51
|
Beta cell adaptation to pregnancy requires prolactin action on both beta and non-beta cells. Sci Rep 2021; 11:10372. [PMID: 33990661 PMCID: PMC8121891 DOI: 10.1038/s41598-021-89745-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Pancreatic islets adapt to insulin resistance of pregnancy by up regulating β-cell mass and increasing insulin secretion. Previously, using a transgenic mouse with global, heterozygous deletion of prolactin receptor (Prlr+/−), we found Prlr signaling is important for this adaptation. However, since Prlr is expressed in tissues outside of islets as well as within islets and prolactin signaling affects β-cell development, to understand β-cell-specific effect of prolactin signaling in pregnancy, we generated a transgenic mouse with an inducible conditional deletion of Prlr from β-cells. Here, we found that β-cell-specific Prlr reduction in adult mice led to elevated blood glucose, lowed β-cell mass and blunted in vivo glucose-stimulated insulin secretion during pregnancy. When we compared gene expression profile of islets from transgenic mice with global (Prlr+/−) versus β-cell-specific Prlr reduction (βPrlR+/−), we found 95 differentially expressed gene, most of them down regulated in the Prlr+/− mice in comparison to the βPrlR+/− mice, and many of these genes regulate apoptosis, synaptic vesicle function and neuronal development. Importantly, we found that islets from pregnant Prlr+/− mice are more vulnerable to glucolipotoxicity-induced apoptosis than islets from pregnant βPrlR+/− mice. These observations suggest that down regulation of prolactin action during pregnancy in non-β-cells secondarily and negatively affect β-cell gene expression, and increased β-cell susceptibility to external insults.
Collapse
|
52
|
Charifou E, Sumbal J, Koledova Z, Li H, Chiche A. A Robust Mammary Organoid System to Model Lactation and Involution-like Processes. Bio Protoc 2021; 11:e3996. [PMID: 34124297 PMCID: PMC8160540 DOI: 10.21769/bioprotoc.3996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 11/02/2022] Open
Abstract
The mammary gland is a highly dynamic tissue that changes throughout reproductive life, including growth during puberty and repetitive cycles of pregnancy and involution. Mammary gland tumors represent the most common cancer diagnosed in women worldwide. Studying the regulatory mechanisms of mammary gland development is essential for understanding how dysregulation can lead to breast cancer initiation and progression. Three-dimensional (3D) mammary organoids offer many exciting possibilities for the study of tissue development and breast cancer. In the present protocol derived from Sumbal et al., we describe a straightforward 3D organoid system for the study of lactation and involution ex vivo. We use primary and passaged mouse mammary organoids stimulated with fibroblast growth factor 2 (FGF2) and prolactin to model the three cycles of mouse mammary gland lactation and involution processes. This 3D organoid model represents a valuable tool to study late postnatal mammary gland development and breast cancer, in particular postpartum-associated breast cancer. Graphic abstract: Mammary gland organoid isolation and culture procedures.
Collapse
Affiliation(s)
- Elsa Charifou
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Jakub Sumbal
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 625 00, Czech Republic
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno 625 00, Czech Republic
| | - Han Li
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| | - Aurélie Chiche
- Cellular Plasticity & Disease Modeling - Department of Developmental & Stem Cell Biology, CNRS UMR3738 - Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
53
|
Muzerelle A, Soiza-Reilly M, Hainer C, Ruet PL, Lesch KP, Bader M, Alenina N, Scotto-Lomassese S, Gaspar P. Dorsal raphe serotonin neurotransmission is required for the expression of nursing behavior and for pup survival. Sci Rep 2021; 11:6004. [PMID: 33727585 PMCID: PMC7966367 DOI: 10.1038/s41598-021-84368-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Proper maternal care is an essential factor of reproductive success in mammals, involving a repertoire of behaviors oriented toward the feeding and care of the offspring. Among the neurotransmitters involved in the initiation of these behaviors, serotonin (5-HT) seems to play an important role. Here we compared pup-oriented maternal behaviors in mice with constitutive 5-HT depletion, the tryptophan hydroxylase 2-knock-out (Tph2-KO) and the Pet1-KO mice. We report that the only common pup-oriented defect in these 2 hyposerotoninergic models is a defective nursing in parturient mice and altered nursing-like (crouching) behavior in virgin mice, while pup retrieval defects are only present in Tph2-KO. Despite a normal mammary gland development and milk production, the defect in appropriate nursing is responsible for severe growth retardation and early lethality of pups born to hyposerotonergic dams. This nursing defect is due to acute rather constitutive 5-HT depletion, as it is reproduced by adult knockdown of Tph2 in the dorsal raphe nucleus in mothers with a prior normal maternal experience. We conclude that 5-HT innervation from the dorsal raphe is required for both the initiation and maintenance of a normal nursing behavior. Our findings may be related to observations of reduced maternal/infant interactions in human depression.
Collapse
Affiliation(s)
- Aude Muzerelle
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Mariano Soiza-Reilly
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cornelia Hainer
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany
| | - Pierre-Louis Ruet
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, Department of Psychiatry, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Michael Bader
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany.,Charite-University Medicine, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medecine (MDC), Berlin-Buch, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany. .,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia. .,Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia.
| | | | - Patricia Gaspar
- INSERM, Institut du Fer À Moulin, Sorbonne Université UMR-S 1270, Paris, France. .,INSERM U1127, Paris Brain Institute, 75013, Paris, France.
| |
Collapse
|
54
|
Salazar-Petres ER, Sferruzzi-Perri AN. Pregnancy-induced changes in β-cell function: what are the key players? J Physiol 2021; 600:1089-1117. [PMID: 33704799 DOI: 10.1113/jp281082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal metabolic adaptations during pregnancy ensure appropriate nutrient supply to the developing fetus. This is facilitated by reductions in maternal peripheral insulin sensitivity, which enables glucose to be available in the maternal circulation for transfer to the fetus for growth. To balance this process and avoid excessive hyperglycaemia and glucose intolerance in the mother during pregnancy, maternal pancreatic β-cells undergo remarkable changes in their function including increasing their proliferation and glucose-stimulated insulin secretion. In this review we examine how placental and maternal hormones work cooperatively to activate several signalling pathways, transcription factors and epigenetic regulators to drive adaptations in β-cell function during pregnancy. We also explore how adverse maternal environmental conditions, including malnutrition, obesity, circadian rhythm disruption and environmental pollutants, may impact the endocrine and molecular mechanisms controlling β-cell adaptations during pregnancy. The available data from human and experimental animal studies highlight the need to better understand how maternal β-cells integrate the various environmental, metabolic and endocrine cues and thereby determine appropriate β-cell adaptation during gestation. In doing so, these studies may identify targetable pathways that could be used to prevent not only the development of pregnancy complications like gestational diabetes that impact maternal and fetal wellbeing, but also more generally the pathogenesis of other metabolic conditions like type 2 diabetes.
Collapse
Affiliation(s)
- Esteban Roberto Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
55
|
Khant Aung Z, Kokay IC, Grattan DR, Ladyman SR. Prolactin-Induced Adaptation in Glucose Homeostasis in Mouse Pregnancy Is Mediated by the Pancreas and Not in the Forebrain. Front Endocrinol (Lausanne) 2021; 12:765976. [PMID: 34867810 PMCID: PMC8632874 DOI: 10.3389/fendo.2021.765976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.
Collapse
Affiliation(s)
- Zin Khant Aung
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ilona C. Kokay
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - David R. Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sharon R. Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- *Correspondence: Sharon R. Ladyman,
| |
Collapse
|
56
|
Galactorrhea during antipsychotic treatment: results from AMSP, a drug surveillance program, between 1993 and 2015. Eur Arch Psychiatry Clin Neurosci 2021; 271:1425-1435. [PMID: 33768297 PMCID: PMC8563638 DOI: 10.1007/s00406-021-01241-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 11/25/2022]
Abstract
Galactorrhea is a well-known adverse drug reaction (ADR) of numerous antipsychotic drugs (APD) and is often distressing for those affected. Methodological problems in the existing literature make it difficult to determine the prevalence of symptomatic hyperprolactinemia in persons treated with APDs. Consequently, a large sample of patients exposed to APDs is needed for more extensive evaluation. Data on APD utilization and reports of galactorrhea caused by APDs were analyzed using data from an observational pharmacovigilance program in German-speaking countries-Arzneimittelsicherheit in der Psychiatrie (AMSP)-from 1993 to 2015. 320,383 patients (175,884 female inpatients) under surveillance were treated with APDs for schizophrenia and other indications. A total of 170 events of galactorrhea caused by APDs were identified (0.97 cases in 1000 female inpatient admissions). Most cases occurred during the reproductive age with the highest incidence among patients between 16 and 30 years (3.81 cases in 1000 inpatients). The APDs that were most frequently imputed alone for inducing galactorrhea were risperidone (52 cases and 0.19% of all exposed inpatients), amisulpride (30 resp. 0.48%), and olanzapine (13 resp. 0.05%). In three cases, quetiapine had a prominent role as a probable cause for galactorrhea. High dosages of the imputed APDs correlated with higher rates of galactorrhea. Galactorrhea is a severe and underestimated condition in psychopharmacology. While some APDs are more likely to cause galactorrhea, we identified a few unusual cases. This highlights the importance of alertness in clinical practice and of taking a patient's individual situation into consideration.
Collapse
|
57
|
Lopez-Vicchi F, De Winne C, Brie B, Sorianello E, Ladyman SR, Becu-Villalobos D. Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol 2020; 32:e12888. [PMID: 33463813 DOI: 10.1111/jne.12888] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Prolactin is named after its vital role of promoting milk production during lactation, although it has been implicated in multiple functions within the body, including metabolism and energy homeostasis. Prolactin has been hypothesised to play a key role in driving many of the adaptations of the maternal body to allow the mother to meet the physiological demands of both pregnancy and lactation, including the high energetic demands of the growing foetus followed by milk production to support the offspring after birth. Prolactin receptors are found in many tissues involved in metabolism and food intake, such as the pancreas, liver, hypothalamus, small intestine and adipose tissue. We review the literature examining the effects of prolactin in these various tissues and how they relate to changes in function in physiological states of high prolactin, such as pregnancy and lactation, and in pathological states of hyperprolactinaemia in the adult. In many cases, whether prolactin promotes healthy metabolism or leads to dysregulation of metabolic functions is highly dependent on the situation. Overall, although prolactin may not play a major role in regulating metabolism and body weight outside of pregnancy and lactation, it definitely has the ability to contribute to metabolic function.
Collapse
Affiliation(s)
- Felicitas Lopez-Vicchi
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Catalina De Winne
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Belen Brie
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Damasia Becu-Villalobos
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| |
Collapse
|
58
|
Cayre S, Faraldo MM, Bardin S, Miserey-Lenkei S, Deugnier MA, Goud B. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development 2020; 147:dev.190744. [PMID: 32895290 PMCID: PMC7561474 DOI: 10.1242/dev.190744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6a F/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.
Collapse
Affiliation(s)
- Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marisa M Faraldo
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France.,INSERM, Paris F-75013, France
| | - Sabine Bardin
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France .,INSERM, Paris F-75013, France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| |
Collapse
|
59
|
Prolactin-Responsive Circular RNA circHIPK3 Promotes Proliferation of Mammary Epithelial Cells from Dairy Cow. Genes (Basel) 2020; 11:genes11030336. [PMID: 32245109 PMCID: PMC7141114 DOI: 10.3390/genes11030336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
The highly expressed circHIPK3 is a circular RNA that has been previously reported to regulate the growth of human cells. In this study, we found an increased expression of circHIPK3 in bovine mammary epithelial cells treated with prolactin (PRL) in high-throughput sequencing data. Thus, we further investigated the effect of circHIPK3 on the proliferation and differentiation of mammary epithelial cells. We used qRT-PCR/Cell Counting Kit-8 (CCK-8) and a Western blotting analysis to evaluate the effects on cell proliferation. We found that circHIPK3 promotes the proliferation of mammary epithelial cells. The STAT5 signaling pathway was previously associated with the prolactin response and when the STAT5 was suppressed, the expression of circHIPK3 decreased. The results suggest that the response to prolactin and the associated STAT5 signaling pathway affect the expression of circHIPK3, which subsequently affects the proliferation of mammary epithelial cells in dairy cows.
Collapse
|
60
|
Phillipps HR, Yip SH, Grattan DR. Patterns of prolactin secretion. Mol Cell Endocrinol 2020; 502:110679. [PMID: 31843563 DOI: 10.1016/j.mce.2019.110679] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Prolactin is pleotropic in nature affecting multiple tissues throughout the body. As a consequence of the broad range of functions, regulation of anterior pituitary prolactin secretion is complex and atypical as compared to other pituitary hormones. Many studies have provided insight into the complex hypothalamic-pituitary networks controlling prolactin secretion patterns in different species using a range of techniques. Here, we review prolactin secretion in both males and females; and consider the different patterns of prolactin secretion across the reproductive cycle in representative female mammals with short versus long luteal phases and in seasonal breeders. Additionally, we highlight changes in the pattern of secretion during pregnancy and lactation, and discuss the wide range of adaptive functions that prolactin may have in these important physiological states.
Collapse
Affiliation(s)
- Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
61
|
Zhang D, Yuan X, Zhen J, Sun Z, Deng C, Yu Q. Mildly Higher Serum Prolactin Levels Are Directly Proportional to Cumulative Pregnancy Outcomes in in-vitro Fertilization/Intracytoplasmic Sperm Injection Cycles. Front Endocrinol (Lausanne) 2020; 11:584. [PMID: 32982975 PMCID: PMC7483656 DOI: 10.3389/fendo.2020.00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/17/2020] [Indexed: 11/23/2022] Open
Abstract
Hyperprolactinemia has long been considered detrimental to fertility due to irregularity of ovulation. Whether mild hyperprolactinemia should be corrected before initiating an in-vitro fertilization/intracytoplasmic sperm injection cycle (IVF/ICSI) has not been determined; this study aimed to examine how different levels of prolactin affect IVF outcomes. A total of 3,009 patients with basal prolactin level <50 ng/mL undergoing IVF/ICSI cycles for tubal or male factors were recruited in this study. Patients diagnosed with anovulation owing to polycystic ovarian syndrome or hyperandrogenism were ruled out. Pregnancy outcomes were compared between patients with basal prolactin levels higher or lower than the median level of prolactin (16.05 ng/mL). Multifactor analyses were carried out among four subgroups depending on different prolactin levels. Repeated-measures analysis of variance was used to explore the relationship between the ascending trend of prolactin levels over ovarian stimulation and the corresponding cumulative pregnancy outcomes. There were significantly higher numbers of oocytes (9 vs. 8, P = 0.013) and embryos (6 vs. 5, P = 0.015) in patients with basal prolactin higher than 16.05 ng/mL. Basal prolactin higher than 30 ng/mL was positively related to cumulative clinical pregnancy, and a level higher than 40 ng/mL was a good indicator for the cumulative live birth rate. Throughout ovarian stimulation, the prognosis of pregnancy improved with increasing prolactin levels. Patients with better cumulated pregnancy outcomes had significantly higher prolactin levels as well as a profoundly increasing trend during the stimulating process than those who did not conceive. For patients who underwent the gonadotropin-releasing hormone agonist long protocol IVF/ICSI treatment, a slightly higher prolactin level during the controlled ovarian hyperstimulation protocol was a positive indicator for cumulated pregnancy/live birth rates.
Collapse
Affiliation(s)
- Duoduo Zhang
- Department of Obstetrics & Gynecology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Xi Yuan
- MOH Holdings (MOHH), Singapore, Singapore
| | - Jingran Zhen
- Department of Obstetrics & Gynecology, Peking Union Medical College Hospital (PUMCH), Beijing, China
- *Correspondence: Jingran Zhen
| | - Zhengyi Sun
- Department of Obstetrics & Gynecology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Chengyan Deng
- Department of Obstetrics & Gynecology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Qi Yu
- Department of Obstetrics & Gynecology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| |
Collapse
|
62
|
Piccinin E, Morgano A, Peres C, Contursi A, Bertrand-Michel J, Arconzo M, Guillou H, Villani G, Moschetta A. PGC-1α induced browning promotes involution and inhibits lactation in mammary glands. Cell Mol Life Sci 2019; 76:5011-5025. [PMID: 31154462 PMCID: PMC11105553 DOI: 10.1007/s00018-019-03160-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
The PPARγ coactivator 1α (PGC-1α) is a transcriptional regulator of mitochondrial biogenesis and oxidative metabolism. Recent studies have highlighted a fundamental role of PGC-1α in promoting breast cancer progression and metastasis, but the physiological role of this coactivator in the development of mammary glands is still unknown. First, we show that PGC-1α is highly expressed during puberty and involution, but nearly disappeared in pregnancy and lactation. Then, taking advantage of a newly generated transgenic mouse model with a stable and specific overexpression of PGC-1α in mammary glands, we demonstrate that the re-expression of this coactivator during the lactation stage leads to a precocious regression of the mammary glands. Thus, we propose that PGC-1α action is non-essential during pregnancy and lactation, whereas it is indispensable during involution. The rapid preadipocyte-adipocyte transition, together with an increased rate of apoptosis promotes a premature mammary glands involution that cause lactation defects and pup growth retardation. Overall, we provide new insights in the comprehension of female reproductive cycles and lactation deficiency, thus opening new roads for mothers that cannot breastfeed.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Annalisa Morgano
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Claudia Peres
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
- INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, Chieti, Italy
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier, Toulouse, France
| | - Maria Arconzo
- INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, UMR1331 INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.
- National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
63
|
Aoki M, Wartenberg P, Grünewald R, Phillipps HR, Wyatt A, Grattan DR, Boehm U. Widespread Cell-Specific Prolactin Receptor Expression in Multiple Murine Organs. Endocrinology 2019; 160:2587-2599. [PMID: 31373638 DOI: 10.1210/en.2019-00234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
The prolactin receptor (Prlr) mediates not only the multiple effects of prolactin, but also those of the placental lactogens and, in humans, some actions of growth hormone. Although Prlr expression has been reported to be widespread in the body, specific cellular expression patterns within tissues are undefined for many organs. One persisting problem in investigating Prlr function is that the protein is difficult to detect using conventional methods. To allow investigation of Prlr expression with a single cell resolution, we have recently developed a knock-in mouse strain in which Cre recombinase is expressed together with the long isoform of the Prlr using an internal ribosome entry site. When crossed to a Cre-dependent reporter mouse strain, Cre-mediated recombination will genetically label cells that acutely express the Prlr as well as cells that have transiently expressed the Prlr during development. We report here the anatomical distribution of cells which express the fluorescent reporter τ green fluorescent protein in a total of 38 organs prepared from young adult male and female Prlr reporter mice. Our results establish a resource for dissecting the functional role of Prlr in multiple murine tissues.
Collapse
Affiliation(s)
- Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
64
|
Makkar G, Shrivastava V, Hlavay B, Pretorius M, Kyle BD, Braun AP, Lynn FC, Huang C. Lrrc55 is a novel prosurvival factor in pancreatic islets. Am J Physiol Endocrinol Metab 2019; 317:E794-E804. [PMID: 31526288 PMCID: PMC6879869 DOI: 10.1152/ajpendo.00028.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pancreatic islets adapt to the increase in insulin demand during pregnancy by upregulating β-cell number, insulin synthesis, and secretion. These changes require prolactin receptor (PrlR) signaling, as mice with PrlR deletion are glucose intolerant with a lower β-cell mass. Prolactin also prevents β-cell apoptosis. Many genes participate in these adaptive changes in the islet, and Lrrc55 is one of the most upregulated genes with unknown function in islets. Because Lrrc55 expression increases in parallel to the increase in β-cell number and insulin production during pregnancy, we hypothesize that Lrrc55 might regulate β-cell proliferation/apoptosis (thus β-cell number) and insulin synthesis. Here, we found that Lrrc55 expression was upregulated by >60-fold during pregnancy in a PrlR-dependent manner, and this increase was restricted only to the islets. Overexpression of Lrrc55 in β-cells had minimal effect on β-cell proliferation and glucose-stimulated insulin secretion but protected β-cells from glucolipotoxicity-induced reduction in insulin gene expression. Moreover, Lrrc55 protects β-cells from glucolipotoxicity-induced apoptosis, with upregulation of prosurvival signals and downregulation of proapoptotic signals of the endoplasmic reticulum (ER) stress pathway. Furthermore, Lrrc55 attenuated calcium depletion induced by glucolipotoxicity, which may contribute to its antiapoptotic effect. Hence our findings suggest that Lrrc55 is a novel prosurvival factor that is upregulated specifically in islets during pregnancy, and it prevents conversion of adaptive unfolded protein response to unresolved ER stress and apoptosis in β-cells. Lrrc55 could be a potential therapeutic target in diabetes by reducing ER stress and promoting β-cell survival.
Collapse
Affiliation(s)
- Guneet Makkar
- Cumming School of Medicine, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Vipul Shrivastava
- Cumming School of Medicine, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Brittyne Hlavay
- Cumming School of Medicine, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Marle Pretorius
- Cumming School of Medicine, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Barry D Kyle
- Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Andrew P Braun
- Cumming School of Medicine, Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Francis C Lynn
- BC Children's Hospital Research Institute, Department of Surgery & School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Carol Huang
- Cumming School of Medicine, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
65
|
Abramicheva PA, Balakina TA, Morozov IA, Schelkunova TA, Smirnova OV. Prolactin Signaling Pathways Determining Its Direct Effects on Kidneys in the Cholestasis of Pregnancy Model. BIOCHEMISTRY (MOSCOW) 2019; 84:1204-1212. [DOI: 10.1134/s0006297919100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
66
|
Lee HK, Willi M, Shin HY, Liu C, Hennighausen L. Progressing super-enhancer landscape during mammary differentiation controls tissue-specific gene regulation. Nucleic Acids Res 2019; 46:10796-10809. [PMID: 30285185 PMCID: PMC6237736 DOI: 10.1093/nar/gky891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/20/2018] [Indexed: 12/15/2022] Open
Abstract
The mammary luminal lineage relies on the common cytokine-sensing transcription factor STAT5 to establish super-enhancers during pregnancy and initiate a genetic program that activates milk production. As pups grow, the greatly increasing demand for milk requires progressive differentiation of mammary cells with advancing lactation. Here we investigate how persistent hormonal exposure during lactation shapes an evolving enhancer landscape and impacts the biology of mammary cells. Employing ChIP-seq, we uncover a changing transcription factor occupancy at mammary enhancers, suggesting that their activities evolve with advancing differentiation. Using mouse genetics, we demonstrate that the functions of individual enhancers within the Wap super-enhancer evolve as lactation progresses. Most profoundly, a seed enhancer, which is mandatory for the activation of the Wap super-enhancer during pregnancy, is not required during lactation, suggesting compensatory flexibility. Combinatorial deletions of structurally equivalent constituent enhancers demonstrated differentiation-specific compensatory activities during lactation. We also demonstrate that the Wap super-enhancer, which is built on STAT5 and other common transcription factors, retains its exquisite mammary specificity when placed into globally permissive chromatin, suggesting a limited role of chromatin in controlling cell specificity. Our studies unveil a previously unrecognized progressive enhancer landscape where structurally equivalent components serve unique and differentiation-specific functions.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
67
|
Abramicheva PA, Smirnova OV. Prolactin Receptor Isoforms as the Basis of Tissue-Specific Action of Prolactin in the Norm and Pathology. BIOCHEMISTRY (MOSCOW) 2019; 84:329-345. [PMID: 31228925 DOI: 10.1134/s0006297919040011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review describes functional and structural features of different isoforms of prolactin receptor, mechanisms of signaling pathway activation, and molecular messengers involved in the transmission and termination of signal from the prolactin receptor isoforms. Changes in the ratio between prolactin receptor isoforms, key mediators of prolactin signal transduction and termination in various organs and tissues, are analyzed. Special attention is given to the role of molecular mediators and the ratio between the isoforms in normal physiological functions and pathologies. Approaches for therapeutic correction of prolactin signaling impairments are discussed.
Collapse
Affiliation(s)
- P A Abramicheva
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | - O V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia
| |
Collapse
|
68
|
Sun X, Tavenier A, Deng W, Leishman E, Bradshaw HB, Dey SK. Metformin attenuates susceptibility to inflammation-induced preterm birth in mice with higher endocannabinoid levels. Biol Reprod 2019; 98:208-217. [PMID: 29228105 DOI: 10.1093/biolre/iox164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Premature decidual senescence is a contributing factor to preterm birth. Fatty acid amide hydrolase mutant females (Faah-/-) with higher endocannabinoid levels are also more susceptible to preterm birth upon lipopolysaccharide (LPS) challenge due to enhanced decidual senescence; this is associated with mitogen-activated protein kinase p38 activation. Previous studies have shown that mechanistic target of rapamycin complex 1 (mTORC1) contributes to decidual senescence and promotes the incidence of preterm birth. In this study, we sought to attenuate premature decidual aging in Faah-/- females by targeting mTORC1 and p38 signaling pathways. Because metformin is known to inhibit mTOR and p38 signaling pathways, Faah-/- females were treated with metformin. These mice had a significantly lower preterm birth incidence with a higher rate of live birth after an LPS challenge on day 16 of pregnancy; metformin treatment did not affect placentation or neonatal birth weight. These results were associated with decreased levels of p38, as well as pS6, a downstream mediator of mTORC1 activity, in day 16 Faah-/-decidual tissues. Since metformin treatment attenuates premature decidual senescence with limited side effects during pregnancy, careful use of this drug may be effective in ameliorating specific adverse pregnancy events.
Collapse
Affiliation(s)
- Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexandra Tavenier
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenbo Deng
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
69
|
Abstract
The principal role of prolactin in mammals is the regulation of lactation. Prolactin is a hormone that is mainly synthesized and secreted by lactotroph cells in the anterior pituitary gland. Prolactin signalling occurs via a unique transmembrane prolactin receptor (PRL-R). The structure of the PRL-R has now been elucidated and is similar to that of many biologically fundamental receptors of the class 1 haematopoietic cytokine receptor family such as the growth hormone receptor. The PRL-R is expressed in a wide array of tissues, and a growing number of biological processes continue to be attributed to prolactin. In this Review, we focus on the newly discovered roles of prolactin in human health and disease, particularly its involvement in metabolic homeostasis including body weight control, adipose tissue, skin and hair follicles, pancreas, bone, the adrenal response to stress, the control of lactotroph cell homeostasis and maternal behaviour. New data concerning the pathological states of hypoprolactinaemia and hyperprolactinaemia will also be presented and discussed.
Collapse
Affiliation(s)
- Valérie Bernard
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Hôpital Saint Antoine, Service d'Endocrinologie et des Maladies de la Reproduction, Paris, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Paris, France
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
70
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
71
|
Pepin ME, Bickerton HH, Bethea M, Hunter CS, Wende AR, Banerjee RR. Prolactin Receptor Signaling Regulates a Pregnancy-Specific Transcriptional Program in Mouse Islets. Endocrinology 2019; 160:1150-1163. [PMID: 31004482 PMCID: PMC6475113 DOI: 10.1210/en.2018-00991] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022]
Abstract
Pancreatic β-cells undergo profound hyperplasia during pregnancy to maintain maternal euglycemia. Failure to reprogram β-cells into a more replicative state has been found to underlie susceptibility to gestational diabetes mellitus (GDM). We recently identified a requirement for prolactin receptor (PRLR) signaling in the metabolic adaptations to pregnancy, where β-cell-specific PRLR knockout (βPRLRKO) mice exhibit a metabolic phenotype consistent with GDM. However, the underlying transcriptional program that is responsible for the PRLR-dependent metabolic adaptations during gestation remains incompletely understood. To identify PRLR signaling gene regulatory networks and target genes within β-cells during pregnancy, we performed a transcriptomic analysis of pancreatic islets isolated from either βPRLRKO mice or littermate controls in late gestation. Gene set enrichment analysis identified forkhead box protein M1 and polycomb repressor complex 2 subunits, Suz12 and enhancer of zeste homolog 2 (Ezh2), as novel candidate regulators of PRLR-dependent β-cell adaptation. Gene ontology term pathway enrichment revealed both established and novel PRLR signaling target genes that together promote a state of increased cellular metabolism and/or proliferation. In contrast to the requirement for β-cell PRLR signaling in maintaining euglycemia during pregnancy, PRLR target genes were not induced following high-fat diet feeding. Collectively, the current study expands our understanding of which transcriptional regulators and networks mediate gene expression required for islet adaptation during pregnancy. The current work also supports the presence of pregnancy-specific adaptive mechanisms distinct from those activated by nutritional stress.
Collapse
Affiliation(s)
- Mark E Pepin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Hayden H Bickerton
- Division of Endocrinology, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- University of Alabama at Birmingham Comprehensive Diabetes Center, Birmingham, Alabama
| | - Maigen Bethea
- Division of Endocrinology, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- University of Alabama at Birmingham Comprehensive Diabetes Center, Birmingham, Alabama
| | - Chad S Hunter
- Division of Endocrinology, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- University of Alabama at Birmingham Comprehensive Diabetes Center, Birmingham, Alabama
| | - Adam R Wende
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- University of Alabama at Birmingham Comprehensive Diabetes Center, Birmingham, Alabama
| | - Ronadip R Banerjee
- Division of Endocrinology, Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
- University of Alabama at Birmingham Comprehensive Diabetes Center, Birmingham, Alabama
- Correspondence: Ronadip R. Banerjee, MD, PhD, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Alabama School of Medicine, Boshell Diabetes Building 730, 1808 7th Avenue South, Birmingham, Alabama 35294. E-mail:
| |
Collapse
|
72
|
Yun BY, Cho C, Cho BN. Differential activity of 16K rat prolactin in different organic systems. Anim Cells Syst (Seoul) 2019; 23:135-142. [PMID: 30949401 PMCID: PMC6440500 DOI: 10.1080/19768354.2018.1554543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
The 16K isoform of rat prolactin (16K rPRL) performs multiple functions in various systems including angiogenesis, tumorigenesis, and reproduction. Recently, 16K rPRL has attained prominence as a possible therapeutic target in pathophysiological conditions. However, the integral function and mechanism of 16K rPRL in various systems has not been elucidated. To this end, a transient gain-of-function animal model was adopted. An expression DNA plasmid containing 16K rPRL or rPRL gene was introduced into the muscle of adult mice by direct injection. The mRNA and protein expression levels of 16K rPRL were detected by initial RT–PCR and subsequent Southern blot and western blot, respectively. When the expression vector was introduced, the results were as follows: First, 16K rPRL combined with rPRL reduced angiogenesis in the testis whereas rPRL alone induced angiogenesis. Second, 16K rPRL combined with rPRL reduced WBC proliferation, whereas rPRL alone increased WBC proliferation. Third, 16K rPRL combined with rPRL reduced diestrus, whereas rPRL alone extended diestrus. Fourth, 16K rPRL combined with rPRL unexpectedly increased testosterone (T) levels, whereas rPRL alone did not increase T levels. Taken together, our data suggest that the 16K rPRL isoform performs integral functions in angiogenesis in the testis, WBC proliferation, and reproduction, although the action of 16K rPRL is not always antagonistic.
Collapse
Affiliation(s)
- Bo-Young Yun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Chunghee Cho
- Department of Life Science Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byung-Nam Cho
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
73
|
In silico prediction of prolactin molecules as a tool for equine genomics reproduction. Mol Divers 2019; 23:1019-1028. [PMID: 30740642 DOI: 10.1007/s11030-018-09914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
The prolactin hormone is involved in several biological functions, although its main role resides on reproduction. As it interferes on fertility changes, studies focused on human health have established a linkage of this hormone to fertility losses. Regarding animal research, there is still a lack of information about the structure of prolactin. In case of horse breeding, prolactin has a particular influence; once there is an individualization of these animals and equines are known for presenting several reproductive disorders. As there is no molecular structure available for the prolactin hormone and receptor, we performed several bioinformatics analyses through prediction and refinement softwares, as well as manual modifications. Aiming to elucidate the first computational structure of both molecules and analyse structural and functional aspects related to these proteins, here we provide the first known equine model for prolactin and prolactin receptor, which obtained high global quality scores in diverse software's for quality assessment. QMEAN overall score obtained for ePrl was (- 4.09) and QMEANbrane for ePrlr was (- 8.45), which proves the structures' reliability. This study will implement another tool in equine genomics in order to give light to interactions of these molecules, structural and functional alterations and therefore help diagnosing fertility problems, contributing in the selection of a high genetic herd.
Collapse
|
74
|
Pomar CA, Castro H, Picó C, Serra F, Palou A, Sánchez J. Cafeteria Diet Consumption during Lactation in Rats, Rather than Obesity Per Se, alters miR-222, miR-200a, and miR-26a Levels in Milk. Mol Nutr Food Res 2019; 63:e1800928. [DOI: 10.1002/mnfr.201800928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/09/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Catalina A. Pomar
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
| | - Heriberto Castro
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- Universidad Autónoma de Nuevo León; Facultad de Salud Pública y Nutrición; Nuevo León México C.P. 64460
| | - Catalina Picó
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| | - Francisca Serra
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| | - Andreu Palou
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| | - Juana Sánchez
- Laboratory of Molecular Biology; Nutrition and Biotechnology (Nutrigenomics and Obesity); University of the Balearic Islands; Palma de Mallorca Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Madrid Spain C.P. 28029
- Instituto de Investigación Sanitaria Illes Balears; Palma de Mallorca Spain C.P. 07120
| |
Collapse
|
75
|
Xie W, Liu H, Liu Q, Gao Q, Gao F, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of prolactin, prolactin receptor and STAT5 in the scented glands of the male muskrats (Ondatra zibethicus). Eur J Histochem 2019; 63. [PMID: 30652434 PMCID: PMC6340307 DOI: 10.4081/ejh.2019.2991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/19/2018] [Indexed: 01/31/2023] Open
Abstract
Prolactin (PRL) production in mammals has been demonstrated in extrapituitary gland, which can activate autocrine/ paracrine signaling pathways to regulate physiological activity. In the current study, we characterized the gene expression profiles of PRL, prolactin receptor (PRLR) and signal transducers and activators of transcription 5 (STAT5) in the scented glandular tissues of the muskrats, to further elucidate the relationship between PRL and the scented glandular functions of the muskrats. The weight and volume of the scented glands in the breeding season were significantly higher than those of the non-breeding season. Immunohistochemical data showed that PRL, PRLR and STAT5/phospho-STAT5 (pSTAT5) were found in the glandular and epithelial cells of the scented glands in both seasons. Furthermore, we found that PRL, PRLR and STAT5 had higher immunoreactivities in the scented glands during the breeding season when compared to those of the non-breeding season. In parallel, the gene expressions of PRL, PRLR and STAT5 were significantly higher in the scented glands during the breeding season than those of the non-breeding season. The concentrations of PRL in scented glandular tissues and sera were measured by enzymelinked immunosorbent assay (ELISA), and their levels were both notably higher in the breeding season than those of the nonbreeding season. These findings suggested that the scented glands of the muskrats were capable of extrapituitary synthesis of PRL, which might attribute PRL a specific function to an endocrine or autocrine/paracrine mediator.
Collapse
Affiliation(s)
- Wenqian Xie
- Beijing Forestry University, College of Biological Sciences and Technology, Laboratory of Animal Physiology.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Olarescu NC, Perez-Rivas LG, Gatto F, Cuny T, Tichomirowa MA, Tamagno G, Gahete MD. Aggressive and Malignant Prolactinomas. Neuroendocrinology 2019; 109:57-69. [PMID: 30677777 DOI: 10.1159/000497205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
Abstract
Prolactin-secreting tumors (prolactinomas) represent the most common pituitary tumor type, accounting for 47-66% of functional pituitary tumors. Prolactinomas are usually benign and controllable tumors as they express abundant levels of dopamine type 2 receptor (D2), and can be treated with dopaminergic drugs, effectively reducing prolactin levels and tumor volume. However, a proportion of prolactinomas exhibit aggressive features (including invasiveness, relevant growth despite adequate dopamine agonist treatment, and recurrence potential) and few may exhibit metastasizing potential (carcinomas). In this context, the clinical, pathological, and molecular definitions of malignant and aggressive prolactinomas remain to be clearly defined, as primary prolactin-secreting carcinomas are similar to aggressive adenomas until the presence of metastases is detected. Indeed, standard molecular and histological analyses do not reflect differences between carcinomas and adenomas at a first glance and have limitations in prediction of the aggressive progression of prolactinomas, wherein the causes underlying the aggressive behavior remain unknown. Herein we present a comprehensive, multidisciplinary review of the most relevant epidemiological, clinical, pathological, genetic, biochemical, and molecular aspects of aggressive and malignant prolactinomas.
Collapse
Affiliation(s)
- Nicoleta Cristina Olarescu
- Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Luis G Perez-Rivas
- Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Federico Gatto
- Endocrinology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Thomas Cuny
- Service d'Endocrinologie, Hôpital de la Conception, Inserm U1251, Marseille Medical Genetics, APHM, Aix-Marseille University, Marseille, France
| | - Maria A Tichomirowa
- Service d'Endocrinologie, Centre Hospitalier du Nord, Ettelbruck, Luxembourg
| | - Gianluca Tamagno
- Department of Endocrinology/Diabetes Mellitus, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Medicine, Wexford General Hospital, Wexford, Ireland
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain,
- Universidad de Córdoba, Cordoba, Spain,
- Reina Sofia University Hospital, Cordoba, Spain,
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Cordoba, Spain,
| |
Collapse
|
77
|
Abstract
A loss-of-function variant in the gene encoding the prolactin receptor ( PRLR) was reported previously in a woman with persistent postpartum galactorrhea; however, this paradoxical phenotype is not completely understood. Here we describe a 35-year-old woman who presented with idiopathic hyperprolactinemia that was associated with a complete lack of lactation after each of her two deliveries. She is a compound heterozygote for loss-of-function variants of PRLR. Her unaffected parents are heterozygotes. These findings are consistent with previous work showing that mice deficient in functional Prlr do not lactate.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba (T.K., H.U., H.T., M.S.), and the Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita (H.T.) - both in Japan
| | - Hirokazu Usui
- From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba (T.K., H.U., H.T., M.S.), and the Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita (H.T.) - both in Japan
| | - Hirokazu Tanaka
- From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba (T.K., H.U., H.T., M.S.), and the Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita (H.T.) - both in Japan
| | - Makio Shozu
- From the Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba (T.K., H.U., H.T., M.S.), and the Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita (H.T.) - both in Japan
| |
Collapse
|
78
|
Simpson S, Smith L, Bowe J. Placental peptides regulating islet adaptation to pregnancy: clinical potential in gestational diabetes mellitus. Curr Opin Pharmacol 2018; 43:59-65. [DOI: 10.1016/j.coph.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
|
79
|
Li D, Ji Y, Zhao C, Yao Y, Yang A, Jin H, Chen Y, San M, Zhang J, Zhang M, Zhang L, Feng X, Zheng Y. OXTR overexpression leads to abnormal mammary gland development in mice. J Endocrinol 2018; 239:121-136. [PMID: 30089682 DOI: 10.1530/joe-18-0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
Oxytocin receptor (OXTR) is a G-protein-coupled receptor and known for regulation of maternal and social behaviors. Null mutation (Oxtr-/-) leads to defects in lactation due to impaired milk ejection and maternal nurturing. Overexpression of OXTR has never been studied. To define the functions of OXTR overexpression, a transgenic mouse model that overexpresses mouse Oxtr under β-actin promoter was developed ( ++ Oxtr). ++ Oxtr mice displayed advanced development and maturation of mammary gland, including ductal distention, enhanced secretory differentiation and early milk production at non-pregnancy and early pregnancy. However, ++ Oxtr dams failed to produce adequate amount of milk and led to lethality of newborns due to early involution of mammary gland in lactation. Mammary gland transplantation results indicated the abnormal mammary gland development was mainly from hormonal changes in ++Oxtr mice but not from OXTR overexpression in mammary gland. Elevated OXTR expression increased prolactin-induced phosphorylation and nuclear localization of STAT5 (p-STAT5), and decreased progesterone level, leading to early milk production in non-pregnant and early pregnant females, whereas low prolactin and STAT5 activation in lactation led to insufficient milk production. Progesterone treatment reversed the OXTR-induced accelerated mammary gland development by inhibition of prolactin/p-STAT5 pathway. Prolactin administration rescued lactation deficiency through STAT5 activation. Progesterone plays a negative role in OXTR-regulated prolactin/p-STAT5 pathways. The study provides evidence that OXTR overexpression induces abnormal mammary gland development through progesterone and prolactin-regulated p-STAT5 pathway.
Collapse
Affiliation(s)
- Dan Li
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yan Ji
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chunlan Zhao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yapeng Yao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Anlan Yang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Honghong Jin
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yang Chen
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjun San
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Jing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjiao Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Luqing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Xuechao Feng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
80
|
Yang D, Huynh H, Wan Y. Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 2018; 81:141-148. [PMID: 29051053 PMCID: PMC5916746 DOI: 10.1016/j.semcdb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
81
|
Oride A, Kanasaki H, Kyo S. Role of pituitary adenylate cyclase-activating polypeptide in modulating hypothalamic-pituitary system. Reprod Med Biol 2018; 17:234-241. [PMID: 30013423 PMCID: PMC6046521 DOI: 10.1002/rmb2.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/01/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional peptide that is isolated and identified from the ovine hypothalamus, whose effects and mechanisms have been elucidated in numerous studies. The PACAP and its receptor are widely expressed, not only in the hypothalamus but also in peripheral organs. METHODS The studies on the role of PACAP in the hypothalamic-pituitary system, including those by the authors, were summarized. RESULTS In the pituitary gonadotrophs, PACAP increases the gonadotrophin α-, luteinizing hormoneβ-, and follicle-stimulating hormone β-subunit expression and the expression of gonadotropin-releasing hormone (GnRH) receptor and its own receptor, PAC1R. Moreover, a low-frequency GnRH pulse increases the expression of PACAP and PAC1R more than a high-frequency GnRH pulse in the gonadotrophs. The PACAP stimulates prolactin synthesis and secretion and increases PAC1R in the lactotrophs. In the hypothalamus, PACAP increases the expression of the GnRH receptors, although it is unable to increase the expression of GnRH in the GnRH-producing neurons. CONCLUSION The PACAP not only acts directly in each hormone-producing cell, it possibly might regulate hormone synthesis via the expression of its own receptors or those of other hormones.
Collapse
Affiliation(s)
- Aki Oride
- Department of Obstetrics and GynecologyFaculty of MedicineShimane UniversityIzumo CityJapan
| | - Haruhiko Kanasaki
- Department of Obstetrics and GynecologyFaculty of MedicineShimane UniversityIzumo CityJapan
| | - Satoru Kyo
- Department of Obstetrics and GynecologyFaculty of MedicineShimane UniversityIzumo CityJapan
| |
Collapse
|
82
|
Proietto S, Cortasa SA, Corso MC, Inserra PIF, Charif SE, Schmidt AR, Di Giorgio NP, Lux-Lantos V, Vitullo AD, Dorfman VB, Halperin J. Prolactin Is a Strong Candidate for the Regulation of Luteal Steroidogenesis in Vizcachas ( Lagostomus maximus). Int J Endocrinol 2018; 2018:1910672. [PMID: 30013596 PMCID: PMC6022330 DOI: 10.1155/2018/1910672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Prolactin (PRL) is essential for the maintenance of the corpora lutea and the production of progesterone (P4) during gestation of mice and rats, which makes it a key factor for their successful reproduction. Unlike these rodents and the vast majority of mammals, female vizcachas (Lagostomus maximus) have a peculiar reproductive biology characterized by an ovulatory event during pregnancy that generates secondary corpora lutea with a consequent increment of the circulating P4. We found that, although the expression of pituitary PRL increased steadily during pregnancy, its ovarian receptor (PRLR) reached its maximum in midpregnancy and drastically decreased at term pregnancy. The luteinizing hormone receptor (LHR) exhibited a similar profile than PRLR. Maximum P4 and LH blood levels were recorded at midpregnancy as well. Remarkably, the P4-sinthesizing enzyme 3β-HSD accompanied the expression pattern of PRLR/LHR throughout gestation. Instead, the luteolytic enzyme 20α-HSD showed low expression at early and midpregnancy, but reached its maximum at the end of gestation, when PRLR/LHR/3ß-HSD expressions and circulating P4 were minimal. In conclusion, both the PRLR and LHR expressions in the ovary would define the success of gestation in vizcachas by modulating the levels of 20α-HSD and 3ß-HSD, which ultimately determine the level of serum P4 throughout gestation.
Collapse
Affiliation(s)
- S. Proietto
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S. A. Cortasa
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M. C. Corso
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - P. I. F. Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - S. E. Charif
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - A. R. Schmidt
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - N. P. Di Giorgio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), Ciudad Autónoma de Buenos Aires, Argentina
| | - V. Lux-Lantos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME), Ciudad Autónoma de Buenos Aires, Argentina
| | - A. D. Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - V. B. Dorfman
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - J. Halperin
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
83
|
Derks MFL, Herrero-Medrano JM, Crooijmans RPMA, Vereijken A, Long JA, Megens HJ, Groenen MAM. Early and late feathering in turkey and chicken: same gene but different mutations. Genet Sel Evol 2018; 50:7. [PMID: 29566646 PMCID: PMC5863816 DOI: 10.1186/s12711-018-0380-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sex-linked slow (SF) and fast (FF) feathering rates at hatch have been widely used in poultry breeding for autosexing at hatch. In chicken, the sex-linked K (SF) and k+ (FF) alleles are responsible for the feathering rate phenotype. Allele K is dominant and a partial duplication of the prolactin receptor gene has been identified as the causal mutation. Interestingly, some domesticated turkey lines exhibit similar slow- and fast-feathering phenotypes, but the underlying genetic components and causal mutation have never been investigated. In this study, our aim was to investigate the molecular basis of feathering rate at hatch in domestic turkey. RESULTS We performed a sequence-based case-control association study and detected a genomic region on chromosome Z, which is statistically associated with rate of feathering at hatch in turkey. We identified a 5-bp frameshift deletion in the prolactin receptor (PRLR) gene that is responsible for slow feathering at hatch. All female cases (SF turkeys) were hemizygous for this deletion, while 188 controls (FF turkeys) were hemizygous or homozygous for the reference allele. This frameshift mutation introduces a premature stop codon and six novel amino acids (AA), which results in a truncated PRLR protein that lacks 98 C-terminal AA. CONCLUSIONS We present the causal mutation for feathering rate in turkey that causes a partial C-terminal loss of the prolactin receptor, and this truncated PRLR protein is strikingly similar to the protein encoded by the slow feathering K allele in chicken.
Collapse
Affiliation(s)
- Martijn F L Derks
- Wageningen University and Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Juan M Herrero-Medrano
- Wageningen University and Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Richard P M A Crooijmans
- Wageningen University and Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Addie Vereijken
- Hendrix Genetics Turkeys, Technolgy and Service B.V., P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hendrik-Jan Megens
- Wageningen University and Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Martien A M Groenen
- Wageningen University and Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
84
|
Girnius N, Edwards YJK, Davis RJ. The cJUN NH 2-terminal kinase (JNK) pathway contributes to mouse mammary gland remodeling during involution. Cell Death Differ 2018; 25:1702-1715. [PMID: 29511338 PMCID: PMC6143629 DOI: 10.1038/s41418-018-0081-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK has a key role in mammary gland involution post lactation.
Collapse
Affiliation(s)
- Nomeda Girnius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
85
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
86
|
ElShamy WM. The protective effect of longer duration of breastfeeding against pregnancy-associated triple negative breast cancer. Oncotarget 2018; 7:53941-53950. [PMID: 27248476 PMCID: PMC5288234 DOI: 10.18632/oncotarget.9690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Parity associated breast cancer (PABC) often diagnosed within the 2-5 years after a full term pregnancy. PABC is usually present with more advanced, poorly differentiated, high-grade cancers that show shorter time to progression and often of the triple negative breast cancer (TNBC) subtype. Data from around the world show that pregnancy-associated TNBC is independently associated with poor survival, underscoring the impact of the pregnant breast microenvironment on the biology and consequently the prognosis of these tumors. Although it is not yet clear, a link between pregnancy-associated TNBCs and lack or shorter duration of breastfeeding (not pregnancy per se) has been proposed. Here, we present epidemiological and experimental evidence for the protective effect of longer duration of lactation against pregnancy-associated TNBCs, and propose a putative molecular mechanism for this protective effect and its effect in eliminating any potential TNBC precursors from the breast by the end of the natural breast involution.
Collapse
Affiliation(s)
- Wael M ElShamy
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
87
|
Cocks Eschler D, Javanmard P, Cox K, Geer EB. Prolactinoma through the female life cycle. Endocrine 2018; 59:16-29. [PMID: 29177641 DOI: 10.1007/s12020-017-1438-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022]
Abstract
Prolactinomas are the most common secretory pituitary adenoma. They typically occur in women in the 3rd-6th decade of life and rarely in the pediatric population or after menopause. Most women present with irregular menses and/or infertility. Dopamine (DA) agonists, used in their treatment, are safe during pregnancy, but in most cases are discontinued at conception with close monitoring for signs or symptoms of tumor growth. Breastfeeding is safe postpartum, provided there was no significant growth during pregnancy. Some women will experience normalization of prolactin levels postpartum. Menopause may also decrease prolactin levels and even those with macroprolactinomas may consider discontinuing their DA agonist with close follow-up. Prolactinomas may be associated with decreased quality of life scores in women, and play a role in bone health and cardiovascular risk factors. This review discusses the current literature and clinical understanding of prolactinomas throughout the entirety of the female life cycle.
Collapse
Affiliation(s)
- Deirdre Cocks Eschler
- Department of Medicine, Division of Endocrinology and Metabolism, SUNY Stony Brook School of Medicine, 26 Research Way, East Setauket, New York, NY, 11733, USA
| | - Pedram Javanmard
- Department of Medicine, Division of Endocrine, Diabetes, and Bone Disease, Icahn School of Medicine at The Mount Sinai Hospital, 1 Gustave L Levy Place box 1055, New York, NY, 10029, USA
| | - Katherine Cox
- Department of Medicine, Division of Endocrine, Diabetes, and Bone Disease, Icahn School of Medicine at The Mount Sinai Hospital, 1 Gustave L Levy Place box 1055, New York, NY, 10029, USA
| | - Eliza B Geer
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 419, New York, NY, 10065, USA.
| |
Collapse
|
88
|
Bernard V, Villa C, Auguste A, Lamothe S, Guillou A, Martin A, Caburet S, Young J, Veitia RA, Binart N. Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model. Oncotarget 2017; 9:6144-6155. [PMID: 29464061 PMCID: PMC5814201 DOI: 10.18632/oncotarget.23713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
Lactotroph adenoma, also called prolactinoma, is the most common pituitary tumor but little is known about its pathogenesis. Mouse models of prolactinoma can be useful to better understand molecular mechanisms involved in abnormal lactotroph cell proliferation and secretion. We have previously developed a prolactin receptor deficient (Prlr–/–) mouse, which develops prolactinoma. The present study aims to explore the natural history of prolactinoma formation in Prlr–/– mice, using hormonal, radiological, histological and molecular analyses to uncover mechanisms involved in lactotroph adenoma development. Prlr–/– females develop large secreting prolactinomas from 12 months of age, with a penetrance of 100%, mimicking human aggressive densely granulated macroprolactinoma, which is a highly secreting subtype. Mean blood PRL measurements reach 14 902 ng/mL at 24 months in Prlr–/– females while PRL levels were below 15 ng/mL in control mice (p < 0.01). By comparing pituitary microarray data of Prlr–/– mice and an estrogen-induced prolactinoma model in ACI rats, we pinpointed 218 concordantly differentially expressed (DE) genes involved in cell cycle, mitosis, cell adhesion molecules, dopaminergic synapse and estrogen signaling. Pathway/gene-set enrichment analyses suggest that the transcriptomic dysregulation in both models of prolactinoma might be mediated by a limited set of transcription factors (i.e., STAT5, STAT3, AhR, ESR1, BRD4, CEBPD, YAP, FOXO1) and kinases (i.e., JAK2, AKT1, BRAF, BMPR1A, CDK8, HUNK, ALK, FGFR1, ILK). Our experimental results and their bioinformatic analysis provide insights into early genomic changes in murine models of the most frequent human pituitary tumor.
Collapse
Affiliation(s)
- Valérie Bernard
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France
| | - Chiara Villa
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Foch, Suresnes, France.,Institut Cochin, Unité INSERM 1016, CNRS UMR 8104, Université Paris Diderot, Paris, France
| | - Aurélie Auguste
- Unité INSERM 981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sophie Lamothe
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France
| | - Anne Guillou
- Unité INSERM 1191, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Agnès Martin
- Unité INSERM 1191, CNRS, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Jacques Young
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France.,APHP, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, le Kremlin-Bicêtre, France
| | - Reiner A Veitia
- Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - Nadine Binart
- Unité INSERM 1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, le Kremlin-Bicêtre, France
| |
Collapse
|
89
|
Oakes SR, Gallego-Ortega D, Stanford PM, Junankar S, Au WWY, Kikhtyak Z, von Korff A, Sergio CM, Law AMK, Castillo LE, Allerdice SL, Young AIJ, Piggin C, Whittle B, Bertram E, Naylor MJ, Roden DL, Donovan J, Korennykh A, Goodnow CC, O’Bryan MK, Ormandy CJ. A mutation in the viral sensor 2'-5'-oligoadenylate synthetase 2 causes failure of lactation. PLoS Genet 2017; 13:e1007072. [PMID: 29117179 PMCID: PMC5695588 DOI: 10.1371/journal.pgen.1007072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/11/2017] [Indexed: 01/28/2023] Open
Abstract
We identified a non-synonymous mutation in Oas2 (I405N), a sensor of viral double-stranded RNA, from an ENU-mutagenesis screen designed to discover new genes involved in mammary development. The mutation caused post-partum failure of lactation in healthy mice with otherwise normally developed mammary glands, characterized by greatly reduced milk protein synthesis coupled with epithelial cell death, inhibition of proliferation and a robust interferon response. Expression of mutant but not wild type Oas2 in cultured HC-11 or T47D mammary cells recapitulated the phenotypic and transcriptional effects observed in the mouse. The mutation activates the OAS2 pathway, demonstrated by a 34-fold increase in RNase L activity, and its effects were dependent on expression of RNase L and IRF7, proximal and distal pathway members. This is the first report of a viral recognition pathway regulating lactation. Using ENU-mutagenesis in mice we discovered a pedigree with lactation failure. Mammary development through puberty and pregnancy appeared normal in mutant animals, but the activation of lactation failed in the immediate post partum period and no milk reached the pups. Failure of lactation was accompanied by greatly diminished milk protein synthesis, decreased epithelial cell proliferation, increased epithelial cell death and a robust interferon response. A non-synonymous mutation in Oas2 (I405N) in the viral sensor Oas2 was found and expression of mutant Oas2 in mammary cells recapitulated these phenotypes. RNase L, the most proximal effector of OAS2 action, was activated in the mammary glands of mutant mice and in mammary cells expressing mutant Oas2. Knockdown of RNase L, or the distal pathway member IRF7, prevented these effects, indicating that the mutation in OAS2 caused activation of the viral signaling pathway. These results show that viral detection in the mammary gland can prevent lactation.
Collapse
Affiliation(s)
- Samantha R. Oakes
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- * E-mail:
| | - David Gallego-Ortega
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Prudence M. Stanford
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Simon Junankar
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Wendy Wing Yee Au
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Zoya Kikhtyak
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Anita von Korff
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Claudio M. Sergio
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Andrew M. K. Law
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Lesley E. Castillo
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Stephanie L. Allerdice
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Adelaide I. J. Young
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Catherine Piggin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Belinda Whittle
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Edward Bertram
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Matthew J. Naylor
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Daniel L. Roden
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| | - Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
- Australian Phenomics Facility, The Australian National University, Canberra, ACT, Australia
| | - Moira K. O’Bryan
- The School of Biological Sciences, Monash University, Clayton, Australia
| | - Christopher J. Ormandy
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, UNSW Medicine, UNSW Sydney, NSW, Australia
| |
Collapse
|
90
|
Saccon TD, Moreira F, Cruz LA, Mondadori RG, Fang Y, Barros CC, Spinel L, Bartke A, Masternak MM, Schneider A. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol 2017; 455:23-32. [PMID: 27771355 PMCID: PMC5397383 DOI: 10.1016/j.mce.2016.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 10/15/2016] [Indexed: 12/09/2022]
Abstract
The aim of this study was to evaluate the effect of growth hormone (GH) in the maintenance of the ovarian primordial follicle reserve. Ovaries from 16 mo old GH-deficient Ames Dwarf (df/df) and Normal (N/df) mice were used. A subgroup of df/df and N mice received GH or saline injections for six weeks starting at 14 mo of age. In addition, ovaries from 12 mo old mice overexpressing bovine GH (bGH) and controls were used. df/df mice had higher number of primordial and total follicles than N/df mice (p < 0.05), while GH treatment decreased follicle counts in both genotypes (p < 0.05). In addition, bGH mice had lower number of primordial and total follicles than the controls (p < 0.05). pFoxO3a levels were higher in mice treated with GH and in bGH mice (p < 0.05) when comparing with age match controls. These results indicate that increased circulating GH is associated with a reduced ovarian primordial follicle reserve and increased pFoxO3a content in oocytes.
Collapse
Affiliation(s)
- Tatiana D Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabiana Moreira
- Campus Araquari, Instituto Federal Catarinense, Araquari, SC, Brazil
| | - Luis A Cruz
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rafael G Mondadori
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Yimin Fang
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - L Spinel
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - A Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - A Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil; College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
91
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
92
|
Kim JJ, Choi YM, Lee SK, Yang KM, Paik EC, Jeong HJ, Jun JK, Han AR, Hwang KR, Hong MA. Prolactin receptor gene polymorphism and the risk of recurrent pregnancy loss: a case-control study. J OBSTET GYNAECOL 2017; 38:261-264. [DOI: 10.1080/01443615.2017.1351932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jin Ju Kim
- Department of Obstetrics and Gynecology, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
| | - Young Min Choi
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University College of Medicine, Daejeon, Korea
| | - Kwang Moon Yang
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women’s Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Eun Chan Paik
- Department of Obstetrics and Gynecology, Bundangcheil Women’s Hospital, Bundang, Korea
| | - Hyeon Jeong Jeong
- Department of Obstetrics and Gynecology, Seoul Rachel Fertility Center, Seoul, Korea
| | - Jong Kwan Jun
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Ra Han
- Department of Obstetrics and Gynecology, Konyang University College of Medicine, Daejeon, Korea
| | - Kyu Ri Hwang
- Department of Obstetrics and Gynecology, Seoul Municipal Boramae Hospital, Seoul, Korea
| | - Min A Hong
- The Institute of Reproductive Medicine and Population, Medical Research Centre, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
93
|
Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci 2017; 36:9173-85. [PMID: 27581458 DOI: 10.1523/jneurosci.1471-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Tuberoinfundibular dopamine (TIDA) neurons, known as neuroendocrine regulators of prolactin secretion from the pituitary gland, also release GABA within the hypothalamic arcuate nucleus. As these neurons express prolactin receptors (Prlr), prolactin may regulate GABA secretion from TIDA neurons, potentially mediating actions of prolactin on hypothalamic function. To investigate whether GABA is involved in feedback regulation of TIDA neurons, we examined the physiological consequences of conditional deletion of Prlr in GABAergic neurons. For comparison, we also examined mice in which Prlr were deleted from most forebrain neurons. Both neuron-specific and GABA-specific recombination of the Prlr gene occurred throughout the hypothalamus and in some extrahypothalamic regions, consistent with the known distribution of Prlr expression, indicative of knock-out of Prlr. This was confirmed by a significant loss of prolactin-induced phosphorylation of STAT5, a marker of prolactin action. Several populations of GABAergic neurons that were not previously known to be prolactin-sensitive, notably in the medial amygdala, were identified. Approximately 50% of dopamine neurons within the arcuate nucleus were labeled with a GABA-specific reporter, but Prlr deletion from these dopamine/GABA neurons had no effect on feedback regulation of prolactin secretion. In contrast, Prlr deletion from all dopamine neurons resulted in profound hyperprolactinemia. The absence of coexpression of tyrosine hydroxylase, a marker for dopamine production, in GABAergic nerve terminals in the median eminence suggested that rather than a functional redundancy within the TIDA population, the dopamine/GABA neurons in the arcuate nucleus represent a subpopulation with a functional role distinct from the regulation of prolactin secretion. SIGNIFICANCE STATEMENT Using a novel conditional deletion of the prolactin receptor, we have identified functional subpopulations in hypothalamic dopamine neurons. Although commonly considered a uniform population of neuroendocrine neurons involved in the control of prolactin secretion, we have shown that approximately half of these neurons express GABA as well as dopamine, but these neurons are not necessary for the feedback regulation of prolactin secretion. The absence of tyrosine hydroxylase in GABAergic nerve terminals in the median eminence suggests that only the non-GABAergic dopamine neurons are involved in the control of pituitary prolactin secretion, and the GABAergic subpopulation may function as interneurons within the arcuate nucleus to regulate other aspects of hypothalamic function.
Collapse
|
94
|
Rädler PD, Wehde BL, Wagner KU. Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells. Mol Cell Endocrinol 2017; 451:31-39. [PMID: 28495456 PMCID: PMC5515553 DOI: 10.1016/j.mce.2017.04.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to function downstream of several peptide hormones and cytokines that are required for postnatal development and secretory function of the mammary gland. As part of an extended network, these signal transducers can engage in crosstalk with other pathways to facilitate synergistic, and sometimes antagonistic, actions of different growth factors. Specifically, signaling through the JAK2/STAT5 cascade has been demonstrated to be indispensable for the specification, proliferation, differentiation, and survival of secretory mammary epithelial cells. Following a concise description of major cellular programs in mammary gland development and the role of growth factors that rely on JAK/STAT signaling to orchestrate these programs, this review highlights the significance of active STAT5 and its crosstalk with the PI3 kinase and AKT1 for mediating the proliferation of alveolar progenitors and survival of their functionally differentiated descendants in the mammary gland. Based on its ability to provide self-sufficiency in growth signals that are also capable of overriding intrinsic cell death programs, persistently active STAT5 can serve as a potent oncoprotein that contributes to the genesis of breast cancer. Recent experimental evidence demonstrated that, similar to normal developmental programs, oncogenic functions of STAT5 rely on molecular crosstalk with PI3K/AKT signaling for the initiation, and in some instances the progression, of breast cancer. The multitude by which STATs can interact with individual mediators of the PI3K/AKT signaling cascade may provide novel avenues for targeting signaling nodes within molecular networks that are crucial for the survival of cancer cells.
Collapse
Affiliation(s)
- Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
95
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
96
|
Krishna A. Prolactin modulates luteal activity in the short-nosed fruit bat, Cynopterus sphinx during delayed embryonic development. Gen Comp Endocrinol 2017; 248:27-39. [PMID: 28412388 DOI: 10.1016/j.ygcen.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 03/30/2017] [Accepted: 04/12/2017] [Indexed: 01/21/2023]
Abstract
The aim of this study was to evaluate the role of prolactin as a modulator of luteal steroidogenesis during the period of delayed embryonic development in Cynopterus sphinx. A marked decline in circulating prolactin levels was noted during the months of November through December coinciding with the period of decreased serum progesterone and delayed embryonic development. The seasonal changes in serum prolactin levels correlated positively with circulating progesterone (P) level, but inversely with circulating melatonin level during first pregnancy showing delayed development in Cynopterus sphinx. The results also showed decreased expression of prolactin receptor-short form (PRL-RS) both in the corpus luteum and in the utero-embryonic unit during the period of delayed embryonic development. Bats treated in vivo with prolactin during the period of delayed development showed significant increase in serum progesterone and estradiol levels together with significant increase in the expression of PRL-RS, luteinizing hormone receptor (LH-R), steroidogenic acute receptor protein (STAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the ovary. Prolactin stimulated ovarian angiogenesis (vascular endothelial growth factor) and cell survival (B-cell lymphoma 2) in vivo. Significant increases in ovarian progesterone production and the expression of prolactin-receptor, LH-R, STAR and 3β-HSD proteins were noted following the exposure of LH or prolactin in vitro during the delayed period. In conclusion, short-day associated increased melatonin level may be responsible for decreased prolactin release during November-December. The decline in prolactin level might play a role in suppressing P and estradiol-17β (E2) estradiol levels thereby causing delayed embryonic development in C. sphinx.
Collapse
Affiliation(s)
- Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
97
|
Silveira MA, Furigo IC, Zampieri TT, Bohlen TM, de Paula DG, Franci CR, Donato J, Frazao R. STAT5 signaling in kisspeptin cells regulates the timing of puberty. Mol Cell Endocrinol 2017; 448:55-65. [PMID: 28344041 DOI: 10.1016/j.mce.2017.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that kisspeptin neurons are important mediators of prolactin's effects on reproduction. However, the cellular mechanisms recruited by prolactin to affect kisspeptin neurons remain unknown. Using whole-cell patch-clamp recordings of brain slices from kisspeptin reporter mice, we observed that 20% of kisspeptin neurons in the anteroventral periventricular nucleus was indirectly depolarized by prolactin via an unknown population of prolactin responsive neurons. This effect required the phosphatidylinositol 3-kinase signaling pathway. No effects on the activity of arcuate kisspeptin neurons were observed, despite a high percentage (70%) of arcuate neurons expressing prolactin-induced STAT5 phosphorylation. To determine whether STAT5 expression in kisspeptin cells regulates reproduction, mice carrying Stat5a/b inactivation specifically in kisspeptin cells were generated. These mutants exhibited an early onset of estrous cyclicity, indicating that STAT5 transcription factors exert an inhibitory effect on the timing of puberty.
Collapse
Affiliation(s)
- Marina Augusto Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thais T Zampieri
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniella G de Paula
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Celso Rodrigues Franci
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
98
|
Mapes J, Li Q, Kannan A, Anandan L, Laws M, Lydon JP, Bagchi IC, Bagchi MK. CUZD1 is a critical mediator of the JAK/STAT5 signaling pathway that controls mammary gland development during pregnancy. PLoS Genet 2017; 13:e1006654. [PMID: 28278176 PMCID: PMC5363987 DOI: 10.1371/journal.pgen.1006654] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/23/2017] [Accepted: 02/26/2017] [Indexed: 01/17/2023] Open
Abstract
In the mammary gland, genetic circuits controlled by estrogen, progesterone, and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. However, the precise mechanisms underlying the crosstalk between the hormonal and growth factor pathways remain poorly understood. We have identified the CUB and zona pellucida-like domain-containing protein 1 (CUZD1), expressed in mammary ductal and alveolar epithelium, as a novel mediator of mammary gland proliferation and differentiation during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in mammary ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Gene expression profiling of mammary epithelium revealed that CUZD1 regulates the expression of a subset of the EGF family growth factors, epiregulin, neuregulin-1, and epigen, which act in an autocrine fashion to activate ErbB1 and ErbB4 receptors. Proteomic studies further revealed that CUZD1 interacts with a complex containing JAK1/JAK2 and STAT5, downstream transducers of prolactin signaling in the mammary gland. In the absence of CUZD1, STAT5 phosphorylation in the mammary epithelium during alveologenesis was abolished. Conversely, elevated expression of Cuzd1 in mammary epithelial cells stimulated prolactin-induced phosphorylation and nuclear translocation of STAT5. Chromatin immunoprecipitation confirmed co-occupancy of phosphorylated STAT5 and CUZD1 in the regulatory regions of epiregulin, a potential regulator of epithelial proliferation, and whey acidic protein, a marker of epithelial differentiation. Collectively, these findings suggest that CUZD1 plays a critical role in prolactin-induced JAK/STAT5 signaling that controls the expression of key STAT5 target genes involved in mammary epithelial proliferation and differentiation during alveolar development. In the mammary gland, genetic circuits controlled by the hormones, estrogen, progesterone and prolactin, act in concert with pathways regulated by members of the epidermal growth factor family to orchestrate growth and morphogenesis during puberty, pregnancy and lactation. We have identified CUZD1 as a novel mediator of prolactin signaling in the steroid hormone-primed mouse mammary gland during pregnancy and lactation. Cuzd1-null mice exhibited a striking impairment in ductal branching and alveolar development during pregnancy, resulting in a subsequent defect in lactation. Administration of prolactin failed to induce proliferation of the mammary epithelium in Cuzd1-null mice. Protein binding studies revealed that CUZD1 interacts with downstream transducers of prolactin signaling, JAK1/JAK2 and STAT5. Additionally, elevated expression of Cuzd1 in mammary epithelial cells stimulated phosphorylation and nuclear translocation of STAT5. CUZD1, therefore, is a critical mediator of prolactin that controls mammary alveolar development.
Collapse
Affiliation(s)
- Janelle Mapes
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Lavanya Anandan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - Mary Laws
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois Urbana/Champaign, Urbana, IL, United States of America
- * E-mail: (ICB); (MKB)
| |
Collapse
|
99
|
|
100
|
Dill R, Walker AM. Role of Prolactin in Promotion of Immune Cell Migration into the Mammary Gland. J Mammary Gland Biol Neoplasia 2017; 22:13-26. [PMID: 27900586 PMCID: PMC5313375 DOI: 10.1007/s10911-016-9369-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023] Open
Abstract
Immune cells in the mammary gland play a number of important roles, including protection against infection during lactation and, after passing into milk, modulation of offspring immunity. However, little is known about the mechanism of recruitment of immune cells to the lactating gland in the absence of infection. Given the importance of prolactin to other aspects of lactation, we hypothesized it would also play a role in immune cell recruitment. Prolactin treatment of adult female mice for a period equivalent to pregnancy and the first week of lactation increased immune cell flux through the mammary gland, as reflected in the number of immune cells in mammary gland-draining, but not other lymph nodes. Conditioned medium from luminal mammary epithelial HC11 cell cultures was chemo-attractive to CD4+ and CD8+ T cells, CD4+ and CD8+ memory T cells, B cells, macrophages, monocytes, eosinophils, and neutrophils. Prolactin did not act as a direct chemo-attractant, but through effects on luminal mammary epithelial cells, increased the chemo-attractant properties of conditioned medium. Macrophages and neutrophils constitute the largest proportion of cells in milk from healthy glands. Depletion of CCL2 and CXCL1 from conditioned medium reduced chemo-attraction of monocytes and neutrophils, and prolactin increased expression of these two chemokines in mammary epithelial cells. We conclude that prolactin is an important player in the recruitment of immune cells to the mammary gland both through its activities to increase epithelial cell number as well as production of chemo-attractants on a per cell basis.
Collapse
Affiliation(s)
- Riva Dill
- Division of Biomedical Sciences, School of Medicine, University of California, 900 University Ave. 1260 Webber Hall, Riverside, CA, 92521, USA.
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, 900 University Ave. 1260 Webber Hall, Riverside, CA, 92521, USA
| |
Collapse
|