51
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
52
|
Ambastha V, Chauhan G, Tiwari BS, Tripathy BC. Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. PROTOPLASMA 2020; 257:841-851. [PMID: 31909436 DOI: 10.1007/s00709-019-01467-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Absorption of excess excitation energy induces overproduction of singlet oxygen (1O2) in plants. The major sources of singlet oxygen production are chlorophyll and its intermediates located in the chloroplast. Over-accumulation of the chlorophyll biosynthetic intermediate protochlorophyllide by the exogenous application of 5-aminolevulinic acid (ALA), the precursor of tetrapyrrole, induced singlet oxygen production in the plastidic membranes. Over-expression of protochlorophyllide oxidoreductase C (PORC) in Arabidopsis thaliana resulted in efficient light-induced photo-transformation of protochlorophyllide to chlorophyllide that limited the accumulation of protochlorophyllide. Consequently, the 1O2 generation decreased in the PORC overexpressors (PORCx) and their cell death was minimal. Conversely, porC-2 over-accumulated protochlorophyllide in response to ALA treatment and generated higher amounts of 1O2 in light and had highest cell death as monitored by Evans blue staining. The protoplasts isolated from PORCx plants, when treated with ALA, generated minimal amounts of 1O2 as revealed by singlet oxygen sensor green (SOSG) fluorescence emission from chloroplasts. Conversely, the protoplasts of porC-2 mutants under identical conditions generated the maximum SOSG fluorescence in their chloroplasts and cytosol surrounding the chloroplasts most likely due to the leakage from the organelle. The membrane blebbing, a hallmark of programmed cell death, was clearly visible in WT and porC-2 protoplasts. Similarly, the nick end labelling (TUNEL) assay revealed nicks in the DNA. The TUNEL-positive nuclei after 30 min of light exposure were highest in porC-2 and lowest in PORCx protoplasts. The results demonstrate that higher amounts of singlet oxygen produced in the chloroplasts play an important role in programmed cell death.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Garima Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Budhi Sagar Tiwari
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382007, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
53
|
The Arabidopsis SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins. Proc Natl Acad Sci U S A 2020; 117:6918-6927. [PMID: 32161131 DOI: 10.1073/pnas.1918640117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Singlet oxygen (1O2), the major reactive oxygen species (ROS) produced in chloroplasts, has been demonstrated recently to be a highly versatile signal that induces various stress responses. In the fluorescent (flu) mutant, its release causes seedling lethality and inhibits mature plant growth. However, these drastic phenotypes are suppressed when EXECUTER1 (EX1) is absent in the flu ex1 double mutant. We identified SAFEGUARD1 (SAFE1) in a screen of ethyl methanesulfonate (EMS) mutagenized flu ex1 plants for suppressor mutants with a flu-like phenotype. In flu ex1 safe1, all 1O2-induced responses, including transcriptional rewiring of nuclear gene expression, return to levels, such as, or even higher than, those in flu Without SAFE1, grana margins (GMs) of chloroplast thylakoids (Thys) are specifically damaged upon 1O2 generation and associate with plastoglobules (PGs). SAFE1 is localized in the chloroplast stroma, and release of 1O2 induces SAFE1 degradation via chloroplast-originated vesicles. Our paper demonstrates that flu-produced 1O2 triggers an EX1-independent signaling pathway and proves that SAFE1 suppresses this signaling pathway by protecting GMs.
Collapse
|
54
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
55
|
Woodson JD. Chloroplast stress signals: regulation of cellular degradation and chloroplast turnover. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:30-37. [PMID: 31442733 DOI: 10.1016/j.pbi.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 05/11/2023]
Abstract
For 40 years, it has been known that chloroplasts signal to the nucleus and the cell to coordinate gene expression, maximize photosynthesis, and avoid stress. However, the signaling mechanisms have been challenging to uncover due to the complexity of these signals and the stresses that induce them. New research has shown that many signals are induced by singlet oxygen, a natural by-product of inefficient photosynthesis. Chloroplast singlet oxygen not only regulates nuclear gene expression, but also cellular degradation and cell death. Stressed chloroplasts also induce post-translational mechanisms, including autophagy, that allows individual chloroplasts to regulate their own degradation and turnover. Such chloroplast quality control pathways may allow cells to maintain healthy populations of chloroplasts and to avoid cumulative photo-oxidative stress in stressful environments.
Collapse
Affiliation(s)
- Jesse D Woodson
- University of Arizona, School of Plant Sciences, 303 Forbes Hall, 1140 E. South Campus Drive, Tucson, AZ 85721-0036, United States.
| |
Collapse
|
56
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
57
|
Beaugelin I, Chevalier A, D'Alessandro S, Ksas B, Novák O, Strnad M, Forzani C, Hirt H, Havaux M, Monnet F. OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. PLANT PHYSIOLOGY 2019; 180:1691-1708. [PMID: 31123095 PMCID: PMC6752932 DOI: 10.1104/pp.19.00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.
Collapse
Affiliation(s)
- Inès Beaugelin
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Anne Chevalier
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Stefano D'Alessandro
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Brigitte Ksas
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Céline Forzani
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, F-78000 Versailles, France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michel Havaux
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
| | - Fabien Monnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, UMR 7265 Biosciences and Biotechnologies Institute of Aix- Marseille, CEA/Cadarache, F-13108 Saint-Paul-lès-Durance, France
- Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| |
Collapse
|
58
|
Máthé C, Garda T, Freytag C, M-Hamvas M. The Role of Serine-Threonine Protein Phosphatase PP2A in Plant Oxidative Stress Signaling-Facts and Hypotheses. Int J Mol Sci 2019; 20:ijms20123028. [PMID: 31234298 PMCID: PMC6628354 DOI: 10.3390/ijms20123028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| |
Collapse
|
59
|
Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9732325. [PMID: 31205950 PMCID: PMC6530150 DOI: 10.1155/2019/9732325] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 02/05/2023]
Abstract
Exposure to a variety of environmental factors such as salinity, drought, metal toxicity, extreme temperature, air pollutants, ultraviolet-B (UV-B) radiation, pesticides, and pathogen infection leads to subject oxidative stress in plants, which in turn affects multiple biological processes via reactive oxygen species (ROS) generation. ROS include hydroxyl radicals, singlet oxygen, and hydrogen peroxide in the plant cells and activates signaling pathways leading to some changes of physiological, biochemical, and molecular mechanisms in cellular metabolism. Excessive ROS, however, cause oxidative stress, a state of imbalance between the production of ROS and the neutralization of free radicals by antioxidants, resulting in damage of cellular components including lipids, nucleic acids, metabolites, and proteins, which finally leads to the death of cells in plants. Thus, maintaining a physiological level of ROS is crucial for aerobic organisms, which relies on the combined operation of enzymatic and nonenzymatic antioxidants. In order to improve plants' tolerance towards the harsh environment, it is vital to reinforce the comprehension of oxidative stress and antioxidant systems. In this review, recent findings on the metabolism of ROS as well as the antioxidative defense machinery are briefly updated. The latest findings on differential regulation of antioxidants at multiple levels under adverse environment are also discussed here.
Collapse
Affiliation(s)
- Xiulan Xie
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhouqing He
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Nifan Chen
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Zizhong Tang
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Cai
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
60
|
Zhi T, Zhou Z, Qiu B, Zhu Q, Xiong X, Ren C. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:622-638. [PMID: 30666736 DOI: 10.1111/tpj.14235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 05/10/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyses the final step of the tyrosine degradation pathway, which is essential to animals but was of unknown importance in plants until we found that mutation of Short-day Sensitive Cell Death1 (SSCD1), encoding Arabidopsis FAH, results in cell death under short-day conditions. The sscd1 mutant accumulates succinylacetone (SUAC), an abnormal metabolite caused by loss of FAH. Succinylacetone is an inhibitor of δ-aminolevulinic acid (ALA) dehydratase (ALAD), which is involved in chlorophyll (Chl) biosynthesis. In this study, we investigated whether sscd1 cell death is mediated by Chl biosynthesis and found that ALAD activity is repressed in sscd1 and that protochlorophyllide (Pchlide), an intermediate of Chl biosynthesis, accumulates at lower levels in etiolated sscd1 seedlings. However, it was interesting that Pchlide in sscd1 might increase after transfer from light to dark and that HEMA1 and CHLH are upregulated in the light-dark transition before Pchlide levels increased. Upon re-illumination after Pchlide levels had increased, reactive oxygen species marker genes, including singlet oxygen-induced genes, are upregulated, and the sscd1 cell death phenotype appears. In addition, Arabidopsis WT seedlings treated with SUAC mimic sscd1 in decline of ALAD activity and accumulation of Pchlide as well as cell death. These results demonstrate that increase in Pchlide causes cell death in sscd1 upon re-illumination and suggest that a decline in the Pchlide pool due to inhibition of ALAD activity by SUAC impairs the repression of ALA synthesis from the light-dark transition by feedback control, resulting in activation of the Chl biosynthesis pathway and accumulation of Pchlide in the dark.
Collapse
Affiliation(s)
- Tiantian Zhi
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhou Zhou
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Bo Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Qi Zhu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
61
|
Wang L, Apel K. Dose-dependent effects of 1O2 in chloroplasts are determined by its timing and localization of production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:29-40. [PMID: 30272237 PMCID: PMC6939833 DOI: 10.1093/jxb/ery343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/25/2018] [Indexed: 05/23/2023]
Abstract
In plants, highly reactive singlet oxygen (1O2) is known to inhibit photosynthesis and to damage the cell as a cytotoxin. However, more recent studies have also proposed 1O2 as a signal. In plants under stress, not only 1O2 but also other reactive oxygen species (ROS) are generated simultaneously, thus making it difficult to link a particular response to the release of 1O2 and establish a signaling role for this ROS. This obstacle has been overcome by the identification of conditional mutants of Arabidopsis thaliana that selectively generate 1O2 and trigger various 1O2-mediated responses. In chloroplasts of these mutants, chlorophyll or its biosynthetic intermediates may act as a photosensitizer and generate 1O2. These 1O2-mediated responses are not only dependent on the dosage of 1O2 but also are determined by the timing and suborganellar localization of its production. This spatial- and temporal-dependent variability of 1O2-mediated responses emphasizes the importance of 1O2 as a highly versatile and short-lived signal that acts throughout the life cycle of a plant.
Collapse
Affiliation(s)
- Liangsheng Wang
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Klaus Apel
- Boyce Thompson Institute, Ithaca, NY, USA
- Institute of Molecular Plant Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| |
Collapse
|
62
|
Su T, Li W, Wang P, Ma C. Dynamics of Peroxisome Homeostasis and Its Role in Stress Response and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:705. [PMID: 31214223 PMCID: PMC6557986 DOI: 10.3389/fpls.2019.00705] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/13/2019] [Indexed: 05/19/2023]
Abstract
Peroxisomes play vital roles in plant growth, development, and environmental stress response. During plant development and in response to environmental stresses, the number and morphology of peroxisomes are dynamically regulated to maintain peroxisome homeostasis in cells. To execute their various functions in the cell, peroxisomes associate and communicate with other organelles. Under stress conditions, reactive oxygen species (ROS) produced in peroxisomes and other organelles activate signal transduction pathways, in a process known as retrograde signaling, to synergistically regulate defense systems. In this review, we focus on the recent advances in the plant peroxisome field to provide an overview of peroxisome biogenesis, degradation, crosstalk with other organelles, and their role in response to environmental stresses.
Collapse
|
63
|
Lee HY, Back K. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. J Pineal Res 2018; 65:e12504. [PMID: 29770489 DOI: 10.1111/jpi.12504] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
In plants, melatonin is a potent bioactive molecule involved in the response against various biotic and abiotic stresses. However, little is known of its defensive role against high light (HL) stress. In this study, we found that melatonin was transiently induced in response to HL stress in Arabidopsis thaliana with a simultaneous increase in the expression of melatonin biosynthetic genes, including serotonin N-acetyltransferase1 (SNAT1). Transient induction of melatonin was also observed in the flu mutant, a singlet oxygen (1 O2 )-producing mutant, upon light exposure, suggestive of melatonin induction by chloroplastidic 1 O2 against HL stress. An Arabidopsis snat1 mutant was devoid of melatonin induction upon HL stress, resulting in high susceptibility to HL stress. Exogenous melatonin treatment mitigated damage caused by HL stress in the snat1 mutant by reducing O2- production and increasing the expression of various ROS-responsive genes. In analogy, an Arabidopsis SNAT1-overexpressing line showed increased tolerance of HL stress concomitant with a reduction in malondialdehyde and ion leakage. A complementation line expressing an Arabidopsis SNAT1 genomic fragment in the snat1 mutant completely restored HL stress susceptibility in the snat1 mutant to levels comparable to that of wild-type Col-0 plants. The results of the analysis of several Arabidopsis genetic lines reveal for the first time at the genetic level that melatonin is involved in conferring HL stress tolerance in plants.
Collapse
Affiliation(s)
- Hyoung Yool Lee
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| | - Kyoungwhan Back
- Department of Biotechnology, Bioenergy Research Center, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
64
|
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 154:134-142. [PMID: 30283160 PMCID: PMC6105748 DOI: 10.1016/j.envexpbot.2018.05.003] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.
Collapse
|
65
|
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 154:134-142. [PMID: 30283160 DOI: 10.1016/j.envexpbot.2018.05.00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reduction-oxidation (redox) reactions, in which electrons move from a donor to an acceptor, are the functional heart of photosynthesis. It is not surprising therefore that reactive oxygen species (ROS) are generated in abundance by photosynthesis, providing a plethora of redox signals as well as functioning as essential regulators of energy and metabolic fluxes. Chloroplasts are equipped with an elaborate and multifaceted protective network that allows photosynthesis to function with high productivity even in resource-limited natural environments. This includes numerous antioxidants with overlapping functions that provide enormous flexibility in redox control. ROS are an integral part of the repertoire of chloroplast signals that are transferred to the nucleus to convey essential information concerning redox pressure within the electron transport chain. Current evidence suggests that there is specificity in the gene-expression profiles triggered by the different ROS signals, so that singlet oxygen triggers programs related to over excitation of photosystem (PS) II while superoxide and hydrogen peroxide promote the expression of other suites of genes that may serve to alleviate electron pressure on the reducing side of PSI. Not all chloroplasts are equal in their signaling functions, with some sub-populations appearing to have better contacts/access to the nucleus than others to promote genetic and epigenetic responses. While the concept that light-induced increases in ROS result in damage to PSII and photoinhibition is embedded in the photosynthesis literature, there is little consensus concerning the extent to which such oxidative damage happens in nature. Slowly reversible decreases in photosynthetic capacity are not necessarily the result of light-induced damage to PSII reaction centers.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
66
|
Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms. Sci Rep 2018; 8:13685. [PMID: 30209276 PMCID: PMC6135792 DOI: 10.1038/s41598-018-31638-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
Formation of singlet oxygen (1O2) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for 1O2 imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for 1O2 imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp. PCC 6803, unicellular green alga Chlamydomonas reinhardtii and higher plant Arabidopsis thaliana. Penetration of SOSG differs in both unicellular organisms; while it is rather convenient for Chlamydomonas it is restricted by the presence of mucoid sheath of Synechocystis, which penetrability might be improved by mild heating. In Arabidopsis, SOSG penetration is limited due to tissue complexity which can be increased by pressure infiltration using a shut syringe. Photosensitization of SOSG and SOSG endoperoxide formed by its interaction with 1O2 might be prevented by illumination of samples by a red light. When measured under controlled conditions given above, SOSG might serve as specific probe for detection of intracellular 1O2 formation in photosynthetic organisms.
Collapse
|
67
|
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:805-826. [PMID: 29660240 DOI: 10.1111/jipb.12654] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 05/18/2023]
Abstract
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Collapse
Affiliation(s)
- Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China
| | - Jianmin Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
68
|
Dogra V, Rochaix JD, Kim C. Singlet oxygen-triggered chloroplast-to-nucleus retrograde signalling pathways: An emerging perspective. PLANT, CELL & ENVIRONMENT 2018; 41:1727-1738. [PMID: 29749057 DOI: 10.1111/pce.13332] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) is a prime cause of photo-damage of the photosynthetic apparatus. The chlorophyll molecules in the photosystem II reaction center and in the light-harvesting antenna complex are major sources of 1 O2 generation. It has been thought that the generation of 1 O2 mainly takes place in the appressed regions of the thylakoid membranes, namely, the grana core, where most of the active photosystem II complexes are localized. Apart from being a toxic molecule, new evidence suggests that 1 O2 significantly contributes to chloroplast-to-nucleus retrograde signalling that primes acclimation and cell death responses. Interestingly, recent studies reveal that chloroplasts operate two distinct 1 O2 -triggered retrograde signalling pathways in which β-carotene and a nuclear-encoded chloroplast protein EXECUTER1 play essential roles as signalling mediators. The coexistence of these mediators raises several questions: their crosstalk, source(s) of 1 O2 , downstream signalling components, and the perception and reaction mechanism of these mediators towards 1 O2 . In this review, we mainly discuss the molecular genetic basis of the mode of action of these two putative 1 O2 sensors and their corresponding retrograde signalling pathways. In addition, we also propose the possible existence of an alternative source of 1 O2 , which is spatially and functionally separated from the grana core.
Collapse
Affiliation(s)
- Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, 1205, Geneva, Switzerland
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
69
|
Otsubo M, Ikoma C, Ueda M, Ishii Y, Tamura N. Functional Role of Fibrillin5 in Acclimation to Photooxidative Stress. PLANT & CELL PHYSIOLOGY 2018; 59:1670-1682. [PMID: 29741733 DOI: 10.1093/pcp/pcy093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 05/13/2023]
Abstract
The functional role of a lipid-associated soluble protein, fibrillin5 (FBN5), was determined with the Arabidopsis thaliana homozygous fbn5-knockout mutant line (SALK_064597) that carries a T-DNA insertion within the FBN5 gene. The fbn5 mutant remained alive, displaying a slow growth and a severe dwarf phenotype. The mutant grown even under growth light conditions at 80 µmol m-2 s-1 showed a drastic decrease in electron transfer activities around PSII, with little change in electron transfer activities around PSI, a phenomenon which was exaggerated under high light stress. The accumulation of plastoquinone-9 (PQ-9) was suppressed in the mutant, and >90% of the PQ-9 pool was reduced under growth light conditions. Non-photochemical quenching (NPQ) in the mutant functioned less efficiently, resulting from little contribution by energy-dependent quenching (qE). The ultrastructure of thylakoids in the mutant revealed that their grana were unstacked and transformed into loose and disordered structures. Light-harvesting complex (LHC)-containing large photosystem complexes and photosystem core complexes in the mutant were less abundant than those in wild-type plants. These results suggest that the lack of FBN5 causes a decrease in PQ-9 and imbalance of the redox state of PQ-9, resulting in misconducting both short-term and long-term control of the input of light energy to photosynthetic reaction centers. Furthermore, in the fbn5 mutant, the expression of genes involved in jasmonic acid biosynthesis was suppressed to ≤10% of that in the wild type under both growth-light and high-light conditions, suggesting that FBN5 functions as a transmitter of 1O2 in the stroma.
Collapse
Affiliation(s)
- Mayuko Otsubo
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Chikako Ikoma
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Mariko Ueda
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Yumi Ishii
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| | - Noriaki Tamura
- Department of Environmental Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
70
|
Su T, Wang P, Li H, Zhao Y, Lu Y, Dai P, Ren T, Wang X, Li X, Shao Q, Zhao D, Zhao Y, Ma C. The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:591-607. [PMID: 29575603 DOI: 10.1111/jipb.12649] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/19/2018] [Indexed: 05/25/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is generated in many metabolic processes. As a signaling molecule, H2 O2 plays important roles in plant growth and development, as well as environmental stress response. In Arabidopsis, there are three catalase genes, CAT1, CAT2, and CAT3. The encoded catalases are predominately peroxisomal proteins and are critical for scavenging H2 O2 . Since CAT1 and CAT3 are linked on chromosome 1, it has been almost impossible to generate cat1/3 and cat1/2/3 mutants by traditional genetic tools. In this study, we constructed cat1/3 double mutants and cat1/2/3 triple mutants by CRISPR/Cas9 to investigate the role of catalases. The cat1/2/3 triple mutants displayed severe redox disturbance and growth defects under physiological conditions compared with wild-type and the cat2/3 double mutants. Transcriptome analysis showed a more profound transcriptional response in the cat1/2/3 triple mutants compared to the cat2/3 mutants. These differentially expressed genes are involved in plant growth regulation as well as abiotic and biotic stress responses. In addition, expression of OXI1 (OXIDATIVE SIGNAL INDUCIBLE 1) and several MAPK cascade genes were changed dramatically in the catalase triple mutant, suggesting that H2 O2 produced in peroxisomes could serve as a peroxisomal retrograde signal.
Collapse
Affiliation(s)
- Tong Su
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Huijuan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Peng Dai
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Tianqi Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Xiaofeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Xuezhi Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China
| |
Collapse
|
71
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
72
|
Arbelet-Bonnin D, Ben Hamed-Laouti I, Laurenti P, Abdelly C, Ben Hamed K, Bouteau F. Cellular mechanisms to survive salt in the halophyte Cakile maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:173-178. [PMID: 29807589 DOI: 10.1016/j.plantsci.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
We recently identified two behaviours in cultured cells of the salt accumulating halophyte Cakile maritima: one related to a sustained depolarization due to Na+ influx through the non-selective cation channels leading to programmed cell death of these cells, a second one related to a transient depolarization allowing cells to survive (Ben Hamed-Laouti, 2016). In this study, we considered at the cellular level mechanisms that could participate to the exclusion of Na+ out of the cell and thus participate in the regulation of the internal contents of Na+ and cell survival. Upon addition of NaCl in the culture medium of suspension cells of C. maritima, we observed a rapid influx of Na+ followed by an efflux dependent of the activity of plasma membrane H+-ATPases, in accordance with the functioning of a Na+/H+ antiporter and the ability of some cells to repolarize. The Na+ efflux was shown to be dependent on Na+-dependent on Ca2+ influx like the SOS1 Na+/H+ antiporter. We further could observe in response to salt addition, an early production of singlet oxygen (1O2) probably due to peroxidase activities. This early 1O2 production seemed to be a prerequisite to the Na+ efflux. Our findings suggest that in addition to the pathway leading to PCD (Ben Hamed-Laouti, 2016), a second pathway comprising an SOS-like system could participate to the survival of a part of the C. maritima cultured cells challenged by salt stress.
Collapse
Affiliation(s)
- Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Patrick Laurenti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
73
|
Baba AI, Rigó G, Ayaydin F, Rehman AU, Andrási N, Zsigmond L, Valkai I, Urbancsok J, Vass I, Pasternak T, Palme K, Szabados L, Cséplő Á. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: At CRK1 Regulates Responses to Continuous Light. Int J Mol Sci 2018; 19:ijms19051282. [PMID: 29693594 PMCID: PMC5983578 DOI: 10.3390/ijms19051282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Calcium-Dependent Protein Kinase (CDPK)-Related Kinase family (CRKs) consists of eight members in Arabidopsis. Recently, AtCRK5 was shown to play a direct role in the regulation of root gravitropic response involving polar auxin transport (PAT). However, limited information is available about the function of the other AtCRK genes. Here, we report a comparative analysis of the Arabidopsis CRK genes, including transcription regulation, intracellular localization, and biological function. AtCRK transcripts were detectable in all organs tested and a considerable variation in transcript levels was detected among them. Most AtCRK proteins localized at the plasma membrane as revealed by microscopic analysis of 35S::cCRK-GFP (Green Fluorescence Protein) expressing plants or protoplasts. Interestingly, 35S::cCRK1-GFP and 35S::cCRK7-GFP had a dual localization pattern which was associated with plasma membrane and endomembrane structures, as well. Analysis of T-DNA insertion mutants revealed that AtCRK genes are important for root growth and control of gravitropic responses in roots and hypocotyls. While Atcrk mutants were indistinguishable from wild type plants in short days, Atcrk1-1 mutant had serious growth defects under continuous illumination. Semi-dwarf phenotype of Atcrk1-1 was accompanied with chlorophyll depletion, disturbed photosynthesis, accumulation of singlet oxygen, and enhanced cell death in photosynthetic tissues. AtCRK1 is therefore important to maintain cellular homeostasis during continuous illumination.
Collapse
Affiliation(s)
- Abu Imran Baba
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary.
| | - Gábor Rigó
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary.
| | - Ferhan Ayaydin
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ateeq Ur Rehman
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Norbert Andrási
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Laura Zsigmond
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ildikó Valkai
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - János Urbancsok
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Imre Vass
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Taras Pasternak
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Klaus Palme
- Faculty of Biologie II, Albert-Ludwigs Universität, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - László Szabados
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Ágnes Cséplő
- Plant Biology Institute, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| |
Collapse
|
74
|
Muñoz P, Munné-Bosch S. Photo-Oxidative Stress during Leaf, Flower and Fruit Development. PLANT PHYSIOLOGY 2018; 176:1004-1014. [PMID: 29051197 PMCID: PMC5813531 DOI: 10.1104/pp.17.01127] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 05/07/2023]
Abstract
Photooxidative stress plays a crucial role in organ growth and development, with some similarities but also important differences in the development of leaves, flowers, and fruits.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain 08028
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain 08028
| |
Collapse
|
75
|
Sánchez-Corrionero Á, Sánchez-Vicente I, González-Pérez S, Corrales A, Krieger-Liszkay A, Lorenzo Ó, Arellano JB. Singlet oxygen triggers chloroplast rupture and cell death in the zeaxanthin epoxidase defective mutant aba1 of Arabidopsis thaliana under high light stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:188-196. [PMID: 28709027 DOI: 10.1016/j.jplph.2017.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The two Arabidopsis thaliana mutants, aba1 and max4, were previously identified as sharing a number of co-regulated genes with both the flu mutant and Arabidopsis cell suspension cultures exposed to high light (HL). On this basis, we investigated whether aba1 and max4 were generating high amounts of singlet oxygen (1O2) and activating 1O2-mediated cell death. Thylakoids of aba1 produced twice as much 1O2 as thylakoids of max4 and wild type (WT) plants when illuminated with strong red light. 1O2 was measured using the spin probe 2,2,6,6-tetramethyl-4-piperidone hydrochloride. 77-K chlorophyll fluorescence emission spectra of thylakoids revealed lower aggregation of the light harvesting complex II in aba1. This was rationalized as a loss of connectivity between photosystem II (PSII) units and as the main cause for the high yield of 1O2 generation in aba1. Up-regulation of the 1O2 responsive gene AAA-ATPase was only observed with statistical significant in aba1 under HL. Two early jasmonate (JA)-responsive genes, JAZ1 and JAZ5, encoding for two repressor proteins involved in the negative feedback regulation of JA signalling, were not up-regulated to the WT plant levels. Chloroplast aggregation followed by chloroplast rupture and eventual cell death was observed by confocal imaging of the fluorescence emission of leaf cells of transgenic aba1 plants expressing the chimeric fusion protein SSU-GFP. Cell death was not associated with direct 1O2 cytotoxicity in aba1, but rather with a delayed stress response. In contrast, max4 did not show evidence of 1O2-mediated cell death. In conclusion, aba1 may serve as an alternative model to other 1O2-overproducing mutants of Arabidopsis for investigating 1O2-mediated cell death.
Collapse
Affiliation(s)
- Álvaro Sánchez-Corrionero
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain; Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain; Department of Biotechnology, Center for Plant Genomics and Biotechnology, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Spain
| | - Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Sergio González-Pérez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain
| | - Ascensión Corrales
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain; Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique et aux Energies Alternatives Saclay, Institut des sciences du vivant Frédéric Joliot, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex 91198, France
| | - Óscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Salamanca 37185, Spain
| | - Juan B Arellano
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de merinas 52, Salamanca 37008, Spain.
| |
Collapse
|
76
|
Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 2017; 24:955-960. [PMID: 28498364 DOI: 10.1038/cdd.2017.68] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 12/23/2022] Open
Abstract
The energy-converting organelles mitochondria and chloroplasts are tightly embedded in cellular metabolism and stress response. To appropriately control organelle function, extensive regulatory mechanisms are at play that involve two-way exchange between the nucleus and mitochondria/chloroplasts. In recent years, our understanding of how mitochondria and chloroplasts provide 'retrograde' feedback to the nucleus, resulting in targeted transcriptional changes, has greatly increased. Nevertheless, mitochondrial and chloroplast retrograde signalling have largely been studied independently, and only few points of interaction have been found or proposed. Through reassessment of recent publications, this perspective proposes that two of the most well-studied retrograde signalling pathways in plants, those mediated by ANAC017 and those mediated by phosphoadenosine phosphate (PAP), are most likely convergent and can direct overlapping genes. Furthermore, at least part of this common retrograde response appears targeted towards suppression of programmed cell death (PCD) triggered by organellar defects. The identified target genes are discussed in light of their roles in PCD suppression and amplifying the signalling cascade via positive-feedback loops. Finally, a mechanism is proposed that may explain why the convergence of PAP/ANAC017-dependent signalling appears capable of suppressing some types of PCD lesions, but not others, based on the subcellular location of the initial PCD-inducing dysfunction.
Collapse
|
77
|
Fallath T, Kidd BN, Stiller J, Davoine C, Björklund S, Manners JM, Kazan K, Schenk PM. MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLoS One 2017; 12:e0176022. [PMID: 28441405 PMCID: PMC5404846 DOI: 10.1371/journal.pone.0176022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways.
Collapse
Affiliation(s)
- Thorya Fallath
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
| | - Brendan N. Kidd
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
| | - Celine Davoine
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå Plant Science Center, Umeå University Umeå Sweden
| | - John M. Manners
- CSIRO Agriculture and Food, Black Mountain, Canberra, Australia
| | - Kemal Kazan
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Australia
- * E-mail:
| |
Collapse
|
78
|
Shumbe L, D'Alessandro S, Shao N, Chevalier A, Ksas B, Bock R, Havaux M. METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. PLANT, CELL & ENVIRONMENT 2017; 40:216-226. [PMID: 27813110 DOI: 10.1111/pce.12856] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 05/19/2023]
Abstract
Singlet oxygen (1 O2 ) signalling in plants is essential to trigger both acclimatory mechanisms and programmed cell death under high light stress. However, because of its chemical features, 1 O2 requires mediators, and the players involved in this pathway are largely unknown. The β-carotene oxidation product, β-cyclocitral, is one such mediator. Produced in the chloroplast, β-cyclocitral induces changes in nuclear gene expression leading to photoacclimation. Recently, the METHYLENE BLUE SENSITIVITY protein MBS has been identified as a key player in 1 O2 signalling leading to tolerance to high light. Here, we provide evidence that MBS1 is essential for acclimation to 1 O2 and cross-talks with β-cyclocitral to mediate transfer of the 1 O2 signal to the nucleus, leading to photoacclimation. The presented results position MBS1 downstream of β-cyclocitral in 1 O2 signalling and suggest an additional role for MBS1 in the regulation of plant growth and development under chronic 1 O2 production.
Collapse
Affiliation(s)
- Leonard Shumbe
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108, Saint-Paul-lez-Durance, France
| | - Stefano D'Alessandro
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108, Saint-Paul-lez-Durance, France
| | - Ning Shao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Anne Chevalier
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108, Saint-Paul-lez-Durance, France
| | - Brigitte Ksas
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108, Saint-Paul-lez-Durance, France
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
79
|
Abstract
Chemical, physical, and biotic factors continuously vary in the natural environment. Such parameters are considered as stressors if the magnitude of their change exceeds the current acclimation norm of the plant. Activation of genetic programs allows for conditional expansion of the acclimation norm and depends on specific sensing mechanisms, intracellular communication, and regulation. The redox and reactive oxygen species (ROS) network plays a fundamental role in directing the acclimation response. These highly reactive compounds like H2O2 are generated and scavenged under normal conditions and participate in realizing a basal acclimation level. Spatial and temporal changes in ROS levels and redox state provide valuable information for regulating epigenetic processes, transcription factors (TF), translation, protein turnover, metabolic pathways, and cross-feed, e.g., into hormone-, NO-, or Ca2+-dependent signaling pathways. At elevated ROS levels uncontrolled oxidation reactions compromise cell functions, impair fitness and yield, and in extreme cases may cause plant death.
Collapse
Affiliation(s)
- Michael Liebthal
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, University Str. 25, 33501, Bielefeld, Germany
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, University Str. 25, 33501, Bielefeld, Germany.
| |
Collapse
|
80
|
Davis GA, Kanazawa A, Schöttler MA, Kohzuma K, Froehlich JE, Rutherford AW, Satoh-Cruz M, Minhas D, Tietz S, Dhingra A, Kramer DM. Limitations to photosynthesis by proton motive force-induced photosystem II photodamage. eLife 2016. [PMID: 27697149 DOI: 10.7554/elife.16921.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The thylakoid proton motive force (pmf) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf extents. We observed the expected pmf-dependent alterations in photosynthetic regulation, but also strong effects on the rate of photosystem II (PSII) photodamage. Detailed analyses indicate this effect is related to an elevated electric field (Δψ) component of the pmf, rather than lumen acidification, which in vivo increased PSII charge recombination rates, producing singlet oxygen and subsequent photodamage. The effects are seen even in wild type plants, especially under fluctuating illumination, suggesting that Δψ-induced photodamage represents a previously unrecognized limiting factor for plant productivity under dynamic environmental conditions seen in the field.
Collapse
Affiliation(s)
- Geoffry A Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
- Graduate Program of Cell and Molecular Biology, Michigan State University, East Lansing, United States
| | - Atsuko Kanazawa
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
- Department of Chemistry, Michigan State University, East Lansing, United States
| | | | - Kaori Kohzuma
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - John E Froehlich
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | | | - Mio Satoh-Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Deepika Minhas
- Department of Horticulture, Washington State University, Pullman, United States
| | - Stefanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, United States
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
81
|
Davis GA, Kanazawa A, Schöttler MA, Kohzuma K, Froehlich JE, Rutherford AW, Satoh-Cruz M, Minhas D, Tietz S, Dhingra A, Kramer DM. Limitations to photosynthesis by proton motive force-induced photosystem II photodamage. eLife 2016; 5. [PMID: 27697149 PMCID: PMC5050024 DOI: 10.7554/elife.16921] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
The thylakoid proton motive force (pmf) generated during photosynthesis is the essential driving force for ATP production; it is also a central regulator of light capture and electron transfer. We investigated the effects of elevated pmf on photosynthesis in a library of Arabidopsis thaliana mutants with altered rates of thylakoid lumen proton efflux, leading to a range of steady-state pmf extents. We observed the expected pmf-dependent alterations in photosynthetic regulation, but also strong effects on the rate of photosystem II (PSII) photodamage. Detailed analyses indicate this effect is related to an elevated electric field (Δψ) component of the pmf, rather than lumen acidification, which in vivo increased PSII charge recombination rates, producing singlet oxygen and subsequent photodamage. The effects are seen even in wild type plants, especially under fluctuating illumination, suggesting that Δψ-induced photodamage represents a previously unrecognized limiting factor for plant productivity under dynamic environmental conditions seen in the field. DOI:http://dx.doi.org/10.7554/eLife.16921.001
Collapse
Affiliation(s)
- Geoffry A Davis
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States.,Graduate Program of Cell and Molecular Biology, Michigan State University, East Lansing, United States
| | - Atsuko Kanazawa
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | | | - Kaori Kohzuma
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - John E Froehlich
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | | | - Mio Satoh-Cruz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Deepika Minhas
- Department of Horticulture, Washington State University, Pullman, United States
| | - Stefanie Tietz
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, United States
| | - David M Kramer
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
82
|
Munné-Bosch S, Cotado A, Morales M, Fleta-Soriano E, Villellas J, Garcia MB. Adaptation of the Long-Lived Monocarpic Perennial Saxifraga longifolia to High Altitude. PLANT PHYSIOLOGY 2016; 172:765-775. [PMID: 27440756 PMCID: PMC5047100 DOI: 10.1104/pp.16.00877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 05/11/2023]
Abstract
Global change is exerting a major effect on plant communities, altering their potential capacity for adaptation. Here, we aimed at unveiling mechanisms of adaptation to high altitude in an endemic long-lived monocarpic, Saxifraga longifolia, by combining demographic and physiological approaches. Plants from three altitudes (570, 1100, and 2100 m above sea level [a.s.l.]) were investigated in terms of leaf water and pigment contents, and activation of stress defense mechanisms. The influence of plant size on physiological performance and mortality was also investigated. Levels of photoprotective molecules (α-tocopherol, carotenoids, and anthocyanins) increased in response to high altitude (1100 relative to 570 m a.s.l.), which was paralleled by reduced soil and leaf water contents and increased ABA levels. The more demanding effect of high altitude on photoprotection was, however, partly abolished at very high altitudes (2100 m a.s.l.) due to improved soil water contents, with the exception of α-tocopherol accumulation. α-Tocopherol levels increased progressively at increasing altitudes, which paralleled with reductions in lipid peroxidation, thus suggesting plants from the highest altitude effectively withstood high light stress. Furthermore, mortality of juveniles was highest at the intermediate population, suggesting that drought stress was the main environmental driver of mortality of juveniles in this rocky plant species. Population structure and vital rates in the high population evidenced lower recruitment and mortality in juveniles, activation of clonal growth, and absence of plant size-dependent mortality. We conclude that, despite S. longifolia has evolved complex mechanisms of adaptation to altitude at the cellular, whole-plant and population levels, drought events may drive increased mortality in the framework of global change.
Collapse
Affiliation(s)
- Sergi Munné-Bosch
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain (S.M.-B., A.C., M.M., E.F.-S.); andPyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain (J.V., M.B.G.)
| | - Alba Cotado
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain (S.M.-B., A.C., M.M., E.F.-S.); andPyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain (J.V., M.B.G.)
| | - Melanie Morales
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain (S.M.-B., A.C., M.M., E.F.-S.); andPyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain (J.V., M.B.G.)
| | - Eva Fleta-Soriano
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain (S.M.-B., A.C., M.M., E.F.-S.); andPyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain (J.V., M.B.G.)
| | - Jesús Villellas
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain (S.M.-B., A.C., M.M., E.F.-S.); andPyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain (J.V., M.B.G.)
| | - Maria B Garcia
- Department of Plant Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain (S.M.-B., A.C., M.M., E.F.-S.); andPyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain (J.V., M.B.G.)
| |
Collapse
|
83
|
Woodson JD. Chloroplast quality control - balancing energy production and stress. THE NEW PHYTOLOGIST 2016; 212:36-41. [PMID: 27533783 DOI: 10.1111/nph.14134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/13/2016] [Indexed: 05/07/2023]
Abstract
Contents 36 I. 36 II. 37 III. 37 IV. 38 V. 39 VI. 40 VII. 40 40 References 40 SUMMARY: All organisms require the ability to sense their surroundings and adapt. Such capabilities allow them to thrive in a wide range of habitats. This is especially true for plants, which are sessile and have to be genetically equipped to withstand every change in their environment. Plants and other eukaryotes use their energy-producing organelles (i.e. mitochondria and chloroplasts) as such sensors. In response to a changing cellular or external environment, these organelles can emit 'retrograde' signals that alter gene expression and/or cell physiology. This signaling is important in plants, fungi, and animals and impacts diverse cellular functions including photosynthesis, energy production/storage, stress responses, growth, cell death, ageing, and tumor progression. Originally, chloroplast retrograde signals in plants were known to lead to the reprogramming of nuclear transcription. New research, however, has pointed to additional posttranslational mechanisms that lead to chloroplast regulation and turnover in response to stress. Such mechanisms involve singlet oxygen, ubiquitination, the 26S proteasome, and cellular degradation machinery.
Collapse
Affiliation(s)
- Jesse D Woodson
- Plant Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
84
|
Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J. ROS signalling in a destabilised world: A molecular understanding of climate change. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:69-83. [PMID: 27364884 DOI: 10.1016/j.jplph.2016.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/29/2023]
Abstract
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management.
Collapse
Affiliation(s)
- Melanie Carmody
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Timo Saarinen
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
85
|
Carmody M, Crisp PA, d'Alessandro S, Ganguly D, Gordon M, Havaux M, Albrecht-Borth V, Pogson BJ. Uncoupling High Light Responses from Singlet Oxygen Retrograde Signaling and Spatial-Temporal Systemic Acquired Acclimation. PLANT PHYSIOLOGY 2016; 171:1734-49. [PMID: 27288360 PMCID: PMC4936574 DOI: 10.1104/pp.16.00404] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/09/2016] [Indexed: 05/18/2023]
Abstract
Distinct ROS signaling pathways initiated by singlet oxygen ((1)O2) or superoxide and hydrogen peroxide have been attributed to either cell death or acclimation, respectively. Recent studies have revealed that more complex antagonistic and synergistic relationships exist within and between these pathways. As specific chloroplastic ROS signals are difficult to study, rapid systemic signaling experiments using localized high light (HL) stress or ROS treatments were used in this study to uncouple signals required for direct HL and ROS perception and distal systemic acquired acclimation (SAA). A qPCR approach was chosen to determine local perception and distal signal reception. Analysis of a thylakoidal ascorbate peroxidase mutant (tapx), the (1)O2-retrograde signaling double mutant (ex1/ex2), and an apoplastic signaling double mutant (rbohD/F) revealed that tAPX and EXECUTER 1 are required for both HL and systemic acclimation stress perception. Apoplastic membrane-localized RBOHs were required for systemic spread of the signal but not for local signal induction in directly stressed tissues. Endogenous ROS treatments revealed a very strong systemic response induced by a localized 1 h induction of (1)O2 using the conditional flu mutant. A qPCR time course of (1)O2 induced systemic marker genes in directly and indirectly connected leaves revealed a direct vascular connection component of both immediate and longer term SAA signaling responses. These results reveal the importance of an EXECUTER-dependent (1)O2 retrograde signal for both local and long distance RBOH-dependent acclimation signaling that is distinct from other HL signaling pathways, and that direct vascular connections have a role in spatial-temporal SAA induction.
Collapse
Affiliation(s)
- Melanie Carmody
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Stefano d'Alessandro
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Diep Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Matthew Gordon
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Michel Havaux
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Verónica Albrecht-Borth
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Acton ACT 0200, Australia (M.C., P.C., D.G., M.G., V.A.-B., B.J.P.); Division of Plant Biology, Viikki Plant Science Center, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland (M.C.); andCEA, CNRS, Aix Marseille Université, UMR 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France (S.A., M.H.)
| |
Collapse
|
86
|
Dietz KJ, Turkan I, Krieger-Liszkay A. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast. PLANT PHYSIOLOGY 2016; 171:1541-50. [PMID: 27255485 PMCID: PMC4936569 DOI: 10.1104/pp.16.00375] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis is a high-rate redox metabolic process that is subjected to rapid changes in input parameters, particularly light. Rapid transients of photon capture, electron fluxes, and redox potentials during photosynthesis cause reactive oxygen species (ROS) to be released, including singlet oxygen, superoxide anion radicals, and hydrogen peroxide. Thus, the photosynthesizing chloroplast functions as a conditional source of important redox and ROS information, which is exploited to tune processes both inside the chloroplast and, following retrograde release or processing, in the cytosol and nucleus. Analyses of mutants and comparative transcriptome profiling have led to the identification of these processes and associated players and have allowed the specificity and generality of response patterns to be defined. The release of ROS and oxidation products, envelope permeabilization (for larger molecules), and metabolic interference with mitochondria and peroxisomes produce an intricate ROS and redox signature, which controls acclimation processes. This photosynthesis-related ROS and redox information feeds into various pathways (e.g. the mitogen-activated protein kinase and OXI1 signaling pathways) and controls processes such as gene expression and translation.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
| | - Ismail Turkan
- University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
| | - Anja Krieger-Liszkay
- University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
| |
Collapse
|
87
|
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1950. [PMID: 28082998 PMCID: PMC5183610 DOI: 10.3389/fpls.2016.01950] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 05/19/2023]
Abstract
The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.
Collapse
|
88
|
Pospíšil P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1950. [PMID: 28082998 DOI: 10.3389/fpls.2016.01950/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Czechia
| |
Collapse
|