51
|
Zhang Z, Zhu LL, Jiang HS, Chen H, Chen Y, Dai YT. Demethylation treatment restores erectile function in a rat model of hyperhomocysteinemia. Asian J Androl 2017; 18:763-8. [PMID: 26585696 PMCID: PMC5000801 DOI: 10.4103/1008-682x.163271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Methylation modification is an important cellular mechanism of gene expression regulation. Dimethylarginine dimethylaminohydrolase-2 (DDAH-2) protein is a pivotal molecular for endothelium function. To explore the effects of 5-aza-deoxycytidine (5-aza), a demethylation agent, in hyperhomocysteinemia (hhcy)-related erectile dysfunction (ED) rats, 5-aza (1 mg kg−1) was administrated to Sprague-Dawley hhcy-rats induced by supplemented methionine chow diet. Erectile function, nitric oxide-cyclic guanosine monophosphate (NO-cGMP) levels, expression of DDAH-2 protein and promoter methylation status of DDAH-2 were studied in the corpora cavernosa. We found that supplemented methionine diet induced a high homocysteine level after 6 weeks of treatment. DDAH-2 protein was down-regulated in the corpora cavernosa while the administration of 5-aza up-regulated DDAH-2 expression and restored erectile function. The methionine-fed rats showed high methylation levels of DDAH-2 promoter region while the group treated with 5-aza demonstrated lower-methylation levels when compared to the methionine-fed group. Besides, the administration of 5-aza improved NO and cGMP levels in methionine-fed rats. Therefore, the methylation mechanism involves in ED pathogenesis, and demethylation offers a potential new strategy for ED treatment.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lei-Lei Zhu
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - He-Song Jiang
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hai Chen
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yun Chen
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yu-Tian Dai
- Department of Andrology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
52
|
Tarabay Y, Achour M, Teletin M, Ye T, Teissandier A, Mark M, Bourc'his D, Viville S. Tex19 paralogs are new members of the piRNA pathway controlling retrotransposon suppression. J Cell Sci 2017; 130:1463-1474. [PMID: 28254886 DOI: 10.1242/jcs.188763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Tex19 genes are mammalian specific and duplicated to give Tex19.1 and Tex19.2 in some species, such as the mouse and rat. It has been demonstrated that mutant Tex19.1 males display a variable degree of infertility whereas they all upregulate MMERVK10C transposons in their germ line. In order to study the function of both paralogs in the mouse, we generated and studied Tex19 double knockout (Tex19DKO) mutant mice. Adult Tex19DKO males exhibited a fully penetrant phenotype, similar to the most severe phenotype observed in the single Tex19.1KO mice, with small testes and impaired spermatogenesis, defects in meiotic chromosome synapsis, persistence of DNA double-strand breaks during meiosis, lack of post-meiotic germ cells and upregulation of MMERVK10C expression. The phenotypic similarities to mice with knockouts in the Piwi family genes prompted us to check and then demonstrate, by immunoprecipitation and GST pulldown followed by mass spectrometry analyses, that TEX19 paralogs interact with PIWI proteins and the TEX19 VPTEL domain directly binds Piwi-interacting RNAs (piRNAs) in adult testes. We therefore identified two new members of the postnatal piRNA pathway.
Collapse
Affiliation(s)
- Yara Tarabay
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Mayada Achour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France.,Service de Biologie de la Reproduction, Centre Hospitalier Universitaire, Strasbourg 67000, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Teissandier
- Institut Curie, department of Genetics and Developmental Biology, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France.,Service de Biologie de la Reproduction, Centre Hospitalier Universitaire, Strasbourg 67000, France
| | - Déborah Bourc'his
- Institut Curie, department of Genetics and Developmental Biology, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Stéphane Viville
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 1704/Université de Strasbourg, Illkirch 67404, France .,Centre Hospitalier Universitaire, Strasbourg 67000, France
| |
Collapse
|
53
|
Chatterjee A, Rodger EJ, Morison IM, Eccles MR, Stockwell PA. Tools and Strategies for Analysis of Genome-Wide and Gene-Specific DNA Methylation Patterns. Methods Mol Biol 2017; 1537:249-277. [PMID: 27924599 DOI: 10.1007/978-1-4939-6685-1_15] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA methylation is a stable epigenetic mechanism that has important roles in the normal function of a cell and therefore also in disease etiology. Accurate measurements of normal and altered DNA methylation patterns are important to understand its role in regulating gene expression and cell phenotype. Remarkable progress has been made over the last decade in developing methodologies to investigate DNA methylation. The availability of next-generation sequencing has enabled the profiling of methylation marks at an unprecedented scale. Several methods that were previously used to profile locus-specific methylation have now been upgraded to a genome-wide scale using high-throughput sequencing or array platforms. However, because there are so many techniques available, researchers are faced with the challenge of assessing the potential merits or limitations of each technique and selecting the appropriate method for their analysis. In this review we discuss the strengths and weaknesses of genome-wide and gene-specific analysis tools for interrogating DNA methylation. We particularly focus on the design and analysis strategies involved. This review will provide a guideline for selecting the appropriate methods and tools for large-scale and locus-specific DNA methylation analysis.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.
- Gravida: National Centre for Growth and Development, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
- Gravida: National Centre for Growth and Development, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
- Maurice Wilkins Centre forMolecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9054, New Zealand
| |
Collapse
|
54
|
Okhovat M, Maguire SM, Phelps SM. Methylation of avpr1a in the cortex of wild prairie voles: effects of CpG position and polymorphism. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160646. [PMID: 28280564 PMCID: PMC5319330 DOI: 10.1098/rsos.160646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
DNA methylation can cause stable changes in neuronal gene expression, but we know little about its role in individual differences in the wild. In this study, we focus on the vasopressin 1a receptor (avpr1a), a gene extensively implicated in vertebrate social behaviour, and explore natural variation in DNA methylation, genetic polymorphism and neuronal gene expression among 30 wild prairie voles (Microtus ochrogaster). Examination of CpG density across 8 kb of the locus revealed two distinct CpG islands overlapping promoter and first exon, characterized by few CpG polymorphisms. We used a targeted bisulfite sequencing approach to measure DNA methylation across approximately 3 kb of avpr1a in the retrosplenial cortex, a brain region implicated in male space use and sexual fidelity. We find dramatic variation in methylation across the avrp1a locus, with pronounced diversity near the exon-intron boundary and in a genetically variable putative enhancer within the intron. Among our wild voles, differences in cortical avpr1a expression correlate with DNA methylation in this putative enhancer, but not with the methylation status of the promoter. We also find an unusually high number of polymorphic CpG sites (polyCpGs) in this focal enhancer. One polyCpG within this enhancer (polyCpG 2170) may drive variation in expression either by disrupting transcription factor binding motifs or by changing local DNA methylation and chromatin silencing. Our results contradict some assumptions made within behavioural epigenetics, but are remarkably concordant with genome-wide studies of gene regulation.
Collapse
Affiliation(s)
- M. Okhovat
- Author for correspondence: M. Okhovat e-mail:
| | | | | |
Collapse
|
55
|
Chatterjee A, Rodger EJ, Stockwell PA, Le Mée G, Morison IM. Generating Multiple Base-Resolution DNA Methylomes Using Reduced Representation Bisulfite Sequencing. Methods Mol Biol 2017; 1537:279-298. [PMID: 27924600 DOI: 10.1007/978-1-4939-6685-1_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reduced representation bisulfite sequencing (RRBS) is an effective technique for profiling genome-wide DNA methylation patterns in eukaryotes. RRBS couples size selection, bisulfite conversion, and second-generation sequencing to enrich for CpG-dense regions of the genome. The progressive improvement of second-generation sequencing technologies and reduction in cost provided an opportunity to examine the DNA methylation patterns of multiple genomes. Here, we describe a protocol for sequencing multiple RRBS libraries in a single sequencing reaction to generate base-resolution methylomes. Furthermore, we provide a brief guideline for base-calling and data analysis of multiplexed RRBS libraries. These strategies will be useful to perform large-scale, genome-wide DNA methylation analysis.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.
- Gravida: National Centre for Growth and Development, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gwenn Le Mée
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Ian M Morison
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, P.O. Box 56, Dunedin, 9054, New Zealand.
- Gravida: National Centre for Growth and Development, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand.
| |
Collapse
|
56
|
Okhovat M, Maguire SM, Phelps SM. Methylation of avpr1a in the cortex of wild prairie voles: effects of CpG position and polymorphism. ROYAL SOCIETY OPEN SCIENCE 2017. [PMID: 28280564 DOI: 10.5061/dryad.f8d4r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
DNA methylation can cause stable changes in neuronal gene expression, but we know little about its role in individual differences in the wild. In this study, we focus on the vasopressin 1a receptor (avpr1a), a gene extensively implicated in vertebrate social behaviour, and explore natural variation in DNA methylation, genetic polymorphism and neuronal gene expression among 30 wild prairie voles (Microtus ochrogaster). Examination of CpG density across 8 kb of the locus revealed two distinct CpG islands overlapping promoter and first exon, characterized by few CpG polymorphisms. We used a targeted bisulfite sequencing approach to measure DNA methylation across approximately 3 kb of avpr1a in the retrosplenial cortex, a brain region implicated in male space use and sexual fidelity. We find dramatic variation in methylation across the avrp1a locus, with pronounced diversity near the exon-intron boundary and in a genetically variable putative enhancer within the intron. Among our wild voles, differences in cortical avpr1a expression correlate with DNA methylation in this putative enhancer, but not with the methylation status of the promoter. We also find an unusually high number of polymorphic CpG sites (polyCpGs) in this focal enhancer. One polyCpG within this enhancer (polyCpG 2170) may drive variation in expression either by disrupting transcription factor binding motifs or by changing local DNA methylation and chromatin silencing. Our results contradict some assumptions made within behavioural epigenetics, but are remarkably concordant with genome-wide studies of gene regulation.
Collapse
Affiliation(s)
- M Okhovat
- Department of Integrative Biology , University of Texas at Austin , Austin, TX , USA
| | - S M Maguire
- Department of Integrative Biology , University of Texas at Austin , Austin, TX , USA
| | - S M Phelps
- Department of Integrative Biology , University of Texas at Austin , Austin, TX , USA
| |
Collapse
|
57
|
Jordà M, Díez-Villanueva A, Mallona I, Martín B, Lois S, Barrera V, Esteller M, Vavouri T, Peinado MA. The epigenetic landscape of Alu repeats delineates the structural and functional genomic architecture of colon cancer cells. Genome Res 2016; 27:118-132. [PMID: 27999094 PMCID: PMC5204336 DOI: 10.1101/gr.207522.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022]
Abstract
Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%–4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.
Collapse
Affiliation(s)
- Mireia Jordà
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Anna Díez-Villanueva
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Berta Martín
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Sergi Lois
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Víctor Barrera
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona 08907, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Tanya Vavouri
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Badalona 08916, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Badalona 08916, Catalonia, Spain.,Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona 08916, Catalonia, Spain
| |
Collapse
|
58
|
Singhal SK, Usmani N, Michiels S, Metzger-Filho O, Saini KS, Kovalchuk O, Parliament M. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data. Oncotarget 2016; 7:3002-17. [PMID: 26657508 PMCID: PMC4823086 DOI: 10.18632/oncotarget.6503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region.
Collapse
Affiliation(s)
- Sandeep K Singhal
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Nawaid Usmani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | - Stefan Michiels
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France.,INSERM U1018, CESP, Université Paris-Sud, Villejuif, France
| | - Otto Metzger-Filho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Canada Cancer and Aging Research Laboratories Ltd., Lethbridge, Canada
| | - Matthew Parliament
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
59
|
Marzorati S, Lleo A, Carbone M, Gershwin ME, Invernizzi P. The epigenetics of PBC: The link between genetic susceptibility and environment. Clin Res Hepatol Gastroenterol 2016; 40:650-659. [PMID: 27341761 DOI: 10.1016/j.clinre.2016.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Accepted: 05/13/2016] [Indexed: 02/04/2023]
Abstract
Primary biliary cholangitis (PBC) previously known as primary biliary cirrhosis is an autoimmune disease-associated with progressive cholestasis, the presence of autoreactive T cell and characteristic serological autoantibodies. Genetic and genome-wide association studies (GWAS) have recently shed light on the genetic background of PBC. Besides that some causal nucleotide changes and mechanisms remain largely unknown as suggested for example, by the observation that monozygotic twins have an identical DNA sequence even if presents some phenotypic differences that may be consequences of different exposures to environmental stressors. For this reason, it is believed that epigenetic mechanisms may be involved in PBC pathogenesis, as already demonstrated in many autoimmune diseases and can eventually provide an understanding that has been missed from genetics alone. This review will focus on the most commonly studied epigenetic modifications already demonstrated in PBC; special attention will be paid also to other epigenetic mechanisms so far not demonstrated in PBC patients, but that could increase our understanding in PBC pathogenesis.
Collapse
Affiliation(s)
- Simona Marzorati
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Carbone
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA; Program for Autoimmune Liver Diseases, Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza (MB), Italy.
| |
Collapse
|
60
|
Park JL, Kim HJ, Seo EH, Kwon OH, Lim B, Kim M, Kim SY, Song KS, Kang GH, Kim HJ, Choi BY, Kim YS. Decrease of 5hmC in gastric cancers is associated with TET1 silencing due to with DNA methylation and bivalent histone marks at TET1 CpG island 3'-shore. Oncotarget 2016; 6:37647-62. [PMID: 26462176 PMCID: PMC4741955 DOI: 10.18632/oncotarget.6069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/26/2015] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has shown that the level of 5-hydroxymethylcytosine (5hmC) in chromosomal DNA is aberrantly decreased in a variety of cancers, but whether this decrease is a cause or a consequence of tumorigenesis is unclear. Here we show that, in gastric cancers, the 5hmC decrease correlates with a decrease in ten-eleven translocation 1 (TET1) expression, which is strongly associated with metastasis and poor survival in patients with gastric cancer. In gastric cancer cells, TET1-targeted siRNA induced a decrease in 5hmC, whereas TET1 overexpression induced an increase in 5hmC and reduced cell proliferation, thus correlating decreased 5hmC with gastric carcinogenesis. We also report the epigenetic signatures responsible for regulating TET1 transcription. Methyl-CpG Binding Domain Sequencing and Reduced Representation Bisulfite Sequencing identified unique CpG methylation signatures at the CpG island 3′-shore region located 1.3 kb from the transcription start site of TET1 in gastric tumor cells but not in normal mucosa. The luciferase activity of constructs with a methylated 3′-shore sequence was greatly decreased compared with that of an unmethylated sequence in transformed gastric cancer cells. In gastric cancer cells, dense CpG methylation in the 3′-shore was strongly associated with TET1 silencing and bivalent histone marks. Thus, a decrease in 5hmC may be a cause of gastric tumorigenesis owing to a decrease in TET1 expression through DNA methylation coupled with bivalent marks in the 3′-shore of TET1.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jin Kim
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Eun-Hye Seo
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Oh-Hyung Kwon
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea
| | - Byungho Lim
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea
| | - Mirang Kim
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ja Kim
- Departments of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Bo Youl Choi
- Departments of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yong Sung Kim
- Epigenome Research Center, Genome Institute, KRIBB, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
61
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
62
|
Lövkvist C, Dodd IB, Sneppen K, Haerter JO. DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Res 2016; 44:5123-32. [PMID: 26932361 PMCID: PMC4914085 DOI: 10.1093/nar/gkw124] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/20/2016] [Indexed: 01/01/2023] Open
Abstract
In vertebrates, methylation of cytosine at CpG sequences is implicated in stable and heritable patterns of gene expression. The classical model for inheritance, in which individual CpG sites are independent, provides no explanation for the observed non-random patterns of methylation. We first investigate the exact topology of CpG clustering in the human genome associated to CpG islands. Then, by pooling genomic CpG clusters on the basis of short distances between CpGs within and long distances outside clusters, we show a strong dependence of methylation on the number and density of CpG organization. CpG clusters with fewer, or less densely spaced, CpGs are predominantly hyper-methylated, while larger clusters are predominantly hypo-methylated. Intermediate clusters, however, are either hyper- or hypo-methylated but are rarely found in intermediate methylation states. We develop a model for spatially-dependent collaboration between CpGs, where methylated CpGs recruit methylation enzymes that can act on CpGs over an extended local region, while unmethylated CpGs recruit demethylation enzymes that act more strongly on nearby CpGs. This model can reproduce the effects of CpG clustering on methylation and produces stable and heritable alternative methylation states of CpG clusters, thus providing a coherent model for methylation inheritance and methylation patterning.
Collapse
Affiliation(s)
- Cecilia Lövkvist
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
| | - Ian B Dodd
- Department of Molecular and Cellular Biology, University of Adelaide, SA 5005, Australia
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
| | - Jan O Haerter
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
| |
Collapse
|
63
|
Abstract
Aberrant DNA methylation is a characteristic feature of cancer including blood malignancies. Mutations in the DNA methylation regulators DNMT3A, TET1/2 and IDH1/2 are recurrent in leukemia and lymphoma. Specific and distinct DNA methylation patterns characterize subtypes of AML and lymphoma. Regulatory regions such as promoter CpG islands, CpG shores and enhancers show changes in methylation during transformation. However, the reported poor correlation between changes in methylation and gene expression in many mouse models and human studies reflects the complexity in the precise molecular mechanism for why aberrant DNA methylation promotes malignancies. This review will summarize current concepts regarding the mechanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in cancer prognosis, tumor heterogeneity and relapse.
Collapse
Affiliation(s)
- Maria Guillamot
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Luisa Cimmino
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
64
|
Mallona I, Jordà M, Peinado MA. A knowledgebase of the human Alu repetitive elements. J Biomed Inform 2016; 60:77-83. [PMID: 26827622 DOI: 10.1016/j.jbi.2016.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 01/13/2023]
Abstract
Alu elements are the most abundant retrotransposons in the human genome with more than one million copies. Alu repeats have been reported to participate in multiple processes related with genome regulation and compartmentalization. Moreover, they have been involved in the facilitation of pathological mutations in many diseases, including cancer. The contribution of Alus and other repeats in genomic regulation is often overlooked because their study poses technical and analytical challenges hardly attainable with conventional strategies. Here we propose the integration of ontology-based semantic methods to query a knowledgebase for the human Alus. The knowledgebase for the human Alus leverages Sequence (SO) and Gene Ontologies (GO) and is devoted to address functional and genetic information in the genomic context of the Alus. For each Alu element, the closest gene and transcript are stored, as well their functional annotation according to GO, the state of the chromatin and the transcription factors binding sites inside the Alu. The model uses Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL). As a case of use and to illustrate the utility of the tool, we have evaluated the epigenetic states of Alu repeats associated with gene promoters according to their transcriptional activity. The ontology is easily extendable, offering a scaffold for the inclusion of new experimental data. The RDF/XML formalization is freely available at http://aluontology.sourceforge.net/.
Collapse
Affiliation(s)
- Izaskun Mallona
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus. Ctra. de Can Ruti, camí de les escoles, s/n, 08916 Badalona, Spain.
| | - Mireia Jordà
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus. Ctra. de Can Ruti, camí de les escoles, s/n, 08916 Badalona, Spain
| | - Miguel A Peinado
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC) and Health Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus. Ctra. de Can Ruti, camí de les escoles, s/n, 08916 Badalona, Spain
| |
Collapse
|
65
|
Walter M, Teissandier A, Pérez-Palacios R, Bourc'his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 2016; 5. [PMID: 26814573 PMCID: PMC4769179 DOI: 10.7554/elife.11418] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is extensively remodeled during mammalian gametogenesis and embryogenesis. Most transposons become hypomethylated, raising the question of their regulation in the absence of DNA methylation. To reproduce a rapid and extensive demethylation, we subjected mouse ES cells to chemically defined hypomethylating culture conditions. Surprisingly, we observed two phases of transposon regulation. After an initial burst of de-repression, various transposon families were efficiently re-silenced. This was accompanied by a reconfiguration of the repressive chromatin landscape: while H3K9me3 was stable, H3K9me2 globally disappeared and H3K27me3 accumulated at transposons. Interestingly, we observed that H3K9me3 and H3K27me3 occupy different transposon families or different territories within the same family, defining three functional categories of adaptive chromatin responses to DNA methylation loss. Our work highlights that H3K9me3 and, most importantly, polycomb-mediated H3K27me3 chromatin pathways can secure the control of a large spectrum of transposons in periods of intense DNA methylation change, ensuring longstanding genome stability.
Collapse
Affiliation(s)
- Marius Walter
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,Paris Science Lettres Research University, .,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France
| | - Aurélie Teissandier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France.,Paris Science Lettres Research University, .,Bioinformatics, Biostatistics, Epidemiology and Computational Systems Biology of Cancer, Institut Curie, Paris, France.,Mines Paris Tech, Paris, France.,U900, Inserm, Paris, France
| | - Raquel Pérez-Palacios
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France.,Paris Science Lettres Research University,
| | - Déborah Bourc'his
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France.,Paris Science Lettres Research University,
| |
Collapse
|
66
|
Denisov S, Bazykin G, Favorov A, Mironov A, Gelfand M. Correlated Evolution of Nucleotide Positions within Splice Sites in Mammals. PLoS One 2015; 10:e0144388. [PMID: 26642327 PMCID: PMC4671708 DOI: 10.1371/journal.pone.0144388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/17/2015] [Indexed: 12/26/2022] Open
Abstract
Splice sites (SSs)--short nucleotide sequences flanking introns--are under selection for spliceosome binding, and adhere to consensus sequences. However, non-consensus nucleotides, many of which probably reduce SS performance, are frequent. Little is known about the mechanisms maintaining such apparently suboptimal SSs. Here, we study the correlations between strengths of nucleotides occupying different positions of the same SS. Such correlations may arise due to epistatic interactions between positions (i.e., a situation when the fitness effect of a nucleotide in one position depends on the nucleotide in another position), their evolutionary history, or to other reasons. Within both the intronic and the exonic parts of donor SSs, nucleotides that increase (decrease) SS strength tend to co-occur with other nucleotides increasing (respectively, decreasing) it, consistent with positive epistasis. Between the intronic and exonic parts of donor SSs, the correlations of nucleotide strengths tend to be negative, consistent with negative epistasis. In the course of evolution, substitutions at a donor SS tend to decrease the strength of its exonic part, and either increase or do not change the strength of its intronic part. In acceptor SSs, the situation is more complicated; the correlations between adjacent positions appear to be driven mainly by avoidance of the AG dinucleotide which may cause aberrant splicing. In summary, both the content and the evolution of SSs is shaped by a complex network of interdependences between adjacent nucleotides that respond to a range of sometimes conflicting selective constraints.
Collapse
Affiliation(s)
- Stepan Denisov
- A. A. Kharkevich Insitute for Information Transmission Problems RAS, Moscow, Russia
| | - Georgii Bazykin
- A. A. Kharkevich Insitute for Information Transmission Problems RAS, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Favorov
- Division of Oncology Biostatistics, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- Laboratory of System Biology and Computational Genetics, Department of Computational System Biology, N. I. Vavilov Institute of General Genetics, Moscow, Russia
- Laboratory of Bioinformatics, State Research Institute of Genetics and Selection of Industrial Microorganism (GosNIIGenetika), Moscow, Russia
| | - Andrey Mironov
- A. A. Kharkevich Insitute for Information Transmission Problems RAS, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Gelfand
- A. A. Kharkevich Insitute for Information Transmission Problems RAS, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
67
|
The Fine LINE: Methylation Drawing the Cancer Landscape. BIOMED RESEARCH INTERNATIONAL 2015; 2015:131547. [PMID: 26448926 PMCID: PMC4584040 DOI: 10.1155/2015/131547] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 01/08/2023]
Abstract
LINE-1 (L1) is the most abundant mammalian transposable element that comprises nearly 20% of the genome, and nearly half of the mammalian genome has stemmed from L1-mediated mobilization. Expression and retrotransposition of L1 are suppressed by complex mechanisms, where the key role belongs to DNA methylation. Alterations in L1 methylation may lead to aberrant expression of L1 and have been described in numerous diseases. Accumulating evidence clearly indicates that loss of global DNA methylation observed in cancer development and progression is tightly associated with hypomethylation of L1 elements. Significant progress achieved in the last several years suggests that such parameters as L1 methylation status can be potentially utilized as clinical biomarkers for determination of the disease stage and in predicting the disease-free survival in cancer patients. In this paper, we summarize the current knowledge on L1 methylation, with specific emphasis given to success and challenges on the way of introduction of L1 into clinical practice.
Collapse
|
68
|
Weirick T, Militello G, Müller R, John D, Dimmeler S, Uchida S. The identification and characterization of novel transcripts from RNA-seq data. Brief Bioinform 2015; 17:678-85. [PMID: 26283677 DOI: 10.1093/bib/bbv067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 11/12/2022] Open
Abstract
Owing greatly to the advancement of next-generation sequencing (NGS), the amount of NGS data is increasing rapidly. Although there are many NGS applications, one of the most commonly used techniques 'RNA sequencing (RNA-seq)' is rapidly replacing microarray-based techniques in laboratories around the world. As more and more of such techniques are standardized, allowing technicians to perform these experiments with minimal hands-on time and reduced experimental/operator-dependent biases, the bottleneck of such techniques is clearly visible; that is, data analysis. Further complicating the matter, increasing evidence suggests most of the genome is transcribed into RNA; however, the majority of these RNAs are not translated into proteins. These RNAs that do not become proteins are called 'noncoding RNAs (ncRNAs)'. Although some time has passed since the discovery of ncRNAs, their annotations remain poor, making analysis of RNA-seq data challenging. Here, we examine the current limitations of RNA-seq analysis using case studies focused on the detection of novel transcripts and examination of their characteristics. Finally, we validate the presence of novel transcripts using biological experiments, showing novel transcripts can be accurately identified when a series of filters is applied. In conclusion, novel transcripts that are identified from RNA-seq must be examined carefully before proceeding to biological experiments.
Collapse
|
69
|
Liang KC, Tseng JT, Tsai SJ, Sun HS. Characterization and distribution of repetitive elements in association with genes in the human genome. Comput Biol Chem 2015; 57:29-38. [DOI: 10.1016/j.compbiolchem.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
|
70
|
Grandi FC, Rosser JM, Newkirk SJ, Yin J, Jiang X, Xing Z, Whitmore L, Bashir S, Ivics Z, Izsvák Z, Ye P, Yu YE, An W. Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res 2015; 25:1135-46. [PMID: 25995269 PMCID: PMC4509998 DOI: 10.1101/gr.185132.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
Abstract
Long interspersed elements (LINEs), through both self-mobilization and trans-mobilization of short interspersed elements and processed pseudogenes, have made an indelible impact on the structure and function of the human genome. One consequence is the creation of new CpG islands (CGIs). In fact, more than half of all CGIs in the genome are associated with repetitive DNA, three-quarters of which are derived from retrotransposons. However, little is known about the epigenetic impact of newly inserted CGIs. We utilized a transgenic LINE-1 mouse model and tracked DNA methylation dynamics of individual germline insertions during mouse development. The retrotransposed GFP marker sequence, a strong CGI, is hypomethylated in male germ cells but hypermethylated in somatic tissues, regardless of genomic location. The GFP marker is similarly methylated when delivered into the genome via the Sleeping Beauty DNA transposon, suggesting that the observed methylation pattern may be independent of the mode of insertion. Comparative analyses between insertion- and non-insertion-containing alleles further reveal a graded influence of the retrotransposed CGI on flanking CpG sites, a phenomenon that we described as "sloping shores." Computational analyses of human and mouse methylomic data at single-base resolution confirm that sloping shores are universal for hypomethylated CGIs in sperm and somatic tissues. Additionally, the slope of a hypomethylated CGI can be affected by closely positioned CGI neighbors. Finally, by tracing sloping shore dynamics through embryonic and germ cell reprogramming, we found evidence of bookmarking, a mechanism that likely determines which CGIs will be eventually hyper- or hypomethylated.
Collapse
Affiliation(s)
- Fiorella C Grandi
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - James M Rosser
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Simon J Newkirk
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA; Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, USA
| | - Jun Yin
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Leanne Whitmore
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Sanum Bashir
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, USA
| |
Collapse
|
71
|
Kambayashi S, Minami K, Ogawa Y, Hamaji T, Hwang CC, Igase M, Hiraoka H, Miyama TS, Noguchi S, Baba K, Mizuno T, Okuda M. Expression of O(6)-methylguanine-DNA methyltransferase causes lomustine resistance in canine lymphoma cells. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:201-209. [PMID: 26130852 PMCID: PMC4445512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/19/2014] [Indexed: 06/04/2023]
Abstract
The DNA repair protein O (6)-methylguanine-DNA methyltransferase (MGMT) causes resistance to nitrosoureas in various human cancers. In this study, we analyzed the correlation between canine lymphomas and MGMT in vitro. Two of five canine lymphoma cell lines required higher concentrations of lomustine to inhibit cell growth by 50%, but their sensitivity to the drug increased when they were cultured with an MGMT inhibitor. Fluorometric oligonucleotide assay and real-time polymerase chain reaction of these cell lines revealed MGMT activity and high MGMT mRNA expression, respectively. We analyzed the methylation status of the CpG islands of the canine MGMT gene by the bisulfite-sequencing method. Unlike human cells, the canine lymphoma cell lines did not show significant correlation between methylation status and MGMT suppression levels. Our results suggest that in canine lymphoma MGMT activity may influence sensitivity to nitrosoureas; thus, inhibition of MGMT activity would benefit nitrosourea-resistant patients. Additional studies are necessary to elucidate the mechanism of regulation of MGMT expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Masaru Okuda
- Address all correspondence to Dr. Masaru Okuda; e-mail:
| |
Collapse
|
72
|
Dunn J, Thabet S, Jo H. Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35:1562-9. [PMID: 25953647 DOI: 10.1161/atvbaha.115.305042] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development.
Collapse
Affiliation(s)
- Jessilyn Dunn
- From the Wallace H. Coulter Department of Biomedical Engineering (J.D., S.T., H.J.) and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta
| | - Salim Thabet
- From the Wallace H. Coulter Department of Biomedical Engineering (J.D., S.T., H.J.) and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta
| | - Hanjoong Jo
- From the Wallace H. Coulter Department of Biomedical Engineering (J.D., S.T., H.J.) and Division of Cardiology, Georgia Institute of Technology and Emory University, Atlanta.
| |
Collapse
|
73
|
Chango A, Pogribny IP. Considering maternal dietary modulators for epigenetic regulation and programming of the fetal epigenome. Nutrients 2015; 7:2748-70. [PMID: 25875118 PMCID: PMC4425171 DOI: 10.3390/nu7042748] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/16/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Fetal life is characterized by a tremendous plasticity and ability to respond to various environmental and lifestyle factors, including maternal nutrition. Identification of the role of dietary factors that can modulate and reshape the cellular epigenome during development, including methyl group donors (e.g., folate, choline) and bioactive compounds (e.g., polyphenols) is of great importance; however, there is insufficient knowledge of a particular effect of each type of modulator and/or their combination on fetal life. To enhance the quality and safety of food products for proper fetal health and disease prevention in later life, a better understanding of the underlying mechanisms of dietary epigenetic modulators during the critical prenatal period is necessary. This review focuses on the influence of maternal dietary components on DNA methylation, histone modification, and microRNAs, and summarizes current knowledge of the effect and importance of dietary components on epigenetic mechanisms that control the proper expression of genetic information. Evidence reveals that some components in the maternal diet can directly or indirectly affect epigenetic mechanisms. Understanding the underlying mechanisms of how early-life nutritional environment affects the epigenome during development is of great importance for the successful prevention of adult chronic diseases through optimal maternal nutrition.
Collapse
Affiliation(s)
- Abalo Chango
- Polytechnic Institute LaSalle Beauvais, Department of Nutrition and Health Sciences, EGEAL UP:2012.10.101, F-60026 Beauvais Cedex, France.
| | - Igor P Pogribny
- Division of Biochemical Toxicology, Food and Drug Administration National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
74
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Environmental Health Sciences, Mailman School of Public Health and Cancer Center of Columbia University, Room 1608, 630 West 168th Street, New York, NY, 10032, USA,
| |
Collapse
|
75
|
Shigeyasu K, Nagasaka T, Mori Y, Yokomichi N, Kawai T, Fuji T, Kimura K, Umeda Y, Kagawa S, Goel A, Fujiwara T. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer. PLoS One 2015; 10:e0130409. [PMID: 26121593 PMCID: PMC4488282 DOI: 10.1371/journal.pone.0130409] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown. METHODS This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox's proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS). RESULTS By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis. CONCLUSIONS CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer.
Collapse
Affiliation(s)
- Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, United States of America
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- * E-mail: (TN); (AG)
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Naosuke Yokomichi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Takashi Kawai
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Tomokazu Fuji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Keisuke Kimura
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ajay Goel
- Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, United States of America
- * E-mail: (TN); (AG)
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
76
|
Corley MJ, Zhang W, Zheng X, Lum-Jones A, Maunakea AK. Semiconductor-based sequencing of genome-wide DNA methylation states. Epigenetics 2015; 10:153-66. [PMID: 25602802 PMCID: PMC4622511 DOI: 10.1080/15592294.2014.1003747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022] Open
Abstract
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.
Collapse
Affiliation(s)
- Michael J Corley
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Wei Zhang
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Xin Zheng
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Alika K Maunakea
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| |
Collapse
|
77
|
|
78
|
Jiang N, Wang L, Chen J, Wang L, Leach L, Luo Z. Conserved and divergent patterns of DNA methylation in higher vertebrates. Genome Biol Evol 2014; 6:2998-3014. [PMID: 25355807 PMCID: PMC4255770 DOI: 10.1093/gbe/evu238] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 02/07/2023] Open
Abstract
DNA methylation in the genome plays a fundamental role in the regulation of gene expression and is widespread in the genome of eukaryotic species. For example, in higher vertebrates, there is a "global" methylation pattern involving complete methylation of CpG sites genome-wide, except in promoter regions that are typically enriched for CpG dinucleotides, or so called "CpG islands." Here, we comprehensively examined and compared the distribution of CpG sites within ten model eukaryotic species and linked the observed patterns to the role of DNA methylation in controlling gene transcription. The analysis revealed two distinct but conserved methylation patterns for gene promoters in human and mouse genomes, involving genes with distinct distributions of promoter CpGs and gene expression patterns. Comparative analysis with four other higher vertebrates revealed that the primary regulatory role of the DNA methylation system is highly conserved in higher vertebrates.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Biostatistics & Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China School of Biosciences, The University of Birmingham, Birmingham B15 2TT United Kingdom
| | - Lin Wang
- Department of Biostatistics & Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Chen
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT United Kingdom
| | - Luwen Wang
- Department of Biostatistics & Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China
| | - Lindsey Leach
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT United Kingdom
| | - Zewei Luo
- Department of Biostatistics & Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, China School of Biosciences, The University of Birmingham, Birmingham B15 2TT United Kingdom
| |
Collapse
|
79
|
Schneider E, El Hajj N, Haaf T. Epigenetic information from ancient DNA provides new insights into human evolution. Commentary on Gokhman D et al. (2014): Reconstructing the DNA methylation maps of the Neanderthal and the Denisovan. Science 344:523-527. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:169-171. [PMID: 25277105 DOI: 10.1159/000365650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Eberhard Schneider
- Institute of Human Genetics, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
80
|
Jeong M, Goodell MA. New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Exp Hematol 2014; 42:609-17. [PMID: 24993071 PMCID: PMC4137036 DOI: 10.1016/j.exphem.2014.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 01/10/2023]
Abstract
DNA methylation is a well-studied epigenetic modification essential for efficient cellular differentiation. Aberrant DNA methylation patterns are a characteristic feature of cancer, including myeloid malignancies such as acute myeloid leukemia. Recurrent mutations in DNA-modifying enzymes were identified in acute myeloid leukemia and linked to distinct DNA methylation signatures. In addition, discovery of Tet enzymes provided new mechanisms for the reversal of DNA methylation. Advances in base-resolution profiling of DNA methylation have enabled a more comprehensive understanding of the methylome landscape in the genome. This review will summarize and discuss the key questions in the function of DNA methylation in the hematopoietic system, including where and how DNA methylation regulates diverse biological processes in the genome as elucidated by recent studies.
Collapse
Affiliation(s)
- Mira Jeong
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Department of Pediatrics and Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
81
|
Deplus R, Blanchon L, Rajavelu A, Boukaba A, Defrance M, Luciani J, Rothé F, Dedeurwaerder S, Denis H, Brinkman AB, Simmer F, Müller F, Bertin B, Berdasco M, Putmans P, Calonne E, Litchfield DW, de Launoit Y, Jurkowski TP, Stunnenberg HG, Bock C, Sotiriou C, Fraga MF, Esteller M, Jeltsch A, Fuks F. Regulation of DNA methylation patterns by CK2-mediated phosphorylation of Dnmt3a. Cell Rep 2014; 8:743-53. [PMID: 25066127 DOI: 10.1016/j.celrep.2014.06.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 05/06/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022] Open
Abstract
DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.
Collapse
Affiliation(s)
- Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Loïc Blanchon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Arumugam Rajavelu
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Abdelhalim Boukaba
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Judith Luciani
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory J.C. Heuson, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Hélène Denis
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Arie B Brinkman
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Femke Simmer
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Fabian Müller
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Benjamin Bertin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Maria Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Catalonia, Spain
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistery, University of Western Ontario, London ON N6A 5C1, Canada
| | - Yvan de Launoit
- UMR 8161, CNRS, Institut Pasteur de Lille, Universités de Lille 1 et 2, Institut de Biologie de Lille, 1 rue Calmette, 59021 Lille, France
| | - Tomasz P Jurkowski
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Hendrik G Stunnenberg
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.C. Heuson, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Mario F Fraga
- Centro Nacional de Biotecnología (CNB-CSIC) and Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias, 33006-Oviedo, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| | - Albert Jeltsch
- Institute of Biochemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
82
|
He S, Pham MH, Pease M, Zada G, Giannotta SL, Wang K, Mack WJ. A review of epigenetic and gene expression alterations associated with intracranial meningiomas. Neurosurg Focus 2014; 35:E5. [PMID: 24289130 DOI: 10.3171/2013.10.focus13360] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT A more comprehensive understanding of the epigenetic abnormalities associated with meningioma tumorigenesis, growth, and invasion may provide useful targets for molecular classification and development of targeted therapies for meningiomas. METHODS The authors performed a review of the current literature to identify the epigenetic modifications associated with the formation and/or progression of meningiomas. RESULTS Several epigenomic alterations, mainly pertaining to DNA methylation, have been associated with meningiomas. Hypermethylation of TIMP3 inactivates its tumor suppression activity while CDKN2 (p14[ARF]) and TP73 gene hypermethylation and HIST1H1c upregulation interact with the p53 regulation of cell cycle control. Other factors such as HOX, IGF, WNK2, and TGF-β epigenetic modifications allow either upregulation or downregulation of critical pathways for meningioma development, progression, and recurrence. CONCLUSIONS Genome-wide methylation profiling demonstrated that global hypomethylation correlates with tumor grades and severity. Identification of additional epigenetic changes, such as histone modification and higher-order chromosomal structure, may allow for a more thorough understanding of tumorigenesis and enable future individualized treatment strategies for meningiomas.
Collapse
|
83
|
Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan C, Fan Y, Jordan IK, Jo H. Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest 2014; 124:3187-99. [PMID: 24865430 PMCID: PMC4071393 DOI: 10.1172/jci74792] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/28/2014] [Indexed: 12/17/2022] Open
Abstract
In atherosclerosis, plaques preferentially develop in arterial regions of disturbed blood flow (d-flow), which alters endothelial gene expression and function. Here, we determined that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase-dependent (DNMT-dependent) manner. Induction of d-flow by partial carotid ligation surgery in a murine model induced DNMT1 in arterial endothelium. In cultured endothelial cells, DNMT1 was enhanced by oscillatory shear stress (OS), and reduction of DNMT with either the inhibitor 5-aza-2'-deoxycytidine (5Aza) or siRNA markedly reduced OS-induced endothelial inflammation. Moreover, administration of 5Aza reduced lesion formation in 2 mouse models of atherosclerosis. Using both reduced representation bisulfite sequencing (RRBS) and microarray, we determined that d-flow in the carotid artery resulted in hypermethylation within the promoters of 11 mechanosensitive genes and that 5Aza treatment restored normal methylation patterns. Of the identified genes, HoxA5 and Klf3 encode transcription factors that contain cAMP response elements, suggesting that the methylation status of these loci could serve as a mechanosensitive master switch in gene expression. Together, our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation
- Decitabine
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Epigenesis, Genetic
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Human Umbilical Vein Endothelial Cells
- Humans
- Kruppel-Like Transcription Factors/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphoproteins/genetics
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/physiopathology
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regional Blood Flow
- Stress, Mechanical
- Transcription Factors
Collapse
Affiliation(s)
- Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Haiwei Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Soyeon Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daudi Jjingo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ryan Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Chan Woo Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Inhwan Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong Ju Son
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Chenyi Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Yuhong Fan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - I. King Jordan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, School of Biology, Georgia Institute of Technology, and Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
84
|
McNally B, Linder M, Valdes R. Epigenetic primer for diagnostic applications: a window into personalized medicine. Per Med 2014; 11:323-337. [DOI: 10.2217/pme.14.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic testing, primarily in the form of DNA methylation analysis, is currently being used in healthcare settings to help identify and manage disease conditions and to develop and select drugs that specifically target epigenetic machinery. Yet, the clinical application of epigenetic analysis is still in its infancy. With a number of large-scale national and international epigenomic consortia projects in progress to identify tissue-specific epigenomes in normal and disease conditions, we are now poised for a new era of understanding disease processes based upon genetic changes that do not involve alterations to the DNA sequence. The developing epigenetic knowledge base will significantly advance the practice of personalized medicine and precision therapeutics. In this article, we provide a primer on the fundamentals of epigenetics with an emphasis on DNA methylation and review the prospective uses of epigenetic testing in advancing healthcare.
Collapse
Affiliation(s)
| | - Mark Linder
- PGXL Laboratories, Louisville, KY 40202, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, MDR Building, 511 S Flloyd Street, Room 222, Louisville KY 40292, USA
| | - Roland Valdes
- PGXL Laboratories, Louisville, KY 40202, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, MDR Building, 511 S Flloyd Street, Room 222, Louisville KY 40292, USA
| |
Collapse
|
85
|
Nagarajan RP, Zhang B, Bell RJ, Johnson BE, Olshen AB, Sundaram V, Li D, Graham AE, Diaz A, Fouse SD, Smirnov I, Song J, Paris PL, Wang T, Costello JF. Recurrent epimutations activate gene body promoters in primary glioblastoma. Genome Res 2014; 24:761-74. [PMID: 24709822 PMCID: PMC4009606 DOI: 10.1101/gr.164707.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023]
Abstract
Aberrant DNA hypomethylation may play an important role in the growth rate of glioblastoma (GBM), but the functional impact on transcription remains poorly understood. We assayed the GBM methylome with MeDIP-seq and MRE-seq, adjusting for copy number differences, in a small set of non-glioma CpG island methylator phenotype (non-G-CIMP) primary tumors. Recurrent hypomethylated loci were enriched within a region of chromosome 5p15 that is specified as a cancer amplicon and also encompasses TERT, encoding telomerase reverse transcriptase, which plays a critical role in tumorigenesis. Overall, 76 gene body promoters were recurrently hypomethylated, including TERT and the oncogenes GLI3 and TP73. Recurring hypomethylation also affected previously unannotated alternative promoters, and luciferase reporter assays for three of four of these promoters confirmed strong promoter activity in GBM cells. Histone H3 lysine 4 trimethylation (H3K4me3) ChIP-seq on tissue from the GBMs uncovered peaks that coincide precisely with tumor-specific decrease of DNA methylation at 200 loci, 133 of which are in gene bodies. Detailed investigation of TP73 and TERT gene body hypomethylation demonstrated increased expression of corresponding alternate transcripts, which in TP73 encodes a truncated p73 protein with oncogenic function and in TERT encodes a putative reverse transcriptase-null protein. Our findings suggest that recurring gene body promoter hypomethylation events, along with histone H3K4 trimethylation, alter the transcriptional landscape of GBM through the activation of a limited number of normally silenced promoters within gene bodies, in at least one case leading to expression of an oncogenic protein.
Collapse
Affiliation(s)
- Raman P. Nagarajan
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Bo Zhang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Robert J.A. Bell
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Brett E. Johnson
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Adam B. Olshen
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Vasavi Sundaram
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Ashley E. Graham
- Department of Microbiology and Immunology, University of California San Francisco, California 94143, USA
| | - Aaron Diaz
- Institute for Human Genetics, University of California San Francisco, California 94143, USA
| | - Shaun D. Fouse
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Ivan Smirnov
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Jun Song
- Institute for Human Genetics, University of California San Francisco, California 94143, USA
| | - Pamela L. Paris
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Joseph F. Costello
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California 94143, USA
| |
Collapse
|
86
|
Lai RK, Chen Y, Guan X, Nousome D, Sharma C, Canoll P, Bruce J, Sloan AE, Cortes E, Vonsattel JP, Su T, Delgado-Cruzata L, Gurvich I, Santella RM, Ostrom Q, Lee A, Gregersen P, Barnholtz-Sloan J. Genome-wide methylation analyses in glioblastoma multiforme. PLoS One 2014; 9:e89376. [PMID: 24586730 PMCID: PMC3931727 DOI: 10.1371/journal.pone.0089376] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/20/2014] [Indexed: 01/30/2023] Open
Abstract
Few studies had investigated genome-wide methylation in glioblastoma multiforme (GBM). Our goals were to study differential methylation across the genome in gene promoters using an array-based method, as well as repetitive elements using surrogate global methylation markers. The discovery sample set for this study consisted of 54 GBM from Columbia University and Case Western Reserve University, and 24 brain controls from the New York Brain Bank. We assembled a validation dataset using methylation data of 162 TCGA GBM and 140 brain controls from dbGAP. HumanMethylation27 Analysis Bead-Chips (Illumina) were used to interrogate 26,486 informative CpG sites in both the discovery and validation datasets. Global methylation levels were assessed by analysis of L1 retrotransposon (LINE1), 5 methyl-deoxycytidine (5m-dC) and 5 hydroxylmethyl-deoxycytidine (5hm-dC) in the discovery dataset. We validated a total of 1548 CpG sites (1307 genes) that were differentially methylated in GBM compared to controls. There were more than twice as many hypomethylated genes as hypermethylated ones. Both the discovery and validation datasets found 5 tumor methylation classes. Pathway analyses showed that the top ten pathways in hypomethylated genes were all related to functions of innate and acquired immunities. Among hypermethylated pathways, transcriptional regulatory network in embryonic stem cells was the most significant. In the study of global methylation markers, 5m-dC level was the best discriminant among methylation classes, whereas in survival analyses, high level of LINE1 methylation was an independent, favorable prognostic factor in the discovery dataset. Based on a pathway approach, hypermethylation in genes that control stem cell differentiation were significant, poor prognostic factors of overall survival in both the discovery and validation datasets. Approaches that targeted these methylated genes may be a future therapeutic goal.
Collapse
Affiliation(s)
- Rose K. Lai
- Departments of Neurology, Neurosurgery and Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaowei Guan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Darryl Nousome
- Departments of Neurology, Neurosurgery and Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Charu Sharma
- Department of Radiation Oncology, Columbia University, New York, New York, United States of America
| | - Peter Canoll
- Departments of Pathology, Columbia University, New York, New York, United States of America
| | - Jeffrey Bruce
- Departments of Neurosurgery, Columbia University & Bartoli Brain Tumor Research Laboratory, Columbia University, New York, New York, United States of America
| | - Andrew E. Sloan
- Department of Neurological Surgery, University Hospitals-Case Medical Center, Case Western Reserve University, United States of America
| | - Etty Cortes
- New York Brain Bank, Columbia University, New York, New York, United States of America
| | - Jean-Paul Vonsattel
- Departments of Pathology, Columbia University, New York, New York, United States of America
- New York Brain Bank, Columbia University, New York, New York, United States of America
| | - Tao Su
- Pathology Core, Herbert Irving Cancer Center, Columbia University, New York, New York, United States of America
| | - Lissette Delgado-Cruzata
- Department of Environmental Health Sciences, Columbia University & Biomarker Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Irina Gurvich
- Department of Environmental Health Sciences, Columbia University & Biomarker Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Regina M. Santella
- Department of Environmental Health Sciences, Columbia University & Biomarker Core, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, United States of America
| | - Quinn Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Annette Lee
- Feinstein Institute of Medical Genetics, North Shore University Hospital, Manhasset, New York, United States of America
| | - Peter Gregersen
- Feinstein Institute of Medical Genetics, North Shore University Hospital, Manhasset, New York, United States of America
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
87
|
Holly AC, Pilling LC, Hernandez D, Lee BP, Singleton A, Ferrucci L, Melzer D, Harries LW. Splicing factor 3B1 hypomethylation is associated with altered SF3B1 transcript expression in older humans. Mech Ageing Dev 2014; 135:50-6. [PMID: 24463145 DOI: 10.1016/j.mad.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 02/01/2023]
Abstract
Ageing in man is associated with changes to the splicing factor pool. A proportion of splicing factors are regulated during ageing by mechanisms involving the Ataxia Telangiectasia Mutated (ATM) gene, but the factors that determine the remaining proportion have yet to be identified. DNA methylation is known to be an important regulatory mechanism of gene expression. We assessed age-associated methylation and expression levels for 27 splicing factor genes, in peripheral blood samples from the InCHIANTI study. Examination of splicing patterns at specific loci was examined in a second cohort, the Exeter 10000 study. 27/502 methylation probes in 17 different genes were associated with age. Most changes were not associated with transcript expression levels or splicing patterns, but hypomethylation of the SF3B1 promoter region was found to mediate 53% of the relationship between age and transcript expression at this locus (p=0.02). DNA methylation does not appear to play a major role in regulation of the splicing factors, but changes in SF3B1 expression may be attributable to promoter hypomethylation at this locus. SF3B1 encodes a critical component of the U2 snRNP; altered expression of this gene may therefore contribute to the loss of regulated mRNA splicing that occurs with age.
Collapse
Affiliation(s)
- Alice C Holly
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Luke C Pilling
- Epidemiology and Public Health, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Luigi Ferrucci
- National Institute on Aging, Clinical Research Branch, Harbor Hospital, Baltimore, MD 21225, USA
| | - David Melzer
- Epidemiology and Public Health, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK.
| |
Collapse
|
88
|
O'Donnell AH, Edwards JR, Rollins RA, Vander Kraats ND, Su T, Hibshoosh HH, Bestor TH. Methylation Abnormalities in Mammary Carcinoma: The Methylation Suicide Hypothesis. ACTA ACUST UNITED AC 2014; 5:1311-1324. [PMID: 25960928 PMCID: PMC4423420 DOI: 10.4236/jct.2014.514131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Promoter silencing by ectopic de novo methylation of tumor suppressor genes has been proposed as comparable or equivalent to inactivating mutations as a factor in carcinogenesis. However, this hypotheses had not previously been tested by high resolution, high-coverage whole-genome methylation profiling in primary carcinomas. We have determined the genomic methylation status of a series of primary mammary carcinomas and matched control tissues by examination of more than 2.7 billion CpG dinucleotides. Most of the tumors showed variable losses of DNA methylation from all sequence compartments, but increases in promoter methylation were infrequent, very small in extent, and were observed largely at CpG-poor promoters. De novo methylation at the promoters of proto-oncogenes and tumor suppressor genes occurred at approximately the same frequency. The findings indicate that tumor suppressor silencing by de novo methylation is much less common than currently believed. We put forward a hypothesis under which the demethylation commonly observed in carcinomas is a manifestation of a defensive system that kills incipient cancer cells.
Collapse
Affiliation(s)
- Anne H O'Donnell
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY, USA ; Division of Genetics, Boston Children's Hospital, Boston, MA, USA
| | - John R Edwards
- Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Rollins
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY, USA ; Pfizer BioTherapeutics Research and Development, Center for Integrative Biology and Biotherapeutics, Pearl River, NY, USA
| | - Nathan D Vander Kraats
- Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tao Su
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Hanina H Hibshoosh
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Timothy H Bestor
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| |
Collapse
|
89
|
Medici V, Shibata NM, Kharbanda KK, Islam MS, Keen CL, Kim K, Tillman B, French SW, Halsted CH, LaSalle JM. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics 2013; 9:286-96. [PMID: 24220304 DOI: 10.4161/epi.27110] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P<0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine; Division of Gastroenterology and Hepatology; University of California Davis; Davis, CA USA
| | - Noreene M Shibata
- Department of Internal Medicine; Division of Gastroenterology and Hepatology; University of California Davis; Davis, CA USA
| | - Kusum K Kharbanda
- Research Service; Veterans Affairs Nebraska-Western Iowa Health Care System; Omaha, NE USA
| | - Mohammad S Islam
- Department of Medical Microbiology and Immunology; Genome Center; MIND Institute; University of California Davis; Davis, CA USA
| | - Carl L Keen
- Department of Nutrition; University of California Davis; Davis, CA USA
| | - Kyoungmi Kim
- Department of Public Health Sciences; Division of Biostatistics; University of California Davis; Davis, CA USA
| | - Brittany Tillman
- Department of Pathology; UCLA/Harbor Medical Center; Torrance, CA USA
| | - Samuel W French
- Department of Pathology; UCLA/Harbor Medical Center; Torrance, CA USA
| | - Charles H Halsted
- Department of Internal Medicine; Division of Gastroenterology and Hepatology; University of California Davis; Davis, CA USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology; Genome Center; MIND Institute; University of California Davis; Davis, CA USA
| |
Collapse
|
90
|
Abstract
Metastasis is an inefficient process and most cancer cells fail to colonize secondary sites. There are several possible reasons for this. First, the nature of the infiltrating cells is important as a small population of cancer stem cells has been shown to have exclusive metastasis-initiating potential. Secondly, supportive niches are required to promote the outgrowth of disseminated tumour cells. Such niches are either produced prior to the arrival of cancer cells in the target organ or are induced ad hoc upon cell infiltration. Components of the extracellular matrix (ECM) have been found to play a role in establishing these niches. This has highlighted the importance of the ECM for metastatic progression, and suggests that such components may provide alternative targets for treatment of metastatic disease.
Collapse
Affiliation(s)
- A Santamaria-Martínez
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), National Center of Competence in Research (NCCR) 'Molecular Oncology', Lausanne, Switzerland
| | | |
Collapse
|
91
|
Chatterjee A, Ozaki Y, Stockwell PA, Horsfield JA, Morison IM, Nakagawa S. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing. Epigenetics 2013; 8:979-89. [PMID: 23975027 PMCID: PMC3883775 DOI: 10.4161/epi.25797] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology; Dunedin School of Medicine; University of Otago; Dunedin, New Zealand; Gravida: National Centre for Growth and Development; Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
92
|
Vanderkraats ND, Hiken JF, Decker KF, Edwards JR. Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes. Nucleic Acids Res 2013; 41:6816-27. [PMID: 23748561 PMCID: PMC3737560 DOI: 10.1093/nar/gkt482] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methylation of the CpG-rich region (CpG island) overlapping a gene’s promoter is a generally accepted mechanism for silencing expression. While recent technological advances have enabled measurement of DNA methylation and expression changes genome-wide, only modest correlations between differential methylation at gene promoters and expression have been found. We hypothesize that stronger associations are not observed because existing analysis methods oversimplify their representation of the data and do not capture the diversity of existing methylation patterns. Recently, other patterns such as CpG island shore methylation and long partially hypomethylated domains have also been linked with gene silencing. Here, we detail a new approach for discovering differential methylation patterns associated with expression change using genome-wide high-resolution methylation data: we represent differential methylation as an interpolated curve, or signature, and then identify groups of genes with similarly shaped signatures and corresponding expression changes. Our technique uncovers a diverse set of patterns that are conserved across embryonic stem cell and cancer data sets. Overall, we find strong associations between these methylation patterns and expression. We further show that an extension of our method also outperforms other approaches by generating a longer list of genes with higher quality associations between differential methylation and expression.
Collapse
Affiliation(s)
- Nathan D Vanderkraats
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8220, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
93
|
LaSalle JM, Powell WT, Yasui DH. Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 2013; 36:460-70. [PMID: 23731492 DOI: 10.1016/j.tins.2013.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms convey information above and beyond the sequence of DNA, so it is predicted that they are critical in the complex regulation of brain development and explain the long-lived effects of environmental cues on pre- and early post-natal brain development. Neurons have a complex epigenetic landscape that changes dynamically with transcriptional activity in early life. Here, we summarize progress in our understanding of the discrete layers of the dynamic methylome, chromatin proteome, noncoding RNAs, chromatin loops, and long-range interactions in neuronal development and maturation. Many neurodevelopmental disorders have genetic alterations in these epigenetic modifications or regulators, and these human genetics lessons have demonstrated the importance of these epigenetic players and the epigenetic layers that transcriptional events lay down in the early brain.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| | | | | |
Collapse
|
94
|
LaSalle JM. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet 2013; 58:396-401. [PMID: 23677056 DOI: 10.1038/jhg.2013.49] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) have been increasing in prevalence over the last two decades, primarily because of increased awareness and diagnosis. However, autism is clearly a complex human genetic disorder that involves interactions between genes and environment. Epigenetic mechanisms, such as DNA methylation, act at the interface of genetic and environmental risk and protective factors. Advancements in genome-wide sequencing has broadened the view of the human methylome and revealed the organization of the human genome into large-scale methylation domains that footprint over neurologically important genes involved in embryonic development. Future integrative epigenomic analyses of genetic risk factors with environmental exposures and methylome analyses are expected to be important for understanding the complex etiology of ASD.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, CA, USA.
| |
Collapse
|
95
|
Choi WI, Jeon BN, Yoon JH, Koh DI, Kim MH, Yu MY, Lee KM, Kim Y, Kim K, Hur SS, Lee CE, Kim KS, Hur MW. The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation. Nucleic Acids Res 2013; 41:6403-20. [PMID: 23658227 PMCID: PMC3711425 DOI: 10.1093/nar/gkt359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG–binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex– and the NuRD complex–associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation.
Collapse
Affiliation(s)
- Won-Il Choi
- Department of Biochemistry and Molecular Biology, BK21 Project for Medical Science, Severance Biomedical Research Institute, Yonsei University School of Medicine, 50 Yonsei-Ro, SeoDaeMoon-Gu, Seoul, 120-752, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tian X, Diaz FJ. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev Biol 2013; 376:51-61. [PMID: 23348678 DOI: 10.1016/j.ydbio.2013.01.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 01/09/2023]
Abstract
Recent findings show that zinc is an important factor necessary for regulating the meiotic cell cycle and ovulation. However, the role of zinc in promoting oocyte quality and developmental potential is not known. Using an in vivo model of acute dietary zinc deficiency, we show that feeding a zinc deficient diet (ZDD) for 3-5 days before ovulation (preconception) dramatically disrupts oocyte chromatin methylation and preimplantation development. There was a dramatic decrease in histone H3K4 trimethylation and global DNA methylation in zinc deficient oocytes. Moreover, there was a 3-20 fold increase in transcript abundance of repetitive elements (Iap, Line1, Sineb1, Sineb2), but a decrease in Gdf9, Zp3 and Figla mRNA. Only 53% and 8% of mature eggs reached the 2-cell stage after IVF in animals receiving a 3 and 5 days ZDD, respectively, while a 5 day ZDD in vivo reduced the proportion of 2-cells to 49%. In vivo fertilized 2-cell embryos cultured in vitro formed fewer (38%) blastocysts compared to control embryos (74%). Likewise, fewer blastocyst and expanded blastocyst were collected from the reproductive tract of zinc deficient animals on day 3.5 of pregnancy. This could be due to a decrease in Igf2 and H19 mRNA in ZDD blastocyst. Supplementation with a methyl donor (SAM) during IVM restored histone H3K4me3 and doubled the IVF success rate from 17% to 43% in oocytes from zinc deficient animals. Thus, the terminal period of oocyte development is extremely sensitive to perturbation in dietary zinc availability.
Collapse
Affiliation(s)
- X Tian
- Center for Reproductive Biology and Health and Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
97
|
Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:215-32. [PMID: 22956504 PMCID: PMC4281087 DOI: 10.1007/978-1-4419-9967-2_11] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumorigenesis, a complex and multifactorial progressive process of transformation of normal cells into malignant cells, is characterized by the accumulation of multiple cancer-specific heritable phenotypes triggered by the mutational and/or non-mutational (i.e., epigenetic) events. Accumulating evidence suggests that environmental and occupational exposures to natural substances, as well as man-made chemical and physical agents, play a causative role in human cancer. In a broad sense, carcinogenesis may be induced through either genotoxic or non-genotoxic mechanisms; however, both genotoxic and non-genotoxic carcinogens also cause prominent epigenetic changes. This review presents current evidence of the epigenetic alterations induced by various chemical carcinogens, including arsenic, 1,3-butadine, and pharmaceutical and biological agents, and highlights the potential for epigenetic changes to serve as markers for carcinogen exposure and cancer risk assessment.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
98
|
Oh JE, Chambwe N, Klein S, Gal J, Andrews S, Gleason G, Shaknovich R, Melnick A, Campagne F, Toth M. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment. Transl Psychiatry 2013; 3:e218. [PMID: 23340501 PMCID: PMC3566713 DOI: 10.1038/tp.2012.130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Early life adversity, including adverse gestational and postpartum maternal environment, is a contributing factor in the development of autism, attention deficit hyperactivity disorder (ADHD), anxiety and depression but little is known about the underlying molecular mechanism. In a model of gestational maternal adversity that leads to innate anxiety, increased stress reactivity and impaired vocal communication in the offspring, we asked if a specific DNA methylation signature is associated with the emergence of the behavioral phenotype. Genome-wide DNA methylation analyses identified 2.3% of CpGs as differentially methylated (that is, differentially methylated sites, DMSs) by the adverse environment in ventral-hippocampal granule cells, neurons that can be linked to the anxiety phenotype. DMSs were typically clustered and these clusters were preferentially located at gene bodies. Although CpGs are typically either highly methylated or unmethylated, DMSs had an intermediate (20-80%) methylation level that may contribute to their sensitivity to environmental adversity. The adverse maternal environment resulted in either hyper or hypomethylation at DMSs. Clusters of DMSs were enriched in genes that encode cell adhesion molecules and neurotransmitter receptors; some of which were also downregulated, indicating multiple functional deficits at the synapse in adversity. Pharmacological and genetic evidence links many of these genes to anxiety.
Collapse
Affiliation(s)
- J-e Oh
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA,Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. E-mail: or
| | - N Chambwe
- Department of Physiology and Biophysics and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - S Klein
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - J Gal
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - S Andrews
- Department of Physiology and Biophysics and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - G Gleason
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - R Shaknovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - A Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - F Campagne
- Department of Physiology and Biophysics and HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - M Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA,Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA. E-mail: or
| |
Collapse
|
99
|
Zovkic IB, Meadows JP, Kaas GA, Sweatt JD. Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Front Psychiatry 2013; 4:60. [PMID: 23805109 PMCID: PMC3693073 DOI: 10.3389/fpsyt.2013.00060] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham , Birmingham, AL , USA
| | | | | | | |
Collapse
|
100
|
Absence of global hypomethylation in promoter hypermethylated Mixed Lineage Leukaemia-rearranged infant acute lymphoblastic leukaemia. Eur J Cancer 2013; 49:175-84. [DOI: 10.1016/j.ejca.2012.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 02/08/2023]
|