51
|
Duch A, Palou G, Jonsson ZO, Palou R, Calvo E, Wohlschlegel J, Quintana DG. A Dbf4 mutant contributes to bypassing the Rad53-mediated block of origins of replication in response to genotoxic stress. J Biol Chem 2010; 286:2486-91. [PMID: 21098477 DOI: 10.1074/jbc.m110.190843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An intra-S phase checkpoint slows the rate of DNA replication in response to DNA damage and replication fork blocks in eukaryotic cells. In the budding yeast Saccharomyces cerevisiae, such down-regulation is achieved through the Rad53 kinase-dependent block of origins of replication. We have identified the Rad53 phosphorylation sites on Dbf4, the activator subunit of the essential S phase Dbf4-dependent kinase, and generated a non-phosphorylatable Dbf4 mutant (dbf4(7A)). We show here that dbf4(7A) is a bona fide intra-S phase checkpoint bypass allele that contributes to abrogating the Rad53 block of origin firing in response to genotoxic stress.
Collapse
Affiliation(s)
- Alba Duch
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, and Center for Biophysical Studies, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
52
|
O'Donnell JP, Gehman M, Keeney JB. Regulators of ribonucleotide reductase inhibit Ty1 mobility in saccharomyces cerevisiae. Mob DNA 2010; 1:23. [PMID: 21092201 PMCID: PMC3002893 DOI: 10.1186/1759-8753-1-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ty1 is a long terminal repeat retrotransposon of Saccharomyces cerevisiae, with a replication cycle similar to retrovirus replication. Structurally, Ty1 contains long terminal repeat (LTR) regions flanking the gag and pol genes that encode for the proteins that enable Ty1 mobility. Reverse transcriptase produces Ty1 complementary (c)DNA that can either be integrated back into the genome by integrase or recombined into the yeast genome through homologous recombination. The frequency of Ty1 mobility is temperature sensitive, with optimum activity occurring at 24-26°C. RESULTS In this study, we identified two host genes that when deleted allow for high temperature Ty1 mobility: RFX1 and SML1. The protein products of these genes are both negative regulators of the enzyme ribonucleotide reductase, a key enzyme in regulating deoxyribonucleotide triphosphate (dNTP) levels in the cell. Processing of Ty1 proteins is defective at high temperature, and processing is not improved in either rfx1 or sml1 deletion strains. Ty1 mobility at high temperature is mediated by homologous recombination of Ty1 cDNA to Ty1 elements within the yeast genome. We quantified cDNA levels in wild type, rfx1 and sml1 deletion background strains at different temperatures. Southern blot analysis demonstrated that cDNA levels were not markedly different between the wild type and mutant strains as temperatures increased, indicating that the increased Ty1 mobility is not a result of increased cDNA synthesis in the mutant strains. Homologous recombination efficiency was increased in both rfx1 and sml1 deletion strains at high temperatures; the rfx1 deletion strain also had heightened homologous recombination efficiency at permissive temperatures. In the presence of the dNTP reducing agent hydroxyurea at permissive temperatures, Ty1 mobility was stimulated in the wild type and sml1 deletion strains but not in the rfx1 deletion strain. Mobility frequency was greatly reduced in all strains at high temperature. Deletion of the S-phase checkpoint pathway Dun1 kinase, which inactivates Sml1 and Rfx1, reduced Ty1 mobility at a range of temperatures. CONCLUSIONS Levels of cellular dNTPs, as regulated by components of the S-phase checkpoint pathway, are a limiting factor in homologous recombination-mediated Ty1 mobility.
Collapse
|
53
|
Palou G, Palou R, Guerra-Moreno A, Duch A, Travesa A, Quintana DG. Cyclin regulation by the s phase checkpoint. J Biol Chem 2010; 285:26431-40. [PMID: 20538605 DOI: 10.1074/jbc.m110.138669] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells a surveillance mechanism, the S phase checkpoint, detects and responds to DNA damage and replication stress, protecting DNA replication and arresting cell cycle progression. We show here that the S phase cyclins Clb5 and Clb6 are regulated in response to genotoxic stress in the budding yeast Saccharomyces cerevisiae. Clb5 and Clb6 are responsible for the activation of the specific Cdc28 cyclin-dependent kinase activity that drives the onset and progression of the S phase. Intriguingly, Clb5 and Clb6 are regulated by different mechanisms. Thus, the presence of Clb6, which is eliminated early in an unperturbed S phase, is stabilized when replication is compromised by replication stress or DNA damage. Such stabilization depends on the checkpoint kinases Mec1 and Rad53. The stabilization of Clb6 levels is a dynamic process that requires continued de novo protein synthesis, because the cyclin remains subject to degradation. It also requires the activity of the G(1) transcription factor Mlu1 cell cycle box-binding factor (MBF) in the S phase, whereas Dun1, the checkpoint kinase characteristically responsible for the transcriptional response to genotoxic stress, is dispensable in this case. On the other hand, two subpopulations of endogenous Clb5 can be distinguished according to turnover in an unperturbed S phase. In the presence of replication stress, the unstable Clb5 pool is stabilized, and such stabilization requires neither MBF transcriptional activity nor de novo protein synthesis.
Collapse
Affiliation(s)
- Gloria Palou
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, and Center for Biophysic Studies, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
54
|
Szilard RK, Jacques PÉ, Laramée L, Cheng B, Galicia S, Bataille AR, Yeung M, Mendez M, Bergeron M, Robert F, Durocher D. Systematic identification of fragile sites via genome-wide location analysis of gamma-H2AX. Nat Struct Mol Biol 2010; 17:299-305. [PMID: 20139982 PMCID: PMC3081315 DOI: 10.1038/nsmb.1754] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/30/2009] [Indexed: 12/11/2022]
Abstract
Phosphorylation of histone H2AX is an early response to DNA damage in eukaryotes. In Saccharomyces cerevisiae, DNA damage or replication-fork stalling results in phosphorylation of histone H2A yielding gamma-H2A (yeast gamma-H2AX) in a Mec1 (ATR)- and Tel1 (ATM)-dependent manner. Here, we describe the genome-wide location analysis of gamma-H2A as a strategy to identify loci prone to engaging the Mec1 and Tel1 pathways. Notably, gamma-H2A enrichment overlaps with loci prone to replication-fork stalling and is caused by the action of Mec1 and Tel1, indicating that these loci are prone to breakage. Moreover, about half the sites enriched for gamma-H2A map to repressed protein-coding genes, and histone deacetylases are necessary for formation of gamma-H2A at these loci. Finally, our work indicates that high-resolution mapping of gamma-H2AX is a fruitful route to map fragile sites in eukaryotic genomes.
Collapse
Affiliation(s)
- Rachel K. Szilard
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Pierre-Étienne Jacques
- Laboratoire de chromatine et expression du génome, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - Louise Laramée
- Laboratoire de chromatine et expression du génome, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - Benjamin Cheng
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Sarah Galicia
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Alain R. Bataille
- Laboratoire de chromatine et expression du génome, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - ManTek Yeung
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Megan Mendez
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | - Maxime Bergeron
- Laboratoire de chromatine et expression du génome, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - François Robert
- Laboratoire de chromatine et expression du génome, Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Durocher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
55
|
Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H. A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 2010; 285:12803-12. [PMID: 20190278 DOI: 10.1074/jbc.m110.106989] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint, consisting of an evolutionarily conserved protein kinase cascade, controls the DNA damage response in eukaryotes. Knowledge of the in vivo substrates of the checkpoint kinases is essential toward understanding their functions. Here we used quantitative mass spectrometry to identify 53 new and 34 previously known targets of Mec1/Tel1, Rad53, and Dun1 in Saccharomyces cerevisiae. Analysis of replication protein A (RPA)-associated proteins reveals extensive physical interactions between RPA-associated proteins and Mec1/Tel1-specific substrates. Among them, multiple subunits of the chromatin remodeling complexes including ISW1, ISW2, INO80, SWR1, RSC, and SWI/SNF are identified and they undergo DNA damage-induced phosphorylation by Mec1 and Tel1. Taken together, this study greatly expands the existing knowledge of the targets of DNA damage checkpoint kinases and provides insights into the role of RPA-associated chromatins in mediating Mec1 and Tel1 substrate phosphorylation in vivo.
Collapse
Affiliation(s)
- Sheng-hong Chen
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093-0653, USA
| | | | | | | | | |
Collapse
|
56
|
CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation. PLoS Biol 2010; 8:e1000286. [PMID: 20126259 PMCID: PMC2811153 DOI: 10.1371/journal.pbio.1000286] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
The Saccharomyces cerevisiae polo-like kinase Cdc5 promotes adaptation to the DNA damage checkpoint, in addition to its numerous roles in mitotic progression. The process of adaptation occurs when cells are presented with persistent or irreparable DNA damage and escape the cell-cycle arrest imposed by the DNA damage checkpoint. However, the precise mechanism of adaptation remains unknown. We report here that CDC5 is dose-dependent for adaptation and that its overexpression promotes faster adaptation, indicating that high levels of Cdc5 modulate the ability of the checkpoint to inhibit the downstream cell-cycle machinery. To pinpoint the step in the checkpoint pathway at which Cdc5 acts, we overexpressed CDC5 from the GAL1 promoter in damaged cells and examined key steps in checkpoint activation individually. Cdc5 overproduction appeared to have little effect on the early steps leading to Rad53 activation. The checkpoint sensors, Ddc1 (a member of the 9-1-1 complex) and Ddc2 (a member of the Ddc2/Mec1 complex), properly localized to damage sites. Mec1 appeared to be active, since the Rad9 adaptor retained its Mec1 phosphorylation. Moreover, the damage-induced interaction between phosphorylated Rad9 and Rad53 remained intact. In contrast, Rad53 hyperphosphorylation was significantly reduced, consistent with the observation that cell-cycle arrest is lost during adaptation. Thus, we conclude Cdc5 acts to attenuate the DNA damage checkpoint through loss of Rad53 hyperphosphorylation to allow cells to adapt to DNA damage. Polo-like kinase homologs have been shown to inhibit the ability of Claspin to facilitate the activation of downstream checkpoint kinases, suggesting that this function is conserved in vertebrates.
Collapse
|
57
|
Janke R, Herzberg K, Rolfsmeier M, Mar J, Bashkirov VI, Haghnazari E, Cantin G, Yates JR, Heyer WD. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae. Nucleic Acids Res 2010; 38:2302-13. [PMID: 20061370 PMCID: PMC2853130 DOI: 10.1093/nar/gkp1222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.
Collapse
Affiliation(s)
- Ryan Janke
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Taschner M, Harreman M, Teng Y, Gill H, Anindya R, Maslen SL, Skehel JM, Waters R, Svejstrup JQ. A role for checkpoint kinase-dependent Rad26 phosphorylation in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol Cell Biol 2010; 30:436-46. [PMID: 19901073 PMCID: PMC2798469 DOI: 10.1128/mcb.00822-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/20/2009] [Accepted: 10/29/2009] [Indexed: 12/19/2022] Open
Abstract
Upon DNA damage, eukaryotic cells activate a conserved signal transduction cascade known as the DNA damage checkpoint (DDC). We investigated the influence of DDC kinases on nucleotide excision repair (NER) in Saccharomyces cerevisiae and found that repair of both strands of an active gene is affected by Mec1 but not by the downstream checkpoint kinases, Rad53 and Chk1. Repair of the nontranscribed strand (by global genome repair) requires new protein synthesis, possibly reflecting the involvement of Mec1 in the activation of repair genes. In contrast, repair of the transcribed strand by transcription-coupled NER (TC-NER) occurs in the absence of new protein synthesis, and DNA damage results in Mec1-dependent but Rad53-, Chk1-, Tel1-, and Dun1-independent phosphorylation of the TC-NER factor Rad26, a member of the Swi/Snf group of ATP-dependent translocases and yeast homologue of Cockayne syndrome B. Mutation of the Rad26 phosphorylation site results in a decrease in the rate of TC-NER, pointing to direct activation of Rad26 by Mec1 kinase. These findings establish a direct role for Mec1 kinase in transcription-coupled repair, at least partly via phosphorylation of Rad26, the main transcription-repair coupling factor.
Collapse
Affiliation(s)
- Michael Taschner
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Michelle Harreman
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Yumin Teng
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Hefin Gill
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Roy Anindya
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Sarah L. Maslen
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - J. Mark Skehel
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Raymond Waters
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom, Pathology Department, Cardiff University, Heath Park CF14 4XN, United Kingdom, Protein Analysis and Proteomics Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
59
|
Makovets S, Blackburn EH. DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 2009; 11:1383-6. [PMID: 19838171 PMCID: PMC2806817 DOI: 10.1038/ncb1985] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/17/2009] [Indexed: 11/10/2022]
Abstract
The response to DNA damage involves regulation of several essential processes to maximize the accuracy of DNA damage repair and cell survival. Telomerase has the potential to interfere with repair by inappropriately adding telomeres to DNA breaks. It was unknown whether cells modulate telomerase in response to DNA damage to increase the accuracy of repair. Here, we report that telomerase action is regulated as a part of the cellular response to DNA double-strand breaks (DSBs). Using yeast, we show that the main ATR/Mec1 DNA damage signalling pathway regulates telomerase action at DSBs. After DNA damage, MEC1-RAD53-DUN1-dependent phosphorylation of the telomerase inhibitor Pif1 occurs. Using a separation of function PIF1 mutation, we show that this phosphorylation is specifically required for the Pif1-mediated telomerase inhibition that takes place at DNA breaks, but not for that at telomeres. Hence DNA damage signalling down-modulates telomerase action at DNA breaks through Pif1 phosphorylation, thus preventing aberrant healing of broken DNA ends by telomerase. These findings uncover a new regulatory mechanism that coordinates competing DNA end-processing activities and thereby promotes DNA repair accuracy and genome integrity.
Collapse
Affiliation(s)
- Svetlana Makovets
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Elizabeth H. Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| |
Collapse
|
60
|
Barlow JH, Rothstein R. Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase. EMBO J 2009; 28:1121-30. [PMID: 19262568 DOI: 10.1038/emboj.2009.43] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 01/19/2009] [Indexed: 11/09/2022] Open
Abstract
Recruitment of the homologous recombination machinery to sites of double-strand breaks is a cell cycle-regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B-type cyclin/CDK1 activity. Induction of the intra-S-phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU-treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra-S-phase checkpoint. We propose that B-type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.
Collapse
Affiliation(s)
- Jacqueline H Barlow
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032-2704, USA
| | | |
Collapse
|
61
|
Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence. EUKARYOTIC CELL 2009; 8:627-39. [PMID: 19252121 DOI: 10.1128/ec.00246-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously showed that Candida albicans orf19.4590, which we have renamed RFX2, expresses a protein that is reactive with antibodies in persons with candidiasis. In this study, we demonstrate that C. albicans RFX2 shares some functional redundancy with Saccharomyces cerevisiae RFX1. Complementation of an S. cerevisiae rfx1 mutant with C. albicans RFX2 partially restored UV susceptibility and the repression of DNA damage response genes. DNA damage- and UV-induced genes RAD6 and DDR48 were derepressed in a C. albicans rfx2 null mutant strain under basal conditions, and the mutant was significantly more resistant to UV irradiation, heat shock, and ethanol than wild-type strain SC5314. The rfx2 mutant was hyperfilamentous on solid media and constitutively expressed hypha-specific genes HWP1, ALS3, HYR1, ECE1, and CEK1. The mutant also demonstrated increased invasion of solid agar and significantly increased adherence to human buccal epithelial cells. During hematogenously disseminated candidiasis, mice infected with the mutant had a significantly delayed time to death compared to the wild type. During oropharyngeal candidiasis, mice infected with the mutant had significantly lower tissue burdens in the oral cavity and esophagus at 7 days and they were less likely to develop disseminated infections because of mucosal translocation. The data demonstrate that C. albicans Rfx2p regulates DNA damage responses, morphogenesis, and virulence.
Collapse
|
62
|
Hirano Y, Fukunaga K, Sugimoto K. Rif1 and rif2 inhibit localization of tel1 to DNA ends. Mol Cell 2009; 33:312-22. [PMID: 19217405 PMCID: PMC2662776 DOI: 10.1016/j.molcel.2008.12.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 10/10/2008] [Accepted: 12/30/2008] [Indexed: 01/05/2023]
Abstract
Chromosome ends, known as telomeres, have to be distinguished from DNA double-strand breaks (DSBs) that activate the DNA-damage checkpoint. In budding yeast, the ATM homolog Tel1 associates preferentially with short telomeres and promotes telomere addition. Here, we show that the telomeric proteins Rif1 and Rif2 attenuate Tel1 recruitment to DNA ends through distinct mechanisms. Both Rif1 and Rif2 inhibit the localization of Tel1, but not the Mre11-Rad50-Xrs2 (MRX) complex, to adjacent DNA ends. Rif1 function is weaker at short telomeric repeats compared with Rif2 function and is partly dependent on Rif2. Rif2 competes with Tel1 for binding to the C terminus of Xrs2. Once Tel1 is delocalized, MRX does not associate efficiently with Rap1-covered DNA ends. These results reveal a mechanism by which telomeric DNA sequences mask DNA ends from Tel1 recognition for the regulation of telomere length.
Collapse
Affiliation(s)
- Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Kenzo Fukunaga
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Katsunori Sugimoto
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| |
Collapse
|
63
|
Usui T, Foster SS, Petrini JH. Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. Mol Cell 2009; 33:147-59. [PMID: 19187758 PMCID: PMC2995296 DOI: 10.1016/j.molcel.2008.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/17/2008] [Accepted: 12/16/2008] [Indexed: 12/30/2022]
Abstract
Oligomeric assembly of Brca1 C-terminal (BRCT) domain-containing mediator proteins occurs at sites of DNA damage. However, the functional significance and regulation of such assemblies are not well understood. In this study, we defined the molecular mechanism of DNA-damage-induced oligomerization of the S. cerevisiae BRCT protein Rad9. Our data suggest that Rad9's tandem BRCT domain mediates Rad9 oligomerization via its interaction with its own Mec1/Tel1-phosphorylated SQ/TQ cluster domain (SCD). Rad53 activation is unaffected by mutations that impair Rad9 oligomerization, but checkpoint maintenance is lost, indicating that oligomerization is required to sustain checkpoint signaling. Once activated, Rad53 phosphorylates the Rad9 BRCT domain, which attenuates the BRCT-SCD interaction. Failure to phosphorylate the Rad9 BRCT results in cytologically visible Rad9 foci. This suggests a feedback loop wherein Rad53 activity and Rad9 oligomerization are regulated to tune the DNA-damage response.
Collapse
Affiliation(s)
- Takehiko Usui
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Steven S. Foster
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | - John H.J. Petrini
- Laboratory of Chromosome Biology, Sloan-Kettering Institute, New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
64
|
Chemical-genetic profiling of imidazo[1,2-a]pyridines and -pyrimidines reveals target pathways conserved between yeast and human cells. PLoS Genet 2008; 4:e1000284. [PMID: 19043571 PMCID: PMC2583946 DOI: 10.1371/journal.pgen.1000284] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/28/2008] [Indexed: 01/22/2023] Open
Abstract
Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical–genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure–activity relationships. We have shown that chemical–genetic screening allows structure–activity studies of chemical compounds at a very high resolution. In analyzing the effects of closely related imidazo-pyridine and -pyrimidine compounds, we found two compounds that likely act as oxidizing agents, yet target different organelles. The imidazo-pyridine affected mitochondrial functions whereas the imidazo-pyrimidine caused nuclear DNA damage. Remarkably, the only difference between these two compounds is the presence of a nitrogen atom at position 8. Thus, in addition to demonstrating the potential for high resolution in chemical–genetic studies, our work suggests that subtle changes in compound chemistry can be exploited to target different intracellular compartments with very different biological effects. Finally, we show that chemical–genetic profiling in yeast can be used to infer mode of action in mammalian cells. The specificity of compound 15 in eliciting a nuclear DNA damage response in evolutionarily diverse eukaryotes suggests that it will be of great utility in studying the cellular response to nuclear oxidative damage.
Collapse
|
65
|
Abstract
NFBD1/MDC1, 53BP1 and BRCA1 are DNA damage checkpoint proteins with twin BRCT domains. In order to determine if they have redundant roles in responses to ionizing radiation, we used siRNA and shRNA to deplete NFBD1, 53BP1 and BRCA1 in single, double and triple combinations. These analyses were performed in early passage human foreskin fibroblasts so that checkpoint responses could be assessed in a normal genetic background. We report that NFBD1, 53BP1 and BRCA1 have both unique and redundant functions in radiation-induced phosphorylation and localization events in the ATM-Chk2 pathway. 53BP1, but not NFBD1 and BRCA1, mediates ionizing radiation-induced ATM S1981 autophosphorylation. In contrast, all three mediators collaborate to promote IR-induced Chk2 T68 phosphorylation. NFBD1 and 53BP1, but not BRCA1, work together to mediate pATMS1981, pChk2T68 and NBS1 ionizing radiation induced foci (IRIF). However, the relative importance of NFBD1 and 53BP1 in IRIF formation differ. We also determined the interdependence among mediators in IRIF recruitment. We extend previous findings in cancer cells and mouse cells that NFBD1 is upstream of 53BP1 and BRCA1 to primary human cells. Furthermore, NFBD1 promotes BRCA1 IRIF through both 53BP1-dependent and 53BP1-independent mechanisms.
Collapse
Affiliation(s)
- Kathleen A Wilson
- Department of Pathology and Graduate Program in Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
66
|
Genetic analysis of CHK1 and CHK2 homologues revealed a unique cross talk between ATM and ATR pathways in Neurospora crassa. DNA Repair (Amst) 2008; 7:1951-61. [PMID: 18790091 DOI: 10.1016/j.dnarep.2008.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/06/2008] [Accepted: 08/13/2008] [Indexed: 01/12/2023]
Abstract
DNA damage checkpoint is an important mechanism for organisms to maintain genome integrity. In Neurospora crassa, mus-9 and mus-21 are homologues of ATR and ATM, respectively, which are pivotal factors of DNA damage checkpoint in mammals. A N. crassa clock gene prd-4 has been identified as a CHK2 homologue, but its role in DNA damage response had not been elucidated. In this study, we identified another CHK2 homologue and one CHK1 homologue from the N. crassa genome database. As disruption of these genes affected mutagen tolerance, we named them mus-59 and mus-58, respectively. The mus-58 mutant was sensitive to hydroxyurea (HU), but the mus-59 and prd-4 mutants showed the same HU sensitivity as that of the wild-type strain. This indicates the possibility that MUS-58 is involved in replication checkpoint and stabilization of stalled forks like mammalian CHK1. Phosphorylation of MUS-58 and MUS-59 was observed in the wild-type strain in response to mutagen treatments. Genetic relationships between those three genes and mus-9 or mus-21 indicated that the mus-9 mutation was epistatic to mus-58, and mus-21 was epistatic to prd-4. These relationships correspond to two signal pathways, ATR-CHK1 and ATM-CHK2 that have been established in mammalian cells. However, both the mus-9 mus-59 and mus-21 mus-58 double mutants showed an intermediate level between the two parental strains for CPT sensitivity. Furthermore, these double mutants showed severe growth defects. Our findings suggest that the DNA damage checkpoint of N. crassa is controlled by unique mechanisms.
Collapse
|
67
|
Morin I, Ngo HP, Greenall A, Zubko MK, Morrice N, Lydall D. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J 2008; 27:2400-10. [PMID: 18756267 PMCID: PMC2532783 DOI: 10.1038/emboj.2008.171] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 07/30/2008] [Indexed: 11/09/2022] Open
Abstract
Exo1 is a nuclease involved in mismatch repair, DSB repair, stalled replication fork processing and in the DNA damage response triggered by dysfunctional telomeres. In budding yeast and mice, Exo1 creates single-stranded DNA (ssDNA) at uncapped telomeres. This ssDNA accumulation activates the checkpoint response resulting in cell cycle arrest. Here, we demonstrate that Exo1 is phosphorylated when telomeres are uncapped in cdc13-1 and yku70Delta yeast cells, and in response to the induction of DNA damage. After telomere uncapping, Exo1 phosphorylation depends on components of the checkpoint machinery such as Rad24, Rad17, Rad9, Rad53 and Mec1, but is largely independent of Chk1, Tel1 and Dun1. Serines S372, S567, S587 and S692 of Exo1 were identified as targets for phosphorylation. Furthermore, mutation of these Exo1 residues altered the DNA damage response to uncapped telomeres and camptothecin treatment, in a manner that suggests Exo1 phosphorylation inhibits its activity. We propose that Rad53-dependent Exo1 phosphorylation is involved in a negative feedback loop to limit ssDNA accumulation and DNA damage checkpoint activation.
Collapse
Affiliation(s)
- Isabelle Morin
- Institute for Ageing and Health, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Hien-Ping Ngo
- Institute for Ageing and Health, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Amanda Greenall
- Institute for Ageing and Health, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
- Centre for Integrated Systems Biology of Ageing and Nutrition, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Mikhajlo K Zubko
- Institute for Ageing and Health, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
- Division of Biology, School of Biology, Chemistry & Health Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Nick Morrice
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - David Lydall
- Institute for Ageing and Health, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
- Centre for Integrated Systems Biology of Ageing and Nutrition, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
- Institute for Cell and Molecular Biosciences, Henry Wellcome Laboratory for Biogerontology Research, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
68
|
Maintenance of mitochondrial DNA by the Caenorhabditis elegans ATR checkpoint protein ATL-1. Genetics 2008; 180:681-6. [PMID: 18716329 DOI: 10.1534/genetics.108.090704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we show that inactivation of the ATR-related kinase ATL-1 results in a significant reduction in mitochondrial DNA (mtDNA) copy numbers in Caenorhabditis elegans. Although ribonucleotide reductase (RNR) expression and the ATP/dATP ratio remained unaltered in atl-1 deletion mutants, inhibition of RNR by RNAi or hydroxyurea treatment caused further reductions in mtDNA copy number. These results suggest that ATL-1 functions to maintain mtDNA independently of RNR.
Collapse
|
69
|
Vázquez MV, Rojas V, Tercero JA. Multiple pathways cooperate to facilitate DNA replication fork progression through alkylated DNA. DNA Repair (Amst) 2008; 7:1693-704. [PMID: 18640290 DOI: 10.1016/j.dnarep.2008.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity, replication forks need to be protected by the S-phase checkpoint and DNA insults must be repaired. Different pathways help to repair or tolerate the lesions in the DNA, but their contribution to the progression of replication forks through damaged DNA is not well known. Here we show in budding yeast that, when the DNA template is damaged with the alkylating agent methyl methanesulfonate (MMS), base excision repair, homologous recombination and DNA damage tolerance pathways, together with a functional S-phase checkpoint, are essential for the efficient progression of DNA replication forks and the maintenance of cell survival. In the absence of base excision repair, replication forks stall reversibly in cells exposed to MMS. This repair reaction is necessary to eliminate the lesions that impede fork progression and has to be coordinated with recombination and damage tolerance activities to avoid fork collapse and allow forks to resume and complete chromosome replication.
Collapse
|
70
|
Abstract
Deacetylation of histone H3 K56, regulated by the sirtuins Hst3p and Hst4p, is critical for maintenance of genomic stability. However, the physiological consequences of a lack of H3 K56 deacetylation are poorly understood. Here we show that cells lacking Hst3p and Hst4p, in which H3 K56 is constitutively hyperacetylated, exhibit hallmarks of spontaneous DNA damage, such as activation of the checkpoint kinase Rad53p and upregulation of DNA-damage inducible genes. Consistently, hst3 hst4 cells display synthetic lethality interactions with mutations that cripple genes involved in DNA replication and DNA double-strand break (DSB) repair. In most cases, synthetic lethality depends upon hyperacetylation of H3 K56 because it can be suppressed by mutation of K56 to arginine, which mimics the nonacetylated state. We also show that hst3 hst4 phenotypes can be suppressed by overexpression of the PCNA clamp loader large subunit, Rfc1p, and by inactivation of the alternative clamp loaders CTF18, RAD24, and ELG1. Loss of CTF4, encoding a replisome component involved in sister chromatid cohesion, also suppresses hst3 hst4 phenotypes. Genetic analysis suggests that CTF4 is a part of the K56 acetylation pathway that converges on and modulates replisome function. This pathway represents an important mechanism for maintenance of genomic stability and depends upon proper regulation of H3 K56 acetylation by Hst3p and Hst4p. Our data also suggest the existence of a precarious balance between Rfc1p and the other RFC complexes and that the nonreplicative forms of RFC are strongly deleterious to cells that have genomewide and constitutive H3 K56 hyperacetylation.
Collapse
|
71
|
Travesa A, Duch A, Quintana DG. Distinct Phosphatases Mediate the Deactivation of the DNA Damage Checkpoint Kinase Rad53. J Biol Chem 2008; 283:17123-30. [DOI: 10.1074/jbc.m801402200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
72
|
Kishimoto N, Cao Y, Park A, Sun Z. Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways. Dev Cell 2008; 14:954-61. [PMID: 18539122 DOI: 10.1016/j.devcel.2008.03.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/24/2007] [Accepted: 03/19/2008] [Indexed: 12/11/2022]
Abstract
Recently the cilium has emerged as an important sensory organelle for a wide range of cell types in vertebrates. However, the signaling cascade that links ciliary signals to cellular events remains poorly understood. Here, we show that the zebrafish cystic kidney gene seahorse is closely associated with ciliary functions: seahorse is required for establishing left-right asymmetry and for preventing kidney cyst formation; seahorse transcript is highly enriched in heavily ciliated tissues; and seahorse genetically interacts with the ciliary gene inversin. Yet seahorse is dispensable for cilia assembly or motility and the Seahorse protein is cytoplasmic. We provide evidence that Seahorse associates with Dishevelled. Finally, we show that seahorse constrains the canonical Wnt pathway and promotes the noncanonical Wnt pathway during gastrulation. Together, these data suggest that Seahorse may provide a link between ciliary signals and Wnt pathways.
Collapse
Affiliation(s)
- Norihito Kishimoto
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, NSB-393, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
73
|
S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 2007; 27:8874-85. [PMID: 17923678 DOI: 10.1128/mcb.01095-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mobility of the Ty1 retrotransposon in the yeast Saccharomyces cerevisiae is restricted by a large collection of proteins that preserve the integrity of the genome during replication. Several of these repressors of Ty1 transposition (Rtt)/genome caretakers are orthologs of mammalian retroviral restriction factors. In rtt/genome caretaker mutants, levels of Ty1 cDNA and mobility are increased; however, the mechanisms underlying Ty1 hypermobility in most rtt mutants are poorly characterized. Here, we show that either or both of two S-phase checkpoint pathways, the replication stress pathway and the DNA damage pathway, partially or strongly stimulate Ty1 mobility in 19 rtt/genome caretaker mutants. In contrast, neither checkpoint pathway is required for Ty1 hypermobility in two rtt mutants that are competent for genome maintenance. In rtt101delta mutants, hypermobility is stimulated through the DNA damage pathway components Rad9, Rad24, Mec1, Rad53, and Dun1 but not Chk1. We provide evidence that Ty1 cDNA is not the direct target of the DNA damage pathway in rtt101delta mutants; instead, levels of Ty1 integrase and reverse transcriptase proteins, as well as reverse transcriptase activity, are significantly elevated. We propose that DNA lesions created in the absence of Rtt/genome caretakers trigger S-phase checkpoint pathways to stimulate Ty1 reverse transcriptase activity.
Collapse
|
74
|
Theis JF, Dershowitz A, Irene C, Maciariello C, Tobin ML, Liberi G, Tabrizifard S, Korus M, Fabiani L, Newlon CS. Identification of mutations that decrease the stability of a fragment of Saccharomyces cerevisiae chromosome III lacking efficient replicators. Genetics 2007; 177:1445-58. [PMID: 17720931 PMCID: PMC2147994 DOI: 10.1534/genetics.107.074690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Eukaryotic chromosomes are duplicated during S phase and transmitted to progeny during mitosis with high fidelity. Chromosome duplication is controlled at the level of replication initiation, which occurs at cis-acting replicator sequences that are spaced at intervals of approximately 40 kb along the chromosomes of the budding yeast Saccharomyces cerevisiae. Surprisingly, we found that derivatives of yeast chromosome III that lack known replicators were replicated and segregated properly in at least 96% of cell divisions. To gain insight into the mechanisms that maintain these "originless" chromosome fragments, we screened for mutants defective in the maintenance of an "originless" chromosome fragment, but proficient in the maintenance of the same fragment that carries its normal complement of replicators (originless fragment maintenance mutants, or ofm). We show that three of these Ofm mutations appear to disrupt different processes involved in chromosome transmission. The OFM1-1 mutant seems to disrupt an alternative initiation mechanism, and the ofm6 mutant appears to be defective in replication fork progression. ofm14 is an allele of RAD9, which is required for the activation of the DNA damage checkpoint, suggesting that this checkpoint plays a key role in the maintenance of the "originless" fragment.
Collapse
Affiliation(s)
- James F Theis
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 2007; 104:10364-9. [PMID: 17563356 PMCID: PMC1965519 DOI: 10.1073/pnas.0701622104] [Citation(s) in RCA: 340] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Indexed: 12/16/2022] Open
Abstract
Understanding the role of DNA damage checkpoint kinases in the cellular response to genotoxic stress requires the knowledge of their substrates. Here, we report the use of quantitative phosphoproteomics to identify in vivo kinase substrates of the yeast DNA damage checkpoint kinases Mec1, Tel1, and Rad53 (orthologs of human ATR, ATM, and CHK2, respectively). By analyzing 2,689 phosphorylation sites in wild-type and various kinase-null cells, 62 phosphorylation sites from 55 proteins were found to be controlled by the DNA damage checkpoint. Examination of the dependency of each phosphorylation on Mec1 and Tel1 or Rad53, combined with sequence and biochemical analysis, revealed that many of the identified targets are likely direct substrates of these kinases. In addition to several known targets, 50 previously undescribed targets of the DNA damage checkpoint were identified, suggesting that a wide range of cellular processes is likely regulated by Mec1, Tel1, and Rad53.
Collapse
Affiliation(s)
- Marcus B. Smolka
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
| | - Claudio P. Albuquerque
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
- Departments of Chemistry and Biochemistry and
| | - Sheng-hong Chen
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0653
| | - Huilin Zhou
- *Ludwig Institute for Cancer Research, La Jolla, CA 92093-0653; and
- Cellular and Molecular Medicine and
| |
Collapse
|
76
|
Hirano Y, Sugimoto K. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Mol Biol Cell 2007; 18:2026-36. [PMID: 17377065 PMCID: PMC1877102 DOI: 10.1091/mbc.e06-12-1074] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chromosome ends, known as telomeres, have to be distinguished from DNA breaks that activate DNA damage checkpoint. Two large protein kinases, ataxia-teleangiectasia mutated (ATM) and ATM-Rad3-related (ATR), control not only checkpoint activation but also telomere length. In budding yeast, Mec1 and Tel1 correspond to ATR and ATM, respectively. Here, we show that Cdc13-dependent telomere capping attenuates Mec1 association with DNA ends. The telomeric TG repeat sequence inhibits DNA degradation and decreases Mec1 accumulation at the DNA end. The TG-mediated degradation block requires binding of multiple Cdc13 proteins. The Mre11-Rad50-Xrs2 complex and Exo1 contribute to DNA degradation at DNA ends. Although the TG sequence impedes Exo1 association with DNA ends, it allows Mre11 association. Moreover, the TG sequence does not affect Tel1 association with the DNA end. Our results suggest that the Cdc13 telomere cap coordinates Mec1 and Tel1 accumulation rather than simply covering the DNA ends at telomeres.
Collapse
Affiliation(s)
- Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103
| | - Katsunori Sugimoto
- Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
77
|
Usui T, Petrini JHJ. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Proc Natl Acad Sci U S A 2007; 104:2797-802. [PMID: 17299042 PMCID: PMC1797148 DOI: 10.1073/pnas.0611259104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we mutated autophosphorylation sites in Rad53 based on their conservation with previously identified autophosphorylation sites in the mammalian Rad53 ortholog, Chk2. As with wild-type Rad53, the autophosphorylation mutant, rad53-TA, undergoes Mec1/Tel1-dependent interactions with Rad9 and Dun1 in response to genotoxic stress. Whereas rad53-TA in vitro kinase activity is severely impaired, the rad53-TA strains are not completely deficient for cell-cycle checkpoint functions, indicating that the mutant kinase retains a basal level of function. We describe a genetic interaction among Rad53, Dun1, and the 14-3-3 proteins Bmh1 and Bmh2 and present evidence that 14-3-3 proteins directly facilitate Rad53 function in vivo. The data presented account for the previously observed checkpoint defects associated with 14-3-3 mutants in Saccharomyces pombe and Saccharomyces cerevisiae. The 14-3-3 functional interaction appears to modulate Rad53 activity, reminiscent of 14-3-3's effect on human Raf1 kinase and distinct from the indirect mode of regulation by 14-3-3 observed for Chk1 or Cdc25.
Collapse
Affiliation(s)
- Takehiko Usui
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
| | - John H. J. Petrini
- *Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, New York, NY 10021; and
- Weill Medical College, Cornell University Graduate School of Medical Sciences, 445 East 69th Street, New York, NY 10021
- To whom correspondence should be addressed at:
Laboratory of Chromosome Biology, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, RRL 901C, New York, NY 10021. E-mail:
| |
Collapse
|
78
|
Chabes A, Stillman B. Constitutively high dNTP concentration inhibits cell cycle progression and the DNA damage checkpoint in yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:1183-8. [PMID: 17227840 PMCID: PMC1783093 DOI: 10.1073/pnas.0610585104] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 11/18/2022] Open
Abstract
In eukaryotic cells the concentration of dNTP is highest in S phase and lowest in G1 phase and is controlled by ribonucleotide reductase (RNR). RNR activity is eliminated in all eukaryotes in G1 phase by a variety of mechanisms: transcriptional regulation, small inhibitory proteins, and protein degradation. After activation of RNR upon commitment to S phase, dATP feedback inhibition ensures that the dNTP concentration does not exceed a certain maximal level. It is not apparent why limitation of dNTP concentration is necessary in G1 phase. In principle, dATP feedback inhibition should be sufficient to couple dNTP production to utilization. We demonstrate that in Saccharomyces cerevisiae constitutively high dNTP concentration transiently arrests cell cycle progression in late G1 phase, affects activation of origins of replication, and inhibits the DNA damage checkpoint. We propose that fluctuation of dNTP concentration controls cell cycle progression and the initiation of DNA replication.
Collapse
Affiliation(s)
- Andrei Chabes
- *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Bruce Stillman
- *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and
| |
Collapse
|
79
|
Chen SH, Smolka MB, Zhou H. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae. J Biol Chem 2007; 282:986-95. [PMID: 17114794 PMCID: PMC2811688 DOI: 10.1074/jbc.m609322200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite extensive studies, the molecular mechanism of DNA damage checkpoint activation remains incompletely understood. To better dissect this mechanism, we developed an activity-based assay for Dun1, a downstream DNA damage check-point kinase in yeast, using its physiological substrate Sml1. Using this assay, we confirmed the genetic basis of Dun1 activation. Rad53 was found to be directly responsible for Dun1 activation. We reconstituted the activation of Dun1 by Rad53 and found that phosphorylation of Thr-380 in the activation loop of Dun1 by Rad53 is responsible for Dun1 activation. Interestingly, phosphorylation of the evolutionarily conserved Thr-354 in the activation loop of Rad53 is also important for the regulation of Rad53 activity. Thus, this conserved mode of activation loop phosphorylation appears to be a general mechanism for the activation of Chk2 family kinases.
Collapse
Affiliation(s)
- Sheng-hong Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0653
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093-0653
| | - Marcus B. Smolka
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093-0653
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California 92093-0653
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0653
| |
Collapse
|
80
|
Majka J, Niedziela-Majka A, Burgers PMJ. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 2006; 24:891-901. [PMID: 17189191 PMCID: PMC1850967 DOI: 10.1016/j.molcel.2006.11.027] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/17/2006] [Accepted: 11/30/2006] [Indexed: 11/22/2022]
Abstract
Yeast Mec1/Ddc2 protein kinase, the ortholog of human ATR/ATRIP, plays a central role in the DNA damage checkpoint. The PCNA-like clamp Rad17/Mec3/Ddc1 (the 9-1-1 complex in human) and its loader Rad24-RFC are also essential components of this signal transduction pathway. Here we have studied the role of the clamp in regulating Mec1, and we delineate how the signal generated by DNA lesions is transduced to the Rad53 effector kinase. The checkpoint clamp greatly activates the kinase activity of Mec1, but only if the clamp is appropriately loaded upon partial duplex DNA. Activated Mec1 phosphorylates the Ddc1 and Mec3 subunits of the clamp, the Rad24 subunit of the loader, and the Rpa1 and Rpa2 subunits of RPA. Phosphorylation of Rad53, and of human PHAS-1, a nonspecific target, also requires a properly loaded clamp. Phosphorylation and binding studies with individual clamp subunits indicate that the Ddc1 subunit mediates the functional interactions with Mec1.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110, USA
| | - Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110, USA
| | - Peter M. J. Burgers
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis, MO 63110, USA
| |
Collapse
|
81
|
Mousson F, Ochsenbein F, Mann C. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 2006; 116:79-93. [PMID: 17180700 DOI: 10.1007/s00412-006-0087-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 10/11/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
Nucleosome assembly involves deposition of a heterotetramer of histones H3/H4 onto DNA followed by two heterodimers of histones H2A/H2B. Cycles of nucleosome assembly and disassembly are essential to cellular events such as replication, transcription, and DNA repair. After synthesis in the cytoplasm, histones are shuttled into the nucleus where they are associated with chaperone proteins. Chaperones of histones H3/H4 include CAF-I, the Hir proteins, and Asf1. CAF-I and the Hir proteins function as replication-coupled and replication-independent deposition factors for H3/H4, respectively, whereas Asf1 may play a role in both pathways. In addition to acting as assembly factors, histone chaperones assist nucleosome dissociation from DNA and they may recruit other proteins to chromatin. The past few years have witnessed a notable accumulation of genetic, biochemical, and structural data on Asf1, which motivated this review. We discuss the sequence and structural features of Asf1 before considering its roles in nucleosome assembly/disassembly, the cellular response to DNA damage, and the regulation of gene expression. We emphasize the key role of Asf1 as a central node in a network of partners that place it at the crossroads of chromatin and DNA checkpoint pathways.
Collapse
Affiliation(s)
- Florence Mousson
- Département de Biologie Joliot-Curie, Service de Biophysique des Fonctions Membranaires, CEA/Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
82
|
Smolka MB, Chen SH, Maddox PS, Enserink JM, Albuquerque CP, Wei XX, Desai A, Kolodner RD, Zhou H. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J Cell Biol 2006; 175:743-53. [PMID: 17130285 PMCID: PMC2064674 DOI: 10.1083/jcb.200605081] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 11/01/2006] [Indexed: 12/21/2022] Open
Abstract
The DNA damage checkpoint kinase Rad53 is important for the survival of budding yeast under genotoxic stresses. We performed a biochemical screen to identify proteins with specific affinity for the two Forkhead associated (FHA) domains of Rad53. The N-terminal FHA1 domain was found to coordinate a complex protein interaction network, which includes nuclear proteins involved in DNA damage checkpoints and transcriptional regulation. Unexpectedly, cytosolic proteins involved in cytokinesis, including septins, were also found as FHA1 binding proteins. Consistent with this interaction, a Rad53 mutant defective in its nuclear localization was found to localize to the bud neck. Abnormal morphology was observed in cells overexpressing the FHA1 domain and in rad53Delta cells under DNA replication stress. Further, septin Shs1 appears to have an important role in the response to DNA replication stress. Collectively, the results suggest a novel function of Rad53 in the regulation of polarized cell growth in response to DNA replication stress.
Collapse
Affiliation(s)
- Marcus B Smolka
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Cordón-Preciado V, Ufano S, Bueno A. Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage. Nucleic Acids Res 2006; 34:5852-62. [PMID: 17062626 PMCID: PMC1635317 DOI: 10.1093/nar/gkl741] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the 'intra-S-phase checkpoint'. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.
Collapse
Affiliation(s)
| | | | - Avelino Bueno
- To whom correspondence should be addressed: Tel: +34 923 29 4805; Fax: +34 923 29 4743;
| |
Collapse
|
84
|
Grenon M, Magill CP, Lowndes NF, Jackson SP. Double-strand breaks trigger MRX- and Mec1-dependent, but Tel1-independent, checkpoint activation. FEMS Yeast Res 2006; 6:836-47. [PMID: 16879433 DOI: 10.1111/j.1567-1364.2006.00076.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Together with the Tel1 PI3 kinase, the Mre11/Rad50/Xrs2 (MRX) complex is involved in checkpoint activation in response to double-strand breaks (DSBs), a function also conserved in human cells by Mre11/Rad50/Nbs1 acting with ATM. It has been proposed that the yeast Tel1/MRX pathway is activated in the presence of DSBs that cannot be resected. The Mec1 PI3 kinase, by contrast, would be involved in detecting breaks that can be processed. The significance of a Mec1/MRX DSB-activated DNA damage checkpoint has yet to be reported. To understand whether the MRX complex works specifically with Tel1 or Mec1, we investigated MRX function in checkpoint activation in response to endonuclease-induced DSBs in synchronized cells. We found that the expression of EcoRI activated the G1 and intra-S phase checkpoints in a MRX- and Mec1-dependent, but Tel1-independent manner. The pathways identified here are therefore different from the Tel1/MRX pathway that was previously reported. Thus, our results demonstrate that MRX can function in concert with both Mec1 and Tel1 PI3K-like kinases to trigger checkpoint activation in response to DSBs. Importantly, we also describe a novel MRX-independent checkpoint that is activated in late S-phase when cells replicate their DNA in the presence of DSBs. The existence of this novel mode of checkpoint activation explains why several previous studies had reported that mutations in the MRX complex did not abrogate DSB-induced checkpoint activation in asynchronous cells.
Collapse
Affiliation(s)
- Muriel Grenon
- Wellcome Trust and Cancer Research UK Gurdon Institute, Cambridge UK.
| | | | | | | |
Collapse
|
85
|
Pabla R, Pawar V, Zhang H, Siede W. Characterization of checkpoint responses to DNA damage in Saccharomyces cerevisiae: basic protocols. Methods Enzymol 2006; 409:101-17. [PMID: 16793397 DOI: 10.1016/s0076-6879(05)09006-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
In spite of certain special features of its cell cycle, the yeast Saccharomyces cerevisiae has proved to be an excellent and widely used model to study eukaryotic checkpoint responses to DNA damage. This chapter primarily summarizes selected cytological methods that are useful for initial characterization of cell cycle responses. These can be useful in order to study mutants, conditions, or selected DNA damaging agents and experimental examples are given. We have also included protocols for flow-cytometric cell cycle analysis and for determination of Rad53 phosphorylation, a commonly used indicator of checkpoint activation.
Collapse
Affiliation(s)
- Ritu Pabla
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, USA
| | | | | | | |
Collapse
|
86
|
Bashkirov VI, Herzberg K, Haghnazari E, Vlasenko AS, Heyer WD. DNA damage-induced phosphorylation of Rad55 protein as a sentinel for DNA damage checkpoint activation in S. cerevisiae. Methods Enzymol 2006; 409:166-82. [PMID: 16793401 DOI: 10.1016/s0076-6879(05)09010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Rad55 protein is one of two Rad51 paralogs in the budding yeast Saccharomyces cerevisiae and forms a stable heterodimer with Rad57, the other Rad51 paralog. The Rad55-Rad57 heterodimer functions in homologous recombination during the assembly of the Rad51-ssDNA filament, which is central for homology search and DNA strand exchange. Previously, we identified Rad55 protein as a terminal target of the DNA damage checkpoints, which coordinate the cellular response to genotoxic stress. Rad55 protein phosphorylation is signaled by a significant electrophoretic shift and occurs in response to a wide range of genotoxic stress. Here, we map the phosphorylation site leading to the electrophoretic shift and show that Rad55 protein is a bona fide direct in vivo substrate of the central DNA damage checkpoint kinase Mec1, the budding yeast equivalent of human ATM/ATR. We provide protocols to monitor the Rad55 phosphorylation status in vivo and assay Rad55-Rad57 phosphorylation in vitro using purified substrate with the Mec1 and Rad53 checkpoint kinases.
Collapse
|
87
|
Majka J, Binz SK, Wold MS, Burgers PMJ. Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions. J Biol Chem 2006; 281:27855-61. [PMID: 16864589 DOI: 10.1074/jbc.m605176200] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterotrimeric checkpoint clamp comprises the Saccharomyces cerevisiae Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans). This DNA damage response factor is loaded onto DNA by the Rad24-RFC (replication factor C-like complex with Rad24) clamp loader and ATP. Although Rad24-RFC alone does not bind to naked partial double-stranded DNA, coating of the single strand with single-stranded DNA-binding protein RPA (replication protein A) causes binding of Rad24-RFC via interactions with RPA. However, RPA-mediated binding is abrogated when the DNA is coated with RPA containing a rpa1-K45E (rfa1-t11) mutation. These properties allowed us to determine the role of RPA in clamp-loading specificity. The Rad17/3/1 clamp is loaded with comparable efficiency onto naked primer/template DNA with either a 3'-junction or a 5'-junction. Remarkably, when the DNA was coated with RPA, loading of Rad17/3/1 at 3'-junctions was completely inhibited, thereby providing specificity to loading at 5'-junctions. However, Rad17/3/1 loaded at 5'-junctions can slide across double-stranded DNA to nearby 3'-junctions and thereby affect the activity of proteins that act at 3'-termini. These studies show a unique specificity of the checkpoint loader for 5'-junctions of RPA-coated DNA. The implications of this specificity for checkpoint function are discussed.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
88
|
Dohrmann PR, Sclafani RA. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae. Genetics 2006; 174:87-99. [PMID: 16816422 PMCID: PMC1569810 DOI: 10.1534/genetics.106.060236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel role for Rad53 in the initiation of DNA replication that is independent of checkpoint or deoxynucleotide regulation is proposed. Rad53 kinase is part of a signal transduction pathway involved in the DNA damage and replication checkpoints, while Cdc7-Dbf4 kinase (DDK) is important for the initiation of DNA replication. In addition to the known cdc7-rad53 synthetic lethality, rad53 mutations suppress mcm5-bob1, a mutation in the replicative MCM helicase that bypasses DDK's essential role. Rad53 kinase activity but neither checkpoint FHA domain is required. Conversely, Rad53 kinase can be activated without DDK. Rad53's role in replication is independent of both DNA and mitotic checkpoints because mutations in other checkpoint genes that act upstream or downstream of RAD53 or in the mitotic checkpoint do not exhibit these phenotypes. Because Rad53 binds an origin of replication mainly through its kinase domain and rad53 null mutants display a minichromosome loss phenotype, Rad53 is important in the initiation of DNA replication, as are DDK and Mcm2-7 proteins. This unique requirement for Rad53 can be suppressed by the deletion of the major histone H3/H4 gene pair, indicating that Rad53 may be regulating initiation by controlling histone protein levels and/or by affecting origin chromatin structure.
Collapse
Affiliation(s)
- Paul R Dohrmann
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | |
Collapse
|
89
|
Blake D, Luke B, Kanellis P, Jorgensen P, Goh T, Penfold S, Breitkreutz BJ, Durocher D, Peter M, Tyers M. The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae. Genetics 2006; 174:1709-27. [PMID: 16751663 PMCID: PMC1698614 DOI: 10.1534/genetics.106.057836] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maintenance of DNA replication fork stability under conditions of DNA damage and at natural replication pause sites is essential for genome stability. Here, we describe a novel role for the F-box protein Dia2 in promoting genome stability in the budding yeast Saccharomyces cerevisiae. Like most other F-box proteins, Dia2 forms a Skp1-Cdc53/Cullin-F-box (SCF) E3 ubiquitin-ligase complex. Systematic analysis of genetic interactions between dia2Delta and approximately 4400 viable gene deletion mutants revealed synthetic lethal/synthetic sick interactions with a broad spectrum of DNA replication, recombination, checkpoint, and chromatin-remodeling pathways. dia2Delta strains exhibit constitutive activation of the checkpoint kinase Rad53 and elevated counts of endogenous DNA repair foci and are unable to overcome MMS-induced replicative stress. Notably, dia2Delta strains display a high rate of gross chromosomal rearrangements (GCRs) that involve the rDNA locus and an increase in extrachromosomal rDNA circle (ERC) formation, consistent with an observed enrichment of Dia2 in the nucleolus. These results suggest that Dia2 is essential for stable passage of replication forks through regions of damaged DNA and natural fragile regions, particularly the replication fork barrier (RFB) of rDNA repeat loci. We propose that the SCFDia2 ubiquitin ligase serves to modify or degrade protein substrates that would otherwise impede the replication fork in problematic regions of the genome.
Collapse
Affiliation(s)
- Deborah Blake
- Department of Medical Genetics and Microbiology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
An X, Zhang Z, Yang K, Huang M. Cotransport of the heterodimeric small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm. Genetics 2006; 173:63-73. [PMID: 16489218 PMCID: PMC1461425 DOI: 10.1534/genetics.105.055236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis and is essential in DNA replication and repair. Cells have evolved complex mechanisms to modulate RNR activity during normal cell cycle progression and in response to genotoxic stress. A recently characterized mode of RNR regulation is DNA damage-induced RNR subunit redistribution. The RNR holoenzyme consists of a large subunit, R1, and a small subunit, R2. The Saccharomyces cerevisiae R2 is an Rnr2:Rnr4 heterodimer. Rnr2 generates a diferric-tyrosyl radical cofactor required for catalysis; Rnr4 facilitates cofactor assembly and stabilizes the resulting holo-heterodimer. Upon DNA damage, Rnr2 and Rnr4 undergo checkpoint-dependent, nucleus-to-cytoplasm redistribution, resulting in colocalization of R1 and R2. Here we present evidence that Rnr2 and Rnr4 are transported between the nucleus and the cytoplasm as one protein complex. Tagging either Rnr2 or Rnr4 with a nuclear export sequence causes cytoplasmic localization of both proteins. Moreover, mutations at the Rnr2:Rnr4 heterodimer interface can affect the localization of both proteins without disrupting the heterodimeric complex. Finally, the relocalization of Rnr4 appears to involve both active export and blockage of nuclear import. Our findings provide new insights into the mechanism of DNA damage-induced RNR subunit redistribution.
Collapse
Affiliation(s)
- Xiuxiang An
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
91
|
Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK, Brewer BJ. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 2006; 8:148-55. [PMID: 16429127 PMCID: PMC1414058 DOI: 10.1038/ncb1358] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 01/06/2006] [Indexed: 12/02/2022]
Abstract
We report a genome-wide analysis of single-stranded DNA formation during DNA replication in wild type and checkpoint-deficient rad53 yeast cells in the presence of hydroxyurea. In wild type cells, ssDNA first appears at a subset of replication origins and later “migrates” bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA appears at virtually every known origin, but remains there over time, suggesting that replication forks stall. Telomeric regions appear to be especially sensitive to the loss of Rad53 checkpoint function. We also mapped replication origins in Schizosaccharomyces pombe using our method.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, Washington 98195-7730
| | - David Collingwood
- Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195-7730
| | - Max E. Boeck
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, Washington 98195-7730
| | - Lindsay A. Fox
- Department of Biology, RC Box 270211, University of Rochester, Rochester, New York 14627-0211
| | - Gina M. Alvino
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, Washington 98195-7730
| | - Walton L. Fangman
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, Washington 98195-7730
| | - M. K. Raghuraman
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, Washington 98195-7730
| | - Bonita J. Brewer
- Department of Genome Sciences, Box 357730, University of Washington, Seattle, Washington 98195-7730
- Correspondence should be addressed to B. J. B. (e-mail: )
| |
Collapse
|
92
|
Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 2006; 15:1364-75. [PMID: 16085488 DOI: 10.1016/j.cub.2005.06.063] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/24/2005] [Accepted: 06/28/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND The DNA damage checkpoint is a protein kinase-based signaling system that detects and signals physical alterations in DNA. Despite having identified many components of this signaling cascade, the exact mechanisms by which checkpoint kinases are activated after DNA damage, as well as the role of the checkpoint mediators, remain poorly understood. RESULTS To elucidate the mechanisms that underlie the MEC1 and RAD9-dependent activation of Rad53, the Saccharomyces cerevisiae ortholog of Chk2, we mapped and characterized in vivo phosphorylation sites present on Rad53 after DNA damage by mass spectrometry. We find that Rad53 requires for its activation multisite phosphorylation on a number of typical and atypical Mec1 phosphorylation sites, thus confirming that Rad53 is a direct target of Mec1, the mammalian ATR homolog. Moreover, by using biochemical reconstitution experiments, we demonstrate that efficient and direct phosphorylation of Rad53 by Mec1 is only observed in the presence of purified Rad9, the archetypal checkpoint mediator. We find that the stimulatory activity of Rad9 requires a phospho- and FHA-dependent interaction with Rad53, which allows Rad53 to be recognized as a substrate for Mec1. CONCLUSIONS Our results indicate that Rad9 acts as a bona fide signaling adaptor that enables Rad53 phosphorylation by Mec1. Given the high degree of conservation of checkpoint signaling in eukaryotes, we propose that one of the critical functions of checkpoint mediators such as MDC1, 53BP1, or Brca1 is to act as PIKK adaptors during the DNA damage response.
Collapse
Affiliation(s)
- Frédéric D Sweeney
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
93
|
Carter CD, Kitchen LE, Au WC, Babic CM, Basrai MA. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Mol Cell Biol 2005; 25:10273-85. [PMID: 16287844 PMCID: PMC1291217 DOI: 10.1128/mcb.25.23.10273-10285.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.
Collapse
Affiliation(s)
- Carole D Carter
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, National Naval Medical Center, Building 8, Room 5101, 8901 Wisconsin Ave., Bethesda, MD 20889-5105, USA
| | | | | | | | | |
Collapse
|
94
|
Ma JL, Lee SJ, Duong JK, Stern DF. Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1. J Biol Chem 2005; 281:3954-63. [PMID: 16365046 DOI: 10.1074/jbc.m507508200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Rad53, the ortholog of mammalian Chk2, is an essential protein kinase in DNA damage and DNA replication checkpoint pathways. Consecutive phosphatidyl inositol kinase-like kinase (PIKK)-dependent and PIKK-independent steps in activation of Rad53 are key steps for controlling and transmitting diverse downstream responses to DNA damage. However, these activities have not been demonstrated in vitro in defined systems. Here, we have shown that enzymatically dephosphorylated purified Rad53 autoactivates in vitro through a phosphorylation-dependent mechanism. Kinetic analysis demonstrated that autophosphorylation results in a more than 9-fold increase in protein kinase activity. Autophosphorylation was Rad53 concentration-dependent, indicating that the reaction follows an intermolecular mechanism. DNA damage induced oligomerization of a subset of Rad53 molecules in vivo. At low concentrations of Rad53, preincubation of Rad53 with immune complexes containing the Mec1/Ddc2 complex can activate Rad53 kinase activity. Our findings showed that Mec1/Ddc2 complexes can directly activate Rad53 through a phosphorylation-dependent mechanism, and more generally, supported the hypothesis that PIKKs regulate Chk2 orthologs through phosphorylation. Moreover, this work has substantiated a model for PIKK-independent amplification of Rad53 activation (and by extension, activation of other Chk2 orthologs) mediated by inter-Rad53 phosphorylation.
Collapse
Affiliation(s)
- Jia-Lin Ma
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
95
|
Fasullo M, Dong Z, Sun M, Zeng L. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair (Amst) 2005; 4:1240-51. [PMID: 16039914 DOI: 10.1016/j.dnarep.2005.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/07/2005] [Accepted: 06/15/2005] [Indexed: 11/23/2022]
Abstract
Saccharomyces cerevisiae RAD53 (CHK2) and CHK1 control two parallel branches of the RAD9-mediated pathway for DNA damage-induced G(2) arrest. Previous studies indicate that RAD9 is required for X-ray-associated sister chromatid exchange (SCE), suppresses homology-directed translocations, and is involved in pathways for double-strand break repair (DSB) repair that are different than those controlled by PDS1. We measured DNA damage-associated SCE in strains containing two tandem fragments of his3, his3-Delta5' and his3-Delta3'::HOcs, and rates of spontaneous translocations in diploids containing GAL1::his3-Delta5' and trp1::his3-Delta3'::HOcs. DNA damage-associated SCE was measured after log phase cells were exposed to methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), UV, X rays and HO-induced DSBs. We observed that rad53 mutants were defective in MMS-, 4-NQO, X-ray-associated and HO-induced SCE but not in UV-associated SCE. Similar to rad9 pds1 double mutants, rad53 pds1 double mutants exhibited more X-ray sensitivity than the single mutants. rad53 sml1 diploid mutants exhibited a 10-fold higher rate of spontaneous translocations compared to the sml1 diploid mutants. chk1 mutants were not deficient in DNA damage-associated SCE after exposure to DNA damaging agents or after DSBs were generated at trp1::his3-Delta5'his3-Delta3'::HOcs. These data indicate that RAD53, not CHK1, is required for DSB-initiated SCE, and DNA damage-associated SCE after exposure to X-ray-mimetic and UV-mimetic chemicals.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, 150 New Scotland Avenue, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
96
|
de Vries HI, Uyetake L, Lemstra W, Brunsting JF, Su TT, Kampinga HH, Sibon OCM. Grp/DChk1 is required for G2-M checkpoint activation in Drosophila S2 cells, whereas Dmnk/DChk2 is dispensable. J Cell Sci 2005; 118:1833-42. [PMID: 15860729 PMCID: PMC3247295 DOI: 10.1242/jcs.02309] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-cycle checkpoints are signal-transduction pathways required to maintain genomic stability in dividing cells. Previously, it was reported that two kinases essential for checkpoint signalling, Chk1 and Chk2 are structurally conserved. In contrast to yeast, Xenopus and mammals, the Chk1- and Chk2-dependent pathways in Drosophila are not understood in detail. Here, we report the function of these checkpoint kinases, referred to as Grp/DChk1 and Dmnk/DChk2 in Drosophila Schneider's cells, and identify an upstream regulator as well as downstream targets of Grp/DChk1. First, we demonstrate that S2 cells are a suitable model for G(2)/M checkpoint studies. S2 cells display Grp/DChk1-dependent and Dmnk/DChk2-independent cell-cycle-checkpoint activation in response to hydroxyurea and ionizing radiation. S2 cells depleted for Grp/DChk1 using RNA interference enter mitosis in the presence of impaired DNA integrity, resulting in prolonged mitosis and mitotic catastrophe. Grp/DChk1 is phosphorylated in a Mei-41/DATR-dependent manner in response to hydroxyurea and ionizing radiation, indicating that Mei-41/ATR is an upstream component in the Grp/DChk1 DNA replication and DNA-damage-response pathways. The level of Cdc25(Stg) and phosphorylation status of Cdc2 are modulated in a Grp/DChk1-dependent manner in response to hydroxyurea and irradiation, indicating that these cell-cycle regulators are downstream targets of the Grp/DChk1-dependent DNA replication and DNA-damage responses. By contrast, depletion of Dmnk/DChk2 by RNA interference had little effect on checkpoint responses to hydroxyurea and irradiation. We conclude that Grp/DChk1, and not Dmnk/DChk2, is the main effector kinase involved in G(2)/M checkpoint control in Drosophila cells.
Collapse
Affiliation(s)
- Hilda I. de Vries
- Department of Radiation and Stress Cell Biology, Division Cell Biology, Faculty of Medical Sciences, University of Gröningen, Ant. Deusinglaan 1, Building 3215, 9713 AV Groningen, The Netherlands
| | - Lyle Uyetake
- Department Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA
| | - Willy Lemstra
- Department of Radiation and Stress Cell Biology, Division Cell Biology, Faculty of Medical Sciences, University of Gröningen, Ant. Deusinglaan 1, Building 3215, 9713 AV Groningen, The Netherlands
| | - Jeanette F. Brunsting
- Department of Radiation and Stress Cell Biology, Division Cell Biology, Faculty of Medical Sciences, University of Gröningen, Ant. Deusinglaan 1, Building 3215, 9713 AV Groningen, The Netherlands
| | - Tin Tin Su
- Department Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309-0347, USA
| | - Harm H. Kampinga
- Department of Radiation and Stress Cell Biology, Division Cell Biology, Faculty of Medical Sciences, University of Gröningen, Ant. Deusinglaan 1, Building 3215, 9713 AV Groningen, The Netherlands
| | - Ody C. M. Sibon
- Department of Radiation and Stress Cell Biology, Division Cell Biology, Faculty of Medical Sciences, University of Gröningen, Ant. Deusinglaan 1, Building 3215, 9713 AV Groningen, The Netherlands
- Author for correspondence ()
| |
Collapse
|
97
|
Archambault V, Ikui AE, Drapkin BJ, Cross FR. Disruption of mechanisms that prevent rereplication triggers a DNA damage response. Mol Cell Biol 2005; 25:6707-21. [PMID: 16024805 PMCID: PMC1190345 DOI: 10.1128/mcb.25.15.6707-6721.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotes replicate DNA once and only once per cell cycle due to multiple, partially overlapping mechanisms efficiently preventing reinitiation. The consequences of reinitiation are unknown. Here we show that the induction of rereplication by mutations in components of the prereplicative complex (origin recognition complex [ORC], Cdc6, and minichromosome maintenance proteins) causes a cell cycle arrest with activated Rad53, a large-budded morphology, and an undivided nucleus. Combining a mutation disrupting the Clb5-Orc6 interaction (ORC6-rxl) and a mutation stabilizing Cdc6 (CDC6(Delta)NT) causes a cell cycle delay with a similar phenotype, although this background is only partially compromised for rereplication control and does not exhibit overreplication detectable by fluorescence-activated cell sorting. We conducted a systematic screen that identified genetic requirements for the viability of these cells. ORC6-rxl CDC6(Delta)NT cells depend heavily on genes required for the DNA damage response and for double-strand-break repair by homologous recombination. Our results implicate an Mre11-Mec1-dependent pathway in limiting the extent of rereplication.
Collapse
Affiliation(s)
- Vincent Archambault
- The Rockefeller University, 1230 York Ave., Box 237, New York, NY 10021, USA
| | | | | | | |
Collapse
|
98
|
Majka J, Burgers PM. Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint. DNA Repair (Amst) 2005; 4:1189-94. [PMID: 16137930 DOI: 10.1016/j.dnarep.2005.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/18/2022]
Abstract
The Saccharomyces cerevisiae heterotrimeric checkpoint clamp consisting of the Rad17, Mec3, and Ddc1 subunits (Rad17/3/1, the 9-1-1 complex in humans) is an early response factor to DNA damage in a signal transduction pathway leading to the activation of the checkpoint system and eventually to cell cycle arrest. These subunits show structural similarities with the replication clamp PCNA and indeed, it was demonstrated in vitro that Rad17/3/1 could be loaded onto DNA by checkpoint specific clamp loader Rad24-RFC, analogous to the PCNA-RFC clamp-clamp loader system. We have studied the interactions between the checkpoint clamp subunits and the activity of partial clamp complexes. We find that none of the possible partial complexes makes up a clamp that can be loaded onto DNA by Rad24-RFC. In agreement, overexpression of DDC1 or RAD17 in a MEC3Delta strain, or of MEC3 or RAD17 in a DDC1Delta strain shows no rescue of damage sensitivity.
Collapse
Affiliation(s)
- Jerzy Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
99
|
Bartrand AJ, Iyasu D, Marinco SM, Brush GS. Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of replication protein A. Genetics 2005; 172:27-39. [PMID: 16118184 PMCID: PMC1456154 DOI: 10.1534/genetics.105.047845] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes, essential for DNA replication, repair, and recombination. During mitosis and meiosis in budding yeast, RPA becomes phosphorylated in reactions that require the Mec1 protein kinase, a central checkpoint regulator and homolog of human ATR. Through mass spectrometry and site-directed mutagenesis, we have now identified a single serine residue in the middle subunit of the RPA heterotrimer that is targeted for phosphorylation by Mec1 both in vivo and in vitro. Cells containing a phosphomimetic version of RPA generated by mutation of this serine to aspartate exhibit a significant alteration in the pattern of meiotic crossovers for specific genetic intervals. These results suggest a new function of Mec1 that operates through RPA to locally control reciprocal recombination.
Collapse
Affiliation(s)
- Amy J Bartrand
- Barbara Ann Karmanos Cancer Institute and Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
100
|
Sharp JA, Rizki G, Kaufman PD. Regulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae. Genetics 2005; 171:885-99. [PMID: 16020781 PMCID: PMC1456847 DOI: 10.1534/genetics.105.044719] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CAF-1, Hir proteins, and Asf1 are histone H3/H4 binding proteins important for chromatin-mediated transcriptional silencing. We explored genetic and physical interactions between these proteins and S-phase/DNA damage checkpoint kinases in the budding yeast Saccharomyces cerevisiae. Although cells lacking checkpoint kinase Mec1 do not display defects in telomeric gene silencing, silencing was dramatically reduced in cells lacking both Mec1 and the Cac1 subunit of CAF-1. Silencing was restored in cac1Delta and cac1Delta mec1Delta cells upon deletion of Rad53, the kinase downstream of Mec1. Restoration of silencing to cac1Delta cells required both Hir1 and Asf1, suggesting that Mec1 counteracts functional sequestration of the Asf1/Hir1 complex by Rad53. Consistent with this idea, the degree of suppression of silencing defects by rad53 alleles correlated with effects on Asf1 binding. Furthermore, deletion of the Dun1 kinase, a downstream target of Rad53, also suppressed the silencing defects of cac1Delta cells and reduced the levels of Asf1 associated with Rad53 in vivo. Loss of Mec1 and Rad53 did not alter telomere lengths or Asf1 protein levels, nuclear localization, or chromosome association. We conclude that the Mec1 and Dun1 checkpoint kinases regulate the Asf1-Rad53 interaction and therefore affect the activity of the Asf1/Hir complex in vivo.
Collapse
Affiliation(s)
- Judith A Sharp
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|