51
|
Abdel Mouti M, Pauklin S. TGFB1/INHBA Homodimer/Nodal-SMAD2/3 Signaling Network: A Pivotal Molecular Target in PDAC Treatment. Mol Ther 2021; 29:920-936. [PMID: 33429081 PMCID: PMC7934636 DOI: 10.1016/j.ymthe.2021.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a grueling disease that is projected to become the second-deadliest cancer in the next decade. Standard treatment of pancreatic cancer is chemotherapy, which mainly targets the differentiated population of tumor cells; however, it paradoxically sets the roots of tumor relapse by the selective enrichment of intrinsically chemoresistant pancreatic cancer stem cells that are equipped with an indefinite capacity for self-renewal and differentiation, resulting in tumor regeneration and an overall anemic response to chemotherapy. Crosstalk between pancreatic tumor cells and the surrounding stromal microenvironment is also involved in the development of chemoresistance by creating a supportive niche, which enhances the stemness features and tumorigenicity of pancreatic cancer cells. In addition, the desmoplastic nature of the tumor-associated stroma acts as a physical barrier, which limits the intratumoral delivery of chemotherapeutics. In this review, we mainly focus on the transforming growth factor beta 1 (TGFB1)/inhibin subunit beta A (INHBA) homodimer/Nodal-SMAD2/3 signaling network in pancreatic cancer as a pivotal central node that regulates multiple key mechanisms involved in the development of chemoresistance, including enhancement of the stem cell-like properties and tumorigenicity of pancreatic cancer cells, mediating cooperative interactions between pancreatic cancer cells and the surrounding stroma, as well as regulating the deposition of extracellular matrix proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Headington, University of Oxford, Oxford OX3 7LD, UK.
| |
Collapse
|
52
|
Probst S, Sagar, Tosic J, Schwan C, Grün D, Arnold SJ. Spatiotemporal sequence of mesoderm and endoderm lineage segregation during mouse gastrulation. Development 2021; 148:dev.193789. [PMID: 33199445 DOI: 10.1242/dev.193789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Anterior mesoderm (AM) and definitive endoderm (DE) progenitors represent the earliest embryonic cell types that are specified during germ layer formation at the primitive streak (PS) of the mouse embryo. Genetic experiments indicate that both lineages segregate from Eomes-expressing progenitors in response to different Nodal signaling levels. However, the precise spatiotemporal pattern of the emergence of these cell types and molecular details of lineage segregation remain unexplored. We combined genetic fate labeling and imaging approaches with single-cell RNA sequencing (scRNA-seq) to follow the transcriptional identities and define lineage trajectories of Eomes-dependent cell types. Accordingly, all cells moving through the PS during the first day of gastrulation express Eomes AM and DE specification occurs before cells leave the PS from Eomes-positive progenitors in a distinct spatiotemporal pattern. ScRNA-seq analysis further suggested the immediate and complete separation of AM and DE lineages from Eomes-expressing cells as last common bipotential progenitor.
Collapse
Affiliation(s)
- Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany .,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, D-79104 Freiburg, Germany
| | - Sagar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Jelena Tosic
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany
| | - Dominic Grün
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, D-79104 Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, D-79104 Freiburg, Germany .,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, D-79104 Freiburg, Germany
| |
Collapse
|
53
|
Harland LTG, Simon CS, Senft AD, Costello I, Greder L, Imaz-Rosshandler I, Göttgens B, Marioni JC, Bikoff EK, Porcher C, de Bruijn MFTR, Robertson EJ. The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac mesodermal progenitors. Nat Cell Biol 2021; 23:61-74. [PMID: 33420489 PMCID: PMC7610381 DOI: 10.1038/s41556-020-00611-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023]
Abstract
Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.
Collapse
Affiliation(s)
- Luke T G Harland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Claire S Simon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna D Senft
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ivan Imaz-Rosshandler
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Wellcome Sanger Institute, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Catherine Porcher
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
54
|
Toro A, Anselmino N, Solari C, Francia M, Oses C, Sanchis P, Bizzotto J, Vazquez Echegaray C, Petrone MV, Levi V, Vazquez E, Guberman A. Novel Interplay between p53 and HO-1 in Embryonic Stem Cells. Cells 2020; 10:cells10010035. [PMID: 33383653 PMCID: PMC7823265 DOI: 10.3390/cells10010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells genome safeguarding requires strict oxidative stress control. Heme oxygenase-1 (HO-1) and p53 are relevant components of the cellular defense system. p53 controls cellular response to multiple types of harmful stimulus, including oxidative stress. Otherwise, besides having a protective role, HO-1 is also involved in embryo development and in embryonic stem (ES) cells differentiation. Although both proteins have been extensively studied, little is known about their relationship in stem cells. The aim of this work is to explore HO-1-p53 interplay in ES cells. We studied HO-1 expression in p53 knockout (KO) ES cells and we found that they have higher HO-1 protein levels but similar HO-1 mRNA levels than the wild type (WT) ES cell line. Furthermore, cycloheximide treatment increased HO-1 abundance in p53 KO cells suggesting that p53 modulates HO-1 protein stability. Notably, H2O2 treatment did not induce HO-1 expression in p53 KO ES cells. Finally, SOD2 protein levels are also increased while Sod2 transcripts are not in KO cells, further suggesting that the p53 null phenotype is associated with a reinforcement of the antioxidant machinery. Our results demonstrate the existence of a connection between p53 and HO-1 in ES cells, highlighting the relationship between these stress defense pathways.
Collapse
Affiliation(s)
- Ayelén Toro
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Nicolás Anselmino
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Claudia Solari
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Marcos Francia
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Camila Oses
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Pablo Sanchis
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Juan Bizzotto
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Camila Vazquez Echegaray
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - María Victoria Petrone
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Valeria Levi
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
| | - Elba Vazquez
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: (E.V.); (A.G.); Tel.: +54-91144087796 (E.V.); +54-115-285-8683 (A.G.)
| | - Alejandra Guberman
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (A.T.); (N.A.); (C.S.); (M.F.); (C.O.); (P.S.); (J.B.); (C.V.E.); (M.V.P.); (V.L.)
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: (E.V.); (A.G.); Tel.: +54-91144087796 (E.V.); +54-115-285-8683 (A.G.)
| |
Collapse
|
55
|
He H, Yi Y, Cai X, Wang J, Ni X, Fu Y, Qiu S. Down-regulation of EOMES drives T-cell exhaustion via abolishing EOMES-mediated repression of inhibitory receptors of T cells in liver cancer. J Cell Mol Med 2020; 25:161-169. [PMID: 33325636 PMCID: PMC7810931 DOI: 10.1111/jcmm.15898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023] Open
Abstract
T‐cell exhaustion is one of the hallmarks in cancer, but the mechanisms underlying T‐cell dysregulation remains unclear. Here, we reported that down‐regulation of transcription factor EOMES contributed to increased levels of inhibitory receptors in T cell among the tumour tissues and resulted in the poor prognosis of hepatocellular carcinoma (HCC). By analysing the correlation between EOMES in tumour‐infiltrating T cells and the clinical features, we demonstrated that the EOMES was related to the advanced stage and poor prognosis of HCC. Further mechanistic studies revealed that the EOMES mainly expressed in the CD8+ T cells and were down‐regulated in tumour samples. Moreover, we demonstrated that the EOMES directly bound at the transcriptional regulatory regions of the key inhibitory factors including PD‐1, CTAL‐4 and CD39, and lower levels of EOMES contributed to overexpression of these factors in T cells. Together, our studies provide new insight into the transcriptional deregulation of the inhibitory receptors on T cells during the tumorigenesis.
Collapse
Affiliation(s)
- Hongwei He
- General Surgery, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Key Laboratory for Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Shanghai, China
| | - Yong Yi
- Key Laboratory for Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Shanghai, China
| | - Xiaoyan Cai
- General Surgery, Shanghai Pudong Gongli Hospital, Shanghai, China
| | - Jiaxing Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaochun Ni
- General Surgery, Shanghai Ninth People's Hospital, Shanghai, China
| | - Yipeng Fu
- Department of Breast Surgery, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Shuangjian Qiu
- Key Laboratory for Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
56
|
Mandal P, De D, Yun K, Kim KK. Improved differentiation of human adipose stem cells to insulin-producing β-like cells using PDFGR kinase inhibitor Tyrphostin9. Biochem Biophys Res Commun 2020; 533:132-138. [PMID: 32933751 DOI: 10.1016/j.bbrc.2020.08.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is a metabolic syndrome where insulin secretion or the response to insulin produced by the body is compromised. The only available long-term treatment is the transplantation of pancreas or islet for procuring β-cells. However, due to the shortage of β-cell sources from the tissues, differentiation of pluripotent stem cells or terminally differentiated cells into β-cell is proposed as an alternative strategy. Previously, human adipose-derived stem cells (ADSCs) were reported to be converted into β-like cells by a stepwise treatment of chemicals and growth factors. However, due to the low conversion efficiency, the clinical application was not feasible. In this study, we developed a modified conversion protocol with improved yield and functionality, which is achieved by changing the culture method and addition of Tyrphostin9, a platelet-derived growth factor receptor (PDGFR) kinase inhibitor. Tyrphostin9 was identified from a cell-based chemical screening using the mCherry reporter under the control of the Pdx1 promoter. The β-like cells differentiated under the new protocol showed a 3.6-fold increase in the expression of Pdx1, a marker for pancreatic differentiation, as compared to the previous protocol. We propose that Tyrphostin9 contributes to the β-like cell differentiation by playing a dual role; enhancing the definitive endoderm generation by inhibiting the PI3K signaling and suppressing the taurine-mediated proliferation of definitive endoderm. Importantly, these differentiated cells responded well to low and high glucose stimulations compared to cells differentiated by the previous protocol, as confirmed by the 2.0-fold increase in the C-peptide release. As ADSCs are abundant, easily isolated, and autologous in nature, improved differentiation approaches to generate β-like cells from ADSCs would provide a better opportunity for treating diabetes.
Collapse
Affiliation(s)
- Paulami Mandal
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology Durgapur, 713209, India
| | - Kyunghee Yun
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
57
|
Eldridge CB, Allen FJ, Crisp A, Grandy RA, Vallier L, Sale JE. A p53-Dependent Checkpoint Induced upon DNA Damage Alters Cell Fate during hiPSC Differentiation. Stem Cell Reports 2020; 15:827-835. [PMID: 32888504 PMCID: PMC7561492 DOI: 10.1016/j.stemcr.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The ability of human induced pluripotent stem cells (hiPSCs) to differentiate in vitro to each of the three germ layer lineages has made them an important model of early human development and a tool for tissue engineering. However, the factors that disturb the intricate transcriptional choreography of differentiation remain incompletely understood. Here, we uncover a critical time window during which DNA damage significantly reduces the efficiency and fidelity with which hiPSCs differentiate to definitive endoderm. DNA damage prevents the normal reduction of p53 levels as cells pass through the epithelial-to-mesenchymal transition, diverting the transcriptional program toward mesoderm without induction of an apoptotic response. In contrast, TP53-deficient cells differentiate to endoderm with high efficiency after DNA damage, suggesting that p53 enforces a "differentiation checkpoint" in early endoderm differentiation that alters cell fate in response to DNA damage.
Collapse
Affiliation(s)
- Cara B Eldridge
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Finian J Allen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rodrigo A Grandy
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
58
|
Eomes cannot replace its paralog T-bet during expansion and differentiation of CD8 effector T cells. PLoS Pathog 2020; 16:e1008870. [PMID: 32991634 PMCID: PMC7546498 DOI: 10.1371/journal.ppat.1008870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The two T-box transcription factors T-bet and Eomesodermin (Eomes) are important regulators of cytotoxic lymphocytes (CTLs), such as activated CD8 T cells, which are essential in the fight against intracellular pathogens and tumors. Both transcription factors share a great degree of homology based on sequence analysis and as a result exert partial functional redundancy during viral infection. However, the actual degree of redundancy between T-bet and Eomes remains a matter of debate and is further confounded by their distinct spatiotemporal expression pattern in activated CD8 T cells. To directly investigate the functional overlap of these transcription factors, we generated a new mouse model in which Eomes expression is under the transcriptional control of the endogenous Tbx21 (encoding for T-bet) locus. Applying this model, we demonstrate that the induction of Eomes in lieu of T-bet cannot rescue T-bet deficiency in CD8 T cells during acute lymphocytic choriomeningitis virus (LCMV) infection. We found that the expression of Eomes instead of T-bet was not sufficient for early cell expansion or effector cell differentiation. Finally, we show that imposed expression of Eomes after acute viral infection promotes some features of exhaustion but must act in concert with other factors during chronic viral infection to establish all hallmarks of exhaustion. In summary, our results clearly underline the importance of T-bet in guiding canonical CTL development during acute viral infections. According to the World Health Organization infectious diseases kill over 17 million people per year. At the same time highly infectious viral diseases, such as Ebola and COVID-19 that are lacking specific treatments, are emerging to pose additional threats. It is therefore pivotal to precisely understand how our immune system responds towards pathogens to develop new treatment options. Here we have investigated the role of two related molecules, named T-bet and Eomes, that guide the development and function of lymphocytes in their fight against intracellular pathogens. We specifically focused on cytotoxic lymphocytes as these cells dominate the early phase of viral containment. We show that T-bet is essential for the expansion of cytotoxic lymphocytes and equip lymphocytes with the ability to efficiently eliminate virus-infected cells. Hence, our study provides new insights into the importance and specific actions of T-bet during acute viral infections and how this might be harnessed for future therapeutic interventions.
Collapse
|
59
|
Development of Colonic Organoids Containing Enteric Nerves or Blood Vessels from Human Embryonic Stem Cells. Cells 2020; 9:cells9102209. [PMID: 33003541 PMCID: PMC7600593 DOI: 10.3390/cells9102209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
The increased interest in organoid research in recent years has contributed to an improved understanding of diseases that are currently untreatable. Various organoids, including kidney, brain, retina, liver, and spinal cord, have been successfully developed and serve as potential sources for regenerative medicine studies. However, the application of organoids has been limited by their lack of tissue components such as nerve and blood vessels that are essential to organ physiology. In this study, we used three-dimensional co-culture methods to develop colonic organoids that contained enteric nerves and blood vessels. The development of enteric nerves and blood vessels was confirmed phenotypically and genetically by the use of immunofluorescent staining and Western blotting. Colonic organoids that contain essential tissue components could serve as a useful model for the study of colon diseases and help to overcome current bottlenecks in colon disease research.
Collapse
|
60
|
Abstract
Spatiotemporal control of gene expression during development requires orchestrated activities of numerous enhancers, which are cis-regulatory DNA sequences that, when bound by transcription factors, support selective activation or repression of associated genes. Proper activation of enhancers is critical during embryonic development, adult tissue homeostasis, and regeneration, and inappropriate enhancer activity is often associated with pathological conditions such as cancer. Multiple consortia [e.g., the Encyclopedia of DNA Elements (ENCODE) Consortium and National Institutes of Health Roadmap Epigenomics Mapping Consortium] and independent investigators have mapped putative regulatory regions in a large number of cell types and tissues, but the sequence determinants of cell-specific enhancers are not yet fully understood. Machine learning approaches trained on large sets of these regulatory regions can identify core transcription factor binding sites and generate quantitative predictions of enhancer activity and the impact of sequence variants on activity. Here, we review these computational methods in the context of enhancer prediction and gene regulatory network models specifying cell fate.
Collapse
Affiliation(s)
- Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | | |
Collapse
|
61
|
Chen ACH, Lee KF, Yeung WSB, Lee YL. Human embryonic stem cells as an in vitro model for studying developmental origins of type 2 diabetes. World J Stem Cells 2020; 12:761-775. [PMID: 32952857 PMCID: PMC7477660 DOI: 10.4252/wjsc.v12.i8.761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
The developmental origins of health and diseases (DOHaD) is a concept stating that adverse intrauterine environments contribute to the health risks of offspring. Since the theory emerged more than 30 years ago, many epidemiological and animal studies have confirmed that in utero exposure to environmental insults, including hyperglycemia and chemicals, increased the risk of developing noncommunicable diseases (NCDs). These NCDs include metabolic syndrome, type 2 diabetes, and complications such as diabetic cardiomyopathy. Studying the effects of different environmental insults on early embryo development would aid in understanding the underlying mechanisms by which these insults promote NCD development. Embryonic stem cells (ESCs) have also been utilized by researchers to study the DOHaD. ESCs have pluripotent characteristics and can be differentiated into almost every cell lineage; therefore, they are excellent in vitro models for studying early developmental events. More importantly, human ESCs (hESCs) are the best alternative to human embryos for research because of ethical concerns. In this review, we will discuss different maternal conditions associated with DOHaD, focusing on the complications of maternal diabetes. Next, we will review the differentiation protocols developed to generate different cell lineages from hESCs. Additionally, we will review how hESCs are utilized as a model for research into the DOHaD. The effects of environmental insults on hESC differentiation and the possible involvement of epigenetic regulation will be discussed.
Collapse
Affiliation(s)
- Andy Chun-Hang Chen
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Kai Fai Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - William Shu Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| |
Collapse
|
62
|
Kerschner JL, Paranjapye A, Yin S, Skander DL, Bebek G, Leir SH, Harris A. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med 2020; 24:9853-9870. [PMID: 32692488 PMCID: PMC7520342 DOI: 10.1111/jcmm.15568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023] Open
Abstract
The availability of robust protocols to differentiate induced pluripotent stem cells (iPSCs) into many human cell lineages has transformed research into the origins of human disease. The efficacy of differentiating iPSCs into specific cellular models is influenced by many factors including both intrinsic and extrinsic features. Among the most challenging models is the generation of human bronchial epithelium at air‐liquid interface (HBE‐ALI), which is the gold standard for many studies of respiratory diseases including cystic fibrosis. Here, we perform open chromatin mapping by ATAC‐seq and transcriptomics by RNA‐seq in parallel, to define the functional genomics of key stages of the iPSC to HBE‐ALI differentiation. Within open chromatin peaks, the overrepresented motifs include the architectural protein CTCF at all stages, while motifs for the FOXA pioneer and GATA factor families are seen more often at early stages, and those regulating key airway epithelial functions, such as EHF, are limited to later stages. The RNA‐seq data illustrate dynamic pathways during the iPSC to HBE‐ALI differentiation, and also the marked functional divergence of different iPSC lines at the ALI stages of differentiation. Moreover, a comparison of iPSC‐derived and lung donor‐derived HBE‐ALI cultures reveals substantial differences between these models.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dannielle L Skander
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA
| | - Gurkan Bebek
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
63
|
Yang J, Jiang W. The Role of SMAD2/3 in Human Embryonic Stem Cells. Front Cell Dev Biol 2020; 8:653. [PMID: 32850796 PMCID: PMC7396709 DOI: 10.3389/fcell.2020.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) possess the potential of long-term self-renewal and three primary germ layers differentiation, and thus hESCs are expected to have broad applications in cell therapy, drug screening and basic research on human early embryonic development. Many efforts have been put to dissect the regulation of pluripotency and direct differentiation of hESCs. TGFβ/Activin/Nodal signal pathway critically regulates pluripotency maintenance and cell differentiation through the main signal transducer SMAD2/3 in hESCs, but the action manners of SMAD2/3 in hESCs are sophisticated and not documented yet. Here we review and discuss the roles of SMAD2/3 in hESC pluripotency maintenance and differentiation initiation separately. We summarize that SMAD2/3 regulates pluripotency and differentiation mainly through four aspects, (1) controlling divergent transcriptional networks of pluripotency and differentiation; (2) interacting with chromatin modifiers to make the chromatin accessible or recruiting METTL3-METTL14-WTAP complex and depositing m6A to the mRNA of pluripotency genes; (3) acting as a transcription factor to activate endoderm-specific genes to thus initiate definitive endoderm differentiation, which happens as cyclin D/CDK4/6 downstream target in later G1 phase as well; (4) interacting with endoderm specific lncRNAs to promote differentiation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
| |
Collapse
|
64
|
Ong SLM, de Vos IJHM, Meroshini M, Poobalan Y, Dunn NR. Microfibril-associated glycoprotein 4 (Mfap4) regulates haematopoiesis in zebrafish. Sci Rep 2020; 10:11801. [PMID: 32678226 PMCID: PMC7366704 DOI: 10.1038/s41598-020-68792-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Microfibril-associated glycoprotein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen-related protein superfamily. MFAP4 is produced by vascular smooth muscle cells and is highly enriched in the blood vessels of the heart and lung, where it is thought to contribute to the structure and function of elastic fibers. Genetic studies in humans have implicated MFAP4 in the pathogenesis of Smith-Magenis syndrome, in which patients present with multiple congenital abnormalities and mental retardation, as well as in the severe cardiac malformation left-sided congenital heart disease. Comprehensive genetic analysis of the role of MFAP4 orthologues in model organisms during development and tissue homeostasis is however lacking. Here, we demonstrate that zebrafish mfap4 transcripts are detected embryonically, resolving to the macrophage lineage by 24 h post fertilization. mfap4 null mutant zebrafish are unexpectedly viable and fertile, without ostensible phenotypes. However, tail fin amputation assays reveal that mfap4 mutants have reduced numbers of macrophages, with a concomitant increase in neutrophilic granulocytes, although recruitment of both cell types to the site of injury was unaffected. Molecular analyses suggest that loss of Mfap4 alters the balance between myeloid and lymphoid lineages during both primitive and definitive haematopoiesis, which could significantly impact the downstream function of the immune system.
Collapse
Affiliation(s)
- Sheena L M Ong
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,Department of Pathology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 11 Mandalay Road, Clinical Sciences Building, #17-01, Singapore, 308232, Singapore.,Department of Genetics, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - M Meroshini
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Yogavalli Poobalan
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,Engine Biosciences, 160 Robinson Road, 23-20 SBF Center, Singapore, 068914, Singapore
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore.
| |
Collapse
|
65
|
TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes. Stem Cell Res Ther 2020; 11:196. [PMID: 32448362 PMCID: PMC7245780 DOI: 10.1186/s13287-020-01711-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.
Collapse
|
66
|
Lau KX, Mason EA, Kie J, De Souza DP, Kloehn J, Tull D, McConville MJ, Keniry A, Beck T, Blewitt ME, Ritchie ME, Naik SH, Zalcenstein D, Korn O, Su S, Romero IG, Spruce C, Baker CL, McGarr TC, Wells CA, Pera MF. Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nat Commun 2020; 11:2420. [PMID: 32415101 PMCID: PMC7229198 DOI: 10.1038/s41467-020-16214-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells. Human pluripotent cells (hPSCs) in standard culture are similar to mouse epiblast cells, but heterogeneity within hPSC cultures complicates comparisons. Here the authors show that a subpopulation of hPSCs enriched for self-renewal capacity have distinct cell cycle, metabolic, DNA methylation, and ATAC-seq profiles.
Collapse
Affiliation(s)
- Kevin X Lau
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Elizabeth A Mason
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Joshua Kie
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Andrew Keniry
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Tamara Beck
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Marnie E Blewitt
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Matthew E Ritchie
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Shalin H Naik
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Daniela Zalcenstein
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Shian Su
- Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Irene Gallego Romero
- Melbourne Integrative Genomics, School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | | | | - Christine A Wells
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.,Divisions of Cancer and Hematology and Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Martin F Pera
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia. .,Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia. .,The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
67
|
Ghorbani-Dalini S, Azarpira N, Sangtarash MH, Soleimanpour-Lichaei HR, Yaghobi R, Lorzadeh S, Sabet A, Sarshar M, Al-Abdullah IH. Optimization of activin-A: a breakthrough in differentiation of human induced pluripotent stem cell into definitive endoderm. 3 Biotech 2020; 10:215. [PMID: 32355589 DOI: 10.1007/s13205-020-02215-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/18/2020] [Indexed: 01/09/2023] Open
Abstract
The first step in differentiation of pluripotent stem cell toward endoderm-derived cell/organ is differentiation to definitive endoderm (DE) which is the central issue in developmental biology. Based on several evidences, we hypothesized that activin-A optimization as well as replacement of fetal bovine serum (FBS) with knockout serum replacement (KSR) is important for differentiation of induced pluripotent stem cell (iPSC) line into DE. Therefore, a stepwise differentiation protocol was applied on R1-hiPSC1 cell line. At first, activin-A concentration (30, 50, 70 and 100 ng/ml) was optimized. Then, substitution of FBS with KSR was evaluated across four treatment groups. The amount of differentiation of iPSC toward DE was determined by quantitative gene expression analyses of pluripotency (NANOG and OCT4), definitive endoderm (SOX17 and FOXA2) and endoderm-derived organs (PDX1, NEUROG3, and PAX6). Based on gene expression analyses, the more decrease in concentrations of activin-A can increase the differentiation of iPSC into DE, therefore, 30 ng/ml activin-A was chosen as the best concentration for the differentiation of R1-hiPSC1 line toward endoderm-derived organ. Moreover, complete replacement of FBS with gradually increased KSR improved the differentiation of iPSC toward DE. For this reason, the addition of 0% KSR at day 1, 0.2% at day 2 and 2% for the next 3 days was the best optimal protocol of the differentiation of iPSC toward DE. Overall, our results demonstrate that optimization of activin-A is important for differentiation of iPSC line. Furthermore, the replacement of FBS with KSR can improve the efficiency of iPSC differentiation toward DE.
Collapse
Affiliation(s)
| | - Negar Azarpira
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamid Reza Soleimanpour-Lichaei
- 3Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ramin Yaghobi
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Lorzadeh
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alice Sabet
- 1Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Meysam Sarshar
- 4Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, 00185 Rome, Italy
- 5Microbiology Research Center (MRC), Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Ismail H Al-Abdullah
- 6Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| |
Collapse
|
68
|
Inamori S, Fujii M, Satake S, Iida H, Teramoto M, Sumi T, Meno C, Ishii Y, Kondoh H. Modeling early stages of endoderm development in epiblast stem cell aggregates with supply of extracellular matrices. Dev Growth Differ 2020; 62:243-259. [PMID: 32277710 PMCID: PMC7318635 DOI: 10.1111/dgd.12663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Endoderm precursors expressing FoxA2 and Sox17 develop from the epiblast through the gastrulation process. In this study, we developed an experimental system to model the endoderm-generating gastrulation process using epiblast stem cells (EpiSCs). To this end, we established an EpiSC line i22, in which enhanced green fluorescent protein is coexpressed with Foxa2. Culturing i22 EpiSCs as aggregates for a few days was sufficient to initiate Foxa2 expression, and further culturing of the aggregates in Matrigel promoted the sequential activation of transcription factor genes involved in endoderm precursor development, e.g., Eomes, Gsc, and Sox17. In aggregation culture of i22 cells for 3 days, all cells expressed POU5F1, SOX2, and E-cadherin, a signature of the epiblast, whereas expression of GATA4 and SOX17 was also activated moderately in dispersed cells, suggesting priming of these cells to endodermal development. Embedding the aggregates in Matrigel for further 3 days elicited migration of the cells into the lumen of laminin-rich matrices covering the aggregates, in which FOXA2 and SOX17 were expressed at a high level with the concomitant loss of E-cadherin, indicating the migratory phase of endodermal precursors. Prolonged culturing of the aggregates generated three segregating cell populations found in post-gastrulation stage embryos: (1) definitive endoderm co-expressing high SOX17, GATA4, and E-cadherin, (2) mesodermal cells expressing a low level of GATA4 and lacking E-cadherin, and (3) primed epiblast cells expressing POU5F1, SOX2 without E-cadherin. Thus, aggregation of EpiSCs followed by embedding of aggregates in the laminin-rich matrix models the gastrulation-dependent endoderm precursor development.
Collapse
Affiliation(s)
- Sachiko Inamori
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Mai Fujii
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Sayaka Satake
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Machiko Teramoto
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Tomoyuki Sumi
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan.,Department of Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
69
|
Paraiso KD, Cho JS, Yong J, Cho KWY. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Curr Top Dev Biol 2020; 139:35-60. [PMID: 32450966 PMCID: PMC11344482 DOI: 10.1016/bs.ctdb.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Jin S Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Junseok Yong
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States.
| |
Collapse
|
70
|
Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies. Nat Commun 2020; 11:1585. [PMID: 32221292 PMCID: PMC7101316 DOI: 10.1038/s41467-020-15298-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/02/2020] [Indexed: 01/28/2023] Open
Abstract
Differential expression (DE) analysis and gene set enrichment (GSE) analysis are commonly applied in single cell RNA sequencing (scRNA-seq) studies. Here, we develop an integrative and scalable computational method, iDEA, to perform joint DE and GSE analysis through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can improve the power and consistency of DE analysis and the accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, enabling effective data modeling through complementing and pairing with various existing DE methods. We illustrate the benefits of iDEA with extensive simulations. We also apply iDEA to analyze three scRNA-seq data sets, where iDEA achieves up to five-fold power gain over existing GSE methods and up to 64% power gain over existing DE methods. The power gain brought by iDEA allows us to identify many pathways that would not be identified by existing approaches in these data. Differential expression (DE) and gene set enrichment (GSE) analysis tend to be carried out separately. Here, the authors present iDEA (integrative Differential expression and gene set Enrichment Analysis) for the analysis of scRNAseq data which uses a Baysian approach to jointly model DE and GSE for improved power in both tasks.
Collapse
|
71
|
Chia CY, Madrigal P, Denil SLIJ, Martinez I, Garcia-Bernardo J, El-Khairi R, Chhatriwala M, Shepherd MH, Hattersley AT, Dunn NR, Vallier L. GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation. Stem Cell Reports 2020; 12:57-70. [PMID: 30629940 PMCID: PMC6335596 DOI: 10.1016/j.stemcr.2018.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSCs) and directed differentiation toward β-like cells. We find that GATA6 heterozygous hPSCs show a modest reduction in definitive endoderm (DE) formation, while GATA6-null hPSCs fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ β-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.
Collapse
Affiliation(s)
- Crystal Y Chia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK
| | - Simon L I J Denil
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Iker Martinez
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - N Ray Dunn
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
72
|
Liu J, Wang Y, Ji P, Jin X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci 2020; 111:1065-1075. [PMID: 31957939 PMCID: PMC7156871 DOI: 10.1111/cas.14317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/05/2023] Open
Abstract
As a novel class of noncoding RNAs, microRNAs (miRNAs) can effectively silence their target genes at the posttranscriptional level. Various biological processes, such as cell proliferation, differentiation, and motility, are regulated by miRNAs. In different diseases and different stages of disease, miRNAs have various expression patterns, which makes them candidate prognostic markers and therapeutic targets. Abnormal miRNA expression has been detected in numerous neoplastic diseases in humans, which indicates the potential role of miRNAs in tumorigenesis. Previous studies have indicated that miRNAs are involved in nearly the entire process of tumor development. MicroRNA‐302a, miR‐302b, miR‐302c, miR‐302d, and miR‐367 are members of the miR‐302/367 cluster that plays various biological roles in diverse neoplastic diseases by targeting different genes. These miRNAs have been implicated in several unique characteristics of cancer, including the evasion of growth suppressors, the sustained activation of proliferative signaling, the evasion of cell death and senescence, and the regulation of angiogenesis, invasion, and metastasis. This review provides a critical overview of miR‐302/367 cluster dysregulation and the subsequent effects in cancer and highlights the vast potential of members of this cluster as therapeutic targets and novel biomarkers.
Collapse
Affiliation(s)
- Jiajia Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
73
|
Qin Q, Fan J, Zheng R, Wan C, Mei S, Wu Q, Sun H, Brown M, Zhang J, Meyer CA, Liu XS. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol 2020; 21:32. [PMID: 32033573 PMCID: PMC7007693 DOI: 10.1186/s13059-020-1934-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
We developed Lisa (http://lisa.cistrome.org/) to predict the transcriptional regulators (TRs) of differentially expressed or co-expressed gene sets. Based on the input gene sets, Lisa first uses histone mark ChIP-seq and chromatin accessibility profiles to construct a chromatin model related to the regulation of these genes. Using TR ChIP-seq peaks or imputed TR binding sites, Lisa probes the chromatin models using in silico deletion to find the most relevant TRs. Applied to gene sets derived from targeted TF perturbation experiments, Lisa boosted the performance of imputed TR cistromes and outperformed alternative methods in identifying the perturbed TRs.
Collapse
Affiliation(s)
- Qian Qin
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
- Center of Molecular Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jingyu Fan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Rongbin Zheng
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Changxin Wan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Shenglin Mei
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Qiu Wu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Hanfei Sun
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Jing Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, China.
| | - Clifford A Meyer
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| |
Collapse
|
74
|
Chen YF, Li YSJ, Chou CH, Chiew MY, Huang HD, Ho JHC, Chien S, Lee OK. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. SCIENCE ADVANCES 2020; 6:eaay0264. [PMID: 32076643 PMCID: PMC7002135 DOI: 10.1126/sciadv.aay0264] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/22/2019] [Indexed: 05/07/2023]
Abstract
During endoderm formation, cell identity and tissue morphogenesis are tightly controlled by cell-intrinsic and cell-extrinsic factors such as biochemical and physical inputs. While the effects of biochemical factors are well studied, the physical cues that regulate cell division and differentiation are poorly understood. RNA sequencing analysis demonstrated increases of endoderm-specific gene expression in hPSCs cultured on soft substrate (Young's modulus, 3 ± 0.45 kPa) in comparison with hard substrate (Young's modulus, 165 ± 6.39 kPa). Further analyses revealed that multiple long noncoding RNAs (lncRNAs) were up-regulated on soft substrate; among them, LINC00458 was identified as a stiffness-dependent lncRNA specifically required for hPSC differentiation toward an early endodermal lineage. Gain- and loss-of-function experiments confirmed that LINC00458 is functionally required for hPSC endodermal lineage specification induced by soft substrates. Our study provides evidence that mechanical cues regulate the expression of LINC00458 and induce differentiation of hPSC into hepatic lineage progenitors.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Shuan J. Li
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chih-Hung Chou
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Chiao Tung University, Hsinchu, Taiwan
| | - Men Yee Chiew
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- School of Life and Health Sciences, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jennifer Hui-Chun Ho
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Corresponding author. (J.H.-C.H.); (S.C.); (O.K.L.)
| | - Shu Chien
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Corresponding author. (J.H.-C.H.); (S.C.); (O.K.L.)
| | - Oscar K. Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong
- Corresponding author. (J.H.-C.H.); (S.C.); (O.K.L.)
| |
Collapse
|
75
|
Molecular characterization of a toxicological tipping point during human stem cell differentiation. Reprod Toxicol 2020; 91:1-13. [DOI: 10.1016/j.reprotox.2019.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
|
76
|
Alvarez-Dominguez JR, Donaghey J, Rasouli N, Kenty JHR, Helman A, Charlton J, Straubhaar JR, Meissner A, Melton DA. Circadian Entrainment Triggers Maturation of Human In Vitro Islets. Cell Stem Cell 2019; 26:108-122.e10. [PMID: 31839570 DOI: 10.1016/j.stem.2019.11.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 02/09/2023]
Abstract
Stem-cell-derived tissues could transform disease research and therapy, yet most methods generate functionally immature products. We investigate how human pluripotent stem cells (hPSCs) differentiate into pancreatic islets in vitro by profiling DNA methylation, chromatin accessibility, and histone modification changes. We find that enhancer potential is reset upon lineage commitment and show how pervasive epigenetic priming steers endocrine cell fates. Modeling islet differentiation and maturation regulatory circuits reveals genes critical for generating endocrine cells and identifies circadian control as limiting for in vitro islet function. Entrainment to circadian feeding/fasting cycles triggers islet metabolic maturation by inducing cyclic synthesis of energy metabolism and insulin secretion effectors, including antiphasic insulin and glucagon pulses. Following entrainment, hPSC-derived islets gain persistent chromatin changes and rhythmic insulin responses with a raised glucose threshold, a hallmark of functional maturity, and function within days of transplantation. Thus, hPSC-derived tissues are amenable to functional improvement by circadian modulation.
Collapse
Affiliation(s)
- Juan R Alvarez-Dominguez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Julie Donaghey
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Niloofar Rasouli
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jennifer H R Kenty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aharon Helman
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Juerg R Straubhaar
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
77
|
Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat Cell Biol 2019; 21:1518-1531. [PMID: 31792383 DOI: 10.1038/s41556-019-0423-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes) and Brachyury, which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor β (TGF-β)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury.
Collapse
|
78
|
Barral A, Rollan I, Sanchez-Iranzo H, Jawaid W, Badia-Careaga C, Menchero S, Gomez MJ, Torroja C, Sanchez-Cabo F, Göttgens B, Manzanares M, Sainz de Aja J. Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biol Open 2019; 8:bio046367. [PMID: 31791948 PMCID: PMC6899006 DOI: 10.1242/bio.046367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Pluripotency is regulated by a network of transcription factors that maintain early embryonic cells in an undifferentiated state while allowing them to proliferate. NANOG is a critical factor for maintaining pluripotency and its role in primordial germ cell differentiation has been well described. However, Nanog is expressed during gastrulation across all the posterior epiblast, and only later in development is its expression restricted to primordial germ cells. In this work, we unveiled a previously unknown mechanism by which Nanog specifically represses genes involved in anterior epiblast lineage. Analysis of transcriptional data from both embryonic stem cells and gastrulating mouse embryos revealed Pou3f1 expression to be negatively correlated with that of Nanog during the early stages of differentiation. We have functionally demonstrated Pou3f1 to be a direct target of NANOG by using a dual transgene system for the controlled expression of Nanog Use of Nanog null ES cells further demonstrated a role for Nanog in repressing a subset of anterior neural genes. Deletion of a NANOG binding site (BS) located nine kilobases downstream of the transcription start site of Pou3f1 revealed this BS to have a specific role in the regionalization of the expression of this gene in the embryo. Our results indicate an active role of Nanog inhibiting neural regulatory networks by repressing Pou3f1 at the onset of gastrulation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Hector Sanchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Wajid Jawaid
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Claudio Badia-Careaga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Manuel J Gomez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| |
Collapse
|
79
|
Sladitschek HL, Neveu PA. A gene regulatory network controls the balance between mesendoderm and ectoderm at pluripotency exit. Mol Syst Biol 2019; 15:e9043. [PMID: 31885203 PMCID: PMC6896232 DOI: 10.15252/msb.20199043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022] Open
Abstract
During embryogenesis, differentiation of pluripotent cells into somatic cell types depends both on signaling cues and intrinsic gene expression programs. While the molecular underpinnings of pluripotency are well mapped, much less is known on how mouse embryonic stem cells (mESCs) differentiate. Using RNA-Seq profiling during specification to the three germ layers, we showed that mESCs switched on condition-specific gene expression programs from the onset of the differentiation procedure and that primed pluripotency did not constitute an obligatory intermediate state. After inferring the gene network controlling mESC differentiation, we tested the role of the highly connected nodes by deleting them in a triple knock-in Sox1-Brachyury-Eomes mESC line reporting on ectoderm, mesoderm, and endoderm fates. This led to the identification of regulators of mESC differentiation that acted at several levels: Sp1 as a global break on differentiation, Nr5a2 controlling ectoderm specification, and notably Fos:Jun and Zfp354c as opposite switches between ectoderm and mesendoderm fate.
Collapse
Affiliation(s)
- Hanna L Sladitschek
- European Molecular Biology LaboratoryCell Biology and Biophysics UnitHeidelbergGermany
- Present address:
Department of Molecular MedicineUniversity of Padua School of MedicinePaduaItaly
| | - Pierre A Neveu
- European Molecular Biology LaboratoryCell Biology and Biophysics UnitHeidelbergGermany
| |
Collapse
|
80
|
Yiangou L, Grandy RA, Osnato A, Ortmann D, Sinha S, Vallier L. Cell cycle regulators control mesoderm specification in human pluripotent stem cells. J Biol Chem 2019; 294:17903-17914. [PMID: 31515269 PMCID: PMC6879335 DOI: 10.1074/jbc.ra119.008251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
The mesoderm is one of the three germ layers produced during gastrulation from which muscle, bones, kidneys, and the cardiovascular system originate. Understanding the mechanisms that control mesoderm specification could inform many applications, including the development of regenerative medicine therapies to manage diseases affecting these tissues. Here, we used human pluripotent stem cells to investigate the role of cell cycle in mesoderm formation. To this end, using small molecules or conditional gene knockdown, we inhibited proteins controlling G1 and G2/M cell cycle phases during the differentiation of human pluripotent stem cells into lateral plate, cardiac, and presomitic mesoderm. These loss-of-function experiments revealed that regulators of the G1 phase, such as cyclin-dependent kinases and pRb (retinoblastoma protein), are necessary for efficient mesoderm formation in a context-dependent manner. Further investigations disclosed that inhibition of the G2/M regulator cyclin-dependent kinase 1 decreases BMP (bone morphogenetic protein) signaling activity specifically during lateral plate mesoderm formation while reducing fibroblast growth factor/extracellular signaling-regulated kinase 1/2 activity in all mesoderm subtypes. Taken together, our findings reveal that cell cycle regulators direct mesoderm formation by controlling the activity of key developmental pathways.
Collapse
Affiliation(s)
- Loukia Yiangou
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| | - Rodrigo A Grandy
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Anna Osnato
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Daniel Ortmann
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Sanjay Sinha
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton CB10 1SA, United Kingdom
| |
Collapse
|
81
|
Soleimani F, Babaei E, H Feizi MA, Fathi F. CRISPR-Cas9-mediated knockout of the Prkdc in mouse embryonic stem cells leads to the modulation of the expression of pluripotency genes. J Cell Physiol 2019; 235:3994-4000. [PMID: 31603250 DOI: 10.1002/jcp.29295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Prkdc encodes for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) playing a key role in nonhomologous end joining pathway during DNA double-strand break repair and also influencing the homologous recombination (HR) repair system by phosphorylation of proteins involved in HR. In addition, Prkdc has other critical functions in biological processes, such as transcriptional regulation, telomere stability, apoptosis, and metabolism. DNA-PKcs upregulates during in vitro differentiation of mouse embryonic stem cells (mESCs). To address the potential role of Prkdc in mESCs pluripotency and in vitro differentiation into ectoderm, mesoderm, and endoderm germ layers under normal physiological conditions, a bi-allelic Prkdc-knockout cell line was generated in the present study by employing CRISPR/Cas9 system, and subsequently, its potential role in stemness and development was studied. The results of the study showed that the expression of pluripotency-associated genes, including Nanog and Sox-2 were overexpressed in the bi-allelic Prkdc-knockout cell line. Also, bi-allelic Prkdc-knockout cell line was shown to have typical mESCs cell morphology, cell cycle distribution, and alkaline phosphatase activity. Furthermore, the results of the study revealed that the expression of several germ layer markers is modulated in Prkdc-knockout lines. In conclusion, the findings of our study demonstrated the role of Prkdc during differentiation and development of ESCs.
Collapse
Affiliation(s)
- Farzad Soleimani
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran.,Institute of Environment, University of Tabriz, Tabriz, Iran
| | - Mohammad A H Feizi
- Department of Biological Sciences, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
82
|
The expression level of SOX2 at the blastocyst stage regulates the developmental capacity of bovine embryos up to day-13 of in vitro culture. ZYGOTE 2019; 27:398-404. [PMID: 31576792 DOI: 10.1017/s0967199419000509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quality of in vitro-produced embryos is influenced by changes in gene expression in response to adverse conditions. Gene markers for predicting 'good embryos' do not exist at present. We propose that the expression of pluripotency markers OCT4-SOX2-NANOG in D9 (day 9) bovine demi-embryos correlated with development at D13 (day 13). Day 8 in vitro-produced blastocysts were split in two cloned halves, one half (D9) was subjected to analysis of pluripotency markers and the other was kept in culture until D13 of development. Embryo development was scored and correlated with its own status at D9 and assigned to one of two categories: G1, arrested/dead; or G2, development up to D13. SOX2 and NANOG expression levels were significantly higher in embryos from G1 and there was also negative correlation between SOX2 and embryo survival to D13 (G3; r = -0.37; P = 0.03). We observed a significant reduction in the expression of the three studied genes from D9 to D13. Furthermore, there was a correlation between the expression of pluripotency markers at D9 and embryo diameter and the expression of trophoblastic markers at D13 (TP1-EOMES-FGF4-CDX2-TKDP1). Finally, the quotient between the relative expression of SOX2 and OCT4 in the D9 blastocysts from G1 and G2 showed that embryos that were considered as competent (G2) had a quotient close to one, while the other group had a quotient of 2.3 due to a higher expression of SOX2. These results might indicate that overexpression of SOX2 at the blastocyst stage had a negative effect on the control of embryonic developmental potential.
Collapse
|
83
|
Tewary M, Dziedzicka D, Ostblom J, Prochazka L, Shakiba N, Heydari T, Aguilar-Hidalgo D, Woodford C, Piccinini E, Becerra-Alonso D, Vickers A, Louis B, Rahman N, Danovi D, Geens M, Watt FM, Zandstra PW. High-throughput micropatterning platform reveals Nodal-dependent bisection of peri-gastrulation-associated versus preneurulation-associated fate patterning. PLoS Biol 2019; 17:e3000081. [PMID: 31634368 PMCID: PMC6822778 DOI: 10.1371/journal.pbio.3000081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
In vitro models of postimplantation human development are valuable to the fields of regenerative medicine and developmental biology. Here, we report characterization of a robust in vitro platform that enabled high-content screening of multiple human pluripotent stem cell (hPSC) lines for their ability to undergo peri-gastrulation-like fate patterning upon bone morphogenetic protein 4 (BMP4) treatment of geometrically confined colonies and observed significant heterogeneity in their differentiation propensities along a gastrulation associable and neuralization associable axis. This cell line-associated heterogeneity was found to be attributable to endogenous Nodal expression, with up-regulation of Nodal correlated with expression of a gastrulation-associated gene profile, and Nodal down-regulation correlated with a preneurulation-associated gene profile expression. We harness this knowledge to establish a platform of preneurulation-like fate patterning in geometrically confined hPSC colonies in which fates arise because of a BMPs signalling gradient conveying positional information. Our work identifies a Nodal signalling-dependent switch in peri-gastrulation versus preneurulation-associated fate patterning in hPSC cells, provides a technology to robustly assay hPSC differentiation outcomes, and suggests conserved mechanisms of organized fate specification in differentiating epiblast and ectodermal tissues.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Dominika Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura Prochazka
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Tiam Heydari
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Aguilar-Hidalgo
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis Woodford
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Elia Piccinini
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - David Becerra-Alonso
- Department of Quantitative Methods, Universidad Loyola Andalucia, Sevilla, Spain
| | - Alice Vickers
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Blaise Louis
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Nafees Rahman
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Davide Danovi
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Mieke Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fiona M. Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, United Kingdom
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
84
|
Martyn I, Siggia ED, Brivanlou AH. Mapping cell migrations and fates in a gastruloid model to the human primitive streak. Development 2019; 146:dev.179564. [PMID: 31427289 DOI: 10.1242/dev.179564] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Although fate maps of early embryos exist for nearly all model organisms, a fate map of the gastrulating human embryo remains elusive. Here, we use human gastruloids to piece together a rudimentary fate map for the human primitive streak (PS). This is possible because differing levels of BMP, WNT and NODAL lead to self-organization of gastruloids into homogenous subpopulations of endoderm and mesoderm, and comparative analysis of these gastruloids, together with the fate map of the mouse embryo, allows the organization of these subpopulations along an anterior-posterior axis. We also developed a novel cell tracking technique that detected robust fate-dependent cell migrations in our gastruloids comparable with those found in the mouse embryo. Taken together, our fate map and recording of cell migrations provides a first coarse view of what the human PS may resemble in vivo.
Collapse
Affiliation(s)
- Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
85
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
86
|
Lv X, Ren SQ, Zhang XJ, Shen Z, Ghosh T, Xianyu A, Gao P, Li Z, Lin S, Yu Y, Zhang Q, Groszer M, Shi SH. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat Commun 2019; 10:3946. [PMID: 31477701 PMCID: PMC6718393 DOI: 10.1038/s41467-019-11854-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.
Collapse
Affiliation(s)
- Xiaohui Lv
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Si-Qiang Ren
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin-Jun Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhongfu Shen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanay Ghosh
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France.,Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Anjin Xianyu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Peng Gao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Susan Lin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yang Yu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Matthias Groszer
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
87
|
Human Pluripotent Stem Cell-Derived Endoderm for Modeling Development and Clinical Applications. Cell Stem Cell 2019; 22:485-499. [PMID: 29625066 DOI: 10.1016/j.stem.2018.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The liver, lung, pancreas, and digestive tract all originate from the endoderm germ layer, and these vital organs are subject to many life-threatening diseases affecting millions of patients. However, primary cells from endodermal organs are often difficult to grow in vitro. Human pluripotent stem cells thus hold great promise for generating endoderm cells and their derivatives as tools for the development of new therapeutics against a variety of global healthcare challenges. Here we describe recent advances in methods for generating endodermal cell types from human pluripotent stem cells and their use for disease modeling and cell-based therapy.
Collapse
|
88
|
Meers MP, Janssens DH, Henikoff S. Pioneer Factor-Nucleosome Binding Events during Differentiation Are Motif Encoded. Mol Cell 2019; 75:562-575.e5. [PMID: 31253573 PMCID: PMC6697550 DOI: 10.1016/j.molcel.2019.05.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Although the in vitro structural and in vivo spatial characteristics of transcription factor (TF) binding are well defined, TF interactions with chromatin and other companion TFs during development are poorly understood. To analyze such interactions in vivo, we profiled several TFs across a time course of human embryonic stem cell differentiation and studied their interactions with nucleosomes and co-occurring TFs by enhanced chromatin occupancy (EChO), a computational strategy for classifying TF interactions with chromatin. EChO shows that multiple individual TFs can employ either direct DNA binding or "pioneer" nucleosome binding at different enhancer targets. Nucleosome binding is not exclusively confined to inaccessible chromatin but rather correlated with local binding of other TFs and degeneracy at key bases in the pioneer factor target motif responsible for direct DNA binding. Our strategy reveals a dynamic exchange of TFs at enhancers across developmental time that is aided by pioneer nucleosome binding.
Collapse
Affiliation(s)
- Michael P Meers
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
89
|
Godoy‐Parejo C, Deng C, Liu W, Chen G. Insulin Stimulates PI3K/AKT and Cell Adhesion to Promote the Survival of Individualized Human Embryonic Stem Cells. Stem Cells 2019; 37:1030-1041. [PMID: 31021484 PMCID: PMC6852186 DOI: 10.1002/stem.3026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Insulin is present in most maintenance media for human embryonic stem cells (hESCs), but little is known about its essential role in the cell survival of individualized cells during passage. In this article, we show that insulin suppresses caspase cleavage and apoptosis after dissociation. Insulin activates insulin-like growth factor (IGF) receptor and PI3K/AKT cascade to promote cell survival and its function is independent of rho-associated protein kinase regulation. During niche reformation after passaging, insulin activates integrin that is essential for cell survival. IGF receptor colocalizes with focal adhesion complex and stimulates protein phosphorylation involved in focal adhesion formation. Insulin promotes cell spreading on matrigel-coated surfaces and suppresses myosin light chain phosphorylation. Further study showed that insulin is also required for the cell survival on E-cadherin coated surface and in suspension, indicating its essential role in cell-cell adhesion. This work highlights insulin's complex roles in signal transduction and niche re-establishment in hESCs. Stem Cells 2019;37:1030-1041.
Collapse
Affiliation(s)
- Carlos Godoy‐Parejo
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| | - Chunhao Deng
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| | - Weiwei Liu
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
- Bioimaging and Stem Cell Core Facility, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| | - Guokai Chen
- Centre of Reproduction, Development, and Aging, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
- Bioimaging and Stem Cell Core Facility, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
- Institute of Translational Medicine, Faculty of Health SciencesUniversity of MacauMacau SARPeople's Republic of China
| |
Collapse
|
90
|
Belair C, Sim S, Kim KY, Tanaka Y, Park IH, Wolin SL. The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. J Cell Biol 2019; 218:2564-2582. [PMID: 31308215 PMCID: PMC6683745 DOI: 10.1083/jcb.201811148] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/21/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
This work shows that the exosome modulates the levels of LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression. The exosome restrains stem cell differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. A defining feature of embryonic stem cells (ESCs) is the ability to differentiate into all three germ layers. Pluripotency is maintained in part by a unique transcription network that maintains expression of pluripotency-specific transcription factors and represses developmental genes. While the mechanisms that establish this transcription network are well studied, little is known of the posttranscriptional surveillance pathways that degrade differentiation-related RNAs. We report that the surveillance pathway mediated by the RNA exosome nuclease complex represses ESC differentiation. Depletion of the exosome expedites differentiation of human ESCs into all three germ layers. LINE-1 retrotransposons and specific miRNAs, lncRNAs, and mRNAs that encode developmental regulators or affect their expression are all bound by the exosome and increase in level upon exosome depletion. The exosome restrains differentiation in part by degrading transcripts encoding FOXH1, a transcription factor crucial for mesendoderm formation. Our studies establish the exosome as a regulator of human ESC differentiation and reveal the importance of RNA decay in maintaining pluripotency.
Collapse
Affiliation(s)
- Cedric Belair
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Soyeong Sim
- Department of Cell Biology, Yale School of Medicine, New Haven, CT.,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | | | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT .,RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
| |
Collapse
|
91
|
Sosa EA, Moriyama Y, Ding Y, Tejeda-Muñoz N, Colozza G, De Robertis EM. Transcriptome analysis of regeneration during Xenopus laevis experimental twinning. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 63:301-309. [PMID: 31250914 DOI: 10.1387/ijdb.190006ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Animal embryos have the remarkable property of self-organization. Over 125 years ago, Hans Driesch separated the two blastomeres of sea urchin embryos and obtained twins, in what was the foundation of experimental embryology. Since then, embryonic twinning has been obtained experimentally in many animals. In a recent study, we developed bisection methods that generate identical twins reliably from Xenopus blastula embryos. In the present study, we have investigated the transcriptome of regenerating half-embryos after sagittal and dorsal-ventral (D-V) bisections. Individual embryos were operated at midblastula (stage 8) with an eyelash hair and cultured until early gastrula (stage 10.5) or late gastrula (stage 12) and the transcriptome of both halves were analyzed by RNA-seq. Since many genes are activated by wound healing in Xenopus embryos, we resorted to stringent sequence analyses and identified genes up-regulated in identical twins but not in either dorsal or ventral fragments. At early gastrula, cell division-related transcripts such as histones were elevated, whereas at late gastrula, pluripotency genes (such as sox2) and germ layer determination genes (such as eomesodermin, ripply2 and activin receptor ACVRI) were identified. Among the down-regulated transcripts, sizzled, a regulator of Chordin stability, was prominent. These findings are consistent with a model in which cell division is required to heal damage, while maintaining pluripotency to allow formation of the organizer with a displacement of 90 0 from its original site. The extensive transcriptomic data presented here provides a valuable resource for data mining of gene expression during early vertebrate development.
Collapse
Affiliation(s)
- Eric A Sosa
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
92
|
Tian TV, Di Stefano B, Stik G, Vila-Casadesús M, Sardina JL, Vidal E, Dasti A, Segura-Morales C, De Andrés-Aguayo L, Gómez A, Goldmann J, Jaenisch R, Graf T. Whsc1 links pluripotency exit with mesendoderm specification. Nat Cell Biol 2019; 21:824-834. [PMID: 31235934 DOI: 10.1038/s41556-019-0342-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.
Collapse
Affiliation(s)
- Tian V Tian
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Bruno Di Stefano
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Grégoire Stik
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Vila-Casadesús
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José Luis Sardina
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Vidal
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alessandro Dasti
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina Segura-Morales
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luisa De Andrés-Aguayo
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Gómez
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Johanna Goldmann
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,The Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Graf
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
93
|
Markouli C, Couvreu De Deckersberg E, Regin M, Nguyen HT, Zambelli F, Keller A, Dziedzicka D, De Kock J, Tilleman L, Van Nieuwerburgh F, Franceschini L, Sermon K, Geens M, Spits C. Gain of 20q11.21 in Human Pluripotent Stem Cells Impairs TGF-β-Dependent Neuroectodermal Commitment. Stem Cell Reports 2019; 13:163-176. [PMID: 31178415 PMCID: PMC6627003 DOI: 10.1016/j.stemcr.2019.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-β- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic. Bcl-xL overexpression drives the transcriptomic profile of 20q11.21 mutant lines 20q11.21 mutant lines downregulate CHCHD2, a known TGF-β pathway modulator Mutant lines differentially express genes involved in TGF-β and SMAD signaling Mutant lines show impaired ectoderm commitment due to TGF-β signaling deregulation
Collapse
Affiliation(s)
- C Markouli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Couvreu De Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - H T Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang 550000, Vietnam
| | - F Zambelli
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium; Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | - A Keller
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - D Dziedzicka
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - J De Kock
- Department of In Vitro Toxicology & Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - L Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - L Franceschini
- Laboratory of Molecular & Cellular Therapy, Department of Immunology - Physiology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
94
|
Divvela SSK, Nell P, Napirei M, Zaehres H, Chen J, Gerding WM, Nguyen HP, Gao S, Brand-Saberi B. bHLH Transcription Factor Math6 Antagonizes TGF-β Signalling in Reprogramming, Pluripotency and Early Cell Fate Decisions. Cells 2019; 8:cells8060529. [PMID: 31159500 PMCID: PMC6627693 DOI: 10.3390/cells8060529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor Math6 (Atonal homolog 8; Atoh8) plays a crucial role in a number of cellular processes during embryonic development, iron metabolism and tumorigenesis. We report here on its involvement in cellular reprogramming from fibroblasts to induced pluripotent stem cells, in the maintenance of pluripotency and in early fate decisions during murine development. Loss of Math6 disrupts mesenchymal-to-epithelial transition during reprogramming and primes pluripotent stem cells towards the mesendodermal fate. Math6 can thus be considered a regulator of reprogramming and pluripotent stem cell fate. Additionally, our results demonstrate the involvement of Math6 in SMAD-dependent TGF beta signalling. We furthermore monitor the presence of the Math6 protein during these developmental processes using a newly generated Math6Flag-tag mouse. Taken together, our results suggest that Math6 counteracts TGF beta signalling and, by this, affects the initiating step of cellular reprogramming, as well as the maintenance of pluripotency and early differentiation.
Collapse
Affiliation(s)
| | - Patrick Nell
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China.
- Leibniz Institut für Arbeitsforschung, Technische Universität Dortmund, 44139, Dortmund, Germany.
| | - Markus Napirei
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
| | - Holm Zaehres
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
| | - Jiayu Chen
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China.
| | - Wanda Maria Gerding
- Ruhr University Bochum, Medical Faculty, Department of Human Genetics, 44801 Bochum, Germany.
| | - Huu Phuc Nguyen
- Ruhr University Bochum, Medical Faculty, Department of Human Genetics, 44801 Bochum, Germany.
| | - Shaorong Gao
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China.
| | - Beate Brand-Saberi
- Ruhr University Bochum, Medical Faculty, Department of Anatomy and Molecular Embryology, 44801 Bochum, Germany.
| |
Collapse
|
95
|
Genome-scale screens identify JNK-JUN signaling as a barrier for pluripotency exit and endoderm differentiation. Nat Genet 2019; 51:999-1010. [PMID: 31110351 PMCID: PMC6545159 DOI: 10.1038/s41588-019-0408-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) hold great promise for cell-based therapies and drug discovery. However, homogeneous differentiation remains a major challenge, highlighting the need for understanding developmental mechanisms. We performed genome-scale CRISPR screens to uncover regulators of definitive endoderm (DE) differentiation, which unexpectedly uncovered five JNK/JUN family genes as key barriers of DE differentiation. The JNK/JUN pathway does not act through directly inhibiting the DE enhancers. Instead JUN co-occupies ESC enhancers with OCT4, NANOG and SMAD2/3, and specifically inhibits the exit from the pluripotent state by impeding the decommissioning of ESC enhancers and inhibiting the reconfiguration of SMAD2/3 chromatin binding from ESC to DE enhancers. Therefore, the JNK/JUN pathway safeguards pluripotency from precocious DE differentiation. Direct pharmacological inhibition of JNK significantly improves the efficiencies of generating DE and DE-derived pancreatic and lung progenitor cells, highlighting the potential of harnessing the knowledge from developmental studies for regenerative medicine.
Collapse
|
96
|
OCT4 and PAX6 determine the dual function of SOX2 in human ESCs as a key pluripotent or neural factor. Stem Cell Res Ther 2019; 10:122. [PMID: 30999923 PMCID: PMC6471829 DOI: 10.1186/s13287-019-1228-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Sox2 is a well-established pluripotent transcription factor that plays an essential role in establishing and maintaining pluripotent stem cells (PSCs). It is also thought to be a linage specifier that governs PSC neural lineage specification upon their exiting the pluripotent state. However, the exact role of SOX2 in human PSCs was still not fully understood. In this study, we studied the role of SOX2 in human embryonic stem cells (hESCs) by gain- and loss-of-function approaches and explored the possible underlying mechanisms. Results We demonstrate that knockdown of SOX2 induced hESC differentiation to endoderm-like cells, whereas overexpression of SOX2 in hESCs enhanced their pluripotency under self-renewing culture conditions but promoted their neural differentiation upon replacing the culture to non-self-renewal conditions. We show that this culture-dependent dual function of SOX2 was probably attributed to its interaction with different transcription factors predisposed by the culture environments. Whilst SOX2 interacts with OCT4 under self-renewal conditions, we found that, upon neural differentiation, PAX6, a key neural transcription factor, is upregulated and shows interaction with SOX2. The SOX2-PAX6 complex has different gene regulation pattern from that of SOX2-OCT4 complex. Conclusions Our work provides direct evidence that SOX2 is necessarily required for hESC pluripotency; however, it can also function as a neural factor, depending on the environmental input. OCT4 and PAX6 might function as key SOX2-interacting partners that determine the function of SOX2 in hESCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1228-7) contains supplementary material, which is available to authorized users.
Collapse
|
97
|
Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int 2019; 2019:4508470. [PMID: 31149014 PMCID: PMC6501244 DOI: 10.1155/2019/4508470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022] Open
Abstract
Human morphogenesis is a complex process involving distinct microenvironmental and physical signals that are manipulated in space and time to give rise to complex tissues and organs. Advances in pluripotent stem cell (PSC) technology have promoted the in vitro recreation of processes involved in human morphogenesis. The development of organoids from human PSCs represents one reliable source for modeling a large spectrum of human disorders, as well as a promising approach for drug screening and toxicological tests. Based on the "self-organization" capacity of stem cells, different PSC-derived organoids have been created; however, considerable differences between in vitro-generated PSC-derived organoids and their in vivo counterparts have been reported. Advances in the bioengineering field have allowed the manipulation of different components, including cellular and noncellular factors, to better mimic the in vivo microenvironment. In this review, we focus on different examples of bioengineering approaches used to promote the self-organization of stem cells, including assembly, patterning, and morphogenesis in vitro, contributing to tissue-like structure formation.
Collapse
Affiliation(s)
- Teresa P. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - João P. Cotovio
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
98
|
The N-end rule pathway enzyme Naa10 supports epiblast specification in mouse embryonic stem cells by modulating FGF/MAPK. In Vitro Cell Dev Biol Anim 2019; 55:355-367. [PMID: 30993557 DOI: 10.1007/s11626-019-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
N-terminal acetylation (Nt-acetylation) refers to the acetylation of the free α-amino group at the N-terminus of a polypeptide. While the effects of Nt-acetylation are multifaceted, its most known function is in the acetylation-dependent N-end rule protein degradation pathway (Ac/N-end rule pathway), where Nt-acetylation is recognized as a degron by designated E3 ligases, eventually leading to target degradation by the ubiquitin-proteasome system. Naa10 is the catalytic subunit of the major Nt-acetylation enzyme NatA, which Nt-acetylates proteins whose second amino acid has a small side chain. In humans, NAA10 is the responsible mutated gene in Ogden syndrome and is thought to play important roles in development. However, it is unclear how the Ac/N-end rule pathway affects the differentiation ability of mouse embryonic stem cells (mESCs). We hypothesized that the balance of pluripotency factors may be maintained by the Ac/N-end rule pathway. Thus, we established Naa10 knockout mESCs to test this hypothesis. We found that Naa10 deficiency attenuated differentiation towards the epiblast lineage, deviating towards primitive endoderm. However, this was not caused by disturbing the balance of pluripotency factors, rather by augmenting FGF/MAPK signaling.
Collapse
|
99
|
Sainz de Aja J, Menchero S, Rollan I, Barral A, Tiana M, Jawaid W, Cossio I, Alvarez A, Carreño‐Tarragona G, Badia‐Careaga C, Nichols J, Göttgens B, Isern J, Manzanares M. The pluripotency factor NANOG controls primitive hematopoiesis and directly regulates Tal1. EMBO J 2019; 38:embj.201899122. [PMID: 30814124 PMCID: PMC6443201 DOI: 10.15252/embj.201899122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.
Collapse
Affiliation(s)
- Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Maria Tiana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Wajid Jawaid
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of HaematologyCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Itziar Cossio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Alba Alvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Gonzalo Carreño‐Tarragona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,Department of HaematologyHospital 12 de OctubreMadridSpain
| | | | - Jennifer Nichols
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Berthold Göttgens
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of HaematologyCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,Department of Experimental & Health SciencesUniversity Pompeu Fabra (UPF)BarcelonaSpain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
100
|
Heslop JA, Duncan SA. The Use of Human Pluripotent Stem Cells for Modeling Liver Development and Disease. Hepatology 2019; 69:1306-1316. [PMID: 30251414 DOI: 10.1002/hep.30288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
The use of pluripotent stem cells (PSCs) has transformed the investigation of liver development and disease. Clinical observations and animal models have provided the foundations of our understanding in these fields. While animal models remain essential research tools, long experimental lead times and low throughput limit the scope of investigations. The ability of PSCs to produce large numbers of human hepatocyte-like cells, with a given or modified genetic background, allows investigators to use previously incompatible experimental techniques, such as high-throughput screens, to enhance our understanding of liver development and disease. In this review, we explore how PSCs have expedited our understanding of developmental mechanisms and have been used to identify new therapeutic options for numerous hepatic diseases. We discuss the future directions of the field, including how to further unlock the potential of the PSC model to make it amenable for use with a broader range of assays and a greater repertoire of diseases. Furthermore, we evaluate the current weaknesses of the PSC model and the directions open to researchers to address these limitations. Conclusion: The use of PSCs to model human liver disease and development has and will continue to have substantial impact, which is likely to further expand as protocols used to generate hepatic cells are improved.
Collapse
Affiliation(s)
- James A Heslop
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|