51
|
Generating Vegfr3 reporter transgenic mouse expressing membrane-tagged Venus for visualization of VEGFR3 expression in vascular and lymphatic endothelial cells. PLoS One 2019; 14:e0210060. [PMID: 30601868 PMCID: PMC6314617 DOI: 10.1371/journal.pone.0210060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor receptor 3 (Vegfr3) has been widely used as a marker for lymphatic and vascular endothelial cells during mouse embryonic development and in adult mouse, making it valuable for studying angiogenesis and lymphangiogenesis under normal and pathological conditions. Here, we report the generation of a novel transgenic (Tg) mouse that expresses a membrane-localized fluorescent reporter protein, Gap43-Venus, under the control of the Vegfr3 regulatory sequence. Vegfr3-Gap43-Venus BAC Tg recapitulated endogenous Vegfr3 expression in vascular and lymphatic endothelial cells during embryonic development and tumor development. Thus, this Tg mouse line contributes a valuable model to study angiogenesis and lymphangiogenesis in physiological and pathological contexts.
Collapse
|
52
|
Doh SJ, Yamakawa M, Santosa SM, Montana M, Guo K, Sauer JR, Curran N, Han KY, Yu C, Ema M, Rosenblatt MI, Chang JH, Azar DT. Fluorescent reporter transgenic mice for in vivo live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 2018; 21:677-698. [PMID: 29971641 PMCID: PMC6472480 DOI: 10.1007/s10456-018-9629-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
The study of lymphangiogenesis is an emerging science that has revealed the lymphatic system as a central player in many pathological conditions including cancer metastasis, lymphedema, and organ graft rejection. A thorough understanding of the mechanisms of lymphatic growth will play a key role in the development of therapeutic strategies against these conditions. Despite the known potential of this field, the study of lymphatics has historically lagged behind that of hemangiogenesis. Until recently, significant strides in lymphatic studies were impeded by a lack of lymphatic-specific markers and suitable experimental models compared to those of the more immediately visible blood vasculature. Lymphangiogenesis has also been shown to be a key phenomenon in developmental biological processes, such as cell proliferation, guided migration, differentiation, and cell-to-cell communication, making lymphatic-specific visualization techniques highly desirable and desperately needed. Imaging modalities including immunohistochemistry and in situ hybridization are limited by the need to sacrifice animal models for tissue harvesting at every experimental time point. Moreover, the processes of mounting and staining harvested tissues may introduce artifacts that can confound results. These traditional methods for investigating lymphatic and blood vasculature are associated with several problems including animal variability (e.g., between mice) when replicating lymphatic growth environments and the cost concerns of prolonged, labor-intensive studies, all of which complicate the study of dynamic lymphatic processes. With the discovery of lymphatic-specific markers, researchers have been able to develop several lymphatic and blood vessel-specific, promoter-driven, fluorescent-reporter transgenic mice for visualization of lymphatics in vivo and in vitro. For instance, GFP, mOrange, tdTomato, and other fluorescent proteins can be expressed under control of a lymphatic-specific marker like Prospero-related homeobox 1 (Prox1), which is a highly conserved transcription factor for determining embryonic organogenesis in vertebrates that is implicated in lymphangiogenesis as well as several human cancers. Importantly, Prox1-null mouse embryos develop without lymphatic vessels. In human adults, Prox1 maintains lymphatic endothelial cells and upregulates proteins associated with lymphangiogenesis (e.g., VEGFR-3) and downregulates angiogenesis-associated gene expression (e.g., STAT6). To visualize lymphatic development in the context of angiogenesis, dual fluorescent-transgenic reporters, like Prox1-GFP/Flt1-DsRed mice, have been bred to characterize lymphatic and blood vessels simultaneously in vivo. In this review, we discuss the trends in lymphatic visualization and the potential usage of transgenic breeds in hemangiogenesis and lymphangiogenesis research to understand spatial and temporal correlations between vascular development and pathological progression.
Collapse
Affiliation(s)
- Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph R Sauer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas Curran
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shiga University of Medical Science, Otsu, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
53
|
Sasmita AO, Kuruvilla J, Ling APK. Harnessing neuroplasticity: modern approaches and clinical future. Int J Neurosci 2018; 128:1061-1077. [DOI: 10.1080/00207454.2018.1466781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Joshua Kuruvilla
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
54
|
Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular and neuronal networks in a microfluidic platform. Sci Rep 2018; 8:5168. [PMID: 29581463 PMCID: PMC5979969 DOI: 10.1038/s41598-018-23512-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Neurovascular coupling plays a key role in the pathogenesis of neurodegenerative disorders including motor neuron disease (MND). In vitro models provide an opportunity to understand the pathogenesis of MND, and offer the potential for drug screening. Here, we describe a new 3D microvascular and neuronal network model in a microfluidic platform to investigate interactions between these two systems. Both 3D networks were established by co-culturing human embryonic stem (ES)-derived MN spheroids and endothelial cells (ECs) in microfluidic devices. Co-culture with ECs improves neurite elongation and neuronal connectivity as measured by Ca2+ oscillation. This improvement was regulated not only by paracrine signals such as brain-derived neurotrophic factor secreted by ECs but also through direct cell-cell interactions via the delta-notch pathway, promoting neuron differentiation and neuroprotection. Bi-directional signaling was observed in that the neural networks also affected vascular network formation under perfusion culture. This in vitro model could enable investigations of neuro-vascular coupling, essential to understanding the pathogenesis of neurodegenerative diseases including MNDs such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Vivek Sivathanu
- Department of Mechanical Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance for Research & Technology, Singapore, Singapore.
| |
Collapse
|
55
|
Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, Frias-Aldeguer J, Rivron NC, van de Wetering M, van Es JH, van Oudenaarden A, Simons BD, Clevers H. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci U S A 2018; 115:E610-E619. [PMID: 29311336 PMCID: PMC5789932 DOI: 10.1073/pnas.1715911114] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.
Collapse
Affiliation(s)
- Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Teresa G Krieger
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Mauro J Muraro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Kay Wiebrands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Daniel E Stange
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Javier Frias-Aldeguer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - Nicolas C Rivron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - Marc van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom;
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands;
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
56
|
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A, Thomas JL, Alitalo K. Development and plasticity of meningeal lymphatic vessels. J Exp Med 2017; 214:3645-3667. [PMID: 29141865 PMCID: PMC5716035 DOI: 10.1084/jem.20170391] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/25/2022] Open
Abstract
The recent discovery of meningeal lymphatic vessels (LVs) has raised interest in their possible involvement in neuropathological processes, yet little is known about their development or maintenance. We show here that meningeal LVs develop postnatally, appearing first around the foramina in the basal parts of the skull and spinal canal, sprouting along the blood vessels and cranial and spinal nerves to various parts of the meninges surrounding the central nervous system (CNS). VEGF-C, expressed mainly in vascular smooth muscle cells, and VEGFR3 in lymphatic endothelial cells were essential for their development, whereas VEGF-D deletion had no effect. Surprisingly, in adult mice, the LVs showed regression after VEGF-C or VEGFR3 deletion, administration of the tyrosine kinase inhibitor sunitinib, or expression of VEGF-C/D trap, which also compromised the lymphatic drainage function. Conversely, an excess of VEGF-C induced meningeal lymphangiogenesis. The plasticity and regenerative potential of meningeal LVs should allow manipulation of cerebrospinal fluid drainage and neuropathological processes in the CNS.
Collapse
Affiliation(s)
- Salli Antila
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Sinem Karaman
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Program in Developmental Biology, Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Merja H Voutilainen
- Program in Developmental Biology, Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Thomas Mathivet
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France
| | - Dmitri Chilov
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Zhilin Li
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tapani Koppinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jun-Hee Park
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Shentong Fang
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Aleksanteri Aspelund
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Program in Developmental Biology, Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Anne Eichmann
- Institut National de la Santé et de la Recherche Médicale U970, Paris Cardiovascular Research Center, Paris, France
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Jean-Léon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
57
|
Jang K, Kim M, Gilbert CA, Simpkins F, Ince TA, Slingerland JM. VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating cells. EMBO Mol Med 2017; 9:304-318. [PMID: 28179359 PMCID: PMC5331266 DOI: 10.15252/emmm.201606840] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The angiogenic factor, VEGFA, is a therapeutic target in ovarian cancer (OVCA). VEGFA can also stimulate stem‐like cells in certain cancers, but mechanisms thereof are poorly understood. Here, we show that VEGFA mediates stem cell actions in primary human OVCA culture and OVCA lines via VEGFR2‐dependent Src activation to upregulate Bmi1, tumor spheres, and ALDH1 activity. The VEGFA‐mediated increase in spheres was abrogated by Src inhibition or SRC knockdown. VEGFA stimulated sphere formation only in the ALDH1+ subpopulation and increased OVCA‐initiating cells and tumor formation in vivo through Bmi1. In contrast to its action in hemopoietic malignancies, DNA methyl transferase 3A (DNMT3A) appears to play a pro‐oncogenic role in ovarian cancer. VEGFA‐driven Src increased DNMT3A leading to miR‐128‐2 methylation and upregulation of Bmi1 to increase stem‐like cells. SRC knockdown was rescued by antagomir to miR‐128. DNMT3A knockdown prevented VEGFA‐driven miR‐128‐2 loss, and the increase in Bmi1 and tumor spheres. Analysis of over 1,300 primary human OVCAs revealed an aggressive subset in which high VEGFA is associated with miR‐128‐2 loss. Thus, VEGFA stimulates OVCA stem‐like cells through Src‐DNMT3A‐driven miR‐128‐2 methylation and Bmi1 upregulation.
Collapse
Affiliation(s)
- Kibeom Jang
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Minsoon Kim
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Candace A Gilbert
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fiona Simpkins
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Obstetrics & Gynecology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tan A Ince
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joyce M Slingerland
- Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA .,Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
58
|
Zhang N, Chen J, Ferraro GB, Wu L, Datta M, Jain RK, Plotkin SR, Stemmer-Rachamimov A, Xu L. Anti-VEGF treatment improves neurological function in tumors of the nervous system. Exp Neurol 2017; 299:326-333. [PMID: 28911884 DOI: 10.1016/j.expneurol.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/05/2017] [Accepted: 09/10/2017] [Indexed: 01/17/2023]
Abstract
Research of various diseases of the nervous system has shown that VEGF has direct neuroprotective effects in the central and peripheral nervous systems, and indirect effects on improving neuronal vessel perfusion which leads to nerve protection. In the tumors of the nervous system, VEGF plays a critical role in tumor angiogenesis and tumor progression. The effect of anti-VEGF treatment on nerve protection and function has been recently reported - by normalizing the tumor vasculature, anti-VEGF treatment is able to relieve nerve edema and deliver oxygen more efficiently into the nerve, thus reducing nerve damage and improving nerve function. This review aims to summarize the divergent roles of VEGF in diseases of the nervous system and the recent findings of anti-VEGF therapy in nerve damage/regeneration and function in tumors, specifically, in Neurofibromatosis type 2 associated schwannomas.
Collapse
Affiliation(s)
- Na Zhang
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gino B Ferraro
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Limeng Wu
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meenal Datta
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155, USA
| | - Rakesh K Jain
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Xu
- Edwin Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
59
|
Prox1-GFP/Flt1-DsRed transgenic mice: an animal model for simultaneous live imaging of angiogenesis and lymphangiogenesis. Angiogenesis 2017; 20:581-598. [PMID: 28795242 DOI: 10.1007/s10456-017-9572-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
Abstract
The roles of angiogenesis in development, health, and disease have been studied extensively; however, the studies related to lymphatic system are limited due to the difficulty in observing colorless lymphatic vessels. But recently, with the improved technique, the relative importance of the lymphatic system is just being revealed. We bred transgenic mice in which lymphatic endothelial cells express GFP (Prox1-GFP) with mice in which vascular endothelial cells express DsRed (Flt1-DsRed) to generate Prox1-GFP/Flt1-DsRed (PGFD) mice. The inherent fluorescence of blood and lymphatic vessels allows for direct visualization of blood and lymphatic vessels in various organs via confocal and two-photon microscopy and the formation, branching, and regression of both vessel types in the same live mouse cornea throughout an experimental time course. PGFD mice were bred with CDh5CreERT2 and VEGFR2lox knockout mice to examine specific knockouts. These studies showed a novel role for vascular endothelial cell VEGFR2 in regulating VEGFC-induced corneal lymphangiogenesis. Conditional deletion of vascular endothelial VEGFR2 abolished VEGFA- and VEGFC-induced corneal lymphangiogenesis. These results demonstrate the potential use of the PGFD mouse as a powerful animal model for studying angiogenesis and lymphangiogenesis.
Collapse
|
60
|
Neurovascular EGFL7 regulates adult neurogenesis in the subventricular zone and thereby affects olfactory perception. Nat Commun 2017; 8:15922. [PMID: 28656980 PMCID: PMC5493759 DOI: 10.1038/ncomms15922] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/11/2017] [Indexed: 01/19/2023] Open
Abstract
Adult neural stem cells reside in a specialized niche in the subventricular zone (SVZ). Throughout life they give rise to adult-born neurons in the olfactory bulb (OB), thus contributing to neural plasticity and pattern discrimination. Here, we show that the neurovascular protein EGFL7 is secreted by endothelial cells and neural stem cells (NSCs) of the SVZ to shape the vascular stem-cell niche. Loss of EGFL7 causes an accumulation of activated NSCs, which display enhanced activity and re-entry into the cell cycle. EGFL7 pushes activated NSCs towards quiescence and neuronal progeny towards differentiation. This is achieved by promoting Dll4-induced Notch signalling at the blood vessel-stem cell interface. Fewer inhibitory neurons form in the OB of EGFL7-knockout mice, which increases the absolute signal conducted from the mitral cell layer of the OB but decreases neuronal network synchronicity. Consequently, EGFL7-knockout mice display severe physiological defects in olfactory behaviour and perception. The vascular stem cell niche regulates the proliferation and differentiation of neural stem cells (NSCs) in the adult subventricular zone. Here the authors identify EGFL7 as a neurovascular regulator of NSCs in vivo; EGFL7-knockout mice show reduced neurogenesis, and exhibit impaired olfactory perception and behaviour.
Collapse
|
61
|
Hwangbo C, Lee HW, Kang H, Ju H, Wiley DS, Papangeli I, Han J, Kim JD, Dunworth WP, Hu X, Lee S, El-Hely O, Sofer A, Pak B, Peterson L, Comhair S, Hwang EM, Park JY, Thomas JL, Bautch VL, Erzurum SC, Chun HJ, Jin SW. Modulation of Endothelial Bone Morphogenetic Protein Receptor Type 2 Activity by Vascular Endothelial Growth Factor Receptor 3 in Pulmonary Arterial Hypertension. Circulation 2017; 135:2288-2298. [PMID: 28356442 DOI: 10.1161/circulationaha.116.025390] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Bone morphogenetic protein (BMP) signaling has multiple roles in the development and function of the blood vessels. In humans, mutations in BMP receptor type 2 (BMPR2), a key component of BMP signaling, have been identified in the majority of patients with familial pulmonary arterial hypertension (PAH). However, only a small subset of individuals with BMPR2 mutation develops PAH, suggesting that additional modifiers of BMPR2 function play an important role in the onset and progression of PAH. METHODS We used a combination of studies in zebrafish embryos and genetically engineered mice lacking endothelial expression of Vegfr3 to determine the interaction between vascular endothelial growth factor receptor 3 (VEGFR3) and BMPR2. Additional in vitro studies were performed by using human endothelial cells, including primary lung endothelial cells from subjects with PAH. RESULTS Attenuation of Vegfr3 in zebrafish embryos abrogated Bmp2b-induced ectopic angiogenesis. Endothelial cells with disrupted VEGFR3 expression failed to respond to exogenous BMP stimulation. Mechanistically, VEGFR3 is physically associated with BMPR2 and facilitates ligand-induced endocytosis of BMPR2 to promote phosphorylation of SMADs and transcription of ID genes. Conditional, endothelial-specific deletion of Vegfr3 in mice resulted in impaired BMP signaling responses, and significantly worsened hypoxia-induced pulmonary hypertension. Consistent with these data, we found significant decrease in VEGFR3 expression in pulmonary arterial endothelial cells from human PAH subjects, and reconstitution of VEGFR3 expression in PAH pulmonary arterial endothelial cells restored BMP signaling responses. CONCLUSIONS Our findings identify VEGFR3 as a key regulator of endothelial BMPR2 signaling and a potential determinant of PAH penetrance in humans.
Collapse
Affiliation(s)
- Cheol Hwangbo
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Heon-Woo Lee
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyeseon Kang
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyekyung Ju
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - David S Wiley
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Irinna Papangeli
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jinah Han
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jun-Dae Kim
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - William P Dunworth
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Xiaoyue Hu
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Seyoung Lee
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Omar El-Hely
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Avraham Sofer
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Boryeong Pak
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Laura Peterson
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Suzy Comhair
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Eun Mi Hwang
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jae-Yong Park
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Jean-Leon Thomas
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Victoria L Bautch
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Serpil C Erzurum
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.)
| | - Hyung J Chun
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.).
| | - Suk-Won Jin
- From Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (C.H., H.-W.L., H.K., H.J., I.P., J.H., J.-D.K., W.P.D., X.H., S.L., O.E.-H., A.S., H.J.C., S.-W.J.); Department of Biology, University of North Carolina, Chapel Hill (D.S.W., V.L.B.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (B.P., S.-W.J.); Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH (L.P., S.C., S.C.E.); Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul (E.M.H., J.-Y.P.); School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul (J.-Y.P.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); and Université Pierre and Marie Curie-Paris 6, CRICM, Groupe Hospitalier Pitié-Salpètrière, France; INSERM, UMRS 975, Groupe Hospitalier Pitié-Salpètrière, Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France (J.-L.T.).
| |
Collapse
|
62
|
The vasculature as a neural stem cell niche. Neurobiol Dis 2017; 107:4-14. [PMID: 28132930 DOI: 10.1016/j.nbd.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.
Collapse
|
63
|
Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174:93-112. [PMID: 26879907 PMCID: PMC4987273 DOI: 10.1002/ajmg.b.32429] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
64
|
Laviña B. Brain Vascular Imaging Techniques. Int J Mol Sci 2016; 18:ijms18010070. [PMID: 28042833 PMCID: PMC5297705 DOI: 10.3390/ijms18010070] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/13/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Recent major improvements in a number of imaging techniques now allow for the study of the brain in ways that could not be considered previously. Researchers today have well-developed tools to specifically examine the dynamic nature of the blood vessels in the brain during development and adulthood; as well as to observe the vascular responses in disease situations in vivo. This review offers a concise summary and brief historical reference of different imaging techniques and how these tools can be applied to study the brain vasculature and the blood-brain barrier integrity in both healthy and disease states. Moreover, it offers an overview on available transgenic animal models to study vascular biology and a description of useful online brain atlases.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
65
|
Abstract
In the adult rodent brain, new neurons are born in two germinal regions that are associated with blood vessels, and blood vessels and vessel-derived factors are thought to regulate the activity of adult neural stem cells. Recently, it has been proposed that a vascular niche also regulates prenatal neurogenesis. Here we identify the mouse embryo hindbrain as a powerful model to study embryonic neurogenesis and define the relationship between neural progenitor cell (NPC) behavior and vessel growth. Using this model, we show that a subventricular vascular plexus (SVP) extends through a hindbrain germinal zone populated by NPCs whose peak mitotic activity follows a surge in SVP growth. Hindbrains genetically defective in SVP formation owing to constitutive NRP1 loss showed a premature decline in both NPC activity and hindbrain growth downstream of precocious cell cycle exit, premature neuronal differentiation, and abnormal mitosis patterns. Defective regulation of NPC activity was not observed in mice lacking NRP1 expression by NPCs, but instead in mice lacking NRP1 selectively in endothelial cells, yet was independent of vascular roles in hindbrain oxygenation. Therefore, germinal zone vascularization sustains NPC proliferation in the prenatal brain.
Collapse
|
66
|
Arulmoli J, Wright HJ, Phan DTT, Sheth U, Que RA, Botten GA, Keating M, Botvinick EL, Pathak MM, Zarembinski TI, Yanni DS, Razorenova OV, Hughes CCW, Flanagan LA. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 2016; 43:122-138. [PMID: 27475528 PMCID: PMC5386322 DOI: 10.1016/j.actbio.2016.07.043] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/29/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Human neural stem/progenitor cells (hNSPCs) are good candidates for treating central nervous system (CNS) trauma since they secrete beneficial trophic factors and differentiate into mature CNS cells; however, many cells die after transplantation. This cell death can be ameliorated by inclusion of a biomaterial scaffold, making identification of optimal scaffolds for hNSPCs a critical research focus. We investigated the properties of fibrin-based scaffolds and their effects on hNSPCs and found that fibrin generated from salmon fibrinogen and thrombin stimulates greater hNSPC proliferation than mammalian fibrin. Fibrin scaffolds degrade over the course of a few days in vivo, so we sought to develop a novel scaffold that would retain the beneficial properties of fibrin but degrade more slowly to provide longer support for hNSPCs. We found combination scaffolds of salmon fibrin with interpenetrating networks (IPNs) of hyaluronic acid (HA) with and without laminin polymerize more effectively than fibrin alone and generate compliant hydrogels matching the physical properties of brain tissue. Furthermore, combination scaffolds support hNSPC proliferation and differentiation while significantly attenuating the cell-mediated degradation seen with fibrin alone. HNSPCs express two fibrinogen-binding integrins, αVβ1 and α5β1, and several laminin binding integrins (α7β1, α6β1, α3β1) that can mediate interaction with the scaffold. Lastly, to test the ability of scaffolds to support vascularization, we analyzed human cord blood-derived endothelial cells alone and in co-culture with hNSPCs and found enhanced vessel formation and complexity in co-cultures within combination scaffolds. Overall, combination scaffolds of fibrin, HA, and laminin are excellent biomaterials for hNSPCs. STATEMENT OF SIGNIFICANCE Interest has increased recently in the development of biomaterials as neural stem cell transplantation scaffolds to treat central nervous system (CNS) injury since scaffolds improve survival and integration of transplanted cells. We report here on a novel combination scaffold composed of fibrin, hyaluronic acid, and laminin to support human neural stem/progenitor cell (hNSPC) function. This combined biomaterial scaffold has appropriate physical properties for hNSPCs and the CNS, supports hNSPC proliferation and differentiation, and attenuates rapid cell-mediated scaffold degradation. The hNSPCs and scaffold components synergistically encourage new vessel formation from human endothelial cells. This work marks the first report of a combination scaffold supporting human neural and vascular cells to encourage vasculogenesis, and sets a benchmark for biomaterials to treat CNS injury.
Collapse
Affiliation(s)
- Janahan Arulmoli
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Heather J Wright
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Duc T T Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Urmi Sheth
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Richard A Que
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Giovanni A Botten
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark Keating
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Medha M Pathak
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Daniel S Yanni
- Disc Comfort, Inc., 351 Hospital Road, Suite 202, Newport Beach, CA 92663, USA
| | - Olga V Razorenova
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher C W Hughes
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa A Flanagan
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
67
|
Ortega F, Costa MR. Live Imaging of Adult Neural Stem Cells in Rodents. Front Neurosci 2016; 10:78. [PMID: 27013941 PMCID: PMC4779908 DOI: 10.3389/fnins.2016.00078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions.
Collapse
Affiliation(s)
- Felipe Ortega
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University Madrid, Spain
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW Throughout history, development of novel microscopy techniques has been of fundamental importance to advance the vascular biology field.This review offers a concise summary of the most recently developed imaging techniques and discusses how they can be applied to vascular biology. In addition, we reflect upon the most important fluorescent reporters for vascular research that are currently available. RECENT FINDINGS Recent advances in light sheet-based imaging techniques now offer the ability to live image the vascular system in whole organs or even in whole animals during development and in pathological conditions with a satisfactory spatial and temporal resolution. Conversely, super resolution microscopy now allows studying cellular processes at a near-molecular resolution. SUMMARY Major recent improvements in a number of imaging techniques now allow study of vascular biology in ways that could not be considered previously. Researchers now have well-developed tools to specifically examine the dynamic nature of vascular development during angiogenic sprouting, remodeling and regression as well as the vascular responses in disease situations in vivo. In addition, open questions in endothelial and lymphatic cell biology that require subcellular resolution such as actin dynamics, junctional complex formation and stability, vascular permeability and receptor trafficking can now be approached with high resolution.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
69
|
Sun FJ, Wei YJ, Li S, Guo W, Chen X, Liu SY, He JJ, Yin Q, Yang H, Zhang CQ. Elevated Expression of VEGF-C and Its Receptors, VEGFR-2 and VEGFR-3, in Patients with Mesial Temporal Lobe Epilepsy. J Mol Neurosci 2016; 59:241-50. [DOI: 10.1007/s12031-016-0714-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
|
70
|
Kang TH, Han J, Thomas JL. Cell autonomous Vegf-C/Vegfr3 signaling in adult neural stem cells. Oncotarget 2015; 6:39387-8. [PMID: 26575019 PMCID: PMC4741828 DOI: 10.18632/oncotarget.6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tae Hyuk Kang
- Université Pierre and Marie Curie-Paris 6, INSERM/CNRS U-1127/UMR-7225, 4APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France
| | - Jinah Han
- Université Pierre and Marie Curie-Paris 6, INSERM/CNRS U-1127/UMR-7225, 4APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France
| | - Jean-Leon Thomas
- Université Pierre and Marie Curie-Paris 6, INSERM/CNRS U-1127/UMR-7225, 4APHP, Groupe Hospitalier Pitié-Salpètrière, Paris, France
| |
Collapse
|
71
|
Bolijn S, Lucassen PJ. How the Body Talks to the Brain; Peripheral Mediators of Physical Activity-Induced Proliferation in the Adult Hippocampus. Brain Plast 2015; 1:5-27. [PMID: 29765833 PMCID: PMC5939189 DOI: 10.3233/bpl-150020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the hippocampal dentate gyrus, stem cells maintain the capacity to produce new neurons into adulthood. These adult-generated neurons become fully functional and are incorporated into the existing hippocampal circuit. The process of adult neurogenesis contributes to hippocampal functioning and is influenced by various environmental, hormonal and disease-related factors. One of the most potent stimuli of neurogenesis is physical activity (PA). While the bodily and peripheral changes of PA are well known, e.g. in relation to diet or cardiovascular conditions, little is known about which of these also exert central effects on the brain. Here, we discuss PA-induced changes in peripheral mediators that can modify hippocampal proliferation, and address changes with age, sex or PA duration/intensity. Of the many peripheral factors known to be triggered by PA, serotonin, FGF-2, IGF-1, VEGF, β-endorphin and adiponectin are best known for their stimulatory effects on hippocampal proliferation. Interestingly, while age negatively affects hippocampal proliferation per se, also the PA-induced response to most of these peripheral mediators is reduced and particularly the response to IGF-1 and NPY strongly declines with age. Sex differences per se have generally little effects on PA-induced neurogenesis. Compared to short term exercise, long term PA may negatively affect proliferation, due to a parallel decline in FGF-2 and the β-endorphin receptor, and an activation of the stress system particularly during conditions of prolonged exercise but this depends on other variables as well and remains a matter of discussion. Taken together, of many possible mediators, serotonin, FGF-2, IGF-1, VEGF, β-endorphin and adiponectin are the ones that most strongly contribute to the central effects of PA on the hippocampus. For a subgroup of these factors, brain sensitivity and responsivity is reduced with age.
Collapse
Affiliation(s)
- Simone Bolijn
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Centre for Neuroscience, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Poulos MG, Crowley MJP, Gutkin MC, Ramalingam P, Schachterle W, Thomas JL, Elemento O, Butler JM. Vascular Platform to Define Hematopoietic Stem Cell Factors and Enhance Regenerative Hematopoiesis. Stem Cell Reports 2015; 5:881-894. [PMID: 26441307 PMCID: PMC4649106 DOI: 10.1016/j.stemcr.2015.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 10/31/2022] Open
Abstract
Hematopoietic stem cells (HSCs) inhabit distinct microenvironments within the adult bone marrow (BM), which govern the delicate balance between HSC quiescence, self-renewal, and differentiation. Previous reports have proposed that HSCs localize to the vascular niche, comprised of endothelium and tightly associated perivascular cells. Herein, we examine the capacity of BM endothelial cells (BMECs) to support ex vivo and in vivo hematopoiesis. We demonstrate that AKT1-activated BMECs (BMEC-Akt1) have a unique transcription factor/cytokine profile that supports functional HSCs in lieu of complex serum and cytokine supplementation. Additionally, transplantation of BMEC-Akt1 cells enhanced regenerative hematopoiesis following myeloablative irradiation. These data demonstrate that BMEC-Akt1 cultures can be used as a platform for the discovery of pro-HSC factors and justify the utility of BMECs as a cellular therapy. This technical advance may lead to the development of therapies designed to decrease pancytopenias associated with myeloablative regimens used to treat a wide array of disease states.
Collapse
Affiliation(s)
- Michael G Poulos
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J P Crowley
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael C Gutkin
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pradeep Ramalingam
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - William Schachterle
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Leon Thomas
- Yale Stem Cell Center, Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Université Pierre and Marie Curie-Paris 6, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jason M Butler
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Surgery, Weill Cornell Medical College, New York, NY, 10065 USA; Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
73
|
Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci 2015; 35:4528-39. [PMID: 25788671 DOI: 10.1523/jneurosci.1188-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.
Collapse
|
74
|
Furube E, Morita M, Miyata S. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse. Cell Tissue Res 2015; 362:347-65. [PMID: 25994374 DOI: 10.1007/s00441-015-2201-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
Abstract
Although evidence has accumulated that neurogenesis and gliogenesis occur in the subventricular zone (SVZ) and subgranular zone (SGZ) of adult mammalian brains, recent studies indicate the presence of neural stem cells (NSCs) in adult brains, particularly the circumventricular regions. In the present study, we aimed to determine characterization of NSCs and their progenitor cells in the sensory circumventricular organs (CVOs), including organum vasculosum of the lamina terminalis, subfornical organ, and area postrema of adult mouse. There were two types of NSCs: tanycyte-like ependymal cells and astrocyte-like cells. Astrocyte-like NSCs proliferated slowly and oligodendrocyte progenitor cells (OPCs) and neural progenitor cells (NPCs) actively divided. Molecular marker protein expression of NSCs and their progenitor cells were similar to those reported in the SVZ and SGZ, except that astrocyte-like NSCs expressed S100β. These circumventricular NSCs possessed the capacity to give rise to oligodendrocytes and sparse numbers of neurons and astrocytes in the sensory CVOs and adjacent brain regions. The inhibition of vascular endothelial growth factor (VEGF) signaling by using a VEGF receptor-associated tyrosine kinase inhibitor AZD2171 largely suppressed basal proliferation of OPCs. A single systemic administration of lipopolysaccharide attenuated proliferation of OPCs and induced remarkable proliferation of microglia. The present study indicates that sensory circumventricular NSCs provide new neurons and glial cells in the sensory CVOs and adjacent brain regions.
Collapse
Affiliation(s)
- Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| |
Collapse
|
75
|
Developmental expression of vascular endothelial growth factor receptor 3 and vascular endothelial growth factor C in forebrain. Neuroscience 2015; 303:544-57. [PMID: 25943477 DOI: 10.1016/j.neuroscience.2015.04.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 01/19/2023]
Abstract
Increased understanding of the neurovascular niche suggests that development of the central nervous system (CNS) and its vasculature is coordinated through shared regulatory factors. These include the vascular endothelial growth factor (VEGF) family, reported to promote neuroproliferation and neuroprotection in addition to angiogenesis via its receptors VEGFR1-3. VEGFR3, a mediator of lymphangiogenesis, is expressed in murine and rat brain from early gestation, has been associated with neural progenitors and neurons (Choi et al., 2010) and oligodendroglia (Le Bras et al., 2006) in the developing cortex and is reported to mediate adult neurogenesis in the subventricular zone (SVZ) (Calvo et al., 2011). The early expression pattern of VEGFR3 protein and its cellular associations has not as yet been comprehensively reported. We describe the temporal expression of VEGFR3 protein at a cellular level and its close association with its VEGFC ligand, determined by double-labeling immunohistochemistry in the developing rat brain from embryonic day (E) 13 to postnatal day (P) 23. We found high expression of VEGFR3 in the ventricular zone and along radial glia in early gestation in association with neural stem cells and neuroblasts. Similar expression patterns were seen in the immature olfactory bulb and optic cup. In later development we found less expression by neural progenitors in proliferative regions including the SVZ and dentate gyrus of the hippocampus. In contrast, VEGFR3 expression increased with development in the cortex in neurons and astrocytes, and appeared in the emerging population of oligodendroglial progenitors. High expression in ventricular ependyma, choroid plexus and pigmented retinal epithelium was noted from E18. VEGFC ligand was found in association with VEGFR3 throughout development, with highest expression in embryonic stages. Our findings suggest an important role for VEGFC/VEGFR3 signaling in neuronal proliferation in early forebrain development, and ongoing functions with niche neurogenesis, glial and ependymal function in the maturing postnatal brain.
Collapse
|
76
|
Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci 2015; 35:518-26. [PMID: 25589747 DOI: 10.1523/jneurosci.3742-14.2015] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity.
Collapse
|
77
|
Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, Gressens P. The role of inflammation in perinatal brain injury. Nat Rev Neurol 2015; 11:192-208. [PMID: 25686754 PMCID: PMC4664161 DOI: 10.1038/nrneurol.2015.13] [Citation(s) in RCA: 571] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals.
Collapse
Affiliation(s)
- Henrik Hagberg
- 1] Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK. [2] Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neurosciences and Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 435 43 Gothenburg, Sweden
| | - Donna M Ferriero
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan J Vannucci
- Department of Pediatrics/Newborn Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Steven W Levison
- Department of Neurology and Neuroscience, Rutgers University, RBHS-New Jersey Medical School, Cancer Center, H-1226 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Zinaida S Vexler
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
78
|
Coon BG, Baeyens N, Han J, Budatha M, Ross TD, Fang JS, Yun S, Thomas JL, Schwartz MA. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. ACTA ACUST UNITED AC 2015; 208:975-86. [PMID: 25800053 PMCID: PMC4384728 DOI: 10.1083/jcb.201408103] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VE-cadherin plays a critical role in endothelial shear stress mechanotransduction by interacting with VEGFRs through their transmembrane domains. Endothelial responses to fluid shear stress are essential for vascular development and physiology, and determine the formation of atherosclerotic plaques at regions of disturbed flow. Previous work identified VE-cadherin as an essential component, along with PECAM-1 and VEGFR2, of a complex that mediates flow signaling. However, VE-cadherin’s precise role is poorly understood. We now show that the transmembrane domain of VE-cadherin mediates an essential adapter function by binding directly to the transmembrane domain of VEGFR2, as well as VEGFR3, which we now identify as another component of the junctional mechanosensory complex. VEGFR2 and VEGFR3 signal redundantly downstream of VE-cadherin. Furthermore, VEGFR3 expression is observed in the aortic endothelium, where it contributes to flow responses in vivo. In summary, this study identifies a novel adapter function for VE-cadherin mediated by transmembrane domain association with VEGFRs.
Collapse
Affiliation(s)
- Brian G Coon
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Nicolas Baeyens
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jinah Han
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Madhusudhan Budatha
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Tyler D Ross
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jennifer S Fang
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Sanguk Yun
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jeon-Leon Thomas
- Université Pierre and Marie Curie-Paris 6, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique U-1127/UMR-7225, 75654 Paris, France Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520 Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520
| |
Collapse
|
79
|
Adult hippocampal neural stem and progenitor cells regulate the neurogenic niche by secreting VEGF. Proc Natl Acad Sci U S A 2015; 112:4128-33. [PMID: 25775598 DOI: 10.1073/pnas.1422448112] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The adult hippocampus hosts a population of neural stem and progenitor cells (NSPCs) that proliferates throughout the mammalian life span. To date, the new neurons derived from NSPCs have been the primary measure of their functional relevance. However, recent studies show that undifferentiated cells may shape their environment through secreted growth factors. Whether endogenous adult NSPCs secrete functionally relevant growth factors remains unclear. We show that adult hippocampal NSPCs secrete surprisingly large quantities of the essential growth factor VEGF in vitro and in vivo. This self-derived VEGF is functionally relevant for maintaining the neurogenic niche as inducible, NSPC-specific loss of VEGF results in impaired stem cell maintenance despite the presence of VEGF produced from other niche cell types. These findings reveal adult hippocampal NSPCs as an unanticipated source of an essential growth factor and imply an exciting functional role for adult brain NSPCs as secretory cells.
Collapse
|
80
|
Han J, Calvo CF, Kang TH, Baker KL, Park JH, Parras C, Levittas M, Birba U, Pibouin-Fragner L, Fragner P, Bilguvar K, Duman RS, Nurmi H, Alitalo K, Eichmann AC, Thomas JL. Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans. Cell Rep 2015; 10:1158-72. [PMID: 25704818 PMCID: PMC4685253 DOI: 10.1016/j.celrep.2015.01.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/12/2014] [Accepted: 01/20/2015] [Indexed: 01/17/2023] Open
Abstract
Neural stem cells (NSCs) continuously produce new neurons within the adult mammalian hippocampus. NSCs are typically quiescent but activated to self-renew or differentiate into neural progenitor cells. The molecular mechanisms of NSC activation remain poorly understood. Here, we show that adult hippocampal NSCs express vascular endothelial growth factor receptor (VEGFR) 3 and its ligand VEGF-C, which activates quiescent NSCs to enter the cell cycle and generate progenitor cells. Hippocampal NSC activation and neurogenesis are impaired by conditional deletion of Vegfr3 in NSCs. Functionally, this is associated with compromised NSC activation in response to VEGF-C and physical activity. In NSCs derived from human embryonic stem cells (hESCs), VEGF-C/VEGFR3 mediates intracellular activation of AKT and ERK pathways that control cell fate and proliferation. These findings identify VEGF-C/VEGFR3 signaling as a specific regulator of NSC activation and neurogenesis in mammals.
Collapse
Affiliation(s)
- Jinah Han
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Charles-Félix Calvo
- Université Pierre and Marie Curie-Paris 6, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France
| | - Tae Hyuk Kang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Kasey L Baker
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - June-Hee Park
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Carlos Parras
- Université Pierre and Marie Curie-Paris 6, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France
| | - Marine Levittas
- Université Pierre and Marie Curie-Paris 6, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France
| | - Ulrick Birba
- Université Pierre and Marie Curie-Paris 6, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France
| | - Laurence Pibouin-Fragner
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Pascal Fragner
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Anne C Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510-3221, USA.
| | - Jean-Léon Thomas
- Université Pierre and Marie Curie-Paris 6, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; INSERM/CNRS U-1127/UMR-7225, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; APHP, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510-3221, USA.
| |
Collapse
|
81
|
Baeyens N, Nicoli S, Coon BG, Ross TD, Van den Dries K, Han J, Lauridsen HM, Mejean CO, Eichmann A, Thomas JL, Humphrey JD, Schwartz MA. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 2015; 4. [PMID: 25643397 PMCID: PMC4337723 DOI: 10.7554/elife.04645] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
Vascular remodeling under conditions of growth or exercise, or during recovery from arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has been proposed that endothelial cells have a preferred level of fluid shear stress, or ‘set point’, that determines remodeling. We show that human umbilical vein endothelial cells respond optimally within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells, which experience much lower flow in vivo, show similar effects but at lower value of shear stress. VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences. Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and demonstrate its relevance to vessel remodeling in vivo. DOI:http://dx.doi.org/10.7554/eLife.04645.001 Blood and lymphatic vessels remodel their shape, diameter and connections during development, and throughout life in response to growth, exercise and disease. This process is called vascular remodeling. The endothelial cells that line the inside of blood and lymphatic vessels are constantly exposed to the frictional force from flowing blood, termed fluid shear stress. Changes in shear stress are sensed by the endothelial cells, which trigger vascular remodeling to return the stress to the original level. It has been proposed that remodeling is governed by a preferred level of fluid shear stress, or set point, against which deviations in the shear stress are compared. Thus, changing the fluid flow through a blood vessel increases or decreases shear stress, which results in the vessel remodeling to restore the original level of shear stress. Like all remodeling, this process involves inflammation to recruit white blood cells, which assist with the process. Baeyens et al. investigated whether such a shear stress set point exists and what its biological basis might be using cultured endothelial cells from human umbilical veins. These cells remained stable and in a resting state when a particular level of shear stress was applied to them; above or below this shear stress level, the cells produced an inflammatory response like that seen during vascular remodeling. This suggests that these cells do indeed have a set point for shear stress. The same response occurred in human lymphatic endothelial cells, although in these cells the shear stress set point was much lower, correlating with the low flow in lymphatic vessels. Baeyens et al. then discovered that the shear stress set point is related to the level of a protein called VEGFR3 in the cells, which was recently found to participate in shear stress sensing. Endothelial cells from lymphatic vessels normally produce much greater quantities of VEGFR3 than those from blood vessels. Reducing the amount of VEGFR3 in lymphatic endothelial cells increased the set point shear stress, while increasing the levels in blood vessel cells decreased the set point. This suggests that the levels of this protein account for the difference in the response of these two cell types. Baeyens et al. then tested this pathway by reducing the levels of VEGFR3 in zebrafish embryos and in adult mice. In both animals, this caused arteries to narrow, showing that VEGFR3 levels also control sensitivity to shear stress—and hence vascular remodeling—inside living creatures. Understanding in detail how vascular remodeling is regulated could help improve treatments for a wide range of cardiovascular conditions. To do so, further work will be needed to develop methods to control the sensitivity of endothelial cells to shear stress and to identify other proteins that might specifically control the narrowing or the expansion of vessels in human patients. DOI:http://dx.doi.org/10.7554/eLife.04645.002
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Stefania Nicoli
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Brian G Coon
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Tyler D Ross
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Koen Van den Dries
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jinah Han
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Holly M Lauridsen
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Cecile O Mejean
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University School of Engineering and Applied Science, New Haven, United States
| | - Martin A Schwartz
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
82
|
Ramasamy SK, Kusumbe AP, Adams RH. Regulation of tissue morphogenesis by endothelial cell-derived signals. Trends Cell Biol 2014; 25:148-57. [PMID: 25529933 DOI: 10.1016/j.tcb.2014.11.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) form an extensive network of blood vessels that has numerous essential functions in the vertebrate body. In addition to their well-established role as a versatile transport network, blood vessels can induce organ formation or direct growth and differentiation processes by providing signals in a paracrine (angiocrine) fashion. Tissue repair also requires the local restoration of vasculature. ECs are emerging as important signaling centers that coordinate regeneration and help to prevent deregulated, disease-promoting processes. Vascular cells are also part of stem cell niches and have key roles in hematopoiesis, bone formation, and neurogenesis. Here, we review these newly identified roles of ECs in the regulation of organ morphogenesis, maintenance, and regeneration.
Collapse
Affiliation(s)
- Saravana K Ramasamy
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Anjali P Kusumbe
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, D-48149 Münster, Germany.
| |
Collapse
|
83
|
Shin YJ, Riew TR, Park JH, Pak HJ, Lee MY. Expression of vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) in the glial reaction elicited by human mesenchymal stem cell engraftment in the normal rat brain. J Histochem Cytochem 2014; 63:170-80. [PMID: 25473093 DOI: 10.1369/0022155414564218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To determine whether vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) are involved in the glial reaction elicited by transplanted mesenchymal stem cells (MSCs), we examined the cellular localization of VEGF-C and VEGFR-3 proteins in the striatum of adult normal rats that received bone marrow-derived human MSCs. The MSC grafts were infiltrated with activated microglia/macrophages and astrocytes over a 2-week period post-transplantation, which appeared to parallel the loss of transplanted MSCs. VEGF-C/VEGFR-3 was expressed in activated microglia/macrophages recruited to the graft site, where the induction of VEGF-C protein was rather late compared with that of its receptor. VEGF-C protein was absent or very weak on day 3, whereas VEGFR-3 immunoreactivity was evident within the first three days. Furthermore, within three days, VEGF-C could be detected in the brain macrophages localized immediately adjacent to the needle track. At the same time, almost all the brain macrophages in both regions expressed VEGFR-3. Reactive astrocytes at the graft site expressed VEGFR-3, but not VEGF-C. These data demonstrated the characteristic time- and cell-dependent expression patterns for VEGF-C and VEGFR-3 within the engrafted brain tissue, suggesting that they may contribute to neuroinflammation in MSC transplantation, possibly through the recruitment and/or activation of microglia/macrophages and astrogliosis.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| |
Collapse
|
84
|
A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron 2014; 83:1085-97. [PMID: 25189209 PMCID: PMC4157576 DOI: 10.1016/j.neuron.2014.08.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 12/27/2022]
Abstract
The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate of hippocampal stem cells, and inactivating Ascl1 blocks quiescence exit completely, rendering them unresponsive to activating stimuli. Ascl1 promotes the proliferation of hippocampal stem cells by directly regulating the expression of cell-cycle regulatory genes. Ascl1 is similarly required for stem cell activation in the adult subventricular zone. Our results support a model whereby Ascl1 integrates inputs from both stimulatory and inhibitory signals and converts them into a transcriptional program activating adult neural stem cells.
Collapse
|
85
|
Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 2014; 16:1045-56. [PMID: 25283993 PMCID: PMC4298702 DOI: 10.1038/ncb3045] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023]
Abstract
The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment.
Collapse
Affiliation(s)
- Cristina Ottone
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Benjamin Krusche
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Ariadne Whitby
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Melanie Clements
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| | - Giorgia Quadrato
- Hertie Institute for Brain Research, University of Tuebingen, Tuebingen D-72076, Germany
| | - Mara E Pitulescu
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Muenster, Muenster D-48149, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Muenster, Muenster D-48149, Germany
| | - Simona Parrinello
- Cell Interactions and Cancer Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road London W12 0NN, UK
| |
Collapse
|
86
|
VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2014; 34:3107-19. [DOI: 10.1038/onc.2014.257] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
|
87
|
Shi CG, Yang YS, Li H, Zhang Y, Wang N, Wang SM, Wang JD, Zhang SC. Tanshinol protects hippocampus and attenuates vascular dementia development. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 16:667-676. [PMID: 24957473 DOI: 10.1080/10286020.2014.930131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Tanshinol (3-(3',4'-dihydroxyphenyl)-(2R)-lactic acid, TSL) is widely used in traditional Chinese medicine for the treatment of cardiovascular and cerebrovascular diseases. Here, we assessed whether TSL protected hippocampus and attenuated vascular dementia (VD) development in rats. The behavioral analysis showed that TSL could decrease the distance and latency time, and increase the swim speed in water maze in rats subjected to VD. TSL remarkably increased acetylcholine level and decreased acetylcholinesterase activity in rats subjected to VD. Likewise, TSL remarkably decreased malondialdehyde and increased superoxide dismutase levels in rats subjected to VD. Furthermore, treatment with TSL reduced the level of dead neurons in dentate gyrus. In addition, TSL upregulated growth-associated protein 43 (GAP43) and vascular endothelial growth factor (VEGF) expression and downregulated phosphorylated Akt (p-AKt) and phosphorylated glycogen synthase kinase (p-GSK3β) expression in hippocampus in rats subjected to VD. These results suggest that TSL may be a potential compound in VD model.
Collapse
Affiliation(s)
- Cui-Ge Shi
- a Department of Cell Biology , National Research Institute of Family Planning , Beijing 100081 , China
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Kong X, Su X, Zhu J, Wang J, Wan H, Zhong M, Li L, Lin N. Neuroprotective effect of buyang huanwu decoction on rat ischemic/reperfusion brain damage by promoting migration of neural precursor cells. Rejuvenation Res 2014; 17:264-75. [PMID: 24372105 DOI: 10.1089/rej.2013.1468] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Buyang Huanwu Decoction (BYHWD) is a classic formula widely used for treating stroke-induced disability, the highest morbidity of neurological disorders in China. However, the mechanism of its neuroprotection has not been fully clarified. Previous reports indicated that BYHWD may promote growth and differentiation of neural precursor cells (NPCs). The present study focused on the effects of BYHWD on migration of NPCs in rats with middle cerebral artery occlusion (MCAO). Rats were treated with different doses of BYHWD (12 and 24 grams/kg) from day 1 to day 21 after model building. BYHWD could increase the survival rate and decrease neurological scores and infarct volume as compared with the vehicle-treated MCAO rats. Moreover, BYHWD treatment significantly increased 5-bromo-2-deoxyuridine (BrdU)-positive cells in the subventricular zone (SVZ), subgranular zone (SGZ), and corpus striatum (CS) of the infarct brain. Interestingly, BYHWD could markedly enhance BrdU(+)/doublecortin(+) cells not only in the SVZ and SGZ but also in CS, by up-regulating the protein expression of migration activators, including stromal cell derived factor-1, CXC chemokine receptor 4, vascular endothelial growth factor, Reelin, and brain-derived neurotrophic factor in the ipsilateral infarct area after MCAO. In addition, BYHWD treatment was able to promote the neuronal differentiation, which was closely related to the migratory process of NPCs in MCAO rats. These findings offer evidence for the first time that BYHWD may exert its neuroprotective effects partially by promotion of NPCs migration to ischemic brain areas.
Collapse
Affiliation(s)
- Xiangying Kong
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
90
|
Boccazzi M, Rolando C, Abbracchio MP, Buffo A, Ceruti S. Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes. Glia 2013; 62:428-39. [PMID: 24382645 DOI: 10.1002/glia.22614] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
Abstract
Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astrogliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine 5'-O-(2-thiodiphosphate) (ADPβS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects exerted by reactive astrocytes. In the absence of growth factors, ADPβS promoted proliferation and differentiation of SVZ progenitors. Moreover, ADPβS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPβS, were shifted to normal medium. In vivo, ADPβS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis, and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed in the GLAST::CreERT2;Rosa-YFP transgenic mice further demonstrated that ADPβS promoted proliferation of glutamate/aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progenitors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and through the involvement of reactive astrocytes.
Collapse
Affiliation(s)
- Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
91
|
Kwon HB, Fukuhara S, Asakawa K, Ando K, Kashiwada T, Kawakami K, Hibi M, Kwon YG, Kim KW, Alitalo K, Mochizuki N. The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish. Development 2013; 140:4081-90. [PMID: 24046321 PMCID: PMC3913045 DOI: 10.1242/dev.091702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blood vessels and neurons grow often side by side. However, the molecular and cellular mechanisms underlying their parallel development remain unclear. Here, we report that a subpopulation of secondary motoneurons extends axons ventrally outside of the neural tubes and rostrocaudally as a fascicle beneath the dorsal aorta (DA) in zebrafish. We tried to clarify the mechanism by which these motoneuron axons grow beneath the DA and found that Vegfc in the DA and Vegfr3 in the motoneurons were essential for the axon growth. Forced expression of either Vegfc in arteries or Vegfr3 in motoneurons resulted in enhanced axon growth of motoneurons over the DA. Both vegfr3 morphants and vegfc morphants lost the alignment of motoneuron axons with DA. In addition, forced expression of two mutant forms of Vegfr3 in motoneurons, potentially trapping endogenous Vegfc, resulted in failure of growth of motoneuron axons beneath the DA. Finally, a vegfr3 mutant fish lacked the motoneuron axons beneath the DA. Collectively, Vegfc from the preformed DA guides the axon growth of secondary motoneurons.
Collapse
Affiliation(s)
- Hyouk-Bum Kwon
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Warrington JP, Ashpole N, Csiszar A, Lee YW, Ungvari Z, Sonntag WE. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J Vasc Res 2013; 50:445-57. [PMID: 24107797 PMCID: PMC4309372 DOI: 10.1159/000354227] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/05/2013] [Indexed: 01/31/2023] Open
Abstract
Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function after WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments in learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus - a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function.
Collapse
Affiliation(s)
- Junie P. Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216
| | - Nicole Ashpole
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yong Woo Lee
- School of Biomedical Engineering and Sciences Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
93
|
Sánchez F, Sáez M, Lunello P, Ponz F. Plant viral elongated nanoparticles modified for log-increases of foreign peptide immunogenicity and specific antibody detection. J Biotechnol 2013; 168:409-15. [PMID: 24055625 DOI: 10.1016/j.jbiotec.2013.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 09/09/2013] [Indexed: 11/17/2022]
Abstract
Elongated and flexuous recombinant nanoparticles were derived from Turnip mosaic virus to be used as bioscaffolds for increased peptide immunogenicity and peptide-specific antibody sensing. For this purpose, a 20-amino acid peptide derived from human vascular endothelial growth factor receptor 3 (VEGFR-3) was fused to the N-terminal region of Turnip mosaic virus coat protein (CP) by genetic insertion. The insertion was between codons corresponding to the first and second amino acids of the CP in two versions of a previously reported virus-derived vector. Systemic infections of two genetic constructs were achieved in two different plant hosts. The construct proved stable upon successive passages and generated virus nanoparticles identifiable under the electron microscope. The chimeric structures held the VEGFR-3 peptide. Purified VER3 nanoparticles were used to immunize mice, whose sera showed log increases of antibodies against the VEGFR-3 peptide when compared with mice immunized with peptide alone, thus providing the first quantitative data on the potential of elongated flexuous viruses for peptide immunogenicity increases. Purified VER3 nanoparticles also showed log increases in their ability to detect VER3 antibodies in sera, when used as reagents in ELISA assays, an application also used here for the first time.
Collapse
Affiliation(s)
- Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Campus de Montegancedo, Autovía M40, Km 38, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | |
Collapse
|
94
|
Henry KM, Pase L, Ramos-Lopez CF, Lieschke GJ, Renshaw SA, Reyes-Aldasoro CC. PhagoSight: an open-source MATLAB® package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish model. PLoS One 2013; 8:e72636. [PMID: 24023630 PMCID: PMC3758287 DOI: 10.1371/journal.pone.0072636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Neutrophil migration in zebrafish larvae is increasingly used as a model to study the response of these leukocytes to different determinants of the cellular inflammatory response. However, it remains challenging to extract comprehensive information describing the behaviour of neutrophils from the multi-dimensional data sets acquired with widefield or confocal microscopes. Here, we describe PhagoSight, an open-source software package for the segmentation, tracking and visualisation of migrating phagocytes in three dimensions. The algorithms in PhagoSight extract a large number of measurements that summarise the behaviour of neutrophils, but that could potentially be applied to any moving fluorescent cells. To derive a useful panel of variables quantifying aspects of neutrophil migratory behaviour, and to demonstrate the utility of PhagoSight, we evaluated changes in the volume of migrating neutrophils. Cell volume increased as neutrophils migrated towards the wound region of injured zebrafish. PhagoSight is openly available as MATLAB® m-files under the GNU General Public License. Synthetic data sets and a comprehensive user manual are available from http://www.phagosight.org.
Collapse
Affiliation(s)
- Katherine M. Henry
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Luke Pase
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | | | - Graham J. Lieschke
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Stephen A. Renshaw
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom
| | - Constantino Carlos Reyes-Aldasoro
- Biomedical Engineering Research Group, University of Sussex, Falmer, United Kingdom
- Information Engineering and Medical Imaging Group, City University London, London, United Kingdom
| |
Collapse
|
95
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
96
|
Ng T, Cheung YT, Ng QS, Ho HK, Chan A. Vascular endothelial growth factor inhibitors and cognitive impairment: evidence and controversies. Expert Opin Drug Saf 2013; 13:83-92. [PMID: 23931162 DOI: 10.1517/14740338.2013.828034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Chemotherapy-induced cognitive impairment, or 'chemobrain,' has been well established in the literature. However, neurocognitive toxic effect induced by targeted therapies such as anti-angiogenic agents is poorly investigated. Recently, emerging evidence suggests vascular endothelial growth factor (VEGF) to have a possible role in brain cognition giving rise to concerns whether VEGF inhibitors (VEGFIs) may induce neurotoxic effect on cancer patients' cognitive function. AREAS COVERED The aim of this review was to evaluate the plausible mechanisms underlying VEGF and cognition, and to highlight the evidence and controversies surrounding the cognitive issues associated with the use of VEGFIs. EXPERT OPINION This review paper has brought attention to the potential cognitive issues associated with the use of VEGFIs and has added a new, unexplored dimension to the problem of cancer treatment-related cognitive changes. However, the lack of evidence warrants the need for more well-designed studies to quantify the prevalence and severity of VEGFI-induced cognitive impairment in the cancer population, and to establish the role of VEGF in human cognitive function.
Collapse
Affiliation(s)
- Terence Ng
- National University of Singapore , Singapore , Singapore
| | | | | | | | | |
Collapse
|
97
|
Comparison of vascular growth factors in the murine brain reveals placenta growth factor as prime candidate for CNS revascularization. Blood 2013; 122:658-65. [PMID: 23803710 DOI: 10.1182/blood-2012-07-441527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular bypass procedures in the central nervous system (CNS) remain technically challenging, hindered by complications and often failing to prevent adverse outcome such as stroke. Thus, there is an unmet clinical need for a safe and effective CNS revascularization. Vascular endothelial growth factors (VEGFs) are promising candidates for revascularization; however, their effects appear to be tissue-specific and their potential in the CNS has not been fully explored. To test growth factors for angiogenesis in the CNS, we characterized the effects of endothelium-specific growth factors on the brain vasculature and parenchyma. Recombinant adeno-associated virus (AAV) vectors encoding the growth factors were injected transcranially to the frontoparietal cerebrum of mice. Angiogenesis, mural cell investment, leukocyte recruitment, vascular permeability, reactive gliosis and neuronal patterning were evaluated by 3-dimensional immunofluorescence, electron microscopy, optical projection tomography, and magnetic resonance imaging. Placenta growth factor (PlGF) stimulated robust angiogenesis and arteriogenesis without significant side effects, whereas VEGF and VEGF-C incited growth of aberrant vessels, severe edema, and inflammation. VEGF-B, angiopoietin-1, angiopoietin-2, and a VEGF/angiopoietin-1 chimera had minimal effects on the brain vessels or parenchyma. Of the growth factors tested, PlGF emerged as the most efficient and safe angiogenic factor, hence making it a candidate for therapeutic CNS revascularization.
Collapse
|
98
|
Carmeliet P, Ruiz de Almodovar C, Carmen RDA. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell Mol Life Sci 2013; 70:1763-78. [PMID: 23475071 PMCID: PMC11113464 DOI: 10.1007/s00018-013-1283-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Intensive research in the last decade shows that the prototypic angiogenic factor vascular endothelial growth factor (VEGF) can have direct effects in neurons and modulate processes such as neuronal migration, axon outgrowth, axon guidance and neuronal survival. Depending on the neuronal cell type and the process, VEGF seems to exert these effects by signaling via different receptors. It is also becoming clear that other VEGF ligands such as VEGF-B, -C and -D can act in various neuronal cell types as well. Moreover, apart from playing a role in physiological conditions, VEGF and VEGF-B have been related to different neurological disorders. We give an update on how VEGF controls different processes during neurodevelopment as well as on its role in several neurodegenerative disorders. We also discuss recent findings demonstrating that other VEGF ligands influence processes such as neurogenesis and dendrite arborization and participate in neurodegeneration.
Collapse
Affiliation(s)
- Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, K.U.Leuven, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
99
|
Pineda JR, Daynac M, Chicheportiche A, Cebrian-Silla A, Sii Felice K, Garcia-Verdugo JM, Boussin FD, Mouthon MA. Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol Med 2013; 5:548-62. [PMID: 23526803 PMCID: PMC3628106 DOI: 10.1002/emmm.201202197] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 01/20/2023] Open
Abstract
Neurogenesis decreases during aging and following cranial radiotherapy, causing a progressive cognitive decline that is currently untreatable. However, functional neural stem cells remained present in the subventricular zone of high dose-irradiated and aged mouse brains. We therefore investigated whether alterations in the neurogenic niches are perhaps responsible for the neurogenesis decline. This hypothesis was supported by the absence of proliferation of neural stem cells that were engrafted into the vascular niches of irradiated host brains. Moreover, we observed a marked increase in TGF-β1 production by endothelial cells in the stem cell niche in both middle-aged and irradiated mice. In co-cultures, irradiated brain endothelial cells induced the apoptosis of neural stem/progenitor cells via TGF-β/Smad3 signalling. Strikingly, the blockade of TGF-β signalling in vivo using a neutralizing antibody or the selective inhibitor SB-505124 significantly improved neurogenesis in aged and irradiated mice, prevented apoptosis and increased the proliferation of neural stem/progenitor cells. These findings suggest that anti-TGF-β-based therapy may be used for future interventions to prevent neurogenic collapse following radiotherapy or during aging.
Collapse
Affiliation(s)
- Jose R Pineda
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells. Cell Mol Life Sci 2013; 70:1779-92. [PMID: 23479133 DOI: 10.1007/s00018-013-1312-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 12/25/2022]
Abstract
Notch cell interaction mechanism governs cell fate decisions in many different cell contexts throughout the lifetime of all Metazoan species. It links the fate of one cell to that of its neighbors through cell-to-cell contacts, and binding of Notch receptors expressed on one cell to their membrane bound ligands on an adjacent cell. Environmental cues, such as growth factors and extracellular matrix molecules, superimpose a dynamic regulation on this canonical Notch signaling pathway. In this review, we will focus on Notch signaling in the vertebrate vascular and nervous systems and examine its role in angiogenesis, neurogenesis, and neurovascular interactions. We will also highlight the molecular relationships of the Notch pathway with vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors, key regulators of both angiogenesis and neurogenesis.
Collapse
|