51
|
|
52
|
Kourghi M, De Ieso ML, Nourmohammadi S, Pei JV, Yool AJ. Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011. Front Chem 2018; 6:142. [PMID: 29755973 PMCID: PMC5934433 DOI: 10.3389/fchem.2018.00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023] Open
Abstract
Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 μM) and AqB011 (IC50 14 μM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P), or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 μM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Saeed Nourmohammadi
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Aquaporin Physiology and Drug Discovery Program, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
53
|
Keisham M, Mukherjee S, Bhatla SC. Mechanisms of Sodium Transport in Plants-Progresses and Challenges. Int J Mol Sci 2018; 19:E647. [PMID: 29495332 PMCID: PMC5877508 DOI: 10.3390/ijms19030647] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding the mechanisms of sodium (Na⁺) influx, effective compartmentalization, and efflux in higher plants is crucial to manipulate Na⁺ accumulation and assure the maintenance of low Na⁺ concentration in the cytosol and, hence, plant tolerance to salt stress. Na⁺ influx across the plasma membrane in the roots occur mainly via nonselective cation channels (NSCCs). Na⁺ is compartmentalized into vacuoles by Na⁺/H⁺ exchangers (NHXs). Na⁺ efflux from the plant roots is mediated by the activity of Na⁺/H⁺ antiporters catalyzed by the salt overly sensitive 1 (SOS1) protein. In animals, ouabain (OU)-sensitive Na⁺, K⁺-ATPase (a P-type ATPase) mediates sodium efflux. The evolution of P-type ATPases in higher plants does not exclude the possibility of sodium efflux mechanisms similar to the Na⁺, K⁺-ATPase-dependent mechanisms characteristic of animal cells. Using novel fluorescence imaging and spectrofluorometric methodologies, an OU-sensitive sodium efflux system has recently been reported to be physiologically active in roots. This review summarizes and analyzes the current knowledge on Na⁺ influx, compartmentalization, and efflux in higher plants in response to salt stress.
Collapse
Affiliation(s)
- Monika Keisham
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| | - Soumya Mukherjee
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
54
|
Grella C, Renshaw A, Wright IA. Invasive weeds in urban riparian zones: the influence of catchment imperviousness and soil chemistry across an urbanization gradient. Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0736-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
55
|
Zepeda-Jazo I, Pottosin I. Methods Related to Polyamine Control of Cation Transport Across Plant Membranes. Methods Mol Biol 2018; 1694:257-276. [PMID: 29080173 DOI: 10.1007/978-1-4939-7398-9_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polyamines (PAs) are unique polycationic metabolites, which modulate plants' growth, development, and stress responses. As polycations, PAs interfere with cationic transport systems as ion channels and ionotropic pumps. Here, we describe the application of two techniques, MIFE to study the effects of PAs on cation fluxes in vivo and conventional patch-clamp to evaluate the PA blockage of ion currents in isolated plant vacuoles. Preparation of vacuoles for patch-clamp assays is described and solutions and voltage protocols are given, which allow separate recordings of major vacuolar channel currents and quantify their blockage by PAs.
Collapse
Affiliation(s)
- Isaac Zepeda-Jazo
- Universidad de La Ciénega del Estado de Michoacán de Ocampo, Av. Universidad 3000, Lomas de la Universidad, Sahuayo, 59103, Michoacán, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastian, 28045, Colima, Colima, México.
| |
Collapse
|
56
|
Ma K, Shi W, Xu M, Liu J, Zhang F. Genome-Wide Identification and Characterization of Long Non-Coding RNA in Wheat Roots in Response to Ca 2+ Channel Blocker. FRONTIERS IN PLANT SCIENCE 2018; 9:244. [PMID: 29559983 PMCID: PMC5845709 DOI: 10.3389/fpls.2018.00244] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 02/12/2018] [Indexed: 05/12/2023]
Abstract
It remains unclear whether plant lncRNAs are responsive to Ca2+-channel blocking. When using the Ca2+-channel blocker, LaCl3, to treat germinated wheat seeds for 24 h, we found that both root length and mitosis were inhibited in the LaCl3-treated groups. The effect of the Ca2+-channel blocker was verified in three ways: a [Ca2+]cyt decrease detected using Fluo-3/AM staining, a decrease in the Ca content measured using inductively coupled plasma mass spectrometry, and an inhibition of Ca2+ influx detected using Non-invasive Micro-test Technology. Genome-wide high throughput RNA-seq and bioinformatical methods were used to identify lncRNAs, and found 177 differentially expressed lncRNAs that might be in responsive to Ca2+-channel blocking. Among these, 108 were up-regulated and 69 were down-regulated. The validity of identified lncRNAs data from RNA-seq was verified using qPCR. GO and KEGG analysis indicated that a number of lncRNAs might be involved in diverse biological processes upon Ca2+-channel blocking. Further GO analysis showed that 23 lncRNAs might play roles as transcription factor (TF); Moreover, eight lncRNAs might participate in cell cycle regulation, and their relative expressions were detected using qPCR. This study also provides diverse data on wheat lncRNAs that can deepen our understanding of the function and regulatory mechanism of Ca2+-channel blocking in plants.
Collapse
Affiliation(s)
- Keshi Ma
- College of Life Sciences, Capital Normal University, Beijing, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Wenshuo Shi
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Mengyue Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jiaxi Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- *Correspondence: Jiaxi Liu
| | - Feixiong Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
- Feixiong Zhang
| |
Collapse
|
57
|
Demidchik V, Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated 'ROS-Ca 2+ Hub'. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:9-27. [PMID: 32291018 DOI: 10.1071/fp16420] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 05/22/2023]
Abstract
Elevation in the cytosolic free calcium is crucial for plant growth, development and adaptation. Calcium influx into plant cells is mediated by Ca2+ depolarisation-activated, hyperpolarisation-activated and voltage-independent Ca2+-permeable channels (DACCs, HACCs and VICCs respectively). These channels are encoded by the following gene families: (1) cyclic nucleotide-gated channels (CNGCs), (2) ionotropic glutamate receptors (GLRs), (3) annexins, (4) 'mechanosensitive channels of small (MscS) conductance'-like channels (MSLs), (5) 'mid1-complementing activity' channels (MCAs), Piezo channels, and hyperosmolality-induced [Ca2+]cyt. channel 1 (OSCA1). Also, a 'tandem-pore channel1' (TPC1) catalyses Ca2+ efflux from the vacuole in response to the plasma membrane-mediated Ca2+ elevation. Recent experimental data demonstrated that Arabidopsis thaliana (L.) Heynh. CNGCs 2, 5-10, 14, 16 and 18, GLRs 1.2, 3.3, 3.4, 3.6 and 3.7, TPC1, ANNEXIN1, MSL9 and MSL10,MCA1 and MCA2, OSCA1, and some their homologues counterparts in other species, are responsible for Ca2+ currents and/or cytosolic Ca2+ elevation. Extrusion of Ca2+ from the cytosol is mediated by Ca2+-ATPases and Ca2+/H+ exchangers which were recently examined at the level of high resolution crystal structure. Calcium-activated NADPH oxidases and reactive oxygen species (ROS)-activated Ca2+ conductances form a self-amplifying 'ROS-Ca2+hub', enhancing and transducing Ca2+ and redox signals. The ROS-Ca2+ hub contributes to physiological reactions controlled by ROS and Ca2+, demonstrating synergism and unity of Ca2+ and ROS signalling mechanisms.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
58
|
Wu H, Tito N, Giraldo JP. Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species. ACS NANO 2017; 11:11283-11297. [PMID: 29099581 DOI: 10.1021/acsnano.7b05723] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant abiotic stress leads to accumulation of reactive oxygen species (ROS) and a consequent decrease in photosynthetic performance. We demonstrate that a plant nanobionics approach of localizing negatively charged, sub-11 nm, spherical cerium oxide nanoparticles (nanoceria) inside chloroplasts in vivo augments ROS scavenging and photosynthesis of Arabidopsis thaliana plants under excess light (2000 μmol m-2 s-1, 1.5 h), heat (35 °C, 2.5 h), and dark chilling (4 °C, 5 days). Poly(acrylic acid) nanoceria (PNC) with a hydrodynamic diameter (10.3 nm)-lower than the maximum plant cell wall porosity-and negative ζ-potential (-16.9 mV) exhibit significantly higher colocalization (46%) with chloroplasts in leaf mesophyll cells than aminated nanoceria (ANC) (27%) of similar size (12.6 nm) but positive charge (9.7 mV). Nanoceria are transported into chloroplasts via nonendocytic pathways, influenced by the electrochemical gradient of the plasma membrane potential. PNC with a low Ce3+/Ce4+ ratio (35.0%) reduce leaf ROS levels by 52%, including hydrogen peroxide, superoxide anion, and hydroxyl radicals. For the latter ROS, there is no known plant enzyme scavenger. Plants embedded with these PNC that were exposed to abiotic stress exhibit an increase up to 19% in quantum yield of photosystem II, 67% in carbon assimilation rates, and 61% in Rubisco carboxylation rates relative to plants without nanoparticles. In contrast, PNC with high Ce3+/Ce4+ ratio (60.8%) increase overall leaf ROS levels and do not protect photosynthesis from oxidative damage during abiotic stress. This study demonstrates that anionic, spherical, sub-11 nm PNC with low Ce3+/Ce4+ ratio can act as a tool to study the impact of oxidative stress on plant photosynthesis and to protect plants from abiotic stress.
Collapse
Affiliation(s)
- Honghong Wu
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Nicholas Tito
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Juan P Giraldo
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| |
Collapse
|
59
|
Kourghi M, Nourmohammadi S, Pei JV, Qiu J, McGaughey S, Tyerman SD, Byrt CS, Yool AJ. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins. Int J Mol Sci 2017; 18:ijms18112323. [PMID: 29099773 PMCID: PMC5713292 DOI: 10.3390/ijms18112323] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Samantha McGaughey
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Caitlin S Byrt
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
60
|
Falakboland Z, Zhou M, Zeng F, Kiani-Pouya A, Shabala L, Shabala S. Plant ionic relation and whole-plant physiological responses to waterlogging, salinity and their combination in barley. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:941-953. [PMID: 32480622 DOI: 10.1071/fp16385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/10/2017] [Indexed: 06/11/2023]
Abstract
Waterlogging and salinity stresses significantly affect crop growth and global food production, and these stresses are often interrelated because waterlogging can lead to land salinisation by transporting salts to the surface. Although the physiological and molecular mechanisms of plant responses to each of these environmental constraints have been studied in detail, fewer studies have dealt with potential mechanisms underlying plant tolerance to the combined stress. This gap in knowledge is jeopardising the success of breeding programs. In the present work we studied the physiological and agronomical responses of 12 barley varieties contrasting in salinity stress tolerance to waterlogging (WL), salinity (NaCl) and combined (WL/NaCl) stresses. Stress damage symptoms were much greater in plants under combined WL/NaCl stress than those under separate stresses. The shoot biomass, chlorophyll content, maximum photochemical efficiency of PSII and shoot K+ concentration were significantly reduced under WL/NaCl conditions, whereas shoot Na+ concentration increased. Plants exposed to salinity stress showed lower damage indexes compared with WL. Chlorophyll fluorescence Fv/Fm value showed the highest correlation with the stress damage index under WL/NaCl conditions (r=-0.751) compared with other measured physiological traits, so was nominated as a good parameter to rank the tolerance of varieties. Average FW was reduced to 73±2, 52±1 and 23±2 percent of the control under NaCl, WL and combined WL/NaCl treatments respectively. Generally, the adverse effect of WL/NaCl stress was much greater in salt-sensitive varieties than in more tolerant varieties. Na+ concentrations of the shoot under control conditions were 97±10µmolg-1 DW, and increased to 1519±123, 179±11 and 2733±248µmolg-1 under NaCl, WL and combined WL/NaCl stresses respectively. K+ concentrations were 1378±66, 1260±74, 1270±79 and 411±92µmolg-1 DW under control, NaCl, WL and combined WL/NaCl stresses respectively. No significant correlation was found between the overall salinity stress tolerance and amount of Na+ accumulated in plant shoots after 15 days of exposure to 250mM NaCl stress. However, plants exposed to combined salinity and WL stress showed a negative correlation between shoot Na+ accumulation and extent of salinity damage. Overall, the reported results indicate that K+ reduction in the plants under combined WL/NaCl stress, but not stress-induced Na+ accumulation in the shoot, was the most critical feature in determining the overall plant performance under combined stress conditions.
Collapse
Affiliation(s)
- Zhinous Falakboland
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Fanrong Zeng
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Ali Kiani-Pouya
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
61
|
Álvarez-Aragón R, Rodríguez-Navarro A. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:208-219. [PMID: 28370621 DOI: 10.1111/tpj.13556] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 05/02/2023]
Abstract
Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na+ effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na+ uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na+ into the xylem constitute the major pathway for the accumulation of Na+ in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na+ accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na+ transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na+ could not be accumulated. In contrast, in NaCl the plants that accumulated Na+ lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na+ uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity.
Collapse
Affiliation(s)
- Rocío Álvarez-Aragón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Alonso Rodríguez-Navarro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
62
|
Zhu M, Zhou M, Shabala L, Shabala S. Physiological and molecular mechanisms mediating xylem Na + loading in barley in the context of salinity stress tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:1009-1020. [PMID: 26881809 DOI: 10.1111/pce.12727] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/17/2016] [Accepted: 01/23/2016] [Indexed: 05/18/2023]
Abstract
Time-dependent kinetics of xylem Na+ loading was investigated using a large number of barley genotypes contrasting in their salinity tolerance. Salt-sensitive varieties were less efficient in controlling xylem Na+ loading and showed a gradual increase in the xylem Na+ content over the time. To understand underlying ionic and molecular mechanisms, net fluxes of Ca2+ , K+ and Na+ were measured from the xylem parenchyma tissue in response to H2 O2 and ABA; both of them associated with salinity stress signalling. Our results indicate that NADPH oxidase-mediated apoplastic H2 O2 production acts upstream of the xylem Na+ loading and is causally related to ROS-inducible Ca2+ uptake systems in the root stelar tissue. It was also found that ABA regulates (directly or indirectly) the process of Na+ retrieval from the xylem and the significant reduction of Na+ and K+ fluxes induced by bumetanide are indicative of a major role of chloride cation co-transporter (CCC) on xylem ion loading. Transcript levels of HvHKT1;5_like and HvSOS1_like genes in the root stele were observed to decrease after salt stress, while there was an increase in HvSKOR_like gene, indicating that these ion transporters are involved in primary Na+ /K+ movement into/out of xylem.
Collapse
Affiliation(s)
- Min Zhu
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
63
|
Byrt CS, Zhao M, Kourghi M, Bose J, Henderson SW, Qiu J, Gilliham M, Schultz C, Schwarz M, Ramesh SA, Yool A, Tyerman S. Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca 2+ and pH. PLANT, CELL & ENVIRONMENT 2017; 40:802-815. [PMID: 27620834 DOI: 10.1111/pce.12832] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 05/20/2023]
Abstract
The aquaporin AtPIP2;1 is an abundant plasma membrane intrinsic protein in Arabidopsis thaliana that is implicated in stomatal closure, and is highly expressed in plasma membranes of root epidermal cells. When expressed in Xenopus laevis oocytes, AtPIP2;1 increased water permeability and induced a non-selective cation conductance mainly associated with Na+ . A mutation in the water pore, G103W, prevented both the ionic conductance and water permeability of PIP2;1. Co-expression of AtPIP2;1 with AtPIP1;2 increased water permeability but abolished the ionic conductance. AtPIP2;2 (93% identical to AtPIP2;1) similarly increased water permeability but not ionic conductance. The ionic conductance was inhibited by the application of extracellular Ca2+ and Cd2+ , with Ca2+ giving a biphasic dose-response with a prominent IC50 of 0.32 mм comparable with a previous report of Ca2+ sensitivity of a non-selective cation channel (NSCC) in Arabidopsis root protoplasts. Low external pH also inhibited ionic conductance (IC50 pH 6.8). Xenopus oocytes and Saccharomyces cerevisiae expressing AtPIP2;1 accumulated more Na+ than controls. Establishing whether AtPIP2;1 has dual ion and water permeability in planta will be important in understanding the roles of this aquaporin and if AtPIP2;1 is a candidate for a previously reported NSCC responsible for Ca2+ and pH sensitive Na+ entry into roots.
Collapse
Affiliation(s)
- Caitlin S Byrt
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Manchun Zhao
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Mohamad Kourghi
- Discipline of Physiology, School of Medicine, University of Adelaide, South Australia, 5005, Australia
| | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Jiaen Qiu
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Carolyn Schultz
- Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Manuel Schwarz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Sunita A Ramesh
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Andrea Yool
- Discipline of Physiology, School of Medicine, University of Adelaide, South Australia, 5005, Australia
| | - Steve Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute and School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
64
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
65
|
Ben Romdhane W, Ben-Saad R, Meynard D, Verdeil JL, Azaza J, Zouari N, Fki L, Guiderdoni E, Al-Doss A, Hassairi A. Ectopic Expression of Aeluropus littoralis Plasma Membrane Protein Gene AlTMP1 Confers Abiotic Stress Tolerance in Transgenic Tobacco by Improving Water Status and Cation Homeostasis. Int J Mol Sci 2017; 18:E692. [PMID: 28338609 PMCID: PMC5412278 DOI: 10.3390/ijms18040692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023] Open
Abstract
We report here the isolation and functional analysis of AlTMP1 gene encoding a member of the PMP3 protein family. In Aeluropus littoralis, AlTMP1 is highly induced by abscisic acid (ABA), cold, salt, and osmotic stresses. Transgenic tobacco expressing AlTMP1 exhibited enhanced tolerance to salt, osmotic, H₂O₂, heat and freezing stresses at the seedling stage. Under greenhouse conditions, the transgenic plants showed a higher level of tolerance to drought than to salinity. Noteworthy, AlTMP1 plants yielded two- and five-fold more seeds than non-transgenic plants (NT) under salt and drought stresses, respectively. The leaves of AlTMP1 plants accumulated lower Na⁺ but higher K⁺ and Ca2+ than those of NT plants. Tolerance to osmotic and salt stresses was associated with higher membrane stability, low electrolyte leakage, and improved water status. Finally, accumulation of AlTMP1 in tobacco altered the regulation of some stress-related genes in either a positive (NHX1, CAT1, APX1, and DREB1A) or negative (HKT1 and KT1) manner that could be related to the observed tolerance. These results suggest that AlTMP1 confers stress tolerance in tobacco through maintenance of ion homeostasis, increased membrane integrity, and water status. The observed tolerance may be due to a direct or indirect effect of AlTMP1 on the expression of stress-related genes which could stimulate an adaptive potential not present in NT plants.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
- Current Address: Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia..
| | - Rania Ben-Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Donaldo Meynard
- CIRAD-UMR AGAP (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Jean-Luc Verdeil
- CIRAD-UMR AGAP (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Jalel Azaza
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Lotfi Fki
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, B.P 802, 3038 Sfax, Tunisia.
| | - Emmanuel Guiderdoni
- CIRAD-UMR AGAP (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement), Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia.
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
- Current Address: Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia..
| |
Collapse
|
66
|
H. Wegner L. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.2.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
67
|
Hwang JE, Jang DS, Lee KJ, Ahn JW, Kim SH, Kang SY, Kim DS, Kim JB. Identification of gamma ray irradiation-induced mutations in membrane transport genes in a rice population by TILLING. Genes Genet Syst 2016; 91:245-256. [PMID: 27582185 DOI: 10.1266/ggs.15-00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A high-salt environment represents environmental stress for most plants. Those that can grow and thrive in such an environment must have membrane transport systems that can respond effectively. Plant roots absorb Na+ from the soil, and the plant must maintain Na+ homeostasis to survive salt stress. A major mechanism by which salt-tolerant plants adapt to salt stress is through modulation of ion transport genes. We have subjected a population of rice plants to mutagenesis, and identified lines with both single-nucleotide polymorphisms (SNPs) in membrane transport genes and altered responses to salt stress. Primers labeled with FAM or HEX fluorescent dyes were designed for nine target genes encoding membrane transport proteins that are believed to regulate salt stress tolerance. A TILLING (Targeting Induced Local Lesions IN Genome) assay was performed on 2,961 M2 rice mutant lines using electrophoresis. After the TILLING assay, a total of 41 mutant lines containing SNPs in the target genes were identified and screened. The average number of mutations per gene was 1/492 kb in lines having SNPs, and the percentage of mutation sites per total sequence was 0.67. Among the 41 lines, nine had altered sequences in the exon region of the genes. Of these nine lines, seven were tolerant to salt stress after exposure to 170 mM NaCl for three weeks, while the other two lines were not more salt-tolerant than the control lines. Furthermore, five mutant lines containing SNPs in the coding region of OsAKT1, OsHKT6, OsNSCC2, OsHAK11 and OsSOS1 showed changed expression levels for each gene. We conclude that variation in membrane transport genes, such as expression levels and protein structures, may affect the rice plant's tolerance to salt stress. These mutations represent traits that may be selected for large rice mutant populations, permitting efficient acquisition of salt-tolerant lines.
Collapse
Affiliation(s)
- Jung Eun Hwang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI)
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Chakraborty K, Bose J, Shabala L, Shabala S. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4611-25. [PMID: 27340231 PMCID: PMC4973732 DOI: 10.1093/jxb/erw236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species.
Collapse
Affiliation(s)
- Koushik Chakraborty
- Department of Plant Physiology, ICAR-Directorate of Groundnut Research, Junagadh, Gujarat-362 001, India School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Private Bag 94, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Private Bag 94, Tas 7001, Australia
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Private Bag 94, Tas 7001, Australia
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Private Bag 94, Tas 7001, Australia
| |
Collapse
|
69
|
Ozfidan-Konakci C, Uzilday B, Ozgur R, Yildiztugay E, Sekmen AH, Turkan I. Halophytes as a source of salt tolerance genes and mechanisms: a case study for the Salt Lake area, Turkey. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:575-589. [PMID: 32480488 DOI: 10.1071/fp15288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/22/2016] [Indexed: 06/11/2023]
Abstract
The worst case scenario of global climate change predicts both drought and salinity would be the first environmental factors restricting agriculture and natural ecosystems, causing decreased crop yields and plant growth that would directly affect human population in the next decades. Therefore, it is vital to understand the biology of plants that are already adapted to these extreme conditions. In this sense, extremophiles such as the halophytes offer valuable genetic information for understanding plant salinity tolerance and to improve the stress tolerance of crop plants. Turkey has ecological importance for its rich biodiversity with up to 3700 endemic plants. Salt Lake (Lake Tuz) in Central Anatolia, one of the largest hypersaline lakes in the world, is surrounded by salty marshes, with one of the most diverse floras in Turkey, where arid and semiarid areas have increased due to low rainfall and high evaporation during the summer season. Consequently, the Salt Lake region has a large number of halophytic, xerophytic and xero-halophytic plants. One good example is Eutrema parvulum (Schrenk) Al-Shehbaz & Warwick, which originates from the Salt Lake region, can tolerate up to 600mM NaCl. In recent years, the full genome of E. parvulum was published and it has been accepted as a model halophyte due to its close relationship (sequence identity in range of 90%) with Arabidopsis thaliana (L. Heynh.). In this context, this review will focus on tolerance mechanisms involving hormone signalling, accumulation of compatible solutes, ion transporters, antioxidant defence systems, reactive oxygen species (ROS) signalling mechanism of some lesser-known extremophiles growing in the Salt Lake region. In addition, current progress on studies conducted with E. parvulum will be evaluated to shed a light on future prospects for improved crop tolerance.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Meram, Konya, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Evren Yildiztugay
- Department of Biology, Faculty of Science, Selcuk University, 42250, Selcuklu, Konya, Turkey
| | - A Hediye Sekmen
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
70
|
Ben Hamed-Laouti I, Arbelet-Bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K, Bouteau F. Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:49-59. [PMID: 27095399 DOI: 10.1016/j.plantsci.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death.
Collapse
Affiliation(s)
- Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Linda De Bont
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Bernadette Biligui
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Bertrand Gakière
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
71
|
Rahman A, Nahar K, Hasanuzzaman M, Fujita M. Calcium Supplementation Improves Na(+)/K(+) Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:609. [PMID: 27242816 PMCID: PMC4864017 DOI: 10.3389/fpls.2016.00609] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 05/20/2023]
Abstract
The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na(+) influx and K(+) efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na(+) influx and K(+) leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system.
Collapse
Affiliation(s)
- Anisur Rahman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Kamrun Nahar
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| |
Collapse
|
72
|
Monihan SM, Magness CA, Yadegari R, Smith SE, Schumaker KS. Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions. PLANT PHYSIOLOGY 2016; 171:369-79. [PMID: 26979332 PMCID: PMC4854721 DOI: 10.1104/pp.16.00334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/12/2016] [Indexed: 05/05/2023]
Abstract
The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development.
Collapse
Affiliation(s)
- Shea M Monihan
- School of Plant Sciences (S.M.M., C.A.M., R.Y., K.S.S.) and School of Natural Resources and the Environment (S.E.S.), University of Arizona, Tucson, Arizona 85721
| | - Courtney A Magness
- School of Plant Sciences (S.M.M., C.A.M., R.Y., K.S.S.) and School of Natural Resources and the Environment (S.E.S.), University of Arizona, Tucson, Arizona 85721
| | - Ramin Yadegari
- School of Plant Sciences (S.M.M., C.A.M., R.Y., K.S.S.) and School of Natural Resources and the Environment (S.E.S.), University of Arizona, Tucson, Arizona 85721
| | - Steven E Smith
- School of Plant Sciences (S.M.M., C.A.M., R.Y., K.S.S.) and School of Natural Resources and the Environment (S.E.S.), University of Arizona, Tucson, Arizona 85721
| | - Karen S Schumaker
- School of Plant Sciences (S.M.M., C.A.M., R.Y., K.S.S.) and School of Natural Resources and the Environment (S.E.S.), University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
73
|
Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I, Demidchik V. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:245-57. [PMID: 26676841 DOI: 10.1111/tpj.13105] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/15/2015] [Accepted: 11/30/2015] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate.
Collapse
Affiliation(s)
- Arifa Sosan
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Darya Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Katsiaryna Tsiurkina
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Igor Smolich
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Sunitha Subramaniam
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Vladimir Golovko
- Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - David Anderson
- Department of Chemistry, The MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
| | - Ian Colbeck
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Square, Minsk, 220030, Belarus
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376, St.-Petersburg, Russia
| |
Collapse
|
74
|
Yu Y, Assmann SM. The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. PLANT SIGNALING & BEHAVIOR 2016; 11:e1085275. [PMID: 26431457 PMCID: PMC4883925 DOI: 10.1080/15592324.2015.1085275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Salinity is a major agricultural problem that affects crop yield. Na(+) is transported to the shoot through the transpiration stream. The mutant of the sole Arabidopsis heterotrimeric G protein β subunit, agb1, is hypersensitive to salinity in part due to a higher transpiration rate. Here, we investigated the direct effect of Na(+) on stomatal opening using detached epidermal peels of wild type and agb1 plants. In both genotypes, NaCl is equally as effective as KCl in mediating stomatal opening at the concentrations tested. In both genotypes, ABA is less effective in inhibiting Na(+) mediated stomatal opening than K(+) mediated stomatal opening. The agb1 mutant is hyposensitive to ABA inhibition of K(+)-mediated but not Na(+)-mediated stomatal opening. These results suggest that the greater transpiration observed in agb1 plants grown in saline conditions is likely not mediated by differential genotypic direct effects of Na(+) on stomatal apertures.
Collapse
Affiliation(s)
- Yunqing Yu
- Biology Department; Pennsylvania State University; University Park, PA USA
| | - Sarah M. Assmann
- Biology Department; Pennsylvania State University; University Park, PA USA
- Correspondence to: Sarah M. Assmann;
| |
Collapse
|
75
|
Nieves-Cordones M, Martínez V, Benito B, Rubio F. Comparison between Arabidopsis and Rice for Main Pathways of K(+) and Na(+) Uptake by Roots. FRONTIERS IN PLANT SCIENCE 2016; 7:992. [PMID: 27458473 PMCID: PMC4932104 DOI: 10.3389/fpls.2016.00992] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/22/2016] [Indexed: 05/22/2023]
Abstract
K(+) is an essential macronutrient for plants. It is acquired by specific uptake systems located in roots. Although the concentrations of K(+) in the soil solution are widely variable, K(+) nutrition is secured by uptake systems that exhibit different affinities for K(+). Two main systems have been described for root K(+) uptake in several species: the high-affinity HAK5-like transporter and the inward-rectifier AKT1-like channel. Other unidentified systems may be also involved in root K(+) uptake, although they only seem to operate when K(+) is not limiting. The use of knock-out lines has allowed demonstrating their role in root K(+) uptake in Arabidopsis and rice. Plant adaptation to the different K(+) supplies relies on the finely tuned regulation of these systems. Low K(+)-induced transcriptional up-regulation of the genes encoding HAK5-like transporters occurs through a signal cascade that includes changes in the membrane potential of root cells and increases in ethylene and reactive oxygen species concentrations. Activation of AKT1 channels occurs through phosphorylation by the CIPK23/CBL1 complex. Recently, activation of the Arabidopsis HAK5 by the same complex has been reported, pointing to CIPK23/CBL as a central regulator of the plant's adaptation to low K(+). Na(+) is not an essential plant nutrient but it may be beneficial for some plants. At low concentrations, Na(+) improves growth, especially under K(+) deficiency. Thus, high-affinity Na(+) uptake systems have been described that belong to the HKT and HAK families of transporters. At high concentrations, typical of saline environments, Na(+) accumulates in plant tissues at high concentrations, producing alterations that include toxicity, water deficit and K(+) deficiency. Data concerning pathways for Na(+) uptake into roots under saline conditions are still scarce, although several possibilities have been proposed. The apoplast is a significant pathway for Na(+) uptake in rice grown under salinity conditions, but in other plant species different mechanisms involving non-selective cation channels or transporters are under discussion.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Francisco Rubio,
| |
Collapse
|
76
|
Foster KJ, Miklavcic SJ. Toward a biophysical understanding of the salt stress response of individual plant cells. J Theor Biol 2015; 385:130-42. [DOI: 10.1016/j.jtbi.2015.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
|
77
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
78
|
Yu Y, Assmann SM. The heterotrimeric G-protein β subunit, AGB1, plays multiple roles in the Arabidopsis salinity response. PLANT, CELL & ENVIRONMENT 2015; 38:2143-56. [PMID: 25808946 DOI: 10.1111/pce.12542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/20/2015] [Accepted: 03/05/2015] [Indexed: 05/07/2023]
Abstract
Salinity stress includes both osmotic and ionic toxicity. Sodium homeostasis is influenced by Na(+) uptake and extrusion, vacuolar Na(+) compartmentation and root to shoot Na(+) translocation via transpiration. The knockout mutant of the Arabidopsis heterotrimeric G-protein Gβ subunit, agb1, is hypersensitive to salt, exhibiting a leaf bleaching phenotype. We show that AGB1 is mainly involved in the ionic toxicity component of salinity stress and plays roles in multiple processes of Na(+) homeostasis. agb1 mutants accumulate more Na(+) and less K(+) in both shoots and roots of hydroponically grown plants, as measured by inductively coupled plasma atomic emission spectrometry. agb1 plants have higher root to shoot translocation rates of radiolabelled (24) Na(+) under transpiring conditions, as a result of larger stomatal apertures and increased stomatal conductance. (24) Na(+) tracer experiments also show that (24) Na(+) uptake rates by excised roots of agb1 and wild type are initially equal, but that agb1 has higher net Na(+) uptake at 90 min, implicating possible involvement of AGB1 in the regulation of Na(+) efflux. Calcium alleviates the salt hypersensitivity of agb1 by reducing Na(+) accumulation to below the toxicity threshold. Our results provide new insights into the regulatory pathways underlying plant responses to salinity stress, an important agricultural problem.
Collapse
Affiliation(s)
- Yunqing Yu
- Biology Department, Pennsylvania State University, University Park, PA, 16802-5301, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, PA, 16802-5301, USA
| |
Collapse
|
79
|
Gengmao Z, Shihui L, Xing S, Yizhou W, Zipan C. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Rep 2015; 5:12696. [PMID: 26235534 PMCID: PMC4522604 DOI: 10.1038/srep12696] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L(-1) K2SiO3 · nH2O addition obviously improved the plant growth. Although Na(+) concentration in plant organs was drastically increased with increasing salinity, higher levels of K(+)/Na(+) ratio was obtained after K2SiO3 · nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3 · nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3 · nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.
Collapse
Affiliation(s)
- Zhao Gengmao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
- Jiangsu Provincial Key Lab of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Li Shihui
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Sun Xing
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Wang Yizhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Chang Zipan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
80
|
Oh DH, Barkla BJ, Vera-Estrella R, Pantoja O, Lee SY, Bohnert HJ, Dassanayake M. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. THE NEW PHYTOLOGIST 2015; 207:627-44. [PMID: 25944243 DOI: 10.1111/nph.13414] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/08/2015] [Indexed: 05/18/2023]
Abstract
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW, 2480, Australia
| | - Rosario Vera-Estrella
- Instituto de Biotecnología, UNAM, A.P. 510-3, Colonia Miraval, Cuernavaca, MOR, 62250, México
| | - Omar Pantoja
- Instituto de Biotecnología, UNAM, A.P. 510-3, Colonia Miraval, Cuernavaca, MOR, 62250, México
| | - Sang-Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Hans J Bohnert
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
81
|
Muralidhar A, Shabala L, Broady P, Shabala S, Garrill A. Mechanisms underlying turgor regulation in the estuarine alga Vaucheria erythrospora (Xanthophyceae) exposed to hyperosmotic shock. PLANT, CELL & ENVIRONMENT 2015; 38:1514-1527. [PMID: 25546818 DOI: 10.1111/pce.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Aquatic organisms are often exposed to dramatic changes in salinity in the environment. Despite decades of research, many questions related to molecular and physiological mechanisms mediating sensing and adaptation to salinity stress remain unanswered. Here, responses of Vaucheria erythrospora, a turgor-regulating xanthophycean alga from an estuarine habitat, have been investigated. The role of ion uptake in turgor regulation was studied using a single cell pressure probe, microelectrode ion flux estimation (MIFE) technique and membrane potential (Em ) measurements. Turgor recovery was inhibited by Gd(3+) , tetraethylammonium chloride (TEA), verapamil and orthovanadate. A NaCl-induced shock rapidly depolarized the plasma membrane while an isotonic sorbitol treatment hyperpolarized it. Turgor recovery was critically dependent on the presence of Na(+) but not K(+) and Cl(-) in the incubation media. Na(+) uptake was strongly decreased by amiloride and changes in net Na(+) and H(+) fluxes were oppositely directed. This suggests active uptake of Na(+) in V. erythrospora mediated by an antiport Na(+) /H(+) system, functioning in the direction opposite to that of the SOS1 exchanger in higher plants. The alga also retains K(+) efficiently when exposed to high NaCl concentrations. Overall, this study provides insights into mechanisms enabling V. erythrospora to regulate turgor via ion movements during hyperosmotic stress.
Collapse
Affiliation(s)
- Abishek Muralidhar
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Lana Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Paul Broady
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| | - Sergey Shabala
- School of Land and Food and Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Ashley Garrill
- School of Biological Sciences, University of Canterbury, Christchurch, 8011, New Zealand
| |
Collapse
|
82
|
Farhat N, Ivanov AG, Krol M, Rabhi M, Smaoui A, Abdelly C, Hüner NPA. Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants. PLANTA 2015; 241:1189-206. [PMID: 25637102 DOI: 10.1007/s00425-015-2248-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/17/2015] [Indexed: 05/03/2023]
Abstract
Magnesium deficiency preferentially inhibits photosystem I rather than photosystem II in Sulla carnosa plants. The effects of magnesium (Mg(2+)) deficiency on growth, photosynthetic performance, pigment and polypeptide composition of chloroplast membranes were studied in the halophyte Sulla carnosa (Desf.), an annual legume endemic to Tunisia and Algeria. The results demonstrate a gradual decrease in biomass production with decreasing Mg(2+) availability in the growth medium. The increase of Mg(2+) deficiency was also associated with a decline of the net CO2 assimilation (Pn) in fully expanded leaves, a decrease in the amount of photosynthetic pigments, and an increase in the lipid peroxidation in plants exposed to decreased Mg(2+) concentrations. Interestingly, while CO2 assimilation already was affected at Mg(2+) concentrations below 1.5 mM, the photochemical efficiency of photosystem II (PSII) declined only in the absence of Mg(2+). In contrast, plants of S. carnosa grown in Mg(2+)-deficient conditions exhibited a significant decrease in photosystem I (PSI) photochemistry in vivo at much higher Mg(2+) levels compared to PSII photochemical activity. The inhibitory effect of Mg(2+) deficiency on PSI photochemistry strongly correlated with significantly lower relative abundance of PSI-related chlorophyll-protein complexes and lower amounts of PSI-associated polypeptides, PsaA, PsaB, and Lhca proteins within the same range of Mg(2+) concentrations. These observations were associated with a higher intersystem electron pool size, restricted linear electron transport and a lower rate of reduction of P700(+) in the dark indicating restricted capacity for PSI cyclic electron transfer in plants exposed to Mg(2+)-deficient conditions compared to controls. These results clearly indicate that PSI, rather than PSII is preferentially targeted and damaged under Mg(2+)-deficiency conditions.
Collapse
Affiliation(s)
- Nèjia Farhat
- Laboratory of Extremophile Plants, Biotechnology Centre of Borj-Cedria, P. O. Box 901, 2050, Hammam-Lif, Tunisia
| | | | | | | | | | | | | |
Collapse
|
83
|
Straltsova D, Chykun P, Subramaniam S, Sosan A, Kolbanov D, Sokolik A, Demidchik V. Cation channels are involved in brassinosteroid signalling in higher plants. Steroids 2015; 97:98-106. [PMID: 25449770 DOI: 10.1016/j.steroids.2014.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 11/27/2022]
Abstract
Brassinosteroids (BRs) are an important class of plant hormones with a multitude of functions. They have been intensively investigated for their biosynthesis, distribution and physiological functions. The aim of this study was to examine possible effects of BRs on the plant plasma membrane cation conductances and Ca(2+) signalling. The wheat root protoplasts (tested by patch-clamping) and excised arabidopsis roots (analysed by Ca(2+)-aequorin chemiluminometry), were used. In the whole-cell plasma membrane patches, 24-epibrassinolide, 28-homobrassionolide or 24-epicastasterone (1 μM) were applied exogenously. 24-Epicastasterone increased the activity of the K(+) efflux conductance in 50% of tested protoplasts while 24-epibrassonolide and 28-homobrassionolide did not modify the plasma membrane currents. Addition of 24-epicastasterone at the cytosolic side (to the pipette solution) resulted in dramatic stimulation of a time-dependent K(+) efflux current (in 30% of protoplasts) and an activation of Ca(2+) influx currents (in 30% of protoplasts). Gadolinium ions, which are blockers of cation channels, inhibited the 24-epicastasterone-induced cation channel activities. In Arabidopsis thaliana plants constitutively expressing aequorin, exogenous 24-epibrassonolide, 28-homobrassionolide and 24-epicastasterone induced a transient elevation of the cytosolic free Ca(2+), which was inhibited by Gd(3+) and mediated by Ca(2+) influx from the bathing solution. In Ca(2+)-aequorin tests, 10 μM of exogenous BRs was the minimal concentration at which statistically significant changes of the cytosolic Ca(2+) were observed. In conclusion, the obtained results suggest that the plasma membrane of root cells contains the brassinosteroid-activated cation-permeable channels, which can probably be involved in rapid regulation of the K(+) homeostasis and Ca(2+) signalling.
Collapse
Affiliation(s)
- Darya Straltsova
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Palina Chykun
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Sunitha Subramaniam
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| | - Arifa Sosan
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom.
| | - Dmitriy Kolbanov
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Anatoliy Sokolik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Ave., Minsk 220030, Belarus.
| |
Collapse
|
84
|
Hamamoto S, Horie T, Hauser F, Deinlein U, Schroeder JI, Uozumi N. HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol 2015; 32:113-120. [DOI: 10.1016/j.copbio.2014.11.025] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
85
|
Model of Cation Transportation Mediated by High-Affinity Potassium Transporters (HKTs) in Higher Plants. Biol Proced Online 2015; 17:1. [PMID: 25698907 PMCID: PMC4334588 DOI: 10.1186/s12575-014-0013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/06/2014] [Indexed: 01/18/2023] Open
Abstract
Trk/Ktr/HKT transporters probably were evolved from simple K+ channels KcsA. HKT transporters, which mediate Na+-uniport or Na+/K+-symport, maintain K+/Na+ homeostasis and increase salinity tolerance, can be classified into three subfamilies in higher plants. In this review, we systematically analyzed the characteristics of amino acids sequences and physiological functions of HKT transporters in higher plant. Furthermore, we depicted the hypothetical models of cations selection and transportation mediated by HKT transporters according to the highly conserved structure for the goal of better understanding the cations transportation processes.
Collapse
|
86
|
Jin Y, Jing W, Zhang Q, Zhang W. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. JOURNAL OF PLANT RESEARCH 2015; 128:211-20. [PMID: 25416933 DOI: 10.1007/s10265-014-0679-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/23/2014] [Indexed: 05/22/2023]
Abstract
A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport.
Collapse
Affiliation(s)
- Yakang Jin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | |
Collapse
|
87
|
Bojórquez-Quintal E, Velarde-Buendía A, Ku-González Á, Carillo-Pech M, Ortega-Camacho D, Echevarría-Machado I, Pottosin I, Martínez-Estévez M. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. FRONTIERS IN PLANT SCIENCE 2014; 5:605. [PMID: 25429292 PMCID: PMC4228851 DOI: 10.3389/fpls.2014.00605] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/17/2014] [Indexed: 05/04/2023]
Abstract
Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánYucatán, México
| | - Ana Velarde-Buendía
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México
| | - Ángela Ku-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánYucatán, México
| | - Mildred Carillo-Pech
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánYucatán, México
| | - Daniela Ortega-Camacho
- Unidad de Ciencias del Agua, Centro de Investigación Científica de YucatánYucatán, México
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánYucatán, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánYucatán, México
| |
Collapse
|
88
|
Maathuis FJM, Ahmad I, Patishtan J. Regulation of Na(+) fluxes in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:467. [PMID: 25278946 PMCID: PMC4165222 DOI: 10.3389/fpls.2014.00467] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 05/18/2023]
Abstract
When exposed to salt, every plant takes up Na(+) from the environment. Once in the symplast, Na(+) is distributed within cells and between different tissues and organs. There it can help to lower the cellular water potential but also exert potentially toxic effects. Control of Na(+) fluxes is therefore crucial and indeed, research shows that the divergence between salt tolerant and salt sensitive plants is not due to a variation in transporter types but rather originates in the control of uptake and internal Na(+) fluxes. A number of regulatory mechanisms has been identified based on signaling of Ca(2+), cyclic nucleotides, reactive oxygen species, hormones, or on transcriptional and post translational changes of gene and protein expression. This review will give an overview of intra- and intercellular movement of Na(+) in plants and will summarize our current ideas of how these fluxes are controlled and regulated in the early stages of salt stress.
Collapse
|
89
|
Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E, Nick P. Salt adaptation requires efficient fine-tuning of jasmonate signalling. PROTOPLASMA 2014; 251:881-98. [PMID: 24297515 DOI: 10.1007/s00709-013-0591-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/20/2013] [Indexed: 05/21/2023]
Abstract
Understanding the mechanism by which plants sense, signal and respond to salinity stress is of great interest to plant biologists. In stress signalling, often the same molecules are involved in both damage-related and adaptive events. To dissect this complexity, we compared the salinity responses of two grapevine cell lines differing in their salinity tolerance. We followed rapid changes in the cellular content of sodium and calcium, apoplastic alkalinisation and slower responses in the levels of jasmonic acid, its active isoleucine conjugate and abscisic acid, as well as of stilbenes. Differences in timing and sensitivity to either the lanthanoid Gd or exogenous calcium provide evidence for an adaptive role of early sodium uptake through non-selective cation channels acting upstream of Ca(2+) and H(+) fluxes. We find a correlation of salt sensitivity with unconstrained jasmonate (JA) signalling, whereas salt adaptation correlates with tight control of jasmonic acid and its isoleucine conjugate, accompanied by accumulation of abscisic acid and suppression of stilbenes that trigger defence-related cell death. The data are discussed by a model where efficient fine-tuning of JA signalling determines whether cells will progress towards adaptation or programme cell death.
Collapse
Affiliation(s)
- Ahmed Ismail
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
| | | | | | | | | | | |
Collapse
|
90
|
Kim Y, Wang M, Bai Y, Zeng Z, Guo F, Han N, Bian H, Wang J, Pan J, Zhu M. Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca²⁺ level with elevated K⁺ efflux in NaCl-induced PCD in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:168-75. [PMID: 24787501 DOI: 10.1016/j.plaphy.2014.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/05/2014] [Indexed: 05/21/2023]
Abstract
Bcl-2 is one of the most important antiapoptotic members in mammals and prevents many forms of apoptosis in a variety of cell types. Our previous study revealed that overexpression of Bcl-2 significantly suppressed H2O2/NaCl-induced programmed cell death via inhibiting the transcriptional activation of OsVPE2 and OsVPE3 in transgenic rice. However, Ca(2+) and K(+) homeostasis of this process remains largely unknown. In the present study, we investigate whether nonselective cation channels (NSCC) blockers affect Bcl-2 function in rice under salt stress and how Bcl-2 affects ion homeostasis in salt stress-induced PCD. The results showed that overexpression of Bcl-2 significantly decreased transient elevations in the cytosolic Ca(2+) levels, inhibited NaCl-induced K(+) efflux but not H(+) efflux across the plasma membrane, and further suppressed the expression levels of OsVPE2 and OsVPE3, leading to the inhibition of salt-induced PCD and increase of tolerance to salt stress in transgenic rice. During the NaCl-induced PCD, the effects of a NSCC blocker La(3+) on ion homeostasis and VPEs expression in wild-type were similar to the effects of Bcl-2 overexpression in transgenic line. However, a synergistic effect of Bcl-2 and La(3+) was not obviously detectable. Our results suggested that Bcl-2 played an important role in suppression of NaCl-induced PCD by disruption of ion homeostasis, providing an insight into the mechanistic study of plant VPEs, cytosolic Ca(2+) level and K(+) efflux.
Collapse
Affiliation(s)
- Yongho Kim
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqiang Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Bai
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Zeng
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu Guo
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ning Han
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwu Bian
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Junhui Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Muyuan Zhu
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
91
|
Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:696-707. [PMID: 24685330 DOI: 10.1016/j.jplph.2014.01.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and releasing energy for defence and reparation needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, Minsk 220030, Belarus.
| |
Collapse
|
92
|
Pottosin I, Dobrovinskaya O. Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:732-42. [PMID: 24560436 DOI: 10.1016/j.jplph.2013.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 05/25/2023]
Abstract
Both in vacuolar and plasma membranes, in addition to truly K(+)-selective channels there is a variety of non-selective channels, which conduct K(+) and other ions with little preference. Many non-selective channels in the plasma membrane are active at depolarized potentials, thus, contributing to K(+) efflux rather than to K(+) uptake. They may play important roles in xylem loading or contribute to a K(+) leak, induced by salt or oxidative stress. Here, three currents, expressed in root cells, are considered: voltage-insensitive cation current, non-selective outwardly rectifying current, and low-selective conductance, activated by reactive oxygen species. The latter two do not only poorly discriminate between different cations (like K(+)vs Na(+)), but also conduct anions. Such solute channels may mediate massive electroneutral transport of salts and might be involved in osmotic adjustment or volume decrease, associated with cell death. In the tonoplast two major currents are mediated by SV (slow) and FV (fast) vacuolar channels, respectively, which are virtually impermeable for anions. SV channels conduct mono- and divalent cations indiscriminately and are activated by high cytosolic Ca(2+) and depolarized voltages. FV channels are inhibited by micromolar cytosolic Ca(2+), Mg(2+), and polyamines, and conduct a variety of monovalent cations, including K(+). Strikingly, both SV and FV channels sense the K(+) content of vacuoles, which modulates their voltage dependence, and in case of SV, also alleviates channel's inhibition by luminal Ca(2+). Therefore, SV and FV channels may operate as K(+)-sensing valves, controlling K(+) distribution between the vacuole and the cytosol.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián, 28045 Colima, Mexico.
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, Villa de San Sebastián, 28045 Colima, Mexico
| |
Collapse
|
93
|
Zörb C, Senbayram M, Peiter E. Potassium in agriculture--status and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:656-69. [PMID: 24140002 DOI: 10.1016/j.jplph.2013.08.008] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 05/02/2023]
Abstract
In this review we summarize factors determining the plant availability of soil potassium (K), the role of K in crop yield formation and product quality, and the dependence of crop stress resistance on K nutrition. Average soil reserves of K are generally large, but most of it is not plant-available. Therefore, crops need to be supplied with soluble K fertilizers, the demand of which is expected to increase significantly, particularly in developing regions of the world. Recent investigations have shown that organic exudates of some bacteria and plant roots play a key role in releasing otherwise unavailable K from K-bearing minerals. Thus, breeding for genotypes that have improved mechanisms to gain access to this fixed K will contribute toward more sustainable agriculture, particularly in cropping systems that do not have access to fertilizer K. In K-deficient crops, the supply of sink organs with photosynthates is impaired, and sugars accumulate in source leaves. This not only affects yield formation, but also quality parameters, for example in wheat, potato and grape. As K has beneficial effects on human health, its concentration in the harvest product is a quality parameter in itself. Owing to its fundamental roles in turgor generation, primary metabolism, and long-distance transport, K plays a prominent role in crop resistance to drought, salinity, high light, or cold as well as resistance to pests and pathogens. Despite the abundance of vital roles of K in crop production, an improvement of K uptake and use efficiency has not been a major focus of conventional or transgenic breeding in the past. In addition, current soil analysis methods for K are insufficient for some common soils, posing the risk of imbalanced fertilization. A stronger prioritization of these areas of research is needed to counter declines in soil fertility and to improve food security.
Collapse
Affiliation(s)
- Christian Zörb
- Universität Leipzig, Institute of Biology, Botany, Johannisallee 23, 04103 Leipzig, Germany.
| | - Mehmet Senbayram
- Institute of Applied Plant Nutrition, University of Goettingen, Carl-Sprengel-Weg 1, D-37075 Göttingen, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences (IAEW), Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, 06099 Halle (Saale), Germany; Interdisciplinary Centre of Crop Research (IZN), Faculty of Natural Sciences III, Martin Luther University of Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
94
|
Pottosin I, Shabala S. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:154. [PMID: 24795739 PMCID: PMC4006063 DOI: 10.3389/fpls.2014.00154] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 05/18/2023]
Abstract
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of ColimaColima, Mexico
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| | - Sergey Shabala
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
95
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
96
|
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1259-70. [PMID: 24520019 DOI: 10.1093/jxb/eru004] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
97
|
Han S, Wang CW, Wang WL, Jiang J. Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+ -based Na+ flux in root cell under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:26-34. [PMID: 24484955 DOI: 10.1016/j.jplph.2013.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 05/21/2023]
Abstract
Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na(+) toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca(2+) chelator EGTA or the Ca(2+) channel inhibitor LaCl3, but not the Ca(2+) ionophore A23187. This suggested that the tolerance of mpk6 to Na(+) toxicity was Ca(2+)-dependent. We measured plasma membrane (PM) Na(+)-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na(+) accumulation by modifying PM Na(+) flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca(2+) in mpk6 root cells, resulting from PM Ca(2+) influx. An increase of cytosolic Ca(2+) was required to alleviate the NaCl-increased Na(+) content and Na(+)/K(+) ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na(+) in response to NaCl because of the increased cytosolic Ca(2+) level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.
Collapse
Affiliation(s)
- Shuan Han
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Chi-wen Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Wen-le Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Jing Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China.
| |
Collapse
|
98
|
Monetti E, Kadono T, Tran D, Azzarello E, Arbelet-Bonnin D, Biligui B, Briand J, Kawano T, Mancuso S, Bouteau F. Deciphering early events involved in hyperosmotic stress-induced programmed cell death in tobacco BY-2 cells. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1361-75. [PMID: 24420571 PMCID: PMC3969528 DOI: 10.1093/jxb/ert460] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hyperosmotic stresses represent one of the major constraints that adversely affect plants growth, development, and productivity. In this study, the focus was on early responses to hyperosmotic stress- (NaCl and sorbitol) induced reactive oxygen species (ROS) generation, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) increase, ion fluxes, and mitochondrial potential variations, and on their links in pathways leading to programmed cell death (PCD). By using BY-2 tobacco cells, it was shown that both NaCl- and sorbitol-induced PCD seemed to be dependent on superoxide anion (O2·(-)) generation by NADPH-oxidase. In the case of NaCl, an early influx of sodium through non-selective cation channels participates in the development of PCD through mitochondrial dysfunction and NADPH-oxidase-dependent O2·(-) generation. This supports the hypothesis of different pathways in NaCl- and sorbitol-induced cell death. Surprisingly, other shared early responses, such as [Ca(2+)]cyt increase and singlet oxygen production, do not seem to be involved in PCD.
Collapse
Affiliation(s)
- Emanuela Monetti
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Institut de Biologie des Plantes, Bât 630, 91405 Orsay, France
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Takashi Kadono
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
- Laboratory of Crop Science, Department of Plant Resources, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan
| | - Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Institut de Biologie des Plantes, Bât 630, 91405 Orsay, France
| | - Elisa Azzarello
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Institut de Biologie des Plantes, Bât 630, 91405 Orsay, France
| | - Bernadette Biligui
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Institut de Biologie des Plantes, Bât 630, 91405 Orsay, France
| | - Joël Briand
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Institut de Biologie des Plantes, Bât 630, 91405 Orsay, France
| | - Tomonori Kawano
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
- Université Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
- Université Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (UMR8236), Paris, France
- Institut de Biologie des Plantes, Bât 630, 91405 Orsay, France
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
- University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan
| |
Collapse
|
99
|
Ben Amar S, Brini F, Sentenac H, Masmoudi K, Véry AA. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:213-22. [PMID: 24192995 PMCID: PMC3883290 DOI: 10.1093/jxb/ert361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant tolerance to salinity constraint involves complex and integrated functions including control of Na(+) uptake, translocation, and compartmentalization. Several members of the high-affinity K(+) transporter (HKT) family, which comprises plasma-membrane transporters permeable to K(+) and Na(+) or to Na(+) only, have been shown to play major roles in plant Na(+) and K(+) homeostasis. Among them, HKT1;4 has been identified as corresponding to a quantitative trait locus (QTL) of salt tolerance in wheat but was not functionally characterized. Here, we isolated two HKT1;4-type cDNAs from a salt-tolerant durum wheat (Triticum turgidum L. subsp. durum) cultivar, Om Rabia3, and investigated the functional properties of the encoded transporters using a two-electrode voltage-clamp technique, after expression in Xenopus oocytes. Both transporters displayed high selectivity for Na(+), their permeability to other monovalent cations (K(+), Li(+), Cs(+), and Rb(+)) being ten times lower than that to Na(+). Both TdHKT1;4-1 and TdHKT1;4-2 transported Na(+) with low affinity, although the half-saturation of the conductance was observed at a Na(+) concentration four times lower in TdHKT1;4-1 than in TdHKT1;4-2. External K(+) did not inhibit Na(+) transport through these transporters. Quinine slightly inhibited TdHKT1;4-2 but not TdHKT1;4-1. Overall, these data identified TdHKT1;4 transporters as new Na(+)-selective transporters within the HKT family, displaying their own functional features. Furthermore, they showed that important differences in affinity exist among durum wheat HKT1;4 transporters. This suggests that the salt tolerance QTL involving HKT1;4 may be at least in part explained by functional variability among wheat HKT1;4-type transporters.
Collapse
Affiliation(s)
- Siwar Ben Amar
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Faiçal Brini
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
| | - Hervé Sentenac
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Khaled Masmoudi
- Plant Protection and Improvement Laboratory, Center of Biotechnology of Sfax (CBS)/University of Sfax, B.P. ‘1177’ 3018, Sfax, Tunisia
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR 5004 CNRS/ 386 INRA/SupAgro Montpellier/Université Montpellier 2, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| |
Collapse
|
100
|
Morgan SH, Lindberg S, Mühling KH. Calcium supply effects on wheat cultivars differing in salt resistance with special reference to leaf cytosol ion homeostasis. PHYSIOLOGIA PLANTARUM 2013; 149:321-328. [PMID: 23413983 DOI: 10.1111/ppl.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
Salinity causes changes in cytosolic Ca(2+), [Ca(2+)]cyt, Na(+), [Na(+)]cyt and pH, pH cyt , which induce specific reactions and signals. Reactions causing a rebalancing of the physiological homeostasis of the cytosol could result in plant resistance and growth. Two wheat cultivars, Triticum aestivum, Seds1 and Vinjett, were grown in nutrient solution for 7 days under moderate salinity (0 and 50 mM NaCl) with and without extra addition of 5 mM CaSO4 to investigate the seedling-ion homeostasis under salinity. In the leaf protoplasts [Ca(2+) ]cyt, [Na(+)]cyt and pH cyt were detected using acetoxymethyl esters of the ion-specific dyes, Fura 2, SBFI and BCECF, respectively, and fluorescence microscopy. In addition, both cultivars were grown for 3 weeks at 0, 50 and 125 mM NaCl with, or without, extra addition of 5 mM CaSO4 to detect overall Na(+) and Ca(2+) concentrations in leaves and salinity effects on dry weights. In both cultivars, salinity decreased [Ca(2+)]cyt, while at extra Ca(2+) supplied, [Ca(2+)]cyt increased. The [Ca(2+) ]cyt increase was accompanied by increase in the overall Ca(2+) concentrations in leaves and decrease in the overall Na(+) concentration. Moreover, irrespective of Ca(2+) treatment under salinity, the cultivars reacted in different ways; [Na(+) ]cyt significantly increased only in cv. Vinjett, while pH cyt increased only in cv. Seds1. Even at rather high total Na(+) concentrations, the cytosolic concentrations were kept low in both cultivars. It is discussed whether the increase of [Ca(2+)]cyt and pH cyt can contribute to salt tolerance and if the cytosolic changes are due to changes in overall Ca(2+) and Na(+) concentrations.
Collapse
Affiliation(s)
- Sherif H Morgan
- Institute for Plant Nutrition and Soil Science, Christian Albrechts University, Hermann Rodewald Strasse 2, D-24118, Kiel, Germany; Plant Physiology Section, Plant Botany Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | | | | |
Collapse
|