51
|
Murugan NJ, Kaltman DH, Jin PH, Chien M, Martinez R, Nguyen CQ, Kane A, Novak R, Ingber DE, Levin M. Mechanosensation Mediates Long-Range Spatial Decision-Making in an Aneural Organism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008161. [PMID: 34263487 DOI: 10.1002/adma.202008161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/14/2021] [Indexed: 05/25/2023]
Abstract
The unicellular protist Physarum polycephalum is an important emerging model for understanding how aneural organisms process information toward adaptive behavior. Here, it is revealed that Physarum can use mechanosensation to reliably make decisions about distant objects in its environment, preferentially growing in the direction of heavier, substrate-deforming, but chemically inert masses. This long-range sensing is abolished by gentle rhythmic mechanical disruption, changing substrate stiffness, or the addition of an inhibitor of mechanosensitive transient receptor potential channels. Additionally, it is demonstrated that Physarum does not respond to the absolute magnitude of strain. Computational modeling reveales that Physarum may perform this calculation by sensing the fraction of its perimeter that is distorted above a threshold substrate strain-a fundamentally novel method of mechanosensation. Using its body as both a distributed sensor array and computational substrate, this aneural organism leverages its unique morphology to make long-range decisions. Together, these data identify a surprising behavioral preference relying on biomechanical features and quantitatively characterize how the Physarum exploits physics to adaptively regulate its growth and shape.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Daniel H Kaltman
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Paul H Jin
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Melanie Chien
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Ramses Martinez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Cuong Q Nguyen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| | - Anna Kane
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02115, USA
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, 200 College Avenue, Medford, MA, 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| |
Collapse
|
52
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
53
|
The anti-tumor effects of the combination of microwave hyperthermia and lobaplatin against breast cancer cells in vitro and in vivo. Biosci Rep 2021; 42:229268. [PMID: 34282830 PMCID: PMC8829017 DOI: 10.1042/bsr20190878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Breast cancer is the main lethal disease among females. The combination of lobaplatin and microwave hyperthermia plays a crucial role in several kinds of cancer in the clinic, but its possible mechanism in breast cancer has remained indistinct. Methods: Mouse models were used to detect breast cancer progression. Cell growth was explored with MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphonyl)-2H-tetrazolium) and colony formation assays. Cell migration and invasion were investigated with a transwell assay. Cell apoptosis was probed with flow cytometry. The expression of apoptosis-associated proteins was examined with Western blots. Result: Combination treatment decreased breast cancer cell viability, colony formation, cell invasion and metastasis. In addition, the treatment-induced breast cancer cell apoptosis and autophagy, activated the c-Jun N-terminal kinase (JNK) signaling pathway, suppressed the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, and down-regulated IAP and Bcl-2 family protein expression. Conclusion: These results indicate that lobaplatin is an effective breast cancer anti-tumor agent. Microwave hyperthermia was a useful adjunctive treatment. Combination treatment was more efficient than any single therapy. The possible mechanism for this effect was mainly associated with activation of the JNK signaling pathway, inactivation of the AKT/mTOR signaling pathway and down-regulation of the Bcl-2 and IAP families.
Collapse
|
54
|
Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Am J Cancer Res 2021; 11:8322-8336. [PMID: 34373744 PMCID: PMC8343997 DOI: 10.7150/thno.62378] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are well-known for adapting their metabolism to maintain high proliferation rates and survive in unfavorable environments with low oxygen and nutritional deficiency. Metabolic reprogramming most commonly arises from the tumor microenvironment (TME). The events of metabolic pathways include the Warburg effect, shift in Krebs cycle metabolites, and increase rate of oxidative phosphorylation that provides the energy for the development and invasion of cancer cells. The TME and shift in tumor metabolism shows a close relationship through bidirectional signaling pathways between the stromal and tumor cells. Cancer-associated fibroblasts (CAFs) are the main type of stromal cells in the TME and consist of a heterogeneous and plastic population that play key roles in tumor growth and metastatic capacity. Emerging evidence suggests that CAFs act as major regulators in shaping tumor metabolism especially through the dysregulation of several metabolic pathways, including glucose, amino acid, and lipid metabolism. The arrangement of these metabolic switches is believed to shape distinct CAF behavior and change tumor cell behavior by the CAFs. The crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to cancer cell growth, progression, and evasion from cancer therapies. But the mechanism and process of this interaction remain unclear. This review aimed to highlight the metabolic couplings between tumor cells and CAFs. We reviewed the recent literature supporting an important role of CAFs in the regulation of cancer cell metabolism, and the relevant pathways, which may serve as targets for therapeutic interventions.
Collapse
|
55
|
Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C, Schneider C, Muncie JM, Stashko C, Daniele JR, Moore AS, Frankino PA, Homentcovschi S, Manoli SS, Shao H, Richards AL, Chen KH, Hoeve JT, Ku GM, Hellerstein M, Nomura DK, Saijo K, Gestwicki J, Dunn AR, Krogan NJ, Swaney DL, Dillin A, Weaver VM. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab 2021; 33:1322-1341.e13. [PMID: 34019840 PMCID: PMC8266765 DOI: 10.1016/j.cmet.2021.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.
Collapse
Affiliation(s)
- Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Greg A Timblin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Breanna Ford
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carlos Garzon-Coral
- Chemical Engineering Department, Stanford University, Stanford, CA 94305, USA
| | - Catherine Schneider
- Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathon M Muncie
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph R Daniele
- MD Anderson Cancer Center, South Campus Research, Houston, CA 77054, USA
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phillip A Frankino
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Stefan Homentcovschi
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Sagar S Manoli
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregory M Ku
- Diabetes Center, Division of Endocrinology and Metabolism, Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Marc Hellerstein
- Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Novartis, Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Karou Saijo
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander R Dunn
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), J. David Gladstone Institutes, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94597, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
56
|
Meyer M, Bouchonville N, Gaude C, Gay E, Ratel D, Nicolas A. The Micromechanical Signature of Pituitary Adenomas: New Perspectives for the Diagnosis and Surgery. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mikaël Meyer
- Neurosurgery Department CHU Grenoble Alpes F-38000 Grenoble France
| | | | - Christophe Gaude
- CEA, LETI Clinatec Université Grenoble Alpes F-38000 Grenoble France
| | - Emmanuel Gay
- Neurosurgery Department CHU Grenoble Alpes F-38000 Grenoble France
| | - David Ratel
- CEA, LETI Clinatec Université Grenoble Alpes F-38000 Grenoble France
| | - Alice Nicolas
- CNRS, LTM Université Grenoble Alpes F-38000 Grenoble France
| |
Collapse
|
57
|
Hayward MK, Muncie JM, Weaver VM. Tissue mechanics in stem cell fate, development, and cancer. Dev Cell 2021; 56:1833-1847. [PMID: 34107299 PMCID: PMC9056158 DOI: 10.1016/j.devcel.2021.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Cells in tissues experience a plethora of forces that regulate their fate and modulate development and homeostasis. Cells sense mechanical cues through localized mechanoreceptors or by influencing cytoskeletal or plasma membrane organization. Cells translate force and modulate their behavior through a process termed mechanotransduction. Cells tune their tension upon exposure to chronic force by engaging cellular machinery that modulates actin tension, which in turn stimulates matrix remodeling and stiffening and alters cell-cell adhesions until cells achieve a state of tensional homeostasis. Loss of tensional homeostasis can be induced through oncogene activity and/or tissue fibrosis, accompanies tumor progression, and is associated with increased cancer risk. The mechanical stresses that develop in tumors can also foster the mesenchymal-like transdifferentiation of cells to induce a stem-like phenotype that contributes to their aggression, metastatic dissemination, and treatment resistance. Thus, strategies that ameliorate tumor mechanics may comprise an effective strategy to prevent aggressive tumor behavior.
Collapse
Affiliation(s)
- Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
58
|
Ren B, Liu H, Yang Y, Lian Y. Effect of BRAF-mediated PI3K/Akt/mTOR pathway on biological characteristics and chemosensitivity of NSCLC A549/DDP cells. Oncol Lett 2021; 22:584. [PMID: 34122635 PMCID: PMC8190768 DOI: 10.3892/ol.2021.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to explore the biological characteristics of non-small cell lung cancer (NSCLC) cells and the mechanism of chemosensitivity through the role of the PI3K/Akt/mTOR signaling pathway mediated by BRAF gene silencing. Following cell transfection and grouping, an MTT assay detected the activity of NSCLC cells, a scratch wound test assessed the migration ability, flow cytometry using PI staining detected the cell cycle phase, TUNEL and flow cytometry through Annexin V-PI staining assessed the apoptosis, and colony formation was used to detect the sensitivity of lung cancer cells to cisplatin chemotherapy. Furthermore, the relative expression levels of BRAF, PTEN, PI3K, mTOR mRNA were assessed by RT-qPCR, and the protein expression levels of BRAF, PTEN, PI3K, phosphorylated (p)-PI3K, Akt, p-Akt, mTOR, p-mTOR, cisplatin resistance-related enzymes ERCC1 and BRCA1, apoptotic proteins Bax and Bcl-2 were assessed by western blotting. Compared with the control group and NC group, there were differences in decreased BRAF mRNA expression levels in the small interfering (si)BRAF group and siBRAF + IGF-1 group (both P<0.05). In addition, compared with the control group, the siBRAF, NVP-BEZ235 and siBRAF + NVP-BEZ235 groups had significant decreased cell viability at 2–6 days, decreased migration ability, shortened proportion of S-phase cells, increased proportion of G1/G0-phase cells, increased apoptosis rate, decreased number of colony-forming cells, decreased mRNA expression of PI3K, Akt and mTOR, increased PTEN mRNA expression, decreased protein expression levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, ERCC1, BRCA1 and Bcl-2, and increased protein expression levels of PTEN and Bax (all P<0.05); and more obvious trends were revealed in the siBRAF + NVP-BEZ235 group (all P<0.05); whereas opposite results were detected in the siBRAF + IGF-1 group when compared with the siBRAF group and NVP-BEZ235 group (all P<0.05). Silencing of BRAF gene expression to inhibit the activation of the PI3K/Akt/mTOR signaling pathway exerted a synergistic effect decreasing cell viability, inhibiting the cell cycle and migration, increasing the apoptosis rate, decreasing the number of colony-forming cells and increasing chemosensitivity of NSCLC. Activation of the PI3K/Akt/mTOR signaling pathway may reverse the role of silencing of BRAF gene expression, providing a potential approach for improving the chemosensitivity of NSCLC. The present study for the first time, to the best of our knowledge, clarified the possible mechanism of NSCLC cell biological characteristic changes and chemosensitivity from the perspective of BRAF gene silencing and PI3K/Akt/mTOR signaling pathway activation, providing a potential reference for suppressing tumor aggravation and improving the therapeutic outcomes of NSCLC at the genetic level.
Collapse
Affiliation(s)
- Bingnan Ren
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| | - Hongtao Liu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| | - Yupeng Yang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| | - Yufei Lian
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| |
Collapse
|
59
|
Mechanosensitive Regulation of Fibrosis. Cells 2021; 10:cells10050994. [PMID: 33922651 PMCID: PMC8145148 DOI: 10.3390/cells10050994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in the human body experience and integrate a wide variety of environmental cues. A growing interest in tissue mechanics in the past four decades has shown that the mechanical properties of tissue drive key biological processes and facilitate disease development. However, tissue stiffness is not only a potent behavioral cue, but also a product of cellular signaling activity. This review explores both roles of tissue stiffness in the context of inflammation and fibrosis, and the important molecular players driving such processes. During inflammation, proinflammatory cytokines upregulate tissue stiffness by increasing hydrostatic pressure, ECM deposition, and ECM remodeling. As the ECM stiffens, cells involved in the immune response employ intricate molecular sensors to probe and alter their mechanical environment, thereby facilitating immune cell recruitment and potentiating the fibrotic phenotype. This powerful feedforward loop raises numerous possibilities for drug development and warrants further investigation into the mechanisms specific to different fibrotic diseases.
Collapse
|
60
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
61
|
Ahmed A, Joshi IM, Larson S, Mansouri M, Gholizadeh S, Allahyari Z, Forouzandeh F, Borkholder DA, Gaborski TR, Abhyankar VV. Microengineered 3D Collagen Gels with Independently Tunable Fiber Anisotropy and Directionality. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001186. [PMID: 34150990 PMCID: PMC8211114 DOI: 10.1002/admt.202001186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 05/17/2023]
Abstract
Cellular processes, including differentiation, proliferation, and migration, have been linked to the alignment (anisotropy) and orientation (directionality) of collagen fibers in the native extracellular matrix (ECM). Given the critical role that biophysical cell-matrix interactions play in regulating biological functions, several microfluidic-based methods have been used to establish 3D collagen gels with defined fiber properties; these gels have helped to establish quantitative relationships between structural ECM cues and observed cell responses. Although existing microfluidic fabrication methods provide excellent definition over collagen fiber anisotropy, they have not demonstrated the independent control over fiber anisotropy and directionality necessary to replicate in vivo collagen architecture. Therefore, to advance collagen microengineering capabilities, we present a user-friendly technology platform that uses controlled fluid flows within a non-uniform microfluidic channel network to create collagen landscapes that can be tuned as a function of extensional strain rate. Herein, we demonstrate capabilities to i) control the degree of fiber anisotropy, ii) create spatial gradients in fiber anisotropy, iii) independently define fiber directionality, and iv) generate multi-material interfaces within a 3D environment. We then address the practical issue of integrating cells into microfluidic systems by using a peel-off template technique to provide direct access to microengineered collagen gels, and demonstrate that cells respond to the defined properties of the landscape. Finally, the platform's modular capability is highlighted by integrating a sub-micrometer thick porous parylene membrane onto the microengineered collagen as a method to define cell-substrate interactions.
Collapse
Affiliation(s)
- Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Indranil M Joshi
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Stephen Larson
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Mehran Mansouri
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shayan Gholizadeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zahra Allahyari
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Farzad Forouzandeh
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - David A Borkholder
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Thomas R Gaborski
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Vinay V Abhyankar
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
- Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
62
|
Metcalf KJ, Alazzeh A, Werb Z, Weaver VM. Leveraging microenvironmental synthetic lethalities to treat cancer. J Clin Invest 2021; 131:143765. [PMID: 33720045 PMCID: PMC7954586 DOI: 10.1172/jci143765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Treatment resistance leads to cancer patient mortality. Therapeutic approaches that employ synthetic lethality to target mutational vulnerabilities in key tumor cell signaling pathways have proven effective in overcoming therapeutic resistance in some cancers. Yet, tumors are organs composed of malignant cells residing within a cellular and noncellular stroma. Tumor evolution and resistance to anticancer treatment are mediated through a dynamic and reciprocal dialogue with the tumor microenvironment (TME). Accordingly, expanding tumor cell synthetic lethality to encompass contextual synthetic lethality has the potential to eradicate tumors by targeting critical TME circuits that promote tumor progression and therapeutic resistance. In this Review, we summarize current knowledge about the TME and discuss its role in treatment. We outline the concept of tumor cell-specific synthetic lethality and describe therapeutic approaches to expand this paradigm to leverage TME synthetic lethality to improve cancer therapy.
Collapse
Affiliation(s)
| | | | - Zena Werb
- Department of Anatomy
- Helen Diller Family Comprehensive Cancer Center
| | - Valerie M. Weaver
- Department of Surgery
- Helen Diller Family Comprehensive Cancer Center
- Center for Bioengineering and Tissue Regeneration, and
- Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
63
|
The distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. Histochem Cell Biol 2021; 156:47-58. [PMID: 33710418 DOI: 10.1007/s00418-021-01979-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
The survival of cancer stem cells is usually limited to a specific tumor microenvironment, and this microenvironment plays a vital role in the development of tumors. The mechanical properties of the microenvironment differ in different regions of solid tumors. However, in solid tumors, whether the distribution of cancer stem cells relates to the mechanical microenvironment of different regions is still unclear. In this study, we undertook a biophysical and biochemical assessment of the changes in the mechanical properties of liver tissue during the progression of liver cancer and explored the distribution of liver cancer stem cells in liver cancer tissues. Our analysis confirmed previous observations that the stiffness of liver tissue gradually increased with the progress of fibrosis. In liver cancer tissues, we found obvious mechanical heterogeneity: the core of the tumor was soft, the invasive front tissue was the hardest, and the para-cancer tissue was in an intermediate state. Interestingly, the greatest number of liver cancer stem cells was found in the invasive front part of the tumor. We finally established that stroma stiffness correlated with the number of liver cancer stem cells. These findings indicate that the distribution of liver cancer stem cells correlates with the mechanical heterogeneity of liver cancer tissue. This result provides a theoretical basis for the development of targeted therapies against the mechanical microenvironment of liver cancer stem cells.
Collapse
|
64
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
65
|
Hsiao BY, Chen CH, Chi HY, Yen PR, Yu YZ, Lin CH, Pang TL, Lin WC, Li ML, Yeh YC, Chou TY, Chen MY. Human Costars Family Protein ABRACL Modulates Actin Dynamics and Cell Migration and Associates with Tumorigenic Growth. Int J Mol Sci 2021; 22:ijms22042037. [PMID: 33670794 PMCID: PMC7922284 DOI: 10.3390/ijms22042037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Regulation of cellular actin dynamics is pivotal in driving cell motility. During cancer development, cells migrate to invade and spread; therefore, dysregulation of actin regulators is often associated with cancer progression. Here we report the role of ABRACL, a human homolog of the Dictyostelium actin regulator Costars, in migration and tumorigenic growth of cancer cells. We found a correlation between ABRACL expression and the migratory ability of cancer cells. Cell staining revealed the colocalization of ABRACL and F-actin signals at the leading edge of migrating cells. Analysis of the relative F-/G-actin contents in cells lacking or overexpressing ABRACL suggested that ABRACL promotes cellular actin distribution to the polymerized fraction. Physical interaction between ABRACL and cofilin was supported by immunofluorescence staining and proximity ligation. Additionally, ABRACL hindered cofilin-simulated pyrene F-actin fluorescence decay in vitro, indicating a functional interplay. Lastly, analysis on a colorectal cancer cohort demonstrated that high ABRACL expression was associated with distant metastasis, and further exploration showed that depletion of ABRACL expression in colon cancer cells resulted in reduced cell proliferation and tumorigenic growth. Together, results suggest that ABRACL modulates actin dynamics through its interaction with cofilin and thereby regulates cancer cell migration and participates in cancer pathogenesis.
Collapse
Affiliation(s)
- Bo-Yuan Hsiao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Chia-Hsin Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Ho-Yi Chi
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Pei-Ru Yen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Ying-Zhen Yu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Chia-Hsin Lin
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Te-Ling Pang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Wei-Chi Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Min-Lun Li
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan; (B.-Y.H.); (C.-H.C.); (H.-Y.C.); (P.-R.Y.); (Y.-Z.Y.); (T.-L.P.); (W.-C.L.); (M.-L.L.); (T.-Y.C.)
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-(02)-2826-7269
| |
Collapse
|
66
|
Yoon PS, Del Piccolo N, Shirure VS, Peng Y, Kirane A, Canter RJ, Fields RC, George SC, Gholami S. Advances in Modeling the Immune Microenvironment of Colorectal Cancer. Front Immunol 2021; 11:614300. [PMID: 33643296 PMCID: PMC7902698 DOI: 10.3389/fimmu.2020.614300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and second leading cause of cancer-related death in the US. CRC frequently metastasizes to the liver and these patients have a particularly poor prognosis. The infiltration of immune cells into CRC tumors and liver metastases accurately predicts disease progression and patient survival. Despite the evident influence of immune cells in the CRC tumor microenvironment (TME), efforts to identify immunotherapies for CRC patients have been limited. Here, we argue that preclinical model systems that recapitulate key features of the tumor microenvironment-including tumor, stromal, and immune cells; the extracellular matrix; and the vasculature-are crucial for studies of immunity in the CRC TME and the utility of immunotherapies for CRC patients. We briefly review the discoveries, advantages, and disadvantages of current in vitro and in vivo model systems, including 2D cell culture models, 3D culture systems, murine models, and organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Paul Sukwoo Yoon
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Nuala Del Piccolo
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Yushuan Peng
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Amanda Kirane
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Robert J Canter
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Ryan C Fields
- Department of Surgery, The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Sepideh Gholami
- Department of Surgery, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
67
|
Xu X, Zhu X, Liu F, Lu W, Wang Y, Yu J. The effects of histone crotonylation and bromodomain protein 4 on prostate cancer cell lines. Transl Androl Urol 2021; 10:900-914. [PMID: 33718091 PMCID: PMC7947446 DOI: 10.21037/tau-21-53] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background The aims of this study were to detect the level of histone crotonylation in prostate cancer (PCa) tissues, analyze the correlations between its level and clinical stage and grade, and explore the effects of bromodomain-containing protein 4 (BRD4) inhibitors and sodium crotonate on the histone crotonylation in PCa cell lines and on the functions of PCa cells. Methods PCa tissues from 72 patients and adjacent tissues from 7 patients were collected, and immunohistochemistry was used to measure the level of histone crotonylation. Three human PCa cell lines, PC-3, LNCaP, and C42B, were selected and treated with IC50 value of I-BET762, I-BET726, and CPI-203, respectively. Next, short hairpin RNA (shRNA) transient knockdown was used to inhibit BRD4 expression. Histone crotonylation level and the expression of acetylase were determined by Western blotting. Finally, cell proliferation, migration, and invasion were measured with Cell Counting Kit-8 assay, scratch test, and Transwell test respectively. Results The level of histone crotonylation in PCa tissue was higher than that in adjacent tissues, and histone lysine crotonylation (Kcr) increased with the increasing malignancy of PCa. Treatments with I-BET762, I-BET726, and CPI-203 could inhibit the proliferation, migration, and invasion of PCa cell lines including PC-3, LNCaP, and C42B, and could also regulate the histone crotonylation and androgen receptor signaling pathways via the regulation of BRD4 expression. Conclusions PCa is closely related to histone crotonylation. Inhibition of BRD4 expression can inhibit the proliferation, migration, and invasion of PCa cells.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xin Zhu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Feng Liu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Wenlong Lu
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yihan Wang
- Department of Urology, The Sixth People's Hospital South Campus Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Jianjun Yu
- Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
68
|
Ferguson LP, Diaz E, Reya T. The Role of the Microenvironment and Immune System in Regulating Stem Cell Fate in Cancer. Trends Cancer 2021; 7:624-634. [PMID: 33509688 PMCID: PMC8318571 DOI: 10.1016/j.trecan.2020.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Despite gains in knowledge of the intrinsic signals governing cancer progression, effective clinical management of cancer remains a challenge. Drug resistance and relapse, pose the greatest barriers to cancer care, and are often driven by the co-option of stem cell programs by subpopulations of aggressive cancer cells. Here, we focus on the role of the microenvironment in the acquisition and/ or maintenance of stem cell states in cancer in the context of resistance and metastasis. We further discuss the role of cancer stem cells in immune evasion through the course of metastasis, dormancy, and relapse. Understanding the niche in which cancer stem cells live and the signals that sustain them may lead to new strategies that target them by disrupting microenvironmental support.
Collapse
Affiliation(s)
- L Paige Ferguson
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Emily Diaz
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Tannishtha Reya
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA; Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
69
|
Yang Z, Wang Y, Zhang L, Zhao C, Wang D. Phosphorylated form of pyruvate dehydrogenase α1 mediates tumor necrosis factor α-induced glioma cell migration. Oncol Lett 2021; 21:176. [PMID: 33574915 PMCID: PMC7816412 DOI: 10.3892/ol.2021.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration is an important factor influencing the treatment outcomes of high-grade glioma (World Health Organization grades III–IV). Using immunohistochemical staining, the present study demonstrated that the protein levels of phosphorylated pyruvate dehydrogenase α1 (p-PDHA1) were increased according to the grade of glioma. Moreover, p-PDHA1 mediated tumor necrosis factor-α (TNF-α)-induced cell migration in glioma cells. Phalloidin staining and western blot analysis were used to detect the protein level of p-PDHA1 in U251 glioma cells stimulated by TNF-α at different time points. Phalloidin staining was used to observe the cytoskeletal structure. The effects on the expression of specific migration markers and on the cytoskeletal structure were also detected. Dichloroacetic acid is an inhibitor of PDK. These results indicated that p-PDHA1 served an important role in the migration of glioma cells, and consequently in the development of glioma.
Collapse
Affiliation(s)
- Zijun Yang
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Yidan Wang
- Center for Health Management, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Li Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| | - Chenjin Zhao
- Department of Cerebral Surgery, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| | - Donglin Wang
- Department of Pathology, Medical College, Nantong University, Nantong, Jiangsu 226002, P.R. China
| |
Collapse
|
70
|
Lee J, Abdeen AA, Li Y, Goonetilleke S, Kilian KA. Gradient and Dynamic Hydrogel Materials to Probe Dynamics in Cancer Stem Cell Phenotypes. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amr A. Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yanfen Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shamalee Goonetilleke
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
71
|
Lei R, Kumar S. Getting the big picture of cell-matrix interactions: High-throughput biomaterial platforms and systems-level measurements. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2020; 24:100871. [PMID: 33244294 PMCID: PMC7685248 DOI: 10.1016/j.cossms.2020.100871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living cells interact with the extracellular matrix (ECM) in a complex and reciprocal manner. Much has been learned over the past few decades about cell-ECM interactions from targeted studies in which a specific matrix parameter (e.g. stiffness, adhesivity) has been varied across a few discrete values, or in which the level or activity of a protein is controlled in an isolated fashion. As the field moves forward, there is growing interest in addressing cell-matrix interactions from a systems perspective, which has spurred a new generation of matrix platforms capable of interrogating multiple ECM inputs in a combinatorial and parallelized fashion. Efforts are also actively underway to integrate specialized, synthetic ECM platforms with global measures of cell behaviors, including at the transcriptomic, proteomic and epigenomic levels. Here we review recent advances in both areas. We describe how new combinatorial ECM technologies are revealing unexpected crosstalk and nonlinearity in the relationship between cell phenotype and matrix properties. Similarly, efforts to integrate "omics" measurements with synthetic ECM platforms are illuminating how ECM properties can control cell biology in surprising and functionally important ways. We expect that advances in both areas will deepen the field's understanding of cell-ECM interactions and offer valuable insight into the design of biomaterials for specific biomedical applications.
Collapse
Affiliation(s)
- Ruoxing Lei
- Department of Chemistry, University of California, Berkeley, CA, 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720
| |
Collapse
|
72
|
Nie J, Fu J, He Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003797. [PMID: 33103353 DOI: 10.1002/smll.202003797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Indexed: 05/27/2023]
Abstract
The integration of microfluidics with biomedical research is confronted with considerable limitations due to its body materials. With high content of water, hydrogels own superior biocompatibility and degradability. Can hydrogels become another material choice for the construction of microfluidic chips, particularly biofluidics? The present review aims to systematically establish the concept of hydrogel-based microfluidic chips (HMCs) and address three main concerns: i) why choosing hydrogels? ii) how to fabricate HMCs?, and iii) in which fields to apply HMCs? It is envisioned that hydrogels may be used increasingly as substitute for traditional materials and gradually act as the body material for microfluidic chips. The modifications of conventional process are highlighted to overcome issues arising from the incompatibility between the construction methods and hydrogel materials. Specifically targeting at the "soft and wet" hydrogels, an efficient flowchart of "i) high resolution template printing; ii) damage-free demolding; iii) twice-crosslinking bonding" is proposed. Accordingly, a broader microfluidic chip concept is proposed in terms of form and function. Potential biomedical applications of HMCs are discussed. This review also highlights the challenges arising from the material replacement, as well as the future directions of the proposed concept. Finally, the authors' viewpoints and perspectives for this emerging field are discussed.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
73
|
Dawson MR, Xuan B, Hsu J, Ghosh D. Force balancing ACT-IN the tumor microenvironment: Cytoskeletal modifications in cancer and stromal cells to promote malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:1-31. [PMID: 33962748 DOI: 10.1016/bs.ircmb.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment is a complex milieu that dictates the growth, invasion, and metastasis of cancer cells. Both cancer and stromal cells in the tumor tissue encounter and adapt to a variety of extracellular factors, and subsequently contribute and drive the progression of the disease to more advanced stages. As the disease progresses, a small population of cancer cells becomes more invasive through a complex process known as epithelial-mesenchymal transition, and nearby stromal cells assume a carcinoma associated fibroblast phenotype characterized by enhanced migration, cell contractility, and matrix secretion with the ability to reorganize extracellular matrices. As cells transition into more malignant phenotypes their biophysical properties, controlled by the organization of cytoskeletal proteins, are altered. Actin and its associated proteins are essential modulators and facilitators of these changes. As the cells respond to the cues in the microenvironment, actin driven mechanical forces inside and outside the cells also evolve. Recent advances in biophysical techniques have enabled us to probe these actin driven changes in cancer and stromal cells and demarcate their role in driving changes in the microenvironment. Understanding the underlying biophysical mechanisms that drive cancer progression could provide critical insight on novel therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States; Brown University, Center for Biomedical Engineering, Providence, RI, United States.
| | - Botai Xuan
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Jeffrey Hsu
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| | - Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, United States
| |
Collapse
|
74
|
Pavlović N, Calitz C, Thanapirom K, Mazza G, Rombouts K, Gerwins P, Heindryckx F. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. eLife 2020; 9:e55865. [PMID: 33103995 PMCID: PMC7661042 DOI: 10.7554/elife.55865] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver tumor that usually arises in patients with cirrhosis. Hepatic stellate cells are key players in the progression of HCC, as they create a fibrotic micro-environment and produce growth factors and cytokines that enhance tumor cell proliferation and migration. We assessed the role of endoplasmic reticulum (ER) stress in the cross-talk between stellate cells and HCC cells. Mice with a fibrotic HCC were treated with the IRE1α-inhibitor 4μ8C, which reduced tumor burden and collagen deposition. By co-culturing HCC-cells with stellate cells, we found that HCC-cells activate IREα in stellate cells, thereby contributing to their activation. Inhibiting IRE1α blocked stellate cell activation, which then decreased proliferation and migration of tumor cells in different in vitro 2D and 3D co-cultures. In addition, we also observed cell-line-specific direct effects of inhibiting IRE1α in tumor cells.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
| | - Carlemi Calitz
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
| | - Kess Thanapirom
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Guiseppe Mazza
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College LondonLondonUnited Kingdom
| | - Pär Gerwins
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
- Department of Radiology, Uppsala University HospitalUppsalaSweden
| | - Femke Heindryckx
- Department of Medical Cell Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
75
|
Vimentin filaments drive migratory persistence in polyploidal cancer cells. Proc Natl Acad Sci U S A 2020; 117:26756-26765. [PMID: 33046658 DOI: 10.1073/pnas.2011912117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polyploidal giant cancer cells (PGCCs) are multinucleated chemoresistant cancer cells found in heterogeneous solid tumors. Due in part to their apparent dormancy, the effect of PGCCs on cancer progression has remained largely unstudied. Recent studies have highlighted the critical role of PGCCs as aggressive and chemoresistant cancer cells, as well as their ability to undergo amitotic budding to escape dormancy. Our recent study demonstrated the unique biophysical properties of PGCCs, as well as their unusual migratory persistence. Here we unveil the critical function of vimentin intermediate filaments (VIFs) in maintaining the structural integrity of PGCCs and enhancing their migratory persistence. We performed in-depth single-cell analysis to examine the distribution of VIFs and their role in migratory persistence. We found that PGCCs rely heavily on their uniquely distributed and polarized VIF network to enhance their transition from a jammed to an unjammed state to allow for directional migration. Both the inhibition of VIFs with acrylamide and small interfering RNA knockdown of vimentin significantly decreased PGCC migration and resulted in a loss of PGCC volume. Because PGCCs rely on their VIF network to direct migration and to maintain their enlarged morphology, targeting vimentin or vimentin cross-linking proteins could provide a therapeutic approach to mitigate the impact of these chemoresistant cells in cancer progression and to improve patient outcomes with chemotherapy.
Collapse
|
76
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
77
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
78
|
Kim SK, Son CG. Analysis of patents targeting antimetastatic effect using herbal materials. Integr Med Res 2020; 9:100427. [PMID: 32775196 PMCID: PMC7394849 DOI: 10.1016/j.imr.2020.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 10/27/2022] Open
Affiliation(s)
- Sul-Ki Kim
- Liver and Immunology Research Center, Daejeon Korean Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Korean Hospital of Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
79
|
Steinmetz J, Senkowski W, Lengqvist J, Rubin J, Ossipova E, Herman S, Larsson R, Jakobsson PJ, Fryknäs M, Kultima K. Descriptive Proteome Analysis to Investigate Context-Dependent Treatment Responses to OXPHOS Inhibition in Colon Carcinoma Cells Grown as Monolayer and Multicellular Tumor Spheroids. ACS OMEGA 2020; 5:17242-17254. [PMID: 32715210 PMCID: PMC7376893 DOI: 10.1021/acsomega.0c01419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
We have previously identified selective upregulation of the mevalonate pathway genes upon inhibition of oxidative phosphorylation (OXPHOS) in quiescent cancer cells. Using mass spectrometry-based proteomics, we here investigated whether these responses are corroborated on the protein level and whether proteomics could yield unique insights into context-dependent biology. HCT116 colon carcinoma cells were cultured as monolayer cultures, proliferative multicellular tumor spheroids (P-MCTS), or quiescent (Q-MCTS) multicellular tumor spheroids and exposed to OXPHOS inhibitors: nitazoxanide, FCCP, oligomycin, and salinomycin or the HMG-CoA-reductase inhibitor simvastatin at two different doses for 6 and 24 h. Samples were processed using an in-depth bottom-up proteomics workflow resulting in a total of 9286 identified protein groups. Gene set enrichment analysis showed profound differences between the three cell systems and confirmed differential enrichment of hypoxia, OXPHOS, and cell cycle progression-related protein responses in P-MCTS and Q-MCTS. Treatment experiments showed that the observed drug-induced alterations in gene expression of metabolically challenged cells are not translated directly to the protein level, but the results reaffirmed OXPHOS as a selective vulnerability of quiescent cancer cells. This work provides rationale for the use of deep proteome profiling to identify context-dependent treatment responses and encourages further studies investigating metabolic processes that could be co-targeted together with OXPHOS to eradicate quiescent cancer cells.
Collapse
Affiliation(s)
- Julia Steinmetz
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Wojciech Senkowski
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Johan Lengqvist
- Department
of Oncology-Pathology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Jenny Rubin
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Elena Ossipova
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Stephanie Herman
- Department
of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala SE-751 85, Sweden
| | - Rolf Larsson
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Per-Johan Jakobsson
- Division
of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Mårten Fryknäs
- Department
of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala SE-751 05, Sweden
| | - Kim Kultima
- Department
of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
80
|
Baskaran JP, Weldy A, Guarin J, Munoz G, Shpilker PH, Kotlik M, Subbiah N, Wishart A, Peng Y, Miller MA, Cowen L, Oudin MJ. Cell shape, and not 2D migration, predicts extracellular matrix-driven 3D cell invasion in breast cancer. APL Bioeng 2020; 4:026105. [PMID: 32455252 PMCID: PMC7202897 DOI: 10.1063/1.5143779] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis, the leading cause of death in cancer patients, requires the invasion of tumor cells through the stroma in response to migratory cues, in part provided by the extracellular matrix (ECM). Recent advances in proteomics have led to the identification of hundreds of ECM proteins, which are more abundant in tumors relative to healthy tissue. Our goal was to develop a pipeline to easily predict which ECM proteins are more likely to have an effect on cancer invasion and metastasis. We evaluated the effect of four ECM proteins upregulated in breast tumor tissue in multiple human breast cancer cell lines in three assays. There was no linear relationship between cell adhesion to ECM proteins and ECM-driven 2D cell migration speed, persistence, or 3D invasion. We then used classifiers and partial-least squares regression analysis to identify which metrics best predicted ECM-driven 2D migration and 3D invasion responses. We find that ECM-driven 2D cell migration speed or persistence did not predict 3D invasion in response to the same cue. However, cell adhesion, and in particular cell elongation and shape irregularity, accurately predicted the magnitude of ECM-driven 2D migration and 3D invasion. Our models successfully predicted the effect of novel ECM proteins in a cell-line specific manner. Overall, our studies identify the cell morphological features that determine 3D invasion responses to individual ECM proteins. This platform will help provide insight into the functional role of ECM proteins abundant in tumor tissue and help prioritize strategies for targeting tumor-ECM interactions to treat metastasis.
Collapse
Affiliation(s)
- Janani P. Baskaran
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Anna Weldy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Justinne Guarin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Gabrielle Munoz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Polina H. Shpilker
- Department of Computer Science, Tufts University, Medford, Massachusetts 02155, USA
| | - Michael Kotlik
- Department of Computer Science, Tufts University, Medford, Massachusetts 02155, USA
| | - Nandita Subbiah
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Andrew Wishart
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Yifan Peng
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, Massachusetts 02114, USA
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts 02155, USA
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
81
|
Stelling MP, Motta JM, Mashid M, Johnson WE, Pavão MS, Farrell NP. Metal ions and the extracellular matrix in tumor migration. FEBS J 2020; 286:2950-2964. [PMID: 31379111 DOI: 10.1111/febs.14986] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/22/2019] [Accepted: 07/06/2019] [Indexed: 12/15/2022]
Abstract
In this review, we explore the roles of divalent metal ions in structure and function within the extracellular matrix (ECM), specifically, their interaction with glycosaminoglycans (GAGs) during tumor progression. Metals and GAGs have been individually associated with physiological and pathological processes, however, their combined activities in regulating cell behavior and ECM remodeling have not been fully explored to date. During tumor progression, divalent metals and GAGs participate in central processes, such as cell migration and angiogenesis, either by modulating cell surface molecules, as well as soluble signaling factors. In addition, studies on metals and polysaccharides interactions have been of great value, as they provide structural information that can be correlated with function. Finally, we believe that understanding how metals are regulated in physiological and pathological conditions is paramount for the development of new treatment strategies, as well as diagnostic and exploratory tools.
Collapse
Affiliation(s)
- Mariana P Stelling
- Instituto Federal de Educacao, Educação, Ciência e Tecnologia do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
82
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
83
|
Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020; 15:955-967. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Solid tumors are highly influenced by a complex tumor microenvironment (TME) that cannot be modeled with conventional two-dimensional (2D) cell culture. In addition, monolayer culture conditions tend to induce undesirable molecular and phenotypic cellular changes. The discrepancy between in vitro and in vivo is an important factor accounting for the high failure rate in drug development. Three-dimensional (3D) multicellular tumor spheroids (MTS) more closely resemble the in vivo situation in avascularized tumors. AREAS COVERED This review describes the use of MTS for anti-cancer drug discovery, with an emphasis on high-throughput screening (HTS) compatible assays. In particular, we focus on how these assays can be used for target discovery in the context of the TME. EXPERT OPINION Arrayed MTS in microtiter plates are HTS compatible but remain more expensive and time consuming than their 2D culture counterpart. It is therefore imperative to use assays with multiplexed readouts, in order to maximize the information that can be gained with the screen. In this context, high-content screening allowing to uncover microenvironmental dependencies is the true added value of MTS-based screening compared to 2D culture-based screening. Hit translation in animal models will, however, be key to allow a broader use of MTS-based screening in industry.
Collapse
Affiliation(s)
- Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland.,Department of Biology, Debiopharm , Lausanne, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
84
|
Dean T, Li NT, Cadavid JL, Ailles L, McGuigan AP. A TRACER culture invasion assay to probe the impact of cancer associated fibroblasts on head and neck squamous cell carcinoma cell invasiveness. Biomater Sci 2020; 8:3078-3094. [PMID: 32347842 DOI: 10.1039/c9bm02017a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer associated fibroblasts (CAFs) are a major cellular component of the tumour stroma and have been shown to promote tumour cell invasion and disease progression. CAF-cancer cell interactions are bi-directional and occur via both soluble factor dependent and extracellular matrix (ECM) remodelling mechanisms, which are incompletely understood. Previously we developed the Tissue Roll for Analysis of Cellular Environment and Response (TRACER), a novel stacked paper tumour model in which cells embedded in a hydrogel are infiltrated into a porous cellulose scaffold that is then rolled around an aluminum core to generate a multi-layered 3D tissue. Here, we use the TRACER platform to explore the impact of CAFs derived from three different patients on the invasion of two head and neck squamous cell carcinoma (HNSCC) cell lines (CAL33 and FaDu). We find that co-culture with CAFs enhances HNSCC tumour cell invasion into an acellular collagen layer in TRACER and this enhanced migration occurs independently of proliferation. We show that CAF-enhanced invasion of CAL33 cells is driven by a soluble factor independent mechanism, likely involving CAF mediated ECM remodelling via matrix metalloprotenases (MMPs). Furthermore, we find that CAF-enhanced tumour cell invasion is dependent on the spatial pattern of collagen density within the culture. Our results highlight the utility of the co-culture TRACER platform to explore soluble factor independent interactions between CAFs and tumour cells that drive increased tumour cell invasion.
Collapse
Affiliation(s)
- Teresa Dean
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.
| | | | | | | | | |
Collapse
|
85
|
Papale M, Buccarelli M, Mollinari C, Russo MA, Pallini R, Ricci-Vitiani L, Tafani M. Hypoxia, Inflammation and Necrosis as Determinants of Glioblastoma Cancer Stem Cells Progression. Int J Mol Sci 2020; 21:ijms21082660. [PMID: 32290386 PMCID: PMC7215563 DOI: 10.3390/ijms21082660] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor hypoxic microenvironment causes hypoxia inducible factor 1 alpha (HIF-1α) activation and necrosis with alarmins release. Importantly, HIF-1α also controls the expression of alarmin receptors in tumor cells that can bind to and be activated by alarmins. Human tumor tissues possess 1–2% of cancer stem cells (CSCs) residing in hypoxic niches and responsible for the metastatic potential of tumors. Our hypothesis is that hypoxic CSCs express alarmin receptors that can bind alarmins released during necrosis, an event favoring CSCs migration. To investigate this aspect, glioblastoma stem-like cell (GSC) lines were kept under hypoxia to determine the expression of hypoxic markers as well as receptor for advanced glycation end products (RAGE). The presence of necrotic extracts increased migration, invasion and cellular adhesion. Importantly, HIF-1α inhibition by digoxin or acriflavine prevented the response of GSCs to hypoxia alone or plus necrotic extracts. In vivo, GSCs injected in one brain hemisphere of NOD/SCID mice were induced to migrate to the other one in which a necrotic extract was previously injected. In conclusion, our results show that hypoxia is important not only for GSCs maintenance but also for guiding their response to external necrosis. Inhibition of hypoxic pathway may therefore represent a target for preventing brain invasion by glioblastoma stem cells (GSCs).
Collapse
Affiliation(s)
- Marco Papale
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy;
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome Italy; (M.B.); (L.R.-V.)
| | - Cristiana Mollinari
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy;
- Department of Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Matteo A. Russo
- IRCCS San Raffaele Pisana, 00163 Rome, Italy;
- MEBIC Consortium, San Raffaele Open University, 00166 Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Institute of Neurosurgery, Catholic University School of Medicine, 00168 Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome Italy; (M.B.); (L.R.-V.)
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, 00161 Rome, Italy;
- Correspondence: ; Tel.: +39-06-49918234
| |
Collapse
|
86
|
A Relatively Small Gradient of Extracellular pH Directs Migration of MDA-MB-231 Cells In Vitro. Int J Mol Sci 2020; 21:ijms21072565. [PMID: 32272744 PMCID: PMC7177698 DOI: 10.3390/ijms21072565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Hematogenous tumor metastasis begins with the invasion and spread of primary tumor cells in the local tissue leading to intravasation. We hypothesized that tumor cells might actively migrate toward intratumor vessels with the extracellular metabolic gradient acting as a guiding cue. Here, we determined in vitro whether the extracellular gradient of pH can act as a cue for directional migration in MDA-MB-231 cells. Cell migration was determined by the wound-healing assay under gradients of extracellular pH (~0.2 units/mm) and oxygen concentration (~6% O2/mm) that were produced by a microfluidic device, gap cover glass (GCG). Without GCG, the migration of cells was spatially homogeneous; the same number of cells migrated to the rectangular wound space from the left and right boundaries. In contrast, when GCG generated pH/O2 gradients across the wound space, the number of cells migrating to the wound space from the boundary with higher pH/O2 values was considerably decreased, indicating a preferential movement of cells toward the region of higher pH/O2 in the gradient. The addition of hepes in the extracellular medium abolished both the extracellular pH gradient and the directional cell migration under GCG. We conclude that relatively small gradients of pH in the extracellular medium compared to those found in Na+/H+ exchanger-driven cell migration were sufficient to guide MDA-MB-231 cells. The directional cell migration as guided by the metabolic gradient could effectively elevate the probability of intravasation and, ultimately, hematogenous metastasis.
Collapse
|
87
|
Abstract
Integrins, and integrin-mediated adhesions, have long been recognized to provide the main molecular link attaching cells to the extracellular matrix (ECM) and to serve as bidirectional hubs transmitting signals between cells and their environment. Recent evidence has shown that their combined biochemical and mechanical properties also allow integrins to sense, respond to and interact with ECM of differing properties with exquisite specificity. Here, we review this work first by providing an overview of how integrin function is regulated from both a biochemical and a mechanical perspective, affecting integrin cell-surface availability, binding properties, activation or clustering. Then, we address how this biomechanical regulation allows integrins to respond to different ECM physicochemical properties and signals, such as rigidity, composition and spatial distribution. Finally, we discuss the importance of this sensing for major cell functions by taking cell migration and cancer as examples.
Collapse
|
88
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
89
|
Kozlova N, Grossman JE, Iwanicki MP, Muranen T. The Interplay of the Extracellular Matrix and Stromal Cells as a Drug Target in Stroma-Rich Cancers. Trends Pharmacol Sci 2020; 41:183-198. [DOI: 10.1016/j.tips.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/21/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
|
90
|
Qi YB, Yang W, Si M, Nie L. Wnt/β‑catenin signaling modulates piperine‑mediated antitumor effects on human osteosarcoma cells. Mol Med Rep 2020; 21:2202-2208. [PMID: 32323765 PMCID: PMC7115194 DOI: 10.3892/mmr.2020.11000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The plant extract piperine is used as a traditional Chinese medicine due to its anti-inflammatory effects and efficacy against numerous types of cancer. The aim of the present study was to investigate the antitumor mechanism of piperine in human osteosarcoma U2OS and 143B cell lines. The effects of piperine on cell apoptosis and invasion of human osteosarcoma cells were assessed using flow cytometry and Transwell assays. Moreover, western blotting was used to measure the effects of piperine on the protein expression levels of the metastasis markers matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF). In addition, the involvement of the Wnt/β-catenin signaling pathway in modulating the effects of piperine was examined via western blot analysis. The results of MTT and Transwell invasion assays indicated that piperine treatment dose-dependently reduced U2OS and 143B cell viability and invasion. Furthermore, a significant reduction was identified in MMP-2, VEGF, glycogen synthase kinase-3β and β-catenin protein expression levels, as well as the expression levels of their target proteins cyclooxygenase-2, cyclin D1 and c-myc, in U2OS cells after piperine treatment. In addition, similar results were observed in 143B cells. Therefore, the present study demonstrated the efficacy of piperine in osteosarcoma, and identified that the Wnt/β-catenin signaling pathway may modulate the antitumor effects of piperine on human U2OS and 143B cells.
Collapse
Affiliation(s)
- Yu-Bin Qi
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wen Yang
- Department of Spinal Surgery, Heze Municipal Hospital, Heze, Shandong 274031, P.R. China
| | - Meng Si
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Nie
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
91
|
Matei I, Rampersaud S, Lyden D. Engineered niches model the onset of metastasis. Nat Biomed Eng 2020; 2:885-887. [PMID: 31015731 DOI: 10.1038/s41551-018-0326-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - Sham Rampersaud
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
92
|
Kawai S, Fujii T, Shimizu T, Sukegawa K, Hashimoto I, Okumura T, Nagata T, Sakai H, Fujii T. Pathophysiological properties of CLIC3 chloride channel in human gastric cancer cells. J Physiol Sci 2020; 70:15. [PMID: 32066374 PMCID: PMC7026216 DOI: 10.1186/s12576-020-00740-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/04/2020] [Indexed: 11/24/2022]
Abstract
Pathophysiological functions of chloride intracellular channel protein 3 (CLIC3) in human gastric cancer have been unclear. In the tissue microarray analysis using 107 gastric cancer specimens, CLIC3 expression was negatively correlated with pathological tumor depth, and the patients with lower expression of CLIC3 exhibited poorer prognosis. CLIC3 was expressed in the plasma membrane of cancer cells in the tissue. CLIC3 expression was also found in a human gastric cancer cell line (MKN7). In whole-cell patch-clamp recordings of the cells expressing CLIC3, NPPB-sensitive outwardly rectifying Cl− currents were observed. Cell proliferation was significantly accelerated by knockdown of CLIC3 in MKN7 cells. On the other hand, the proliferation was attenuated by exogenous CLIC3 expression in human gastric cancer cells (KATOIII and NUGC-4) in which endogenous CLIC3 expression is negligible. Our results suggest that CLIC3 functions as a Cl− channel in the plasma membrane of gastric cancer cells and that decreased expression of CLIC3 results in unfavorable prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Shunsuke Kawai
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kenta Sukegawa
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Isaya Hashimoto
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tsutomu Fujii
- Department of Surgery and Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| |
Collapse
|
93
|
Chitty JL, Skhinas JN, Filipe EC, Wang S, Cupello CR, Grant RD, Yam M, Papanicolaou M, Major G, Zaratzian A, Da Silva AM, Tayao M, Vennin C, Timpson P, Madsen CD, Cox TR. The Mini-Organo: A rapid high-throughput 3D coculture organotypic assay for oncology screening and drug development. Cancer Rep (Hoboken) 2020; 3:e1209. [PMID: 32671954 PMCID: PMC7941459 DOI: 10.1002/cnr2.1209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The use of in vitro cell cultures is a powerful tool for obtaining key insights into the behaviour and response of cells to interventions in normal and disease situations. Unlike in vivo settings, in vitro experiments allow a fine-tuned control of a range of microenvironmental elements independently within an isolated setting. The recent expansion in the use of three-dimensional (3D) in vitro assays has created a number of representative tools to study cell behaviour in a more physiologically 3D relevant microenvironment. Complex 3D in vitro models that can recapitulate human tissue biology are essential for understanding the pathophysiology of disease. AIM The development of the 3D coculture collagen contraction and invasion assay, the "organotypic assay," has been widely adopted as a powerful approach to bridge the gap between standard two-dimensional tissue culture and in vivo mouse models. In the cancer setting, these assays can then be used to dissect how stromal cells, such as cancer-associated fibroblasts (CAFs), drive extracellular matrix (ECM) remodelling to alter cancer cell behaviour and response to intervention. However, to date, many of the published organotypic protocols are low-throughput, time-consuming (up to several weeks), and work-intensive with often limited scalability. Our aim was to develop a fast, high-throughput, scalable 3D organotypic assay for use in oncology screening and drug development. METHODS AND RESULTS Here, we describe a modified 96-well organotypic assay, the "Mini-Organo," which can be easily completed within 5 days. We demonstrate its application in a wide range of mouse and human cancer biology approaches including evaluation of stromal cell 3D ECM remodelling, 3D cancer cell invasion, and the assessment of efficacy of potential anticancer therapeutic targets. Furthermore, the organotypic assay described is highly amenable to customisation using different cell types under diverse experimental conditions. CONCLUSIONS The Mini-Organo high-throughput 3D organotypic assay allows the rapid screening of potential cancer therapeutics in human and mouse models in a time-efficient manner.
Collapse
Affiliation(s)
- Jessica L. Chitty
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Joanna N. Skhinas
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Elysse C. Filipe
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Shan Wang
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Carmen Rodriguez Cupello
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Rhiannon D. Grant
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michelle Yam
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- School of Life SciencesUniversity of Technology SydneySydneyAustralia
| | - Gretel Major
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Andrew M. Da Silva
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Michael Tayao
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
| | - Claire Vennin
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- Molecular PathologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul Timpson
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| | - Chris D. Madsen
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Thomas R. Cox
- The Garvan Institute of Medical Research and the Kinghorn Cancer CentreSydneyNSWAustralia
- St Vincent's Clinical School, Faculty of Medicine, UNSWSydneyNSWAustralia
| |
Collapse
|
94
|
Wu L, Zhu L, Li Y, Zheng Z, Lin X, Yang C. LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating miR-21/E-cadherin axis. Cancer Cell Int 2020; 20:12. [PMID: 31938020 PMCID: PMC6954595 DOI: 10.1186/s12935-019-1087-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Background Melanoma is the most aggressive type of skin cancer with high mortality rate and poor prognosis. lncRNA MEG3, a tumor suppressor, is closely related to the development of various cancers. However, the role of lncRNA MEG3 in melanoma has seldom been studied. Methods RT-PCR was used to examine the expressions of lncRNA MEG3 and E-cadherin in melanoma patients and cell lines. Then, the biological functions of lncRNA MEG3 and E-cadherin were demonstrated by transfecting lncRNA MEG3-siRNA, lncRNA MEG3-overexpression, E-cadherin-siRNA and E-cadherin-overexpression plasmids in melanoma cell lines. Moreover, CCK8 assay and colony formation assay were utilized to assess the cell proliferation; Transwell assay was performed to evaluate the cell invasive ability; and tumor xenografts in nude mice were applied to test the tumor generation. Additionally, the target interactions among lncRNA MEG3, miR-21 and E-cadherin were determined by dual luciferase reporter assay. Finally, RT-PCR and WB were further conducted to verify the regulatory roles among lncRNA MEG3, miR-21 and E-cadherin. Results The clinical data showed that lncRNA MEG3 and E-cadherin expressions were both declined in carcinoma tissues as compared with their para-carcinoma tissues. Moreover, lncRNA MEG3 and E-cadherin expressions in B16 cells were also higher than those in A375 and A2058 cells. Subsequently, based on the differently expressed lncRNA MEG3 and E-cadherin in these human melanoma cell lines, we chose B16, A375 and A2058 cells for the following experiments. The results demonstrated that lncRNA MEG3 could suppress the tumor growth, tumor metastasis and formation; and meanwhile E-cadherin had the same effects on tumor growth, tumor metastasis and formation. Furthermore, the analysis of Kaplan–Meier curves also confirmed that there was a positive correlation between lncRNA MEG3 and E-cadherin. Ultimately, dual luciferase assays were further used to verify that lncRNA MEG3 could directly target miR-21 which could directly target E-cadherin in turn. Additionally, the data of RT-PCR and WB revealed that knockdown of lncRNA MEG3 in B16 cells inhibited miR-21 expression and promoted E-cadherin expression, but overexpression of lncRNA MEG3 in A375 and A2058 cells presented completely opposite results. Conclusion Our findings indicated that lncRNA MEG3 might inhibit the tumor growth, tumor metastasis and formation of melanoma by modulating miR-21/E-cadherin axis.
Collapse
Affiliation(s)
- Liangcai Wu
- 1Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun ErHeng Road, Guangzhou, 510655 China
| | - Lifei Zhu
- 1Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun ErHeng Road, Guangzhou, 510655 China
| | - Yanchang Li
- 1Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun ErHeng Road, Guangzhou, 510655 China
| | - Zhixin Zheng
- 1Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun ErHeng Road, Guangzhou, 510655 China
| | - Xi Lin
- 1Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun ErHeng Road, Guangzhou, 510655 China.,2Department of Pharmacology, Medical College, Jinan University, Guangzhou, 510632 China
| | - Chaoying Yang
- 1Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun ErHeng Road, Guangzhou, 510655 China
| |
Collapse
|
95
|
The Extracellular Matrix Modulates the Metastatic Journey. Dev Cell 2020; 49:332-346. [PMID: 31063753 DOI: 10.1016/j.devcel.2019.03.026] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
Abstract
The extracellular matrix is perturbed in tumors. The tumor matrix promotes the growth, survival, and invasion of the cancer and modifies fibroblast and immune cell behavior to drive metastasis and impair treatment. Here, we discuss how the tumor matrix regulates metastasis by fostering tumor cell invasion into the stroma and migration toward the vasculature. We describe the role of the tumor matrix in cancer cell intravasation and vascular dissemination. We examine the impact of the matrix on disseminated tumor cell extravasation and on tumor dormancy and metastatic outgrowth. Finally, we discuss the clinical outcome of therapeutics that normalize tumor-matrix interactions.
Collapse
|
96
|
Saavedra-López E, Roig-Martínez M, Cribaro GP, Casanova PV, Gallego JM, Pérez-Vallés A, Barcia C. Phagocytic glioblastoma-associated microglia and macrophages populate invading pseudopalisades. Brain Commun 2019; 2:fcz043. [PMID: 32954312 PMCID: PMC7491442 DOI: 10.1093/braincomms/fcz043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/02/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxic pseudopalisades are a pathological hallmark of human glioblastoma, which is linked to tumour malignancy and aggressiveness. Yet, their function and role in the tumour development have scarcely been explored. It is thought that pseudopalisades are formed by malignant cells escaping from the hypoxic environment, although evidence of the immune component of pseudopalisades has been elusive. In the present work, we analyse the immunological constituent of hypoxic pseudopalisades using high-resolution three-dimensional confocal imaging in tissue blocks from excised tumours of glioblastoma patients and mimic the hypoxic gradient in microfluidic platforms in vitro to understand the cellular motility. We visualize that glioblastoma-associated microglia and macrophages abundantly populate pseudopalisades, displaying an elongated kinetic morphology across the pseudopalisades, and are oriented towards the necrotic focus. In vitro experiments demonstrate that under hypoxic gradient, microglia show a particular motile behaviour characterized by the increase of cellular persistence in contrast with glioma cells. Importantly, we show that glioblastoma-associated microglia and macrophages utilize fibres of glioma cells as a haptotactic cue to navigate along the anisotropic structure of the pseudopalisades and display a high phagocytic activity at the necrotic border of the pseudopalisades. In this study, we demonstrate that glioblastoma-associated microglia and macrophages are the main immune cells of pseudopalisades in glioblastoma, travelling to necrotic areas to clear the resulting components of the prothrombotic milieu, suggesting that the scavenging features of glioblastoma-associated microglia and macrophages at the pseudopalisades serve as an essential counterpart for glioma cell invasion.
Collapse
Affiliation(s)
- Elena Saavedra-López
- Neuroimmunity Research Group, Department of Biochemistry and Molecular Biology, School of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Meritxell Roig-Martínez
- Neuroimmunity Research Group, Department of Biochemistry and Molecular Biology, School of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - George P Cribaro
- Neuroimmunity Research Group, Department of Biochemistry and Molecular Biology, School of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Paola V Casanova
- Neuroimmunity Research Group, Department of Biochemistry and Molecular Biology, School of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José M Gallego
- Department of Neurosurgery, Valencia General Hospital, Valencia 46014, Spain
| | - Ana Pérez-Vallés
- Department of Pathology, Valencia General Hospital, Valencia 46014, Spain
| | - Carlos Barcia
- Neuroimmunity Research Group, Department of Biochemistry and Molecular Biology, School of Medicine, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| |
Collapse
|
97
|
van Tienderen GS, Groot Koerkamp B, IJzermans JNM, van der Laan LJW, Verstegen MMA. Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers (Basel) 2019; 11:E1706. [PMID: 31683901 PMCID: PMC6896153 DOI: 10.3390/cancers11111706] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
98
|
Hubka KM, Carson DD, Harrington DA, Farach-Carson MC. Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels. Acta Biomater 2019; 97:385-398. [PMID: 31351252 DOI: 10.1016/j.actbio.2019.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Growth factor gradients orchestrate many biological processes including organogenesis, wound healing, cancer invasion, and metastasis. Heparin-binding growth factor (HBGF) gradients are established in living systems by proteoglycans including the extracellular matrix heparan sulfate proteoglycan, perlecan/HSPG2. Three potential HBGF-binding glycosaminoglycan attachment sites occur in N-terminal domain I of perlecan's five domains. Our overarching goal was to form stable, biomimetic non-covalently bound HBGF gradients surrounding cells encapsulated in hyaluronate-based hydrogels by first establishing perlecan domain I (PlnD1) gradients. A versatile multichannel gradient maker device (MGMD) was designed and 3D printed, then used to create desired gradients of microparticles in hydrogels. Next, we used the device to covalently incorporate gradients of PEGylated PlnD1 in hydrogels with high-low-high or high-medium-low concentrations across the hydrogel width. Fluorescently-labeled fibroblast growth factor-2 was delivered to hydrogels in phosphate-buffered saline and allowed to electrostatically bind to the covalently pre-incorporated PlnD1, producing stable non-covalent HBGF gradients. To test cell viability after flow through the MGMD, delicate primary human salivary stem/progenitor cells were encapsulated in gradient hydrogels where they showed high viability and continued to grow. Next, to test migratory behavior in response to HBGF gradients, two cell types, preosteoblastic MC3T3-E1 cell line and breast cancer cell line MDA-MB-231 were encapsulated in or adjacent to PlnD1-modified hydrogels. Both cell lines migrated toward HBGFs bound to PlnD1. We conclude that establishing covalently-bound PlnD1 gradients in hydrogels provides a new means to establish physiologically-relevant gradients of HBGFs that are useful for a variety of applications in tissue engineering and cancer biology. STATEMENT OF SIGNIFICANCE: Gradients of heparin binding growth factors (HBGFs) direct cell behavior in living systems. HBGFs bind electrostatically to gradients of HS proteoglycans in the extracellular matrix creating HBGF gradients. We recreated HBGF gradients in physiological hyaluronate-based hydrogels using a 3D-printed multichannel gradient maker device (MGMD) that created gradients of HS proteoglycan-derived perlecan/HSPG2 domain I. We demonstrated the ability of a variety of cells, including primary salivary stem/progenitor cells, pre-osteoblastic cells and an invasive breast cancer cell line, to be co-encapsulated in gradient hydrogels by flowing them together through the MGMD. The versatile device and the ability to create HBGF gradients in hydrogels for a variety of applications is innovative and of broad utility in both cancer biology and tissue engineering applications.
Collapse
Affiliation(s)
- Kelsea M Hubka
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, TX 77005, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| | - Daniel D Carson
- Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Genetics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Daniel A Harrington
- Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| | - Mary C Farach-Carson
- Department of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, MS-140, P.O. Box 1892, Houston, TX 77251, USA; Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 7500 Cambridge Street Room 4401, Houston, TX 77054, USA.
| |
Collapse
|
99
|
Affiliation(s)
- Jinyang Li
- Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
100
|
Kubitschke H, Wolf B, Morawetz E, Horn LC, Aktas B, Behn U, Höckel M, Käs J. Roadmap to Local Tumour Growth: Insights from Cervical Cancer. Sci Rep 2019; 9:12768. [PMID: 31484955 PMCID: PMC6726627 DOI: 10.1038/s41598-019-49182-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Wide tumour excision is currently the standard approach to surgical treatment of solid cancers including carcinomas of the lower genital tract. This strategy is based on the premise that tumours exhibit isotropic growth potential. We reviewed and analysed local tumour spreading patterns in 518 patients with cancer of the uterine cervix who underwent surgical tumour resection. Based on data obtained from pathological examination of the surgical specimen, we applied computational modelling techniques to simulate local tumour spread in order to identify parameters influencing preferred infiltration patterns and used area-proportional Euler diagrams to detect and confirm ordered patterns of tumour spread. Some anatomical structures, e.g. tissues of the urinary bladder, were significantly more likely to be infiltrated than other structures, e.g. the ureter and the rectum. Computational models assuming isotropic growth could not explain these infiltration patterns. Introducing ontogenetic distance of a tissue relative to the uterine cervix as a parameter led to accurate predictions of the clinically observed infiltration likelihoods. The clinical data indicates that successive infiltration likelihoods of ontogenetically distant tissues are nearly perfect subsets of ontogenetically closer tissues. The prevailing assumption of isotropic tumour extension has significant shortcomings in the case of cervical cancer. Rather, cervical cancer spread seems to follow ontogenetically defined trajectories.
Collapse
Affiliation(s)
- Hans Kubitschke
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Benjamin Wolf
- Department of Gynecology, Women's and Children's Centre, University Hospital Leipzig, Leipzig, Germany.,Leipzig School of Radical Pelvic Surgery, Leipzig University, Leipzig, Germany
| | - Erik Morawetz
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Lars-Christian Horn
- Division of Gynecologic, Breast and Perinatal Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Bahriye Aktas
- Department of Gynecology, Women's and Children's Centre, University Hospital Leipzig, Leipzig, Germany.,Leipzig School of Radical Pelvic Surgery, Leipzig University, Leipzig, Germany
| | - Ulrich Behn
- Institute of Theoretical Physics, Leipzig University, Leipzig, Germany
| | - Michael Höckel
- Department of Gynecology, Women's and Children's Centre, University Hospital Leipzig, Leipzig, Germany.,Leipzig School of Radical Pelvic Surgery, Leipzig University, Leipzig, Germany
| | - Josef Käs
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany.
| |
Collapse
|