51
|
Van Den Bossche MJ, Johnstone M, Strazisar M, Pickard BS, Goossens D, Lenaerts AS, De Zutter S, Nordin A, Norrback KF, Mendlewicz J, Souery D, De Rijk P, Sabbe BG, Adolfsson R, Blackwood D, Del-Favero J. Rare copy number variants in neuropsychiatric disorders: Specific phenotype or not? Am J Med Genet B Neuropsychiatr Genet 2012; 159B:812-22. [PMID: 22911887 DOI: 10.1002/ajmg.b.32088] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/11/2012] [Indexed: 12/31/2022]
Abstract
From a number of genome-wide association studies it was shown that de novo and/or rare copy number variants (CNVs) are found at an increased frequency in neuropsychiatric diseases. In this study we examined the prevalence of CNVs in six genomic regions (1q21.1, 2p16.3, 3q29, 15q11.2, 15q13.3, and 16p11.2) previously implicated in neuropsychiatric diseases. Hereto, a cohort of four neuropsychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, and intellectual disability) and control individuals from three different populations was used in combination with Multilpex Amplicon Quantifiaction (MAQ) assays, capable of high resolution (kb range) and custom-tailored CNV detection. Our results confirm the etiological candidacy of the six selected CNV regions for neuropsychiatric diseases. It is possible that CNVs in these regions can result in disturbed brain development and in this way lead to an increased susceptibility for different neuropsychiatric disorders, dependent on additional genetic and environmental factors. Our results also suggest that the neurodevelopmental component is larger in the etiology of schizophrenia and intellectual disability than in mood disorders. Finally, our data suggest that deletions are in general more pathogenic than duplications. Given the high frequency of the examined CNVs (1-2%) in patients of different neuropsychiatric disorders, screening of large cohorts with an affordable and feasible method like the MAQ assays used in this study is likely to result in important progress in unraveling the genetic factors leading to an increased susceptibility for several psychiatric disorders.
Collapse
|
52
|
Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol 2012; 99:81-91. [DOI: 10.1016/j.pneurobio.2012.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/20/2011] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
|
53
|
15q11.2 proximal imbalances associated with a diverse array of neuropsychiatric disorders and mild dysmorphic features. J Dev Behav Pediatr 2012; 33:570-6. [PMID: 22922608 DOI: 10.1097/dbp.0b013e31826052ae] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Deletion within the proximal region of chromosome 15q11.2 between breakpoints 1 and 2 (BP1-BP2) has been proposed to be a risk factor for intellectual disability, seizure, and schizophrenia. However, the clinical significance of its reciprocal duplication is not clearly defined yet. We evaluated 1654 consecutive pediatric patients with various neurological disorders by high-resolution microarray-based comparative genomic hybridization. We identified 21 patients carrying 15q11.2 BP1-BP2 deletion and 12 patients carrying 15q11.2 BP1-BP2 duplication in this cohort, which represent 1.27% (21/1,654) and 0.7% (12/1,654) of the patients analyzed, respectively. Approximately 87.5% of the patients carrying the deletion and 80% of the patients carrying the duplication have developmental delay or intellectual disability. Other recurrent clinical features in these patients include mild dysmorphic features, autistic spectrum disorders, and epilepsy. Our observations provide further evidence in favor of a strong association of 15q11.2 BP1-BP2 deletion with a variety of neuropsychiatric disorders. The diversity of clinical findings in these patients expands the phe-notypic spectrum of individuals carrying the deletion. In addition, possible etiological effects of 15q11.2 BP1-BP2 duplication in neuropsychiatric disorders are proposed.
Collapse
|
54
|
Swaminathan S, Shen L, Kim S, Inlow M, West JD, Faber KM, Foroud T, Mayeux R, Saykin AJ. Analysis of copy number variation in Alzheimer's disease: the NIALOAD/ NCRAD Family Study. Curr Alzheimer Res 2012; 9:801-14. [PMID: 22486522 PMCID: PMC3500615 DOI: 10.2174/156720512802455331] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 01/17/2023]
Abstract
Copy number variants (CNVs) are DNA regions that have gains (duplications) or losses (deletions) of genetic material. CNVs may encompass a single gene or multiple genes and can affect their function. They are hypothesized to play an important role in certain diseases. We previously examined the role of CNVs in late-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) using participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study and identified gene regions overlapped by CNVs only in cases (AD and/or MCI) but not in controls. Using a similar approach as ADNI, we investigated the role of CNVs using 794 AD and 196 neurologically evaluated control non-Hispanic Caucasian NIA-LOAD/NCRAD Family Study participants with DNA derived from blood/brain tissue. The controls had no family history of AD and were unrelated to AD participants. CNV calls were generated and analyzed after detailed quality review. 711 AD cases and 171 controls who passed all quality thresholds were included in case/control association analyses, focusing on candidate gene and genome-wide approaches. We identified genes overlapped by CNV calls only in AD cases but not controls. A trend for lower CNV call rate was observed for deletions as well as duplications in cases compared to controls. Gene-based association analyses confirmed previous findings in the ADNI study (ATXN1, HLA-DPB1, RELN, DOPEY2, GSTT1, CHRFAM7A, ERBB4, NRXN1) and identified a new gene (IMMP2L) that may play a role in AD susceptibility. Replication in independent samples as well as further analyses of these gene regions is warranted.
Collapse
Affiliation(s)
- Shanker Swaminathan
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Shen
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Inlow
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelley M. Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana Foroud
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard Mayeux
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
55
|
Steinberg KM, Antonacci F, Sudmant PH, Kidd JM, Campbell CD, Vives L, Malig M, Scheinfeldt L, Beggs W, Ibrahim M, Lema G, Nyambo TB, Omar SA, Bodo JM, Froment A, Donnelly MP, Kidd KK, Tishkoff SA, Eichler EE. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat Genet 2012; 44:872-80. [PMID: 22751100 PMCID: PMC3408829 DOI: 10.1038/ng.2335] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 06/01/2012] [Indexed: 12/12/2022]
Abstract
The 17q21.31 inversion polymorphism exists either as direct (H1) or inverted (H2) haplotypes with differential predispositions to disease and selection. We investigated its genetic diversity in 2,700 individuals, with an emphasis on African populations. We characterize eight structural haplotypes due to complex rearrangements that vary in size from 1.08-1.49 Mb and provide evidence for a 30-kb H1-H2 double recombination event. We show that recurrent partial duplications of the KANSL1 gene have occurred on both the H1 and H2 haplotypes and have risen to high frequency in European populations. We identify a likely ancestral H2 haplotype (H2') lacking these duplications that is enriched among African hunter-gatherer groups yet essentially absent from West African populations. Whereas H1 and H2 segmental duplications arose independently and before human migration out of Africa, they have reached high frequencies recently among Europeans, either because of extraordinary genetic drift or selective sweeps.
Collapse
|
56
|
Kitamura-Muramatsu Y, Kusumoto-Matsuo R, Kondo K, Mori S, Saito S, Tsukahara Y, Kukimoto I. Novel multiplexed genotyping of human papillomavirus using a VeraCode-allele-specific primer extension method. Microbiol Immunol 2012; 56:128-33. [PMID: 22146070 DOI: 10.1111/j.1348-0421.2011.00406.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A VeraCode-allele-specific primer extension (ASPE) method was applied to the detection and genotyping of human papillomavirus (HPV)-DNA. Oligonucleotide primers containing HPV-type-specific L1 sequences were annealed to HPV-DNA amplified by PGMY-PCR, followed by ASPE to label the DNA with biotinylated nucleotides. The labeled DNA was captured by VeraCode beads through hybridization, stained with a streptavidin-conjugated fluorophore, and detected by an Illumina BeadXpress® reader. By using this system, 16 clinically important HPV types (HPV6, 11, 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68) were correctly genotyped in a multiplex format. The VeraCode-ASPE genotyping of clinical DNA samples yielded identical results with those obtained by validated PGMY-reverse blot hybridization assay, providing a new platform for high-throughput genotyping required for HPV epidemiological surveys.
Collapse
Affiliation(s)
- Yuri Kitamura-Muramatsu
- Riken Genesis Co., Ltd, Riken Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148:1223-41. [PMID: 22424231 PMCID: PMC3351385 DOI: 10.1016/j.cell.2012.02.039] [Citation(s) in RCA: 593] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 12/21/2022]
Abstract
The genetic bases of neuropsychiatric disorders are beginning to yield to scientific inquiry. Genome-wide studies of copy number variation (CNV) have given rise to a new understanding of disease etiology, bringing rare variants to the forefront. A proportion of risk for schizophrenia, bipolar disorder, and autism can be explained by rare mutations. Such alleles arise by de novo mutation in the individual or in recent ancestry. Alleles can have specific effects on behavioral and neuroanatomical traits; however, expressivity is variable, particularly for neuropsychiatric phenotypes. Knowledge from CNV studies reflects the nature of rare alleles in general and will serve as a guide as we move forward into a new era of whole-genome sequencing.
Collapse
Affiliation(s)
- Dheeraj Malhotra
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 1020103, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Cellular Molecular and Molecular Medicine, University of California, San Diego, La Jolla, CA 1020103, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 1020103, USA
| |
Collapse
|
58
|
Grozeva D, Conrad DF, Barnes CP, Hurles M, Owen MJ, O'Donovan MC, Craddock N, Kirov G. Independent estimation of the frequency of rare CNVs in the UK population confirms their role in schizophrenia. Schizophr Res 2012; 135:1-7. [PMID: 22130109 PMCID: PMC3315675 DOI: 10.1016/j.schres.2011.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/17/2011] [Accepted: 11/05/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Several large, rare chromosomal copy number variants (CNVs) have recently been shown to increase risk for schizophrenia and other neuropsychiatric disorders including autism, ADHD, learning difficulties and epilepsy. AIMS We wanted to examine the frequencies of these schizophrenia-associated variants in a large sample of individuals with non-psychiatric illnesses to better understand the robustness and specificity of the association with schizophrenia. METHODS We used Affymetrix 500K microarray data from 10,259 individuals from the UK Wellcome Trust Case Control Consortium (WTCCC) who are affected with six non-psychiatric disorders (coronary artery disease, Crohn's disease, hypertension, rheumatoid arthritis, types 1 and 2 diabetes) to establish the frequencies of nine CNV loci strongly implicated in schizophrenia, and compared them with the previous findings. RESULTS Deletions at 1q21.1, 3q29, 15q11.2, 15q13.1 and 22q11.2 (VCFS region), and duplications at 16p11.2 were found significantly more often in schizophrenia cases, compared with the WTCCC reference set. Deletions at 17p12 and 17q12, were also more common in schizophrenia cases but not significantly so, while duplications at 16p13.1 were found at nearly the same rate as in previous schizophrenia samples. The frequencies of CNVs in the WTCCC non-psychiatric controls at three of the loci (15q11.2, 16p13.1 and 17p12) were significantly higher than those reported in previous control populations. CONCLUSIONS The evidence for association with schizophrenia is compelling for six rare CNV loci, while the remaining three require further replication in large studies. Risk at these loci extends to other neurodevelopmental disorders but their involvement in common non-psychiatric disorders should also be investigated.
Collapse
Affiliation(s)
- Detelina Grozeva
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Donald F. Conrad
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris P. Barnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew Hurles
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Michael C. O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Nick Craddock
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK,Corresponding author at: MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | - WTCCC
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
59
|
Affiliation(s)
- Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
60
|
Copy number variants of schizophrenia susceptibility loci are associated with a spectrum of speech and developmental delays and behavior problems. Genet Med 2012; 13:868-80. [PMID: 21792059 DOI: 10.1097/gim.0b013e3182217a06] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE : Recently, molecular cytogenetic techniques have identified novel copy number variants in individuals with schizophrenia. However, no large-scale prospective studies have been performed to characterize the broader spectrum of phenotypes associated with such copy number variants in individuals with unexplained physical and intellectual disabilities encountered in a diagnostic setting. METHODS : We analyzed 38,779 individuals referred to our diagnostic laboratory for microarray testing for the presence of copy number variants encompassing 20 putative schizophrenia susceptibility loci. We also analyzed the indications for study for individuals with copy number variants overlapping those found in six individuals referred for schizophrenia. RESULTS : After excluding larger gains or losses that encompassed additional genes outside the candidate loci (e.g., whole-arm gains/losses), we identified 1113 individuals with copy number variants encompassing schizophrenia susceptibility loci and 37 individuals with copy number variants overlapping those present in the six individuals referred to our laboratory for schizophrenia. Of these, 1035 had a copy number variant of one of six recurrent loci: 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11, and 22q11.2. The indications for study for these 1150 individuals were diverse and included developmental delay, intellectual disability, autism spectrum, and multiple congenital anomalies. CONCLUSION : The results from our study, the largest genotype-first analysis of schizophrenia susceptibility loci to date, suggest that the phenotypic effects of copy number variants associated with schizophrenia are pleiotropic and imply the existence of shared biologic pathways among multiple neurodevelopmental conditions.
Collapse
|
61
|
Costain G, Bassett AS. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. APPLICATION OF CLINICAL GENETICS 2012; 5:1-18. [PMID: 23144566 PMCID: PMC3492098 DOI: 10.2147/tacg.s21953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression) of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.
Collapse
Affiliation(s)
- Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada ; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
62
|
Moles KJ, Gowans GC, Gedela S, Beversdorf D, Yu A, Seaver LH, Schultz RA, Rosenfeld JA, Torchia BS, Shaffer LG. NF1 microduplications: identification of seven nonrelated individuals provides further characterization of the phenotype. Genet Med 2012; 14:508-14. [PMID: 22241097 DOI: 10.1038/gim.2011.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Neurofibromatosis, type 1 (NF1) is an autosomal dominant disorder caused by mutations of the neurofibromin 1 (NF1) gene at 17q11.2. Approximately 5% of individuals with NF1 have a 1.4-Mb heterozygous 17q11.2 deletion encompassing NF1, formed through nonallelic homologous recombination (NAHR) between the low-copy repeats that flank this region. NF1 microdeletion syndrome is more severe than NF1 caused by gene mutations, with individuals exhibiting facial dysmorphisms, developmental delay (DD), intellectual disability (ID), and excessive neurofibromas. Although NAHR can also cause reciprocal microduplications, reciprocal NF1 duplications have been previously reported in just one multigenerational family and a second unrelated proband. METHODS We analyzed the clinical features in seven individuals with NF1 microduplications, identified among 48,817 probands tested in our laboratory by array-based comparative genomic hybridization. RESULTS The only clinical features present in more than one individual were variable DD/ID, facial dysmorphisms, and seizures. No neurofibromas were present. Three sets of parents were tested: one duplication was apparently de novo, one inherited from an affected mother, and one inherited from a clinically normal father. CONCLUSION This is the first report comparing the phenotypes of nonrelated individuals with NF1 microduplications. This comparison will allow for further definition of this emerging microduplication syndrome.
Collapse
Affiliation(s)
- Kimberly J Moles
- Signature Genomic Laboratories, PerkinElmer Inc., Spokane, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
During the past decade, widespread use of microarray-based technologies, including oligonucleotide array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) genotyping arrays have dramatically changed our perspective on genome-wide structural variation. Submicroscopic genomic rearrangements or copy-number variation (CNV) have proven to be an important factor responsible for primate evolution, phenotypic differences between individuals and populations, and susceptibility to many diseases. The number of diseases caused by chromosomal microdeletions and microduplications, also referred to as genomic disorders, has been increasing at a rapid pace. Microdeletions and microduplications are found in patients with a wide variety of phenotypes, including Mendelian diseases as well as common complex traits, such as developmental delay/intellectual disability, autism, schizophrenia, obesity, and epilepsy. This chapter provides an overview of common microdeletion and microduplication syndromes and their clinical phenotypes, and discusses the genomic structures and molecular mechanisms of formation. In addition, an explanation for how these genomic rearrangements convey abnormal phenotypes is provided.
Collapse
Affiliation(s)
- Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
64
|
Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol 2011; 45:355-67. [PMID: 22114996 PMCID: PMC3397192 DOI: 10.1016/j.pediatrneurol.2011.08.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/15/2011] [Indexed: 10/15/2022]
Abstract
Infantile spasms constitute an age-dependent epilepsy, highly associated with cognitive impairment, autism, and movement disorders. Previous classification systems focused on a distinction between symptomatic and cryptogenic etiologies, and have not kept pace with recent discoveries of mutations in genes in key pathways of central nervous system development in patients with infantile spasms. Children with certain genetic syndromes are much likelier to manifest infantile spasms, and we review the literature to propose a genetic classification of these disorders. Children demonstrating genetic associations with infantile spasms also manifest phenotypes beyond epilepsy that may be explained by recent advances in the understanding of underlying biological mechanisms. Therefore we propose a biologic classification of genes highly associated with infantile spasms, and articulate models for infantile spasms pathogenesis based on those data. The two best described pathways of pathogenesis involve abnormalities in the gene regulatory network of gamma-aminobutyric acidergic forebrain development and abnormalities in molecules expressed at the synapse. These genetic and biologic classifications are flexible, and they should encourage much needed progress in syndrome recognition, clinical genetic testing, and the development of new therapies targeting specific pathways of pathogenesis.
Collapse
Affiliation(s)
- Alex R Paciorkowski
- Department of Neurology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
65
|
Mefford HC, Yendle SC, Hsu C, Cook J, Geraghty E, McMahon JM, Eeg-Olofsson O, Sadleir LG, Gill D, Ben-Zeev B, Lerman-Sagie T, Mackay M, Freeman JL, Andermann E, Pelakanos JT, Andrews I, Wallace G, Eichler EE, Berkovic SF, Scheffer IE. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 2011; 70:974-85. [PMID: 22190369 PMCID: PMC3245646 DOI: 10.1002/ana.22645] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Rare copy number variants (CNVs)--deletions and duplications--have recently been established as important risk factors for both generalized and focal epilepsies. A systematic assessment of the role of CNVs in epileptic encephalopathies, the most devastating and often etiologically obscure group of epilepsies, has not been performed. METHODS We evaluated 315 patients with epileptic encephalopathies characterized by epilepsy and progressive cognitive impairment for rare CNVs using a high-density, exon-focused, whole-genome oligonucleotide array. RESULTS We found that 25 of 315 (7.9%) of our patients carried rare CNVs that may contribute to their phenotype, with at least one-half being clearly or likely pathogenic. We identified 2 patients with overlapping deletions at 7q21 and 2 patients with identical duplications of 16p11.2. In our cohort, large deletions were enriched in affected individuals compared to controls, and 4 patients harbored 2 rare CNVs. We screened 2 novel candidate genes found within the rare CNVs in our cohort but found no mutations in our patients with epileptic encephalopathies. We highlight several additional novel candidate genes located in CNV regions. INTERPRETATION Our data highlight the significance of rare CNVs in the epileptic encephalopathies, and we suggest that CNV analysis should be considered in the genetic evaluation of these patients. Our findings also highlight novel candidate genes for further study.
Collapse
Affiliation(s)
- Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet 2011; 7:e1002334. [PMID: 22102821 PMCID: PMC3213131 DOI: 10.1371/journal.pgen.1002334] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/24/2011] [Indexed: 12/30/2022] Open
Abstract
While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID–associated phenotypes compared to autism (p = 9.58×10−11, odds ratio = 4.59), dyslexia (p = 3.81×10−18, odds ratio = 14.45), or controls (p = 2.75×10−17, odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4×10−6, odds ratio = 6) or ID (16%, p = 3.55×10−12, odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33). Deletions and duplications, termed copy number variants (CNVs), have been implicated in a variety of neurodevelopmental disorders including intellectual disability (ID), autism, and schizophrenia. Our understanding of the relevance of large, rare CNVs in a range of neurodevelopmental phenotypes, varying in severity and prevalence, has been difficult because these studies were restricted to the analysis of one disorder at a time using different CNV detection platforms, insufficient sample sizes, and a lack of detailed clinical information. We tested 1,227 individuals with different neurological diseases including dyslexia, autism, and ID using the same CNV detection platform. We observed striking differences in CNV burden and inheritance characteristics among these cohorts and show that ID is the primary correlate of large CNV burden. This correlation is well illustrated by a comparison of autism patients with and without ID—where the latter show only modest increases in large CNV burden compared to controls. We also find significant depletion in the frequency of large CNVs in dyslexia compared to the other cohorts. Further studies on larger sets of individuals using high-resolution arrays and next-generation sequencing are warranted for a detailed understanding of the relative contribution of genetic variants to neurodevelopmental disorders.
Collapse
|
67
|
Hochstenbach R, Buizer-Voskamp JE, Vorstman JAS, Ophoff RA. Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res 2011; 135:174-202. [PMID: 22056632 DOI: 10.1159/000332928] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
We review the contributions and limitations of genome-wide array-based identification of copy number variants (CNVs) in the clinical diagnostic evaluation of patients with mental retardation (MR) and other brain-related disorders. In unselected MR referrals a causative genomic gain or loss is detected in 14-18% of cases. Usually, such CNVs arise de novo, are not found in healthy subjects, and have a major impact on the phenotype by altering the dosage of multiple genes. This high diagnostic yield justifies array-based segmental aneuploidy screening as the initial genetic test in these patients. This also pertains to patients with autism (expected yield about 5-10% in nonsyndromic and 10-20% in syndromic patients) and schizophrenia (at least 5% yield). CNV studies in idiopathic generalized epilepsy, attention-deficit hyperactivity disorder, major depressive disorder and Tourette syndrome indicate that patients have, on average, a larger CNV burden as compared to controls. Collectively, the CNV studies suggest that a wide spectrum of disease-susceptibility variants exists, most of which are rare (<0.1%) and of variable and usually small effect. Notwithstanding, a rare CNV can have a major impact on the phenotype. Exome sequencing in MR and autism patients revealed de novo mutations in protein coding genes in 60 and 20% of cases, respectively. Therefore, it is likely that arrays will be supplanted by next-generation sequencing methods as the initial and perhaps ultimate diagnostic tool in patients with brain-related disorders, revealing both CNVs and mutations in a single test.
Collapse
Affiliation(s)
- R Hochstenbach
- Division of Biomedical Genetics, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
68
|
Abstract
Epilepsy and autism coexist in up to 20% of children with either disorder. Current studies suggest that a frequent co-occurring condition in epilepsy and autism is intellectual disability, which shows a very high prevalence in those with both autism and epilepsy. In addition, these recent studies suggest that early-onset seizures may index a group of infants at high risk for developing autism, usually with associated intellectual deficits. In this review we discuss recent advances in the conceptualization of shared anatomical and molecular mechanisms that may account for the coexistence of epilepsy, autism, and intellectual disability. A major contribution to our improved understanding of the relationship among these three phenotypes is the discovery of multiple genomic variants that cut across them as well as other neurobehavioral phenotypes. As these discoveries continue they are very likely to elucidate causal mechanisms for the various phenotypes and pinpoint biologic pathways that may be amenable to therapeutic interventions for this group of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Roberto Tuchman
- Department of Neurology Miami Children's Hospital, Dan Marino Center, Weston, FL 33331, USA.
| | | |
Collapse
|
69
|
Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 2011; 70:863-85. [PMID: 21658581 DOI: 10.1016/j.neuron.2011.05.002] [Citation(s) in RCA: 902] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2011] [Indexed: 11/22/2022]
Abstract
We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.
Collapse
|
70
|
Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, Marks S, Lakshmi B, Pai D, Ye K, Buja A, Krieger A, Yoon S, Troge J, Rodgers L, Iossifov I, Wigler M. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 2011; 70:886-97. [PMID: 21658582 DOI: 10.1016/j.neuron.2011.05.015] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2011] [Indexed: 12/01/2022]
Abstract
To explore the genetic contribution to autistic spectrum disorders (ASDs), we have studied genomic copy-number variation in a large cohort of families with a single affected child and at least one unaffected sibling. We confirm a major contribution from de novo deletions and duplications but also find evidence of a role for inherited "ultrarare" duplications. Our results show that, relative to males, females have greater resistance to autism from genetic causes, which raises the question of the fate of female carriers. By analysis of the proportion and number of recurrent loci, we set a lower bound for distinct target loci at several hundred. We find many new candidate regions, adding substantially to the list of potential gene targets, and confirm several loci previously observed. The functions of the genes in the regions of de novo variation point to a great diversity of genetic causes but also suggest functional convergence.
Collapse
Affiliation(s)
- Dan Levy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, Williams C, Stalker H, Hamid R, Hannig V, Abdel-Hamid H, Bader P, McCracken E, Niyazov D, Leppig K, Thiese H, Hummel M, Alexander N, Gorski J, Kussmann J, Shashi V, Johnson K, Rehder C, Ballif BC, Shaffer LG, Eichler EE. A copy number variation morbidity map of developmental delay. Nat Genet 2011; 43:838-46. [PMID: 21841781 PMCID: PMC3171215 DOI: 10.1038/ng.909] [Citation(s) in RCA: 964] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/22/2011] [Indexed: 12/22/2022]
Abstract
To understand the genetic heterogeneity underlying developmental delay, we compared copy number variants (CNVs) in 15,767 children with intellectual disability and various congenital defects (cases) to CNVs in 8,329 unaffected adult controls. We estimate that ∼14.2% of disease in these children is caused by CNVs >400 kb. We observed a greater enrichment of CNVs in individuals with craniofacial anomalies and cardiovascular defects compared to those with epilepsy or autism. We identified 59 pathogenic CNVs, including 14 new or previously weakly supported candidates, refined the critical interval for several genomic disorders, such as the 17q21.31 microdeletion syndrome, and identified 940 candidate dosage-sensitive genes. We also developed methods to opportunistically discover small, disruptive CNVs within the large and growing diagnostic array datasets. This evolving CNV morbidity map, combined with exome and genome sequencing, will be critical for deciphering the genetic basis of developmental delay, intellectual disability and autism spectrum disorders.
Collapse
Affiliation(s)
- Gregory M Cooper
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Lukashin I, Novichkov P, Boffelli D, Paciorkowski AR, Minovitsky S, Yang S, Dubchak I. VISTA Region Viewer (RViewer)--a computational system for prioritizing genomic intervals for biomedical studies. Bioinformatics 2011; 27:2595-7. [PMID: 21791533 DOI: 10.1093/bioinformatics/btr440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SUMMARY Current genome browsers are designed for linear browsing of individual genomic regions, but the high-throughput nature of experiments aiming to elucidate the genetic component of human disease makes it very important to develop user-friendly tools for comparing several genomic regions in parallel and prioritizing them based on their functional content. We introduce VISTA Region Viewer (RViewer), an interactive online tool that allows for efficient screening and prioritization of regions of the human genome for follow-up studies. The tool takes as input genetic variation data from different biomedical studies, determines a number of various functional parameters for both coding and non-coding sequences in each region and allows for sorting and searching the results of the analysis in multiple ways. AVAILABILITY AND IMPLEMENTATION The tool is implemented as a web application and is freely accessible on the Web at http://rviewer.lbl.gov CONTACT rviewer@lbl.gov; ildubchak@lbl.gov.
Collapse
Affiliation(s)
- Igor Lukashin
- Genomics Division, Lawrence Berkeley National Laboratory, MS 84-171, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Ramalingam A, Zhou XG, Fiedler SD, Brawner SJ, Joyce JM, Liu HY, Yu S. 16p13.11 duplication is a risk factor for a wide spectrum of neuropsychiatric disorders. J Hum Genet 2011; 56:541-4. [PMID: 21614007 DOI: 10.1038/jhg.2011.42] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chromosome 16p13.11 heterozygous deletion is associated with a diverse array of neuropsychiatric disorders including intellectual disabilities, autism, schizophrenia, epilepsy and attention-deficit hyperactivity disorder. However the clinical significance of its reciprocal duplication is not clearly defined yet. We evaluated 1645 consecutive pediatric patients with various developmental disorders by high-resolution microarray-based comparative genomic hybridization and identified four deletions and eight duplications within the 16p13.11 region, representing ∼0.73% (12/1645) of the patients analyzed. Recurrent clinical features in these patients include mental retardation/intellectual disability, autism, seizure, dysmorphic feature or multiple congenital anomalies. Our data expand the spectrum of the clinical findings in patients with these genomic abnormalities and provide further support for the pathogenic involvement of this duplication in patients who carry them.
Collapse
Affiliation(s)
- Arivudainambi Ramalingam
- Department of Pathology, Children's Mercy Hospitals and Clinics and University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
von der Lippe C, Rustad C, Heimdal K, Rødningen O. 15q11.2 microdeletion – Seven new patients with delayed development and/or behavioural problems. Eur J Med Genet 2011; 54:357-60. [DOI: 10.1016/j.ejmg.2010.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
|
75
|
Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet 2011; 12:363-76. [PMID: 21358748 DOI: 10.1038/nrg2958] [Citation(s) in RCA: 963] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Comparisons of human genomes show that more base pairs are altered as a result of structural variation - including copy number variation - than as a result of point mutations. Here we review advances and challenges in the discovery and genotyping of structural variation. The recent application of massively parallel sequencing methods has complemented microarray-based methods and has led to an exponential increase in the discovery of smaller structural-variation events. Some global discovery biases remain, but the integration of experimental and computational approaches is proving fruitful for accurate characterization of the copy, content and structure of variable regions. We argue that the long-term goal should be routine, cost-effective and high quality de novo assembly of human genomes to comprehensively assess all classes of structural variation.
Collapse
Affiliation(s)
- Can Alkan
- Department of Genome Sciences, University of Washington School of Medicine, Foege S413C, 3720 15th Ave NE, Seattle, Washington, USA
| | | | | |
Collapse
|
76
|
Fullston T, Gabb B, Callen D, Ullmann R, Woollatt E, Bain S, Ropers HH, Cooper M, Chandler D, Carter K, Jablensky A, Kalaydjieva L, Gecz J. Inherited balanced translocation t(9;17)(q33.2;q25.3) concomitant with a 16p13.1 duplication in a patient with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156:204-14. [PMID: 21302349 DOI: 10.1002/ajmg.b.31157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/30/2010] [Indexed: 11/08/2022]
Abstract
We report two rare genetic aberrations in a schizophrenia patient that may act together to confer disease susceptibility. A previously unreported balanced t(9;17)(q33.2;q25.3) translocation was observed in two schizophrenia-affected members of a small family with diverse psychiatric disorders. The proband also carried a 1.5 Mbp microduplication at 16p13.1 that could not be investigated in other family members. The duplication has been reported to predispose to schizophrenia, autism and mental retardation, with incomplete penetrance and variable expressivity. The t(9;17) (q33.2;q25.3) translocation breakpoint occurs within the open reading frames of KIAA1618 on 17q25.3, and TTLL11 (tyrosine tubulin ligase like 11) on 9q33.2, causing no change in the expression level of KIAA1618 but leading to loss of expression of one TTLL11 allele. TTLL11 belongs to a family of enzymes catalyzing polyglutamylation, an unusual neuron-specific post-translational modification of microtubule proteins, which modulates microtubule development and dynamics. The 16p13.1 duplication resulted in increased expression of NDE1, encoding a DISC1 protein partner mediating DISC1 functions in microtubule dynamics. We hypothesize that concomitant TTLL11-NDE1 deregulation may increase mutation load, among others, also on the DISC1 pathway, which could contribute to disease pathogenesis through multiple effects on neuronal development, synaptic plasticity, and neurotransmission. Our data illustrate the difficulties in interpreting the contribution of multiple potentially pathogenic changes likely to emerge in future next-generation sequencing studies, where access to extended families will be increasingly important.
Collapse
Affiliation(s)
- Tod Fullston
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Copy number variation in the dosage-sensitive 16p11.2 interval accounts for only a small proportion of autism incidence: A systematic review and meta-analysis. Genet Med 2011; 13:377-84. [DOI: 10.1097/gim.0b013e3182076c0c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
78
|
Wincent J, Anderlid BM, Lagerberg M, Nordenskjöld M, Schoumans J. High-resolution molecular karyotyping in patients with developmental delay and/or multiple congenital anomalies in a clinical setting. Clin Genet 2011; 79:147-57. [DOI: 10.1111/j.1399-0004.2010.01442.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
79
|
Abstract
Genetic diversity among human genomes comes in many forms, including single nucleotide polymorphisms (SNPs) and small insertions and deletions on the order of one to several basepairs. More recently, large, >1 kb copy number changes have been identified as an important source of normal genomic variation as well as disease-causing variation. The ability to perform genome-wide discovery of large copy number variants (CNVs) has been facilitated by advances in two technologies - array comparative genomic hybridization and SNP genotyping platforms. Here, we discuss the general principles and strategies underlying CNV detection with SNP genotyping platforms, which are widely used and capable of providing both SNP and CNV genotyping information.
Collapse
|
80
|
Abstract
BACKGROUND For many years, the prevailing paradigm has stated that in each individual with schizophrenia (SZ) the genetic risk is due to a combination of many genetic variants, individually of small effect. Recent empirical data are prompting a re-evaluation of this polygenic, common disease-common variant (CDCV) model. Evidence includes a lack of the expected strong positive findings from genome-wide association studies and the concurrent discovery of many different mutations that individually strongly predispose to SZ and other psychiatric disorders. This has led some to adopt a mixed model wherein some cases are caused by polygenic mechanisms and some by single mutations. This model runs counter to a substantial body of theoretical literature that had supposedly conclusively rejected Mendelian inheritance with genetic heterogeneity. Here we ask how this discrepancy between theory and data arose and propose a rationalization of the recent evidence base. METHOD In light of recent empirical findings, we reconsider the methods and conclusions of early theoretical analyses and the explicit assumptions underlying them. RESULTS We show that many of these assumptions can now be seen to be false and that the model of genetic heterogeneity is consistent with observed familial recurrence risks, endophenotype studies and other population-wide parameters. CONCLUSIONS We argue for a more biologically consilient mixed model that involves interactions between disease-causing and disease-modifying variants in each individual. We consider the implications of this model for moving SZ research beyond statistical associations to pathogenic mechanisms.
Collapse
Affiliation(s)
- K J Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Ireland.
| | | |
Collapse
|
81
|
Mefford HC, Shafer N, Antonacci F, Tsai JM, Park SS, Hing AV, Rieder MJ, Smyth MD, Speltz ML, Eichler EE, Cunningham ML. Copy number variation analysis in single-suture craniosynostosis: multiple rare variants including RUNX2 duplication in two cousins with metopic craniosynostosis. Am J Med Genet A 2010; 152A:2203-10. [PMID: 20683987 PMCID: PMC3104131 DOI: 10.1002/ajmg.a.33557] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about genes that underlie isolated single-suture craniosynostosis. In this study, we hypothesize that rare copy number variants (CNV) in patients with isolated single-suture craniosynostosis contain genes important for cranial development. Using whole genome array comparative genomic hybridization (CGH), we evaluated DNA from 186 individuals with single-suture craniosynostosis for submicroscopic deletions and duplications. We identified a 1.1 Mb duplication encompassing RUNX2 in two affected cousins with metopic synostosis and hypodontia. Given that RUNX2 is required as a master switch for osteoblast differentiation and interacts with TWIST1, mutations in which also cause craniosynostosis, we conclude that the duplication in this family is pathogenic, albeit with reduced penetrance. In addition, we find that a total of 7.5% of individuals with single-suture synostosis in our series have at least one rare deletion or duplication that contains genes and that has not been previously reported in unaffected individuals. The genes within and disrupted by CNVs in this cohort are potential novel candidate genes for craniosynostosis. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The widespread clinical utilization of array comparative genome hybridization, has led to the unraveling of many new copy number variations (CNVs). Although some of these CNVs are clearly pathogenic, the phenotypic consequences of others, such as those in 16p13.11 remain unclear. Whereas deletions of 16p13.11 have been associated with multiple congenital anomalies, the relevance of duplications of the region is still being debated. We report detailed clinical and molecular characterization of 10 patients with duplication and 4 patients with deletion of 16p13.11. We found that patients with duplication of the region have varied clinical features including behavioral abnormalities, cognitive impairment, congenital heart defects and skeletal manifestations, such as hypermobility, craniosynostosis and polydactyly. These features were incompletely penetrant. Patients with deletion of the region presented with microcephaly, developmental delay and behavioral abnormalities as previously described. The CNVs were of varying sizes and were likely mediated by non-allelic homologous recombination between low copy repeats. Our findings expand the repertoire of clinical features observed in patients with CNV in 16p13.11 and strengthen the hypothesis that this is a dosage sensitive region with clinical relevance.
Collapse
|
83
|
Bonilla C, Lefèvre JH, Winney B, Johnstone E, Tonks S, Colas C, Day T, Hutnik K, Boumertit A, Midgley R, Kerr D, Parc Y, Bodmer WF. Cyclin D1 rare variants in UK multiple adenoma and early-onset colorectal cancer patients. J Hum Genet 2010; 56:58-63. [PMID: 21107342 DOI: 10.1038/jhg.2010.144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We examined the influence that rare variants and low-frequency polymorphisms in the cancer candidate gene CCND1 have on the development of multiple intestinal adenomas and the early onset of colorectal cancer. Individuals with <100 multiple polyps and patients with colorectal cancer diagnosed before 50 years of age were recruited in UK, and screened for sequence changes in the coding and regulatory regions of CCND1. A set of about 800 UK control individuals was genotyped for the variants discovered in the cases. Variants in the promoter, intron-exon boundaries and untranslated regions of the CCND1 gene had higher frequencies in cases than in controls. Five of these variants were typed in a set of French multiple adenoma and early-onset patients, who also showed higher allele frequencies than UK controls. When pooled together, variants with frequencies lower than 1% conferred an increased risk of disease that was significant in the multiple adenoma group (odds ratio (OR) 2.2; 95% confidence interval, 1.1-4.4; P = 0.03). Most variants had a putative functional effect when assessed in silico. We conclude that rare variants of CCND1 are risk factors for colorectal cancer, with considerably larger effects than common polymorphisms, and as such should be systematically evaluated in susceptibility studies.
Collapse
Affiliation(s)
- Carolina Bonilla
- Department of Clinical Pharmacology, University of Oxford, Headington, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Affiliation(s)
- J Peter H Burbach
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht 3584 CG, Netherlands.
| |
Collapse
|
85
|
Williams NM, Zaharieva I, Martin A, Langley K, Mantripragada K, Fossdal R, Stefansson H, Stefansson K, Magnusson P, Gudmundsson OO, Gustafsson O, Holmans P, Owen MJ, O'Donovan M, Thapar A. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 2010; 376:1401-8. [PMID: 20888040 PMCID: PMC2965350 DOI: 10.1016/s0140-6736(10)61109-9] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Large, rare chromosomal deletions and duplications known as copy number variants (CNVs) have been implicated in neurodevelopmental disorders similar to attention-deficit hyperactivity disorder (ADHD). We aimed to establish whether burden of CNVs was increased in ADHD, and to investigate whether identified CNVs were enriched for loci previously identified in autism and schizophrenia. METHODS We undertook a genome-wide analysis of CNVs in 410 children with ADHD and 1156 unrelated ethnically matched controls from the 1958 British Birth Cohort. Children of white UK origin, aged 5-17 years, who met diagnostic criteria for ADHD or hyperkinetic disorder, but not schizophrenia and autism, were recruited from community child psychiatry and paediatric outpatient clinics. Single nucleotide polymorphisms (SNPs) were genotyped in the ADHD and control groups with two arrays; CNV analysis was limited to SNPs common to both arrays and included only samples with high-quality data. CNVs in the ADHD group were validated with comparative genomic hybridisation. We assessed the genome-wide burden of large (>500 kb), rare (<1% population frequency) CNVs according to the average number of CNVs per sample, with significance assessed via permutation. Locus-specific tests of association were undertaken for test regions defined for all identified CNVs and for 20 loci implicated in autism or schizophrenia. Findings were replicated in 825 Icelandic patients with ADHD and 35,243 Icelandic controls. FINDINGS Data for full analyses were available for 366 children with ADHD and 1047 controls. 57 large, rare CNVs were identified in children with ADHD and 78 in controls, showing a significantly increased rate of CNVs in ADHD (0·156 vs 0·075; p=8·9×10(-5)). This increased rate of CNVs was particularly high in those with intellectual disability (0·424; p=2·0×10(-6)), although there was also a significant excess in cases with no such disability (0·125, p=0·0077). An excess of chromosome 16p13.11 duplications was noted in the ADHD group (p=0·0008 after correction for multiple testing), a finding that was replicated in the Icelandic sample (p=0·031). CNVs identified in our ADHD cohort were significantly enriched for loci previously reported in both autism (p=0·0095) and schizophrenia (p=0·010). INTERPRETATION Our findings provide genetic evidence of an increased rate of large CNVs in individuals with ADHD and suggest that ADHD is not purely a social construct. FUNDING Action Research; Baily Thomas Charitable Trust; Wellcome Trust; UK Medical Research Council; European Union.
Collapse
Affiliation(s)
- Nigel M Williams
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
- Correspondence to: Dr Nigel M Williams and Prof Anita Thapar, MRC Centre in Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Irina Zaharieva
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew Martin
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | - Kate Langley
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | - Kiran Mantripragada
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Pall Magnusson
- Child and Adolescent Psychiatry, Landspitali University Hospital, Reykjavik, Iceland
| | - Olafur O Gudmundsson
- Child and Adolescent Psychiatry, Landspitali University Hospital, Reykjavik, Iceland
| | - Omar Gustafsson
- deCODE Genetics, Reykjavik, Iceland
- Department of Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Peter Holmans
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | - Michael J Owen
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | - Michael O'Donovan
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
| | - Anita Thapar
- MRC Centre in Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, UK
- Correspondence to: Dr Nigel M Williams and Prof Anita Thapar, MRC Centre in Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
86
|
Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 2010; 19:R176-87. [PMID: 20807775 PMCID: PMC2953748 DOI: 10.1093/hmg/ddq366] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 07/28/2010] [Accepted: 08/24/2010] [Indexed: 11/13/2022] Open
Abstract
The duplication architecture of the human genome predisposes our species to recurrent copy number variation and disease. Emerging data suggest that this mechanism of mutation contributes to both common and rare diseases. Two features regarding this form of mutation have emerged. First, common structural polymorphisms create susceptible and protective chromosomal architectures. These structural polymorphisms occur at varying frequencies in populations, leading to different susceptibility and ethnic predilection. Second, a subset of rearrangements shows extreme variability in expressivity. We propose that two types of genomic disorders may be distinguished: syndromic forms where the phenotypic features are largely invariant and those where the same molecular lesion associates with a diverse set of diagnoses including epilepsy, schizophrenia, autism, intellectual disability and congenital malformations. Copy number variation analyses of patient genomes reveal that disease type and severity may be explained by the occurrence of additional rare events and their inheritance within families. We propose that the overall burden of copy number variants creates differing sensitized backgrounds during development leading to different thresholds and disease outcomes. We suggest that the accumulation of multiple high-penetrant alleles of low frequency may serve as a more general model for complex genetic diseases, posing a significant challenge for diagnostics and disease management.
Collapse
Affiliation(s)
| | - Evan E. Eichler
- Department of Genome Sciences, Howard Hughes Medical Institute,University of Washington School of Medicine, PO Box 355065, Foege S413C, 3720 15th Avenue NE, Seattle, WA 98195, USA
| |
Collapse
|
87
|
Abstract
OBJECTIVE To describe cognitive and behavioral features of patients with chromosome 16p11.2 deletion syndrome, a recently identified and common genetic cause of neurodevelopmental disability, especially autism spectrum disorder (ASD). METHOD Twenty-one patients with 16p11.2 deletion were evaluated by medical record review. A subset of 11 patients consented to detailed cognitive, behavioral, and autism diagnostic assessment. RESULTS Patients with 16p11.2 deletion had varying levels of intellectual disability, variable adaptive skills, and a high incidence of language delay. Attention issues were not as frequent as had been reported in previous clinical reports. Atypical language, reduced social skills, and maladaptive behaviors were common, as was diagnosis of ASD. Based on medical record review, 7 of 21 patients (33%) had an ASD diagnosis. Among patients receiving detailed phenotyping, 3 of 11 (27%) met full criteria (met cutoff scores on both Autism Diagnostic Observation Schedule and Autism Diagnostic Interview) for an ASD diagnosis, whereas 6 other patients (55%) met criteria for ASD on either the Autism Diagnostic Observation Schedule or the Autism Diagnostic Interview, but not both measures. CONCLUSIONS Rates of ASD were similar to previous reports that are based on medical record reviews, but formal assessment revealed that a majority of patients with 16p11.2 deletion demonstrate features of ASD beyond simple language impairment. All patients with 16p11.2 deletion should receive formal neurodevelopmental evaluation including measures to specifically assess cognitive, adaptive, language, and psychiatric/behavioral issues. Clinical evaluation of this patient population should always include assessment by Autism Diagnostic Interview and Autism Diagnostic Observation Schedule to detect behaviors related to ASD and possible ASD diagnosis.
Collapse
|
88
|
Abstract
Intellectual disability (ID) is the leading socio-economic problem of health care, but compared to autism and schizophrenia, it has received very little public attention. Important risk factors for ID are malnutrition, cultural deprivation, poor health care, and parental consanguinity. In the Western world, fetal alcohol exposure is the most common preventable cause. Most severe forms of ID have genetic causes. Cytogenetically detectable and submicroscopic chromosomal rearrangements account for approximately 25% of all cases. X-linked gene defects are responsible in 10-12% of males with ID; to date, 91 of these defects have been identified. In contrast, autosomal gene defects have been largely disregarded, but due to coordinated efforts and the advent of next-generation DNA sequencing, this is about to change. As shown for Fra(X) syndrome, this renewed focus on autosomal gene defects will pave the way for molecular diagnosis and prevention, shed more light on the pathogenesis of ID, and reveal new opportunities for therapy.
Collapse
|
89
|
Mitchell KJ. The genetics of neurodevelopmental disease. Curr Opin Neurobiol 2010; 21:197-203. [PMID: 20832285 DOI: 10.1016/j.conb.2010.08.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/30/2010] [Accepted: 08/15/2010] [Indexed: 11/29/2022]
Abstract
The term neurodevelopmental disorder encompasses a wide range of diseases, including recognizably distinct syndromes known to be caused by very rare mutations in specific genes or chromosomal loci, and also much more common disorders such as schizophrenia, autism spectrum disorders, and idiopathic epilepsy and mental retardation. After decades of frustration, the past couple of years have suddenly seen tremendous progress in unravelling the genetics of these common disorders. These findings have led to a paradigm shift in our conception of the genetic architecture of common neurodevelopmental disease, highlighting the importance of individual, rare mutations and overlapping genetic aetiology of various disorders. They have also converged on specific neurodevelopmental pathways, providing insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
90
|
Srinivasan BS, Evans EA, Flannick J, Patterson AS, Chang CC, Pham T, Young S, Kaushal A, Lee J, Jacobson JL, Patrizio P. A universal carrier test for the long tail of Mendelian disease. Reprod Biomed Online 2010; 21:537-51. [PMID: 20729146 DOI: 10.1016/j.rbmo.2010.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 01/03/2023]
Abstract
Mendelian disorders are individually rare but collectively common, forming a 'long tail' of genetic disease. A single highly accurate assay for this long tail would allow the scaling up of the Jewish community's successful campaign of population screening for Tay-Sachs disease to the general population, thereby improving millions of lives, greatly benefiting minority health and saving billions of dollars. This need has been addressed by designing a universal carrier test: a non-invasive, saliva-based assay for more than 100 Mendelian diseases across all major population groups. The test has been exhaustively validated with a median of 147 positive and 525 negative samples per variant, demonstrating a multiplex assay whose performance compares favourably with the previous standard of care, namely blood-based single-gene carrier tests. Because the test represents a dramatic reduction in the cost and complexity of large-scale population screening, an end to many preventable genetic diseases is now in sight. Moreover, given that the assay is inexpensive and requires only a saliva sample, it is now increasingly feasible to make carrier testing a routine part of preconception care.
Collapse
|
91
|
Coin LJM, Asher JE, Walters RG, El-Sayed Moustafa JS, de Smith AJ, Sladek R, Balding DJ, Froguel P, Blakemore AIF. cnvHap: an integrative population and haplotype–based multiplatform model of SNPs and CNVs. Nat Methods 2010; 7:541-6. [DOI: 10.1038/nmeth.1466] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/05/2010] [Indexed: 11/09/2022]
|
92
|
Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, Franke A, Malafosse A, Genton P, Thomas P, Gurnett CA, Schreiber S, Bassuk AG, Guipponi M, Stephani U, Helbig I, Eichler EE. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010; 6:e1000962. [PMID: 20502679 PMCID: PMC2873910 DOI: 10.1371/journal.pgen.1000962] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy.
Collapse
Affiliation(s)
- Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Alonso A, Julià A, Tortosa R, Canaleta C, Cañete JD, Ballina J, Balsa A, Tornero J, Marsal S. CNstream: a method for the identification and genotyping of copy number polymorphisms using Illumina microarrays. BMC Bioinformatics 2010; 11:264. [PMID: 20482829 PMCID: PMC3098064 DOI: 10.1186/1471-2105-11-264] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/19/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Understanding the genetic basis of disease risk in depth requires an exhaustive knowledge of the types of genetic variation. Very recently, Copy Number Variants (CNVs) have received much attention because of their potential implication in common disease susceptibility. Copy Number Polymorphisms (CNPs) are of interest as they segregate at an appreciable frequency in the general population (i.e. > 1%) and are potentially implicated in the genetic basis of common diseases. RESULTS This paper concerns CNstream, a method for whole-genome CNV discovery and genotyping, using Illumina Beadchip arrays. Compared with other methods, a high level of accuracy was achieved by analyzing the measures of each intensity channel separately and combining information from multiple samples. The CNstream method uses heuristics and parametrical statistics to assign a confidence score to each sample at each probe; the sensitivity of the analysis is increased by jointly calling the copy number state over a set of nearby and consecutive probes. The present method has been tested on a real dataset of 575 samples genotyped using Illumina HumanHap 300 Beadchip, and demonstrates a high correlation with the Database of Genomic Variants (DGV). The same set of samples was analyzed with PennCNV, one of the most frequently used copy number inference methods for Illumina platforms. CNstream was able to identify CNP loci that are not detected by PennCNV and it increased the sensitivity over multiple other loci in the genome. CONCLUSIONS CNstream is a useful method for the identification and characterization of CNPs using Illumina genotyping microarrays. Compared to the PennCNV method, it has greater sensitivity over multiple CNP loci and allows more powerful statistical analysis in these regions. Therefore, CNstream is a robust CNP analysis tool of use to researchers performing genome-wide association studies (GWAS) on Illumina platforms and aiming to identify CNVs associated with the variables of interest. CNstream has been implemented as an R statistical software package that can work directly from raw intensity files generated from Illumina GWAS projects. The method is available at http://www.urr.cat/cnv/cnstream.html.
Collapse
Affiliation(s)
- Arnald Alonso
- Grup de Recerca de Reumatologia, Institut de Recerca de l'Hospital Universitari Vall d'Hebrón (UAB), Barcelona, Spain
| | - Antonio Julià
- Grup de Recerca de Reumatologia, Institut de Recerca de l'Hospital Universitari Vall d'Hebrón (UAB), Barcelona, Spain
| | - Raül Tortosa
- Grup de Recerca de Reumatologia, Institut de Recerca de l'Hospital Universitari Vall d'Hebrón (UAB), Barcelona, Spain
| | - Cristina Canaleta
- Grup de Recerca de Reumatologia, Institut de Recerca de l'Hospital Universitari Vall d'Hebrón (UAB), Barcelona, Spain
| | - Juan D Cañete
- Hospital Clinic i Provincial de Barcelona, Barcelona, Spain
| | - Javier Ballina
- Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | | | - Jesús Tornero
- Hospital Universitario de Guadalajara, Castilla-La Mancha, Spain
| | - Sara Marsal
- Grup de Recerca de Reumatologia, Institut de Recerca de l'Hospital Universitari Vall d'Hebrón (UAB), Barcelona, Spain
| |
Collapse
|
94
|
Breckpot J, Thienpont B, Peeters H, de Ravel T, Singer A, Rayyan M, Allegaert K, Vanhole C, Eyskens B, Vermeesch JR, Gewillig M, Devriendt K. Array comparative genomic hybridization as a diagnostic tool for syndromic heart defects. J Pediatr 2010; 156:810-7, 817.e1-817.e4. [PMID: 20138633 DOI: 10.1016/j.jpeds.2009.11.049] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/10/2009] [Accepted: 11/13/2009] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To investigate different aspects of the introduction of array comparative genomic hybridization (aCGH) in clinical practice. STUDY DESIGN A total 150 patients with a syndromic congenital heart defect (CHD) of unknown cause were analyzed with aCGH at 1-Mb resolution. Twenty-nine of these patients, with normal results on 1Mb aCGH, underwent re-analysis with 244-K oligo-microarray. With a logistic regression model, we assessed the predictive value of patient characteristics for causal imbalance detection. On the basis of our earlier experience and the literature, we constructed an algorithm to evaluate the causality of copy number variants. RESULTS With 1-Mb aCGH, we detected 43 structural variants not listed as clinically neutral polymorphisms, 26 of which were considered to be causal. A systematic comparison of the clinical features of these 26 patients to the remaining 124 patients revealed dysmorphism as the only feature with a significant predictive value for reaching a diagnosis with 1-Mb aCGH. With higher resolution analysis in 29 patients, 75 variants not listed as clinically neutral polymorphisms were detected, 2 of which were considered to be causal. CONCLUSIONS Molecular karyotyping yields an etiological diagnosis in at least 18% of patients with a syndromic CHD. Higher resolution evaluation results in an increasing number of variants of unknown significance.
Collapse
Affiliation(s)
- Jeroen Breckpot
- Center of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
During the past five years, copy number variation (CNV) has emerged as a highly prevalent form of genomic variation, bridging the interval between long-recognised microscopic chromosomal alterations and single-nucleotide changes. These genomic segmental differences among humans reflect the dynamic nature of genomes, and account for both normal variations among us and variations that predispose to conditions of medical consequence. Here, we place CNVs into their historical and medical contexts, focusing on how these variations can be recognised, documented, characterised and interpreted in clinical diagnostics. We also discuss how they can cause disease or influence adaptation to an environment. Various clinical exemplars are drawn out to illustrate salient characteristics and residual enigmas of CNVs, particularly the complexity of the data and information associated with CNVs relative to that of single-nucleotide variation. The potential is immense for CNVs to explain and predict disorders and traits that have long resisted understanding. However, creative solutions are needed to manage the sudden and overwhelming burden of expectation for laboratories and clinicians to assay and interpret these complex genomic variations as awareness permeates medical practice. Challenges remain for understanding the relationship between genomic changes and the phenotypes that might be predicted and prevented by such knowledge.
Collapse
|
96
|
Abstract
Recent developments in microarray technology have revealed the presence of many submicroscopic deletions and duplications in the human genome. Some of these have been found to increase the risk for neuropsychiatric disorders. Over the last 2 years, several large studies on schizophrenia have implicated large deletions and duplications that increase the risk of developing this disorder. It is now clear that rare deletions at 1q21.1, 15q13.3, 15q11.2 and 22q11.2, as well as duplications at 16p11.2 and 16p13.1, increase the risk of developing schizophrenia. They are found collectively in up to 3% of patients; therefore, they account for only a small proportion of the genetic causes of schizophrenia. In this paper I will review the evidence for these findings.
Collapse
Affiliation(s)
- George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
97
|
Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, Vives L, Walsh T, McCarthy SE, Baker C, Mefford HC, Kidd JM, Browning SR, Browning BL, Dickel DE, Levy DL, Ballif BC, Platky K, Farber DM, Gowans GC, Wetherbee JJ, Asamoah A, Weaver DD, Mark PR, Dickerson J, Garg BP, Ellingwood SA, Smith R, Banks VC, Smith W, McDonald MT, Hoo JJ, French BN, Hudson C, Johnson JP, Ozmore JR, Moeschler JB, Surti U, Escobar LF, El-Khechen D, Gorski JL, Kussmann J, Salbert B, Lacassie Y, Biser A, McDonald-McGinn DM, Zackai EH, Deardorff MA, Shaikh TH, Haan E, Friend KL, Fichera M, Romano C, Gécz J, DeLisi LE, Sebat J, King MC, Shaffer LG, Eichler EE. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 2010; 42:203-9. [PMID: 20154674 PMCID: PMC2847896 DOI: 10.1038/ng.534] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 01/15/2010] [Indexed: 02/06/2023]
Abstract
We report the identification of a recurrent 520-kbp 16p12.1 microdeletion significantly associated with childhood developmental delay. The microdeletion was detected in 20/11,873 cases vs. 2/8,540 controls (p=0.0009, OR=7.2) and replicated in a second series of 22/9,254 cases vs. 6/6,299 controls (p=0.028, OR=2.5). Most deletions were inherited with carrier parents likely to manifest neuropsychiatric phenotypes (p=0.037, OR=6). Probands were more likely to carry an additional large CNV when compared to matched controls (10/42 cases, p=5.7×10-5, OR=6.65). Clinical features of cases with two mutations were distinct from and/or more severe than clinical features of patients carrying only the co-occurring mutation. Our data suggest a two-hit model in which the 16p12.1 microdeletion both predisposes to neuropsychiatric phenotypes as a single event and exacerbates neurodevelopmental phenotypes in association with other large deletions or duplications. Analysis of other microdeletions with variable expressivity suggests that this two-hit model may be more generally applicable to neuropsychiatric disease.
Collapse
Affiliation(s)
- Santhosh Girirajan
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T, Kawashima K, Okochi T, Kishi T, Zaharieva I, Owen MJ, O'Donovan MC, Ozaki N, Iwata N. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 2010; 67:283-6. [PMID: 19880096 DOI: 10.1016/j.biopsych.2009.08.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/12/2009] [Accepted: 08/31/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND Copy number variants (CNVs) have been shown to increase the risk to develop schizophrenia. The best supported findings are at 1q21.1, 15q11.2, 15q13.3, and 22q11.2 and deletions at the gene neurexin 1 (NRXN1). METHODS In this study, we used Affymetrix 5.0 arrays to investigate the role of rare CNVs in 575 patients with schizophrenia and 564 control subjects from Japan. RESULTS There was a nonsignificant trend for excess of rare CNVs in schizophrenia (p = .087); however, we did not confirm the previously implicated association for very large CNVs (>500 kilobase [kb]) in this population. We provide support for three previous findings in schizophrenia, as we identified one deletion in a case at 1q21.1, one deletion within NRXN1, and four duplications in cases and one in a control subject at 16p13.1, a locus first implicated in autism and later in schizophrenia. CONCLUSIONS In this population, we support some of the previous findings in schizophrenia but could not find an increased burden of very large (>500 kb) CNVs, which was proposed recently. However, we provide support for the role of CNVs at 16p13.1, 1q21.1, and NRXN1.
Collapse
Affiliation(s)
- Masashi Ikeda
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ropers HH. Single gene disorders come into focus--again. DIALOGUES IN CLINICAL NEUROSCIENCE 2010; 12:95-102. [PMID: 20373671 PMCID: PMC3181948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the early 1990s, when the second 5-year plan for the Human Genome Project-which requested more money than any previous research project in biology-was written, common disorders were presented as the future target of genome research. This was a clever move to ensure continued public support for this endeavor, which had been justified previously by the prospect that it would lead to the diagnosis, prevention, and therapy of severe, but mostly rare, Mendelian disorders. Today, more than 15 years later, after billions of dollars have been spent on genome-wide association studies (GWAS), very few major genetic risk factors for common diseases have been identified, and the enthusiasm for large GWAS is dwindling. At the same time, there is renewed interest for studying single gene disorders, which are now considered by some as a better clue to the understanding of common diseases. While this is probably true, Mendelian disorders are also important in their own right, since they must be far more common than generally thought. As discussed here, various efficient strategies exist for the elucidation of single gene defects, and their systematic application in combination with novel genome partitioning and massive parallel sequencing techniques, will have far-reaching implications for health care.
Collapse
|
100
|
Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009; 25:528-35. [PMID: 19883952 PMCID: PMC3351381 DOI: 10.1016/j.tig.2009.10.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 09/30/2009] [Accepted: 10/08/2009] [Indexed: 12/18/2022]
Abstract
Recent studies have established an important role for rare genomic deletions and duplications in the etiology of schizophrenia. This research suggests that the genetic architecture of neuropsychiatric disorders includes a constellation of rare mutations in many different genes. Mutations that confer substantial risk for schizophrenia have been identified at several loci, most of which have also been implicated in other neurodevelopmental disorders, including autism. Genetic heterogeneity is a characteristic of schizophrenia; conversely, phenotypic heterogeneity is a characteristic of all schizophrenia-associated mutations. Both kinds of heterogeneity probably reflect the complexity of neurodevelopment. Research strategies must account for both genetic and clinical heterogeneity to identify the genes and pathways crucial for the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jonathan Sebat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | |
Collapse
|