51
|
Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 2010; 6:e1001193. [PMID: 21085628 PMCID: PMC2978683 DOI: 10.1371/journal.pgen.1001193] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/01/2010] [Indexed: 01/26/2023] Open
Abstract
The genetic model plant Arabidopsis thaliana, like many plant species, experiences a range of edaphic conditions across its natural habitat. Such heterogeneity may drive local adaptation, though the molecular genetic basis remains elusive. Here, we describe a study in which we used genome-wide association mapping, genetic complementation, and gene expression studies to identify cis-regulatory expression level polymorphisms at the AtHKT1;1 locus, encoding a known sodium (Na(+)) transporter, as being a major factor controlling natural variation in leaf Na(+) accumulation capacity across the global A. thaliana population. A weak allele of AtHKT1;1 that drives elevated leaf Na(+) in this population has been previously linked to elevated salinity tolerance. Inspection of the geographical distribution of this allele revealed its significant enrichment in populations associated with the coast and saline soils in Europe. The fixation of this weak AtHKT1;1 allele in these populations is genetic evidence supporting local adaptation to these potentially saline impacted environments.
Collapse
Affiliation(s)
- Ivan Baxter
- United States Department of Agriculture–Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Sciences Center, St. Louis, Missouri, United States of America
| | - Jessica N. Brazelton
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Danni Yu
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Yu S. Huang
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Brett Lahner
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Elena Yakubova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Yan Li
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Justin O. Borevitz
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | - Olga Vitek
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - David E. Salt
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
52
|
Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR. Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3995-4009. [PMID: 20624763 PMCID: PMC2935873 DOI: 10.1093/jxb/erq213] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 05/18/2023]
Abstract
Due to the physico-chemical similarities of caesium (Cs(+)) to potassium (K(+)) on the one hand and strontium (Sr(2+)) to calcium (Ca(2+)) on the other hand, both elements can easily be taken up by plants and thus enter the food chain. This could be detrimental when radionuclides such as (137)Cs and (90)Sr are involved. In this study, both genetic and physiological aspects of Cs(+) and Sr(2+) accumulation in Arabidopsis thaliana were investigated using 86 Arabidopsis accessions and a segregating F(2) population of the low Cs(+) accumulating Sq-1 (Ascot, UK) crossed with the high uptaking Sorbo (Khurmatov, Tajikistan). Hydroponically grown plants were exposed to subtoxic levels of Cs(+) and Sr(2+) using radioactive isotopes as tracers. In the natural accessions shoot concentration of Cs(+) as well as Sr(2+) varied about 2-fold, whereas its heritability ranged for both ions between 0.60 and 0.73. Shoot accumulation of Cs(+) and Sr(2+) could be compromised by increasing concentrations of their essential analogues K(+) and Ca(2+), respectively, causing a reduction of up to 80%. In the case of the segregating F(2)/F(3) population Sq-1×Sorbo, this study identified several QTL for the trait Cs(+) and Sr(2+) accumulation, with main QTL on chromosomes 1 and 5. According to the correlation and discrimination surveys combined with QTL-analysis Cs(+) and Sr(2+) uptake seemed to be mediated mostly via non-selective cation channels. A polymorphism, affecting amino acids close to the K(+)-pore of one candidate, CYCLIC-NUCLEOTIDE-GATED CHANNEL 1 (CNGC1), was identified in Sorbo and associated with high Cs(+) concentrating accessions.
Collapse
Affiliation(s)
- Ulrike Kanter
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
53
|
Visscher AM, Paul AL, Kirst M, Guy CL, Schuerger AC, Ferl RJ. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate. PLoS One 2010; 5:e12348. [PMID: 20808807 PMCID: PMC2925951 DOI: 10.1371/journal.pone.0012348] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 07/12/2010] [Indexed: 12/30/2022] Open
Abstract
Background Martian regolith (unconsolidated surface material) is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. Methodology and Principal Findings Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO4·7H2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO4·7H2O (magnesium sulfate) stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO4·7H2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. Conclusions/Significance The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster the development of Mars soil-compatible plants by showing that cax1 mutants exhibit partial tolerance to magnesium sulfate, and by elucidating a small subset (500 vs. >10,000) of candidate genes for mutation or metabolic engineering that will enhance tolerance to magnesium sulfate soils.
Collapse
Affiliation(s)
- Anne M. Visscher
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Anna-Lisa Paul
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Charles L. Guy
- Environmental Horticulture Department, University of Florida, Gainesville, Florida, United States of America
| | - Andrew C. Schuerger
- Plant Pathology, University of Florida, Kennedy Space Center, Florida, United States of America
| | - Robert J. Ferl
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
54
|
Buescher E, Achberger T, Amusan I, Giannini A, Ochsenfeld C, Rus A, Lahner B, Hoekenga O, Yakubova E, Harper JF, Guerinot ML, Zhang M, Salt DE, Baxter IR. Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences. PLoS One 2010; 5:e11081. [PMID: 20559418 PMCID: PMC2885407 DOI: 10.1371/journal.pone.0011081] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Controlling elemental composition is critical for plant growth and development as well as the nutrition of humans who utilize plants for food. Uncovering the genetic architecture underlying mineral ion homeostasis in plants is a critical first step towards understanding the biochemical networks that regulate a plant's elemental composition (ionome). Natural accessions of Arabidopsis thaliana provide a rich source of genetic diversity that leads to phenotypic differences. We analyzed the concentrations of 17 different elements in 12 A. thaliana accessions and three recombinant inbred line (RIL) populations grown in several different environments using high-throughput inductively coupled plasma- mass spectroscopy (ICP-MS). Significant differences were detected between the accessions for most elements and we identified over a hundred QTLs for elemental accumulation in the RIL populations. Altering the environment the plants were grown in had a strong effect on the correlations between different elements and the QTLs controlling elemental accumulation. All ionomic data presented is publicly available at www.ionomicshub.org.
Collapse
Affiliation(s)
- Elizabeth Buescher
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
White PJ, Hammond JP, King GJ, Bowen HC, Hayden RM, Meacham MC, Spracklen WP, Broadley MR. Genetic analysis of potassium use efficiency in Brassica oleracea. ANNALS OF BOTANY 2010; 105:1199-210. [PMID: 19815571 PMCID: PMC2887060 DOI: 10.1093/aob/mcp253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/18/2009] [Accepted: 09/10/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Potassium (K) fertilizers are used in intensive and extensive agricultural systems to maximize production. However, there are both financial and environmental costs to K-fertilization. It is therefore important to optimize the efficiency with which K-fertilizers are used. Cultivating crops that acquire and/or utilize K more effectively can reduce the use of K-fertilizers. The aim of the present study was to determine the genetic factors affecting K utilization efficiency (KUtE), defined as the reciprocal of shoot K concentration (1/[K](shoot)), and K acquisition efficiency (KUpE), defined as shoot K content, in Brassica oleracea. METHODS Genetic variation in [K](shoot) was estimated using a structured diversity foundation set (DFS) of 376 accessions and in 74 commercial genotypes grown in glasshouse and field experiments that included phosphorus (P) supply as a treatment factor. Chromosomal quantitative trait loci (QTL) associated with [K](shoot) and KUpE were identified using a genetic mapping population grown in the glasshouse and field. Putative QTL were tested using recurrent backcross substitution lines in the glasshouse. KEY RESULTS More than two-fold variation in [K](shoot) was observed among DFS accessions grown in the glasshouse, a significant proportion of which could be attributed to genetic factors. Several QTL associated with [K](shoot) were identified, which, despite a significant correlation in [K](shoot) among genotypes grown in the glasshouse and field, differed between these two environments. A QTL associated with [K](shoot) in glasshouse-grown plants (chromosome C7 at 62.2 cM) was confirmed using substitution lines. This QTL corresponds to a segment of arabidopsis chromosome 4 containing genes encoding the K+ transporters AtKUP9, AtAKT2, AtKAT2 and AtTPK3. CONCLUSIONS There is sufficient genetic variation in B. oleracea to breed for both KUtE and KUpE. However, as QTL associated with these traits differ between glasshouse and field environments, marker-assisted breeding programmes must consider carefully the conditions under which the crop will be grown.
Collapse
Affiliation(s)
- P J White
- Scottish Crop Research Institute, Invergowrie, Dundee DD25DA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Conn S, Gilliham M. Comparative physiology of elemental distributions in plants. ANNALS OF BOTANY 2010; 105:1081-102. [PMID: 20410048 PMCID: PMC2887064 DOI: 10.1093/aob/mcq027] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/16/2009] [Accepted: 12/16/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants contain relatively few cell types, each contributing a specialized role in shaping plant function. With respect to plant nutrition, different cell types accumulate certain elements in varying amounts within their storage vacuole. The role and mechanisms underlying cell-specific distribution of elements in plants is poorly understood. SCOPE The phenomenon of cell-specific elemental accumulation has been briefly reviewed previously, but recent technological advances with the potential to probe mechanisms underlying elemental compartmentation have warranted an updated evaluation. We have taken this opportunity to catalogue many of the studies, and techniques used for, recording cell-specific compartmentation of particular elements. More importantly, we use three case-study elements (Ca, Cd and Na) to highlight the basis of such phenomena in terms of their physiological implications and underpinning mechanisms; we also link such distributions to the expression of known ion or solute transporters. CONCLUSIONS Element accumulation patterns are clearly defined by expression of key ion or solute transporters. Although the location of element accumulation is fairly robust, alterations in expression of certain solute transporters, through genetic modifications or by growth under stress, result in perturbations to these patterns. However, redundancy or induced pleiotropic expression effects may complicate attempts to characterize the pathways that lead to cell-specific elemental distribution. Accumulation of one element often has consequences on the accumulation of others, which seems to be driven largely to maintain vacuolar and cytoplasmic osmolarity and charge balance, and also serves as a detoxification mechanism. Altered cell-specific transcriptomics can be shown, in part, to explain some of this compensation.
Collapse
Affiliation(s)
- Simon Conn
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
57
|
Broadley MR, Hammond JP, White PJ, Salt DE. An efficient procedure for normalizing ionomics data for Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 186:270-274. [PMID: 20409183 DOI: 10.1111/j.1469-8137.2009.03145.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
58
|
Abstract
Ionomics is the study of elemental accumulation in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels, and modeling of physiological states. In this review, I will discuss some of the advantages and limitations of the ionomics approach as well as the important parameters to consider when designing ionomics experiments, and how to evaluate ionomics data.
Collapse
Affiliation(s)
- Ivan Baxter
- Research Computational Biologist, USDA-ARS Plant Genetics, Donald Danforth Plant Sciences Center, St Louis, MO 63132, USA.
| |
Collapse
|
59
|
Gebert M, Meschenmoser K, Svidová S, Weghuber J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V. A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. THE PLANT CELL 2009; 21:4018-30. [PMID: 19966073 PMCID: PMC2814501 DOI: 10.1105/tpc.109.070557] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/28/2009] [Accepted: 11/17/2009] [Indexed: 05/19/2023]
Abstract
The MRS2/MGT gene family in Arabidopsis thaliana belongs to the superfamily of CorA-MRS2-ALR-type membrane proteins. Proteins of this type are characterized by a GMN tripeptide motif (Gly-Met-Asn) at the end of the first of two C-terminal transmembrane domains and have been characterized as magnesium transporters. Using the recently established mag-fura-2 system allowing direct measurement of Mg(2+) uptake into mitochondria of Saccharomyces cerevisiae, we find that all members of the Arabidopsis family complement the corresponding yeast mrs2 mutant. Highly different patterns of tissue-specific expression were observed for the MRS2/MGT family members in planta. Six of them are expressed in root tissues, indicating a possible involvement in plant magnesium supply and distribution after uptake from the soil substrate. Homozygous T-DNA insertion knockout lines were obtained for four members of the MRS2/MGT gene family. A strong, magnesium-dependent phenotype of growth retardation was found for mrs2-7 when Mg(2+) concentrations were lowered to 50 microM in hydroponic cultures. Ectopic overexpression of MRS2-7 from the cauliflower mosaic virus 35S promoter results in complementation and increased biomass accumulation. Green fluorescent protein reporter gene fusions indicate a location of MRS2-7 in the endomembrane system. Hence, contrary to what is frequently found in analyses of plant gene families, a single gene family member knockout results in a strong, environmentally dependent phenotype.
Collapse
Affiliation(s)
- Michael Gebert
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Karoline Meschenmoser
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Soňa Svidová
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Julian Weghuber
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Rudolf Schweyen
- Vienna Biocenter, Abteilung für Mikrobiologie und Genetik, A-1030 Wien, Austria
| | - Karolin Eifler
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Henning Lenz
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Katrin Weyand
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| |
Collapse
|
60
|
Affiliation(s)
- Joe Morrissey
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
61
|
Morrissey J, Guerinot ML. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 2009. [PMID: 19754138 DOI: 10.1002/chin.201005266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Joe Morrissey
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
62
|
Morrissey J, Guerinot ML. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 2009. [PMID: 19754138 DOI: 10.1021/br900112r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Joe Morrissey
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
63
|
Morrissey J, Guerinot ML. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 2009; 109:4553-67. [PMID: 19754138 PMCID: PMC2764373 DOI: 10.1021/cr900112r] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joe Morrissey
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
64
|
Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kaplan J, Salt DE, Guerinot ML. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. THE PLANT CELL 2009; 21:3326-38. [PMID: 19861554 PMCID: PMC2782287 DOI: 10.1105/tpc.109.069401] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/15/2009] [Accepted: 10/08/2009] [Indexed: 05/18/2023]
Abstract
Relatively little is known about how metals such as iron are effluxed from cells, a necessary step for transport from the root to the shoot. Ferroportin (FPN) is the sole iron efflux transporter identified to date in animals, and there are two closely related orthologs in Arabidopsis thaliana, IRON REGULATED1 (IREG1/FPN1) and IREG2/FPN2. FPN1 localizes to the plasma membrane and is expressed in the stele, suggesting a role in vascular loading; FPN2 localizes to the vacuole and is expressed in the two outermost layers of the root in response to iron deficiency, suggesting a role in buffering metal influx. Consistent with these roles, fpn2 has a diminished iron deficiency response, whereas fpn1 fpn2 has an elevated iron deficiency response. Ferroportins also play a role in cobalt homeostasis; a survey of Arabidopsis accessions for ionomic phenotypes showed that truncation of FPN2 results in elevated shoot cobalt levels and leads to increased sensitivity to the metal. Conversely, loss of FPN1 abolishes shoot cobalt accumulation, even in the cobalt accumulating mutant frd3. Consequently, in the fpn1 fpn2 double mutant, cobalt cannot move to the shoot via FPN1 and is not sequestered in the root vacuoles via FPN2; instead, cobalt likely accumulates in the root cytoplasm causing fpn1 fpn2 to be even more sensitive to cobalt than fpn2 mutants.
Collapse
Affiliation(s)
- Joe Morrissey
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Ivan R. Baxter
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Joohyun Lee
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Liangtao Li
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Brett Lahner
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Natasha Grotz
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Jerry Kaplan
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - David E. Salt
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Address correspondence to
| |
Collapse
|
65
|
Lowry DB, Hall MC, Salt DE, Willis JH. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. THE NEW PHYTOLOGIST 2009; 183:776-788. [PMID: 19549130 DOI: 10.1111/j.1469-8137.2009.02901.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Local adaptation is a well-established phenomenon whereby habitat-mediated natural selection drives the differentiation of populations. However, little is known about how specific traits and loci combine to cause local adaptation. Here, we conducted a set of experiments to determine which physiological mechanisms contribute to locally adaptive divergence in salt tolerance between coastal perennial and inland annual ecotypes of Mimulus guttatus. Quantitative trait locus (QTL) mapping was used to discover loci involved in salt spray tolerance and leaf sodium (Na(+)) concentration. To determine whether these QTLs confer fitness in the field, we examined their effects in reciprocal transplant experiments using recombinant inbred lines (RILs). Coastal plants had constitutively higher leaf Na(+) concentrations and greater levels of tissue tolerance, but no difference in osmotic stress tolerance. Three QTLs contributed to salt spray tolerance and two QTLs to leaf Na(+) concentration. All three salt-spray tolerance QTLs had a significant fitness effects at the coastal field site but no effects inland. Leaf Na(+) QTLs had no detectable fitness effects in the field. * Physiological results are consistent with adaptation of coastal populations to salt spray and soil salinity. Field results suggest that there may not be trade-offs across habitats for alleles involved in local salt spray adaptations.
Collapse
Affiliation(s)
- David B Lowry
- University Program in Genetics and Genomics, Box 3565 Duke University Medical Center, Durham, NC 27710, USA
- Department of Biology, Box 90338, Duke University, Durham NC 27708, USA
| | - Megan C Hall
- Center for Genomics and Systems Biology, Department of Biology, 100 Washington Square East, New York University, New York, NY 10003, USA
| | - David E Salt
- Horticultural and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - John H Willis
- University Program in Genetics and Genomics, Box 3565 Duke University Medical Center, Durham, NC 27710, USA
- Department of Biology, Box 90338, Duke University, Durham NC 27708, USA
| |
Collapse
|
66
|
Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. PLANT & CELL PHYSIOLOGY 2009; 50:1215-31. [PMID: 19502383 PMCID: PMC2709550 DOI: 10.1093/pcp/pcp078] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/29/2009] [Indexed: 05/20/2023]
Abstract
Analysis of genetic mutations is one of the most effective ways to investigate gene function. We now have methods that allow for mass production of mutant lines and cells in a variety of model species. Recently, large numbers of mutant lines have been generated by both 'loss-of-function' and 'gain-of-function' techniques. In parallel, phenotypic information covering various mutant resources has been acquired and released in web-based databases. As a result, significant progress in comprehensive phenotype analysis is being made through the use of these tools. Arabidopsis and rice are two major model plant species in which genome sequencing projects have been completed. Arabidopsis is the most widely used experimental plant, with a large number of mutant resources and several examples of systematic phenotype analysis. Rice is a major crop species and is used as a model plant, with an increasing number of mutant resources. Other plant species are also being employed in functional genetics research. In this review, the present status of mutant resources for large-scale studies of gene function in plant research and the current perspective on using loss-of-function and gain-of-function mutants in phenome research will be discussed.
Collapse
Affiliation(s)
- Takashi Kuromori
- Gene Discovery Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinya Takahashi
- Plant Functional Genomics Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Youichi Kondou
- Plant Functional Genomics Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
| | - Minami Matsui
- Plant Functional Genomics Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, 230-0045 Japan
- *Corresponding author: E-mail, ; Fax, +81-45-503-9584
| |
Collapse
|
67
|
Baxter I. Ionomics: studying the social network of mineral nutrients. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:381-6. [PMID: 19481970 PMCID: PMC2701637 DOI: 10.1016/j.pbi.2009.05.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 05/18/2023]
Abstract
The accumulation of a given element is a complex process controlled by a network of gene products critical for uptake, binding, transportation, and sequestration. Many of these genes and physiological processes affect more than one element. Therefore, to understand how elements are regulated, it is necessary to measure as many of the elements contained in a cell, tissue, or organism (the ionome) as possible. The elements that share components of their network vary depending on the species and genotype of the plants that are studied and environment they are grown in. Several recent papers describe high-throughput elemental profiling studies of how the ionome responds to the environment or explores the genetics that control the ionome. When combined with new genotyping technologies, ionomics provides a rapid way to identify genes that control elemental accumulation in plants.
Collapse
Affiliation(s)
- Ivan Baxter
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
68
|
Puig S, Peñarrubia L. Placing metal micronutrients in context: transport and distribution in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:299-306. [PMID: 19481498 DOI: 10.1016/j.pbi.2009.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 05/04/2023]
Abstract
Plants have developed finely tuned mechanisms to efficiently acquire and balance the concentrations of essential metal micronutrients including iron, zinc, copper, and manganese, both at the cellular and systemic levels. The application of new emerging technologies to the study of Arabidopsis thaliana is providing a novel spatiotemporal view of plant metal homeostasis. These advances are uncovering unexpected links of metal homeostasis to central cellular processes, such as compartmentalization, daily redox oscillations, or transcriptional regulation. The intracellular compartmentalization of metals seems essential for optimizing the use of micronutrients during development and in response to deficiencies. Furthermore, recent discoveries indicate that protein metallation is highly sensitive to surrounding conditions, including metal redox state and concentration. Thus, some steps in metal delivery occur during protein folding at specific intracellular compartments. Finally, the daily nature in redox oscillations should be taken into account for a comprehensive understanding of global plant metal homeostasis.
Collapse
Affiliation(s)
- Sergi Puig
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Valencia, Spain.
| | | |
Collapse
|
69
|
Baxter I, Hosmani PS, Rus A, Lahner B, Borevitz JO, Muthukumar B, Mickelbart MV, Schreiber L, Franke RB, Salt DE. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 2009; 5:e1000492. [PMID: 19461889 PMCID: PMC2679201 DOI: 10.1371/journal.pgen.1000492] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/23/2009] [Indexed: 11/18/2022] Open
Abstract
Though central to our understanding of how roots perform their vital function of scavenging water and solutes from the soil, no direct genetic evidence currently exists to support the foundational model that suberin acts to form a chemical barrier limiting the extracellular, or apoplastic, transport of water and solutes in plant roots. Using the newly characterized enhanced suberin1 (esb1) mutant, we established a connection in Arabidopsis thaliana between suberin in the root and both water movement through the plant and solute accumulation in the shoot. Esb1 mutants, characterized by increased root suberin, were found to have reduced day time transpiration rates and increased water-use efficiency during their vegetative growth period. Furthermore, these changes in suberin and water transport were associated with decreases in the accumulation of Ca, Mn, and Zn and increases in the accumulation of Na, S, K, As, Se, and Mo in the shoot. Here, we present direct genetic evidence establishing that suberin in the roots plays a critical role in controlling both water and mineral ion uptake and transport to the leaves. The changes observed in the elemental accumulation in leaves are also interpreted as evidence that a significant component of the radial root transport of Ca, Mn, and Zn occurs in the apoplast. The root system is a highly specialized plant organ that works to get both water and essential mineral nutrients from the changing chemically and physically complex environment of the soil. Roots do this by both controlling the uptake of water and essential mineral ions, as well as regulating their movement to the central vascular system of the plant for long distance transport to the shoot. To allow the cellular control of water and mineral ion uptake and transport via specialized transport proteins, plant roots contain a waxy layer of suberin that acts to seal connections between cells, preventing uncontrolled leakage of water and mineral ions between cells. By screening thousands of mutant A. thaliana plants, we were able to identify a plant with elevated levels of suberin in the root. Using this mutant, we were able to uncover the importance of suberin in sealing connections between root cells to regulate water movement through the plant and accumulation of various essential and nonessential minerals in leaves, including sodium, sulfur, potassium, calcium, manganese, zinc, arsenic, selenium, and molybdenum.
Collapse
Affiliation(s)
- Ivan Baxter
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Prashant S. Hosmani
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ana Rus
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Brett Lahner
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Justin O. Borevitz
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Balasubramaniam Muthukumar
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael V. Mickelbart
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Rochus B. Franke
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - David E. Salt
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
70
|
Jeong J, Guerinot ML. Homing in on iron homeostasis in plants. TRENDS IN PLANT SCIENCE 2009; 14:280-5. [PMID: 19375375 DOI: 10.1016/j.tplants.2009.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 05/21/2023]
Abstract
Iron is essential for plants but is not readily accessible and is also potentially toxic. As plants are a major dietary source of iron worldwide, understanding plant iron homeostasis is pivotal for improving not only crop yields but also human nutrition. Although iron acquisition from the environment is well characterized, the transporters and reductases involved in plant organellar iron transport and some of the transcription factors that regulate iron uptake have only recently been discovered. Here, we discuss newly characterized molecular players, focusing on Arabidopsis. Localization of iron to the right compartment and accessibility of iron stores are proving crucial for maintaining proper iron homeostasis and will need to be considered in biofortification efforts currently underway.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
71
|
Chen Z, Watanabe T, Shinano T, Okazaki K, Osaki M. Rapid characterization of plant mutants with an altered ion-profile: a case study using Lotus japonicus. THE NEW PHYTOLOGIST 2009; 181:795-801. [PMID: 19140942 DOI: 10.1111/j.1469-8137.2008.02730.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Legumes are second only to cereals in their importance to humans, and study of their functional genomics of nutrition and other trace elements is crucial for agricultural production and food fortification. We describe here an ionomic screening experiment carried out to investigate the accumulation of 15 elements in shoots of mutants of Lotus japonicus, a good genetic tool for legume study.Approximately 2000 mutagenized M2 plants were cultivated in a novel low-cost high-throughput system and their elemental profiles were determined by inductively coupled plasma mass spectroscopy (ICP-MS).After triple-checking the element concentrations in M2 or M3 plant shoots, 31 mutants with altered elemental profiles were identified. Surprisingly, the number of genes regulating essential elements was similar to the number regulating nonessential elements. Magnesium (Mg) and nickel (Ni) were correlated in a number of mutants.Further investigation suggested that phosphorus (P) and cobalt (Co) might be involved in the ion homeostasis network of Mg and Ni.The results suggested that the pathways for element uptake or translocation were highly linked through the ion transport-related genes. Ionomics proved to be a powerful functional genomics tool for determining genes related to ion homeostasisin this study.
Collapse
Affiliation(s)
- Zheng Chen
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takuro Shinano
- National Agricultural Research Center for Hokkaido Region, Sapporo, 062-8555, Japan
| | - Keiki Okazaki
- National Agricultural Research Center for Hokkaido Region, Sapporo, 062-8555, Japan
| | - Mitsuru Osaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
72
|
Punshon T, Guerinot ML, Lanzirotti A. Using synchrotron X-ray fluorescence microprobes in the study of metal homeostasis in plants. ANNALS OF BOTANY 2009; 103:665-72. [PMID: 19182222 PMCID: PMC2707871 DOI: 10.1093/aob/mcn264] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 08/27/2008] [Accepted: 12/08/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. SCOPE The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. CONCLUSIONS SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.
Collapse
Affiliation(s)
- Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
73
|
Lu Y, Last RL. Web-based Arabidopsis functional and structural genomics resources. THE ARABIDOPSIS BOOK 2008; 6:e0118. [PMID: 22303243 PMCID: PMC3243351 DOI: 10.1199/tab.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
As plant research moves to a "post-genomic" era, many diverse internet resources become available to the international research community. Arabidopsis thaliana, because of its small size, rapid life cycle and simple genome, has been a model system for decades, with much research funding and many projects devoted to creation of functional and structural genomics resources. Different types of data, including genome, transcriptome, proteome, phenome, metabolome and ionome are stored in these resources. In this chapter, a variety of genomics resources are introduced, with simple descriptions of how some can be accessed by laboratory researchers via the internet.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
- Department of Plant Biology, Michigan State University, East Lansing MI 48824
| |
Collapse
|
74
|
Elmagarmid AK, Samuel A, Ouzzani M. Community-Cyberinfrastructure-Enabled Discovery in Science and Engineering. Comput Sci Eng 2008. [DOI: 10.1109/mcse.2008.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
75
|
The leaf ionome as a multivariable system to detect a plant's physiological status. Proc Natl Acad Sci U S A 2008; 105:12081-6. [PMID: 18697928 DOI: 10.1073/pnas.0804175105] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contention that quantitative profiles of biomolecules contain information about the physiological state of the organism has motivated a variety of high-throughput molecular profiling experiments. However, unbiased discovery and validation of biomolecular signatures from these experiments remains a challenge. Here we show that the Arabidopsis thaliana (Arabidopsis) leaf ionome, or elemental composition, contains such signatures, and we establish statistical models that connect these multivariable signatures to defined physiological responses, such as iron (Fe) and phosphorus (P) homeostasis. Iron is essential for plant growth and development, but potentially toxic at elevated levels. Because of this, shoot Fe concentrations are tightly regulated and show little variation over a range of Fe concentrations in the environment, making them a poor probe of a plant's Fe status. By evaluating the shoot ionome in plants grown under different Fe nutritional conditions, we have established a multivariable ionomic signature for the Fe response status of Arabidopsis. This signature has been validated against known Fe-response proteins and allows the high-throughput detection of the Fe status of plants with a false negative/positive rate of 18%/16%. A "metascreen" of previously collected ionomic data from 880 Arabidopsis mutants and natural accessions for this Fe response signature successfully identified the known Fe mutants frd1 and frd3. A similar approach has also been taken to identify and use a shoot ionomic signature associated with P homeostasis. This study establishes that multivariable ionomic signatures of physiological states associated with mineral nutrient homeostasis do exist in Arabidopsis and are in principle robust enough to detect specific physiological responses to environmental or genetic perturbations.
Collapse
|
76
|
Broadley MR, Hammond JP, King GJ, Astley D, Bowen HC, Meacham MC, Mead A, Pink DAC, Teakle GR, Hayden RM, Spracklen WP, White PJ. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. PLANT PHYSIOLOGY 2008; 146:1707-20. [PMID: 18281414 PMCID: PMC2287345 DOI: 10.1104/pp.107.114645] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/13/2008] [Indexed: 05/18/2023]
Abstract
Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F(1) hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40%). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14% to 55% of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca(2+) and Mg(2+) uptake and homeostasis at the molecular level.
Collapse
Affiliation(s)
- Martin R Broadley
- Plant Sciences Division, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 2008; 4:e1000004. [PMID: 18454190 PMCID: PMC2265440 DOI: 10.1371/journal.pgen.1000004] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022] Open
Abstract
Molybdenum (Mo) is an essential micronutrient for plants, serving as a cofactor for enzymes involved in nitrate assimilation, sulfite detoxification, abscisic acid biosynthesis, and purine degradation. Here we show that natural variation in shoot Mo content across 92 Arabidopsis thaliana accessions is controlled by variation in a mitochondrially localized transporter (Molybdenum Transporter 1 - MOT1) that belongs to the sulfate transporter superfamily. A deletion in the MOT1 promoter is strongly associated with low shoot Mo, occurring in seven of the accessions with the lowest shoot content of Mo. Consistent with the low Mo phenotype, MOT1 expression in low Mo accessions is reduced. Reciprocal grafting experiments demonstrate that the roots of Ler-0 are responsible for the low Mo accumulation in shoot, and GUS localization demonstrates that MOT1 is expressed strongly in the roots. MOT1 contains an N-terminal mitochondrial targeting sequence and expression of MOT1 tagged with GFP in protoplasts and transgenic plants, establishing the mitochondrial localization of this protein. Furthermore, expression of MOT1 specifically enhances Mo accumulation in yeast by 5-fold, consistent with MOT1 functioning as a molybdate transporter. This work provides the first molecular insight into the processes that regulate Mo accumulation in plants and shows that novel loci can be detected by association mapping.
Collapse
Affiliation(s)
- Ivan Baxter
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Balasubramaniam Muthukumar
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hyeong Cheol Park
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Peter Buchner
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Brett Lahner
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - John Danku
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Keyan Zhao
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Joohyun Lee
- Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | | | - Mary Lou Guerinot
- Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - David E. Salt
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
78
|
Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, Frommer WB. Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:610-635. [PMID: 18269572 DOI: 10.1111/j.1365-313x.2007.03332.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Homotypic and heterotypic protein interactions are crucial for all levels of cellular function, including architecture, regulation, metabolism, and signaling. Therefore, protein interaction maps represent essential components of post-genomic toolkits needed for understanding biological processes at a systems level. Over the past decade, a wide variety of methods have been developed to detect, analyze, and quantify protein interactions, including surface plasmon resonance spectroscopy, NMR, yeast two-hybrid screens, peptide tagging combined with mass spectrometry and fluorescence-based technologies. Fluorescence techniques range from co-localization of tags, which may be limited by the optical resolution of the microscope, to fluorescence resonance energy transfer-based methods that have molecular resolution and can also report on the dynamics and localization of the interactions within a cell. Proteins interact via highly evolved complementary surfaces with affinities that can vary over many orders of magnitude. Some of the techniques described in this review, such as surface plasmon resonance, provide detailed information on physical properties of these interactions, while others, such as two-hybrid techniques and mass spectrometry, are amenable to high-throughput analysis using robotics. In addition to providing an overview of these methods, this review emphasizes techniques that can be applied to determine interactions involving membrane proteins, including the split ubiquitin system and fluorescence-based technologies for characterizing hits obtained with high-throughput approaches. Mass spectrometry-based methods are covered by a review by Miernyk and Thelen (2008; this issue, pp. 597-609). In addition, we discuss the use of interaction data to construct interaction networks and as the basis for the exciting possibility of using to predict interaction surfaces.
Collapse
Affiliation(s)
- Sylvie Lalonde
- Carnegie Institution, 260 Panama Street, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Hall RD, Brouwer ID, Fitzgerald MA. Plant metabolomics and its potential application for human nutrition. PHYSIOLOGIA PLANTARUM 2008; 132:162-75. [PMID: 18251858 DOI: 10.1111/j.1399-3054.2007.00989.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With the growing interest in the use of metabolomic technologies for a wide range of biological targets, food applications related to nutrition and quality are rapidly emerging. Metabolomics offers us the opportunity to gain deeper insights into, and have better control of, the fundamental biochemical basis of the things we eat. So doing will help us to design modified breeding programmes aimed at better quality produce; optimised food processing strategies and ultimately, improved (micro)nutrient bioavailability and bioefficacy. A better understanding of the pathways responsible for the biosynthesis of nutritionally relevant metabolites is key to gaining more effective control of the absence/level of presence of such components in our food. Applications of metabolomic technologies in both applied and fundamental science strategies are therefore growing rapidly in popularity. Currently, the world has two highly contrasting nutrition-related problems--over-consumption and under-nourishment. Dramatic increases in the occurrence of overweight individuals and obesity in developed countries are in staggering contrast to the still-familiar images of extreme malnutrition in many parts of the developing world. Both problems require a modified food supply, achieved through highly contrasting routes. For each, metabolomics has a future role to play and this review shall deal with this key dichotomy and illustrate where metabolomics may have a future part to play. In this short overview, attention is given to how the various technologies have already been exploited in a plant-based food context related to key issues such as biofortification, bioprotectants and the general link between food composition and human health. Research on key crops such as rice and tomato are used as illustration of potentially broader application across crop species. Although the focus is clearly on food supply, some attention is given to the complementary field of research, nutrigenomics, where similar technologies are being applied to understand nutrition better from the human side.
Collapse
Affiliation(s)
- Robert D Hall
- Plant Research International, Business Unit Bioscience, PO Box 16, 6700 AA Wageningen, The Netherlands.
| | | | | |
Collapse
|
80
|
Waters BM, Grusak MA. Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. THE NEW PHYTOLOGIST 2008; 179:1033-1047. [PMID: 18631293 DOI: 10.1111/j.1469-8137.2008.02544.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Biofortification of foods, achieved by increasing the concentrations of minerals such as iron (Fe) and zinc (Zn), is a goal of plant scientists. Understanding genes that influence seed mineral concentration in a model plant such as Arabidopsis could help in the development of nutritionally enhanced crop cultivars. Quantitative trait locus (QTL) mapping for seed concentrations of calcium (Ca), copper (Cu), Fe, potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and Zn was performed using two recombinant inbred line (RIL) populations, Columbia (Col) x Landsberg erecta (Ler) and Cape Verde Islands (Cvi) x Ler, grown on multiple occasions. QTL mapping was also performed using data from silique hulls and the ratio of seed:hull mineral concentration of the Cvi x Ler population. Over 100 QTLs that affected seed mineral concentration were identified. Twenty-nine seed QTLs were found in more than one experiment, and several QTLs were found for both seed and hull mineral traits. A number of candidate genes affecting seed mineral concentration are discussed. These results indicate that A. thaliana is a suitable and convenient model for discovery of genes that affect seed mineral concentration. Some strong QTLs had no obvious candidate genes, offering the possibility of identifying unknown genes that affect mineral uptake and translocation to seeds.
Collapse
Affiliation(s)
- Brian M Waters
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| |
Collapse
|
81
|
Abstract
The ionome is defined as the mineral nutrient and trace element composition of an organism and represents the inorganic component of cellular and organismal systems. Ionomics, the study of the ionome, involves the quantitative and simultaneous measurement of the elemental composition of living organisms and changes in this composition in response to physiological stimuli, developmental state, and genetic modifications. Ionomics requires the application of high-throughput elemental analysis technologies and their integration with both bioinformatic and genetic tools. Ionomics has the ability to capture information about the functional state of an organism under different conditions, driven by genetic and developmental differences and by biotic and abiotic factors. The relatively high throughput and low cost of ionomic analysis means that it has the potential to provide a powerful approach to not only the functional analysis of the genes and gene networks that directly control the ionome, but also to the more extended gene networks that control developmental and physiological processes that affect the ionome indirectly. In this review we describe the analytical and bioinformatics aspects of ionomics, as well as its application as a functional genomics tool.
Collapse
Affiliation(s)
- David E Salt
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | |
Collapse
|