The keywords co-occurrence analysis of IGFBP related publications in cancer showed relative research have been more concentrating on the potential of IGFBPs as tumor diagnostic and prognostic markers and developing cancer therapies. CONCLUSIONS These findings provide frontier trend of IGFBPs related research and new clues for identifying novel therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
87
|
Bhoopathi P, Mannangatti P, Das SK, Fisher PB, Emdad L. Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy. Adv Cancer Res 2023; 159:285-341. [PMID: 37268399 DOI: 10.1016/bs.acr.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a prominent cause of cancer deaths worldwide, is a highly aggressive cancer most frequently detected at an advanced stage that limits treatment options to systemic chemotherapy, which has provided only marginal positive clinical outcomes. More than 90% of patients with PDAC die within a year of being diagnosed. PDAC is increasing at a rate of 0.5-1.0% per year, and it is expected to be the second leading cause of cancer-related mortality by 2030. The resistance of tumor cells to chemotherapeutic drugs, which can be innate or acquired, is the primary factor contributing to the ineffectiveness of cancer treatments. Although many PDAC patients initially responds to standard of care (SOC) drugs they soon develop resistance caused partly by the substantial cellular heterogeneity seen in PDAC tissue and the tumor microenvironment (TME), which are considered key factors contributing to resistance to therapy. A deeper understanding of molecular mechanisms involved in PDAC progression and metastasis development, and the interplay of the TME in all these processes is essential to better comprehend the etiology and pathobiology of chemoresistance observed in PDAC. Recent research has recognized new therapeutic targets ushering in the development of innovative combinatorial therapies as well as enhancing our comprehension of several different cell death pathways. These approaches facilitate the lowering of the therapeutic threshold; however, the possibility of subsequent resistance development still remains a key issue and concern. Discoveries, that can target PDAC resistance, either alone or in combination, have the potential to serve as the foundation for future treatments that are effective without posing undue health risks. In this chapter, we discuss potential causes of PDAC chemoresistance and approaches for combating chemoresistance by targeting different pathways and different cellular functions associated with and mediating resistance.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
88
|
Han DH, Shin MK, Oh JW, Lee J, Sung JS, Kim M. Chronic Exposure to TDI Induces Cell Migration and Invasion via TGF-β1 Signal Transduction. Int J Mol Sci 2023; 24:ijms24076157. [PMID: 37047129 PMCID: PMC10093867 DOI: 10.3390/ijms24076157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Toluene diisocyanate (TDI) is commonly used in manufacturing, and it is highly reactive and causes respiratory damage. This study aims to identify the mechanism of tumorigenesis in bronchial epithelial cells induced by chronic TDI exposure. In addition, transcriptome analysis results confirmed that TDI increases transforming growth factor-beta 1 (TGF-β1) expression and regulates genes associated with cancerous characteristics in bronchial cells. Our chronically TDI-exposed model exhibited elongated spindle-like morphology, a mesenchymal characteristic. Epithelial-mesenchymal transition (EMT) was evaluated following chronic TDI exposure, and EMT biomarkers increased concentration-dependently. Furthermore, our results indicated diminished cell adhesion molecules and intensified cell migration and invasion. In order to investigate the cellular regulatory mechanisms resulting from chronic TDI exposure, we focused on TGF-β1, a key factor regulated by TDI exposure. As predicted, TGF-β1 was significantly up-regulated and secreted in chronically TDI-exposed cells. In addition, SMAD2/3 was also activated considerably as it is the direct target of TGF-β1 and TGF-β1 receptors. Inhibiting TGF-β1 signaling through blocking of the TGF-β receptor attenuated EMT and cell migration in chronically TDI-exposed cells. Our results corroborate that chronic TDI exposure upregulates TGF-β1 secretion, activates TGF-β1 signal transduction, and leads to EMT and other cancer properties.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Jin Wook Oh
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Junha Lee
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| | - Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
89
|
Lin X, Pang Q, Hu J, Sun J, Dai S, Yu Y, Xu J. SUMOylation mediates the disassembly of the Smad4 nuclear export complex via RanGAP1 in KELOIDS. J Cell Mol Med 2023; 27:1045-1055. [PMID: 36916534 PMCID: PMC10098277 DOI: 10.1111/jcmm.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 03/16/2023] Open
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) has emerged as a powerful mediator regulating biological processes and participating in pathophysiological processes that cause human diseases, such as cancer, myocardial fibrosis and neurological disorders. Sumoylation has been shown to play a positive regulatory role in keloids. However, the sumoylation mechanism in keloids remains understudied. We proposed that sumoylation regulates keloids via a complex. RanGAP1 acted as a synergistic, functional partner of SUMOs in keloids. Nuclear accumulation of Smad4, a TGF-β/Smad pathway member, was associated with RanGAP1 after SUMO1 inhibition. RanGAP1*SUMO1 mediated the nuclear accumulation of Smad4 due to its impact on nuclear export and reduction in the dissociation of Smad4 and CRM1. We clarified a novel mechanism of positive regulation of sumoylation in keloids and demonstrated the function of sumoylation in Smad4 nuclear export. The NPC-associated RanGAP1*SUMO1 complex functions as a disassembly machine for the export receptor CRM1 and Smad4. Our research provides new perspectives for the mechanisms of keloids and nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Xiaohu Lin
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qianqian Pang
- Ningbo Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Jie Hu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Sun
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siya Dai
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yijia Yu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
90
|
The role of transforming growth factor-β2 in cigarette smoke-induced lung inflammation and injury. Life Sci 2023; 320:121539. [PMID: 36870385 DOI: 10.1016/j.lfs.2023.121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
AIMS Transforming growth factor-β2 (TGF-β2) plays an important role in pleiotropic functions and has been reported to be involved in the pathogenesis of chronic obstructive lung disease. The role of TGF-β2 in regulating cigarette smoke (CS)-induced lung inflammation and injury has not been investigated, and its underlying mechanism remains unclear. MAIN METHODS Primary bronchial epithelial cells (PBECs) were treated with cigarette smoke extract (CSE), and the signaling pathway of TGF-β2 regulating lung inflammation was investigated. Mice were exposed to CS and treated with TGF-β2 i.p. or bovine whey protein extract containing TGF-β2 p.o., and the role of TGF-β2 in alleviating lung inflammation/injury was studied. KEY FINDINGS In vitro, we demonstrated that TGF-β2 attenuated CSE-induced IL-8 production from PBECs through the TGF-β receptor I (TGF-βRI), Smad3, and mitogen-activated protein kinase signaling pathways. Selective TGF-βRI inhibitor (LY364947) and antagonist of Smad3 (SIS3) abolished the effect of TGF-β2 on alleviating CSE-induced IL-8 production. In vivo, CS exposure for 4 weeks in mice increased the levels of total protein, inflammatory cell counts, and monocyte chemoattractant protein-1 in bronchoalveolar fluid and induced lung inflammation/injury, as revealed by immunohistochemistry. Administration of TGF-β2 through intraperitoneal injection or oral feeding with bovine whey protein extract containing TGF-β2 significantly reduced CS-induced lung inflammation and injury. SIGNIFICANCE We concluded that TGF-β2 reduced CSE-induced IL-8 production through the Smad3 signaling pathway in PBECs and alleviated lung inflammation/injury in CS-exposed mice. The anti-inflammatory effect of TGF-β2 on CS-induced lung inflammation in humans deserves further clinical study.
Collapse
|
91
|
Srivastava A, Sharma H, Chowdhury S, Chowdhury R, Mukherjee S. Transforming growth factor- β mediated regulation of epigenome is required for epithelial to mesenchymal transition associated features in liver cancer cells. Heliyon 2023; 9:e14665. [PMID: 37095942 PMCID: PMC10121648 DOI: 10.1016/j.heliyon.2023.e14665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) frequently unfolds under an inflammatory condition, which is a hub for a plethora of cytokines. A better understanding of the cytokine functions and their contributions to disease development is key to design of future therapeutic strategies and reduction of global HCC burden. In this context, one of the major cytokines present in the HCC tumour milieu is the transforming growth factor-β (TGF-β). One of its classical functions involve facilitation of epithelial to mesenchymal transition (EMT), in tumour cells, promoting an invasive phenotype. In spite of its clinical relevance, the cellular events associated with TGF-β-induced EMT and its molecular regulation is poorly elucidated. Therefore, as part of this study, we treated HCC cells with TGF-β and characterized the cellular processes associated with EMT. Interestingly, EMT triggered by TGF-β was found to be associated with cytostasis and altered cellular metabolism. TGF-β resulted in down-regulation of cell cycle-associated transcripts, like Cyclin A2 (CCNA2), and metabolic genes, like Glutamic-oxaloacetic transaminase 1 (GOT1) through epigenetic silencing. An overall increase in total histone repressive mark (H3K27me3) associated with a specific enrichment of H3K27me3 at the upstream promoter region of CCNA2 and GOT1 was observed after TGF-β exposure, leading to their down-regulation. Importantly, TGF-β-downstream signalling mediator- SMAD and chromatin repressive complex member-enhancer of zeste homolog 2 (EZH2) were found to co-immunoprecipitate and were required for the above effects. Overall, our findings reflect that HCC cells undergoing EMT, attain cytostasis and modulate metabolic demands to efficiently facilitate the EMT differentiation switch, and these events are regulated at the epigenomic level through TGF-β-mediated signalling. Our results provide better understanding of cellular invasive features which can lead to development of novel therapeutic strategies.
Collapse
|
92
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
93
|
Mechanotransduction in tumor dynamics modeling. Phys Life Rev 2023; 44:279-301. [PMID: 36841159 DOI: 10.1016/j.plrev.2023.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Mechanotherapy is a groundbreaking approach to impact carcinogenesis. Cells sense and respond to mechanical stimuli, translating them into biochemical signals in a process known as mechanotransduction. The impact of stress on tumor growth has been studied in the last three decades, and many papers highlight the role of mechanics as a critical self-inducer of tumor fate at the in vitro and in vivo biological levels. Meanwhile, mathematical models attempt to determine laws to reproduce tumor dynamics. This review discusses biological mechanotransduction mechanisms and mathematical-biomechanical models together. The aim is to provide a common framework for the different approaches that have emerged in the literature from the perspective of tumor avascularity and to provide insight into emerging mechanotherapies that have attracted interest in recent years.
Collapse
|
94
|
Rahavi H, Alizadeh-Navaei R, Tehrani M. Efficacy of therapies targeting TGF-β in solid tumors: a systematic review and meta-analysis of clinical trials. Immunotherapy 2023; 15:283-292. [PMID: 36789642 DOI: 10.2217/imt-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Aims: A comprehensive meta-analysis was conducted to explore the efficacy of TGF-β blockade therapies in solid tumors. Patients & methods: Results of overall survival (OS), progression-free survival (PFS), time to progression (TTP) and overall response rate (ORR) with their 95% CI were calculated. Also, subgroup analyses were conducted according to the categories of TGF-β blocker alone or combined with chemotherapy or radiotherapy. Results: Overall OS, PFS, TTP and ORR were 10.5 months (95% CI: 7.76-13.25), 2.54 months (95% CI: 1.66-3.43), 4.69 months (95% CI: 3.18-6.21) and 0.83% (95% CI: 0.82-0.85), respectively. Conclusion: Collectively, TGF-β blockade combined with chemotherapy or radiotherapy showed more favorable clinical outcomes than monotherapy using TGF-β blockade.
Collapse
Affiliation(s)
- Hossein Rahavi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran.,Molecular & Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran
| |
Collapse
|
95
|
Sui Y, Li S, Fu XQ, Zhao ZJ, Xing S. Bioinformatics analyses of combined databases identify shared differentially expressed genes in cancer and autoimmune disease. J Transl Med 2023; 21:109. [PMID: 36765396 PMCID: PMC9921081 DOI: 10.1186/s12967-023-03943-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up. METHODS Considering the high disease prevalence, we chose invasive ductal carcinoma (IDC) and systemic lupus erythematosus (SLE) to study the potential commonalities of immune responses. We obtained gene expression data of IDC/SLE patients and normal controls from five IDC databases (GSE29044, GSE21422, GSE22840, GSE15852, and GSE9309) and five SLE databases (GSE154851, GSE99967, GSE61635, GSE50635, and GSE17755). We intended to identify genes differentially expressed in both IDC and SLE by using three bioinformatics tools including GEO2R, the limma R package, and Weighted Gene Co-expression Network Analysis (WGCNA) to perform function enrichment, protein-protein network, and signaling pathway analyses. RESULTS The mRNA levels of signal transducer and activator of transcription 1 (STAT1), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase like (OASL), and PML nuclear body scaffold (PML) were found to be differentially expressed in both IDC and SLE by using three different bioinformatics tools of GEO2R, the limma R package and WGCNA. From the combined databases in this study, the mRNA levels of STAT1 and OAS1 were increased in IDC while reduced in SLE. And the mRNA levels of OASL and PML were elevated in both IDC and SLE. Based on Kyoto Encyclopedia of Genes and Genomes pathway analysis and QIAGEN Ingenuity Pathway Analysis, both IDC and SLE were correlated with the changes of multiple components involved in the Interferon (IFN)-Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. CONCLUSION The expression levels of STAT1 and OAS1 manifest the opposite expression tendency across cancer and autoimmune disease. They are components in the IFN-JAK-STAT signaling pathway related to both tumorigenesis and autoimmune genesis. STAT1 and OAS1-associated IFN-JAK-STAT signaling could explain the commonalities during tumorigenesis and autoimmune genesis and render significant information for more precise treatment from the point of immune homeostasis.
Collapse
Affiliation(s)
- Yuan Sui
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Shuping Li
- grid.266902.90000 0001 2179 3618Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Xue-Qi Fu
- grid.64924.3d0000 0004 1760 5735Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
96
|
Song F, Dai Q, Grimm MO, Steinbach D. The Antithetic Roles of IQGAP2 and IQGAP3 in Cancers. Cancers (Basel) 2023; 15:cancers15041115. [PMID: 36831467 PMCID: PMC9953781 DOI: 10.3390/cancers15041115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The scaffold protein family of IQ motif-containing GTPase-activating proteins (IQGAP1, 2, and 3) share a high degree of homology and comprise six functional domains. IQGAPs bind and regulate the cytoskeleton, interact with MAP kinases and calmodulin, and have GTPase-related activity, as well as a RasGAP domain. Thus, IQGAPs regulate multiple cellular processes and pathways, affecting cell division, growth, cell-cell interactions, migration, and invasion. In the past decade, significant evidence on the function of IQGAPs in signal transduction during carcinogenesis has emerged. Compared with IQGAP1, IQGAP2 and IQGAP3 were less analyzed. In this review, we summarize the different signaling pathways affected by IQGAP2 and IQGAP3, and the antithetic roles of IQGAP2 and IQGAP3 in different types of cancer. IQGAP2 expression is reduced and plays a tumor suppressor role in most solid cancer types, while IQGAP3 is overexpressed and acts as an oncogene. In lymphoma, for example, IQGAPs have partially opposite functions. There is considerable evidence that IQGAPs regulate a multitude of pathways to modulate cancer processes and chemoresistance, but some questions, such as how they trigger this signaling, through which domains, and why they play opposite roles on the same pathways, are still unanswered.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07740 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
97
|
Wang J, Gong R, Zhao C, Lei K, Sun X, Ren H. Human FOXP3 and tumour microenvironment. Immunology 2023; 168:248-255. [PMID: 35689826 DOI: 10.1111/imm.13520] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 01/17/2023] Open
Abstract
The tumour microenvironment (TME) is a complex system composed of cancer cells, stromal cells and immune cells. Regulatory T cells (Tregs) in the TME impede immune surveillance of tumours and suppress antitumor immune responses. Transcription factor forkhead box protein 3 (FOXP3) is the main marker of Tregs, which dominates the function of Tregs. FOXP3 was originally thought to be a Tregs-specific expression molecule, and recent studies have found that FOXP3 is expressed in a variety of tumours with inconsistent functional roles. This review summarizes the recent progress of infiltrating Treg-FOXP3 and tumour-FOXP3 in TME, discusses the communication mechanism between FOXP3+ cells and effector T cells in TME, the relationship between FOXP3 and clinical prognosis, and the potential of FOXP3-targeted therapy.
Collapse
Affiliation(s)
- Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Ruining Gong
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyuan Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin, China
| |
Collapse
|
98
|
Wu X, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L. Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 2023; 13:1124080. [PMID: 36776317 PMCID: PMC9911835 DOI: 10.3389/fonc.2023.1124080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Transforming growth factor (TGF)-β signaling is strongly related to the development and progression of tumor. We aimed to construct a prognostic gene signature based on TGF-β signaling-related genes for predicting clinical prognosis and immunotherapy responses of patients with clear cell renal cell carcinoma (ccRCC). Methods The gene expression profiles and corresponding clinical information of ccRCC were collected from the TCGA and the ArrayExpress (E-MTAB-1980) databases. LASSO, univariate and multivariate Cox regression analyses were conducted to construct a prognostic signature in the TCGA cohort. The E-MTAB-1980 cohort were used for validation. Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) were conducted to assess effectiveness and reliability of the signature. The differences in gene enrichments, immune cell infiltration, and expression of immune checkpoints in ccRCC patients showing different risks were investigated. Results We constructed a seven gene (PML, CDKN2B, COL1A2, CHRDL1, HPGD, CGN and TGFBR3) signature, which divided the ccRCC patients into high risk group and low risk group. The K-M analysis indicated that patients in the high risk group had a significantly shorter overall survival (OS) time than that in the low risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p = 0.012). The AUC of the signature reached 0.77 at 1 year, 0.7 at 3 years, and 0.71 at 5 years in the TCGA, respectively, and reached 0.69 at 1 year, 0.72 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Further analyses confirmed the risk score as an independent prognostic factor for ccRCC (p < 0.001). The results of ssGSEA that immune cell infiltration degree and the scores of immune-related functions were significantly increased in the high risk group. The CIBERSORT analysis indicated that the abundance of immune cell were significantly different between two risk groups. Furthermore, The risk score was positively related to the expression of PD-1, CTLA4 and LAG3.These results indicated that patients in the high risk group benefit more from immunotherapy. Conclusion We constructed a novel TGF-β signaling-related genes signature that could serve as an promising independent factor for predicting clinical prognosis and immunotherapy responses in ccRCC patients.
Collapse
|
99
|
ATOH8 binds SMAD3 to induce cellular senescence and prevent Ras-driven malignant transformation. Proc Natl Acad Sci U S A 2023; 120:e2208927120. [PMID: 36626550 PMCID: PMC9934021 DOI: 10.1073/pnas.2208927120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The process of oncogene-induced senescence (OIS) and the conversion between OIS and malignant transformation during carcinogenesis is poorly understood. Here, we show that following overactivation of oncogene Ras in lung epithelial cells, high-level transforming growth factor β1 (TGF-β1)-activated SMAD3, but not SMAD2 or SMAD4, plays a determinant role in inducing cellular senescence independent of the p53/p16/p15 senescence pathways. Importantly, SMAD3 binds a potential tumor suppressor ATOH8 to form a transcriptional complex that directly represses a series of cell cycle-promoting genes and consequently causes senescence in lung epithelial cells. Interestingly, the prosenescent SMAD3 converts to being oncogenic and essentially facilitates oncogenic Ras-driven malignant transformation. Furthermore, depleting Atoh8 rapidly accelerates oncogenic Ras-driven lung tumorigenesis, and lung cancers driven by mutant Ras and Atoh8 loss, but not by mutant Ras only, are sensitive to treatment of a specific SMAD3 inhibitor. Moreover, hypermethylation of the ATOH8 gene can be found in approximately 12% of clinical lung cancer cases. Together, our findings demonstrate not only epithelial cellular senescence directed by a potential tumor suppressor-controlled transcriptional program but also an important interplay between the prosenescent and transforming effects of TGF-β/SMAD3, potentially laying a foundation for developing early detection and anticancer strategies.
Collapse
|
100
|
Govahi A, Zahmatkesh N, Pourbagherian O, Khas NM, Salamzadeh T, Mehr HM, Babaei E, Hajivalili M. Antitumor Effects of Curcumin on Cervical Cancer with the Focus on Molecular Mechanisms: An Exegesis. Curr Pharm Des 2023; 29:3385-3399. [PMID: 38099527 DOI: 10.2174/0113816128279330231129180250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/06/2023] [Indexed: 01/26/2024]
Abstract
Cervical cancer is one of the most prevalent malignancies among females and is correlated with a significant fatality rate. Chemotherapy is the most common treatment for cervical cancer; however, it has a low success rate due to significant side effects and the incidence of chemo-resistance. Curcumin, a polyphenolic natural compound derived from turmeric, acts as an antioxidant by diffusing across cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it performs its effects. As a result, it's been promoted as a chemo-preventive, anti-metastatic, and anti-angiogenic agent. As a consequence, the main goal of the present review was to gather research information that looked at the link between curcumin and its derivatives against cervical cancer.
Collapse
Affiliation(s)
- Ali Govahi
- Department of Medical Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Zahmatkesh
- Department of Genetic, Faculty of Medical and Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Omid Pourbagherian
- Department of Biochemistry and Nutrition, Faulty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Maleki Khas
- Department of Genetic, Faculty of Medical and Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Tala Salamzadeh
- School of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hasti Moshtagh Mehr
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|