51
|
Deng X, Wang J, Li Y, Wu S, Yang S, Chao J, Chen Y, Zhang S, Shi M, Tian W. Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ROS scavenger mediate the cold-tolerance of rubber tree. Sci Rep 2018; 8:4931. [PMID: 29563566 PMCID: PMC5862945 DOI: 10.1038/s41598-018-23094-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/06/2018] [Indexed: 11/26/2022] Open
Abstract
Two contrasting cold response rubber tree clones, the cold-resistant ‘93-114’ and cold-sensitive ‘Reken501’, were subject to a global transcriptome response assessing via high-throughput RNA-seq technique and comprehensive bioinformatics analysis using the referenced rubber tree genome with the purpose of exploring the potential molecular cues underlying the tolerance of rubber trees to cold stress. As a result, a total of 1919 genes had significantly higher expression, while 2929 genes had significantly lower expression in ‘93–114’ than in ‘Reken501’ without cold stress. Upon cold stress, the numbers of genes with significantly higher expression decreased to 1501 at 1 h treatment and to 1285 at 24 h treatment in ‘93–114’ than that of ‘Reken501’, conversely, the numbers of genes with significantly lower expression increased to 7567 at 1 h treatment and to 5482 at 24 h treatment. Functional annotation of the differentially expressed genes between ‘93–114’ and ‘Reken501’ suggests that down-regulation of auxin and ethylene signaling and activation of heat shock module and ROS scavengers is a primary strategy for H. brasiliensis to cope with cold stress. Our identified vital differentially expressed genes may be beneficial for elucidation of the molecular mechanisms underlying cold tolerance and for genetic improvement of H. brasiliensis clones.
Collapse
Affiliation(s)
- Xiaomin Deng
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Jianxiao Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056021, Hebei, China
| | - Yan Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Shaohua Wu
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Shuguang Yang
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Jinquan Chao
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Yueyi Chen
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Shixin Zhang
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Minjing Shi
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China
| | - Weimin Tian
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, 571737, P.R. China.
| |
Collapse
|
52
|
Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 2018; 359:930-935. [PMID: 29472485 PMCID: PMC6587588 DOI: 10.1126/science.aam7229] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dale A Shepherd
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Erik G Marklund
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Indu Santhanagoplan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Matteo T Degiacomi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Arthur Laganowsky
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Eman Basha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael T Marty
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Martin R Galpin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
53
|
Comastri A, Janni M, Simmonds J, Uauy C, Pignone D, Nguyen HT, Marmiroli N. Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family. FRONTIERS IN PLANT SCIENCE 2018; 9:1337. [PMID: 30283469 PMCID: PMC6156267 DOI: 10.3389/fpls.2018.01337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Wheat breeding nowadays must address producers and consumers' desire. According to the last FAO report, a dramatic decrease in wheat production is expected in the next decades mainly due to the upcoming climate change. The identification of the processes which are triggered by heat stress and how thermotolerance develops in wheat is an active research topic. Genomic approach may help wheat breeding since it allows direct study on the genotype and relationship with the phenotype. Here the isolation and characterization of four members of the chloroplast-localized small heat shock proteins (sHSP) encoded by the Hsp26 gene family is reported. Furthermore, two high throughput TILLING (Targeting Induced Local Lesions In Genomes) approaches in vivo and in silico were used for the identification of new alleles within this family. Small heat shock proteins are known to prevent the irreversible aggregation of misfolded proteins and contribute to the acquisition of thermotolerance. Chloroplast-localized sHSPs protect the photosynthetic machinery during episodes of high temperature stress. The modulation of the newly discovered genes within the sHsp26 family has been analyzed in vivo and by the ExpVIP platform widening the abiotic stress analysis; and their involvement in the heat stress response has been demonstrated. In addition, in this study a total of 50 TILLING mutant lines have been identified. A set of KASP (Kompetitive Allele Specific PCR) markers was also developed to follow the specific mutations in the ongoing backcrosses, applicable to high throughput genotyping approaches and usable in marker assisted selection breeding programs.
Collapse
Affiliation(s)
- Alessia Comastri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michela Janni
- Department of DiSBA, CNR, Institute of Bioscience and Bioresources, Bari, Italy
- Department of DiTET, CNR, Institute of Materials for Electronics and Magnetism, Parma, Italy
- *Correspondence: Michela Janni
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Domenico Pignone
- Department of DiSBA, CNR, Institute of Bioscience and Bioresources, Bari, Italy
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
54
|
Mogk A, Bukau B. Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress Chaperones 2017; 22:493-502. [PMID: 28120291 PMCID: PMC5465027 DOI: 10.1007/s12192-017-0762-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/29/2022] Open
Abstract
Small heat shock proteins (sHsps) exhibit an ATP-independent chaperone activity to prevent the aggregation of misfolded proteins in vitro. The seemingly conflicting presence of sHsps in insoluble protein aggregates in cells obstructs a precise definition of sHsp function in proteostasis networks. Recent findings specify sHsp activities in protein quality control systems. The sHsps of yeast, Hsp42 and Hsp26, interact with early unfolding intermediates of substrates, keeping them in a ready-to-refold conformation close to the native state. This activity facilitates substrate refolding by ATP-dependent Hsp70-Hsp100 disaggregating chaperones. Hsp42 can actively sequester misfolded proteins and promote their deposition at specific cellular sites. This aggregase activity represents a cytoprotective protein quality control strategy. The aggregase function of Hsp42 controls the formation of cytosolic aggregates (CytoQs) under diverse stress regimes and can be reconstituted in vitro, demonstrating that Hsp42 is necessary and sufficient to promote protein aggregation. Substrates sequestered at CytoQs can be dissociated by Hsp70-Hsp100 disaggregases for subsequent triage between refolding and degradation pathways or are targeted for destruction by selective autophagy termed proteophagy.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
55
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Patrick A. Arrigo
- Université de Lyon, 69622 Lyon, France
- CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | | | - Ivor J. Benjamin
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112-5650 USA
| | - Wilbert Boelens
- Biomolecular Chemistry, 284, Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - John A. Carver
- The Research School of Chemistry, The Australian National University, Acton, ACT 2601 Australia
| | - Heath Ecroyd
- Illawara Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 221 00 Lund, Sweden
| | - Stephanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, 89081 Ulm, Germany
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nikolai Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russia
| | | | - Lawrence E. Hightower
- Department of Molecular & Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125 USA
| | - Harm H. Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, Seattle, WA 98195 USA
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Kathryn A. McMenimen
- Departments of Pathology, Biological Chemistry, and Medicinal Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI USA
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy
| | - Roy Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Melinda E. Toth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Elizabeth Vierling
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003 USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721 USA
| | - Robert M. Tanguay
- Laboratory of Cell & Developmental Genetics, IBIS, and Department of Molecular Biology, Medical Biochemistry and Pathology, Medical School, Université Laval, Québec (Qc), G1V 0A6 Canada
| |
Collapse
|
56
|
Merret R, Carpentier MC, Favory JJ, Picart C, Descombin J, Bousquet-Antonelli C, Tillard P, Lejay L, Deragon JM, Charng YY. Heat Shock Protein HSP101 Affects the Release of Ribosomal Protein mRNAs for Recovery after Heat Shock. PLANT PHYSIOLOGY 2017; 174:1216-1225. [PMID: 28381501 PMCID: PMC5462041 DOI: 10.1104/pp.17.00269] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/03/2017] [Indexed: 05/21/2023]
Abstract
Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process. In this work, we report that Arabidopsis HEAT SHOCK PROTEIN101 (HSP101) knockout mutant (hsp101) presented a defect in translation recovery and SG dissociation after HS Using RNA sequencing and RNA immunoprecipitation approaches, we show that mRNAs encoding ribosomal proteins (RPs) were preferentially stored during HS and that these mRNAs were released and translated in an HSP101-dependent manner during recovery. By 15N incorporation and polysome profile analyses, we observed that these released mRNAs contributed to the production of new ribosomes to enhance translation. We propose that, after HS, HSP101 is required for the efficient release of RP mRNAs from SGs resulting in a rapid restoration of the translation machinery by producing new RPs.
Collapse
Affiliation(s)
- Rémy Merret
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.);
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Marie-Christine Carpentier
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Jean-Jacques Favory
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Claire Picart
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Julie Descombin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Cécile Bousquet-Antonelli
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Pascal Tillard
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Laurence Lejay
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Jean-Marc Deragon
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.)
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.)
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529, Republic of China (R.M., Y.-y.C.);
- CNRS-LGDP UMR 5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France (R.M., M.-C.C., J.-J.F., C.P., J.D., C.B.-A., J.-M.D.);
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon,' UMR CNRS/INRA/SupAgro/UM2, 34060 Montpellier cedex, France (P.T., L.L.); and
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris cedex 05, France (J.-M.D.)
| |
Collapse
|
57
|
Rieu I, Twell D, Firon N. Pollen Development at High Temperature: From Acclimation to Collapse. PLANT PHYSIOLOGY 2017; 173:1967-1976. [PMID: 28246296 PMCID: PMC5373052 DOI: 10.1104/pp.16.01644] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/22/2017] [Indexed: 05/19/2023]
Abstract
Pollen development at high temperature depends on a fine balance between acclimation and injury.
Collapse
Affiliation(s)
- Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands (I.R.);
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (D.T.); and
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (N.F.)
| | - David Twell
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands (I.R.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (D.T.); and
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (N.F.)
| | - Nurit Firon
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands (I.R.)
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom (D.T.); and
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel (N.F.)
| |
Collapse
|
58
|
Rutsdottir G, Härmark J, Weide Y, Hebert H, Rasmussen MI, Wernersson S, Respondek M, Akke M, Højrup P, Koeck PJB, Söderberg CAG, Emanuelsson C. Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity. J Biol Chem 2017; 292:8103-8121. [PMID: 28325834 PMCID: PMC5427286 DOI: 10.1074/jbc.m116.766816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/16/2017] [Indexed: 01/14/2023] Open
Abstract
Small heat-shock proteins (sHsps) prevent aggregation of thermosensitive client proteins in a first line of defense against cellular stress. The mechanisms by which they perform this function have been hard to define due to limited structural information; currently, there is only one high-resolution structure of a plant sHsp published, that of the cytosolic Hsp16.9. We took interest in Hsp21, a chloroplast-localized sHsp crucial for plant stress resistance, which has even longer N-terminal arms than Hsp16.9, with a functionally important and conserved methionine-rich motif. To provide a framework for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer-of-dimer discs stabilized by the C-terminal tails, possibly through tail-to-tail interactions between the discs, mediated through extended IXVXI motifs. Our model further suggests that six N-terminal arms are located on the outside of the dodecamer, accessible for interaction with client proteins, and distinct from previous undefined or inwardly facing arms. To test the importance of the IXVXI motif, we created the point mutant V181A, which, as expected, disrupts the Hsp21 dodecamer and decreases chaperone activity. Finally, our data emphasize that sHsp chaperone efficiency depends on oligomerization and that client interactions can occur both with and without oligomer dissociation. These results provide a generalizable workflow to explore sHsps, expand our understanding of sHsp structural motifs, and provide a testable Hsp21 structure model to inform future investigations.
Collapse
Affiliation(s)
| | - Johan Härmark
- the School of Technology and Health, KTH/Royal Institute of Technology and Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Yoran Weide
- From the Departments of Biochemistry and Structural Biology and
| | - Hans Hebert
- the School of Technology and Health, KTH/Royal Institute of Technology and Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Morten I Rasmussen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | | | | | | | - Peter Højrup
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Philip J B Koeck
- the School of Technology and Health, KTH/Royal Institute of Technology and Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | | | | |
Collapse
|
59
|
Glenn WS, Stone SE, Ho SH, Sweredoski MJ, Moradian A, Hess S, Bailey-Serres J, Tirrell DA. Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT) Enables Time-Resolved Analysis of Protein Synthesis in Native Plant Tissue. PLANT PHYSIOLOGY 2017; 173:1543-1553. [PMID: 28104718 PMCID: PMC5338676 DOI: 10.1104/pp.16.01762] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/14/2017] [Indexed: 05/11/2023]
Abstract
Proteomic plasticity undergirds stress responses in plants, and understanding such responses requires accurate measurement of the extent to which proteins levels are adjusted to counter external stimuli. Here, we adapt bioorthogonal noncanonical amino acid tagging (BONCAT) to interrogate protein synthesis in vegetative Arabidopsis (Arabidopsis thaliana) seedlings. BONCAT relies on the translational incorporation of a noncanonical amino acid probe into cellular proteins. In this study, the probe is the Met surrogate azidohomoalanine (Aha), which carries a reactive azide moiety in its amino acid side chain. The azide handle in Aha can be selectively conjugated to dyes and functionalized beads to enable visualization and enrichment of newly synthesized proteins. We show that BONCAT is sensitive enough to detect Arabidopsis proteins synthesized within a 30-min interval defined by an Aha pulse and that the method can be used to detect proteins made under conditions of light stress, osmotic shock, salt stress, heat stress, and recovery from heat stress. We further establish that BONCAT can be coupled to tandem liquid chromatography-mass spectrometry to identify and quantify proteins synthesized during heat stress and recovery from heat stress. Our results are consistent with a model in which, upon the onset of heat stress, translation is rapidly reprogrammed to enhance the synthesis of stress mitigators and is again altered during recovery. All experiments were carried out with commercially available reagents, highlighting the accessibility of the BONCAT method to researchers interested in stress responses as well as translational and posttranslational regulation in plants.
Collapse
Affiliation(s)
- Weslee S Glenn
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Shannon E Stone
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Samuel H Ho
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Michael J Sweredoski
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Annie Moradian
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Sonja Hess
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - Julia Bailey-Serres
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| | - David A Tirrell
- Division of Chemistry and Chemical Engineering (W.S.G., S.E.S., S.H.H., D.A.T.), and Proteome Exploration Laboratory (M.J.S., A.M., S.H.), California Institute of Technology, Pasadena, California 91125; and
- Center for Plant Cell Biology, University of California, Riverside, California 92521 (J.B.-S.)
| |
Collapse
|
60
|
Yang M, Zhang Y, Zhang H, Wang H, Wei T, Che S, Zhang L, Hu B, Long H, Song W, Yu W, Yan G. Identification of MsHsp20 Gene Family in Malus sieversii and Functional Characterization of MsHsp16.9 in Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1761. [PMID: 29163556 PMCID: PMC5672332 DOI: 10.3389/fpls.2017.01761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Heat shock proteins (Hsps) are common molecular chaperones present in all plants that accumulate in response to abiotic stress. Small heat shock proteins (sHsps) play important roles in alleviating diverse abiotic stresses, especially heat stress. However, very little is known about the MsHsp20 gene family in the wild apple Malus sieversii, a precious germplasm resource with excellent resistance characteristics. In this study, 12 putative M. sieversii Hsp20 genes were identified from RNA-Seq data and analyzed in terms of gene structure and phylogenetic relationships. A new Hsp20 gene, MsHsp16.9, was cloned and its function studied in response to stress. MsHsp16.9 expression was strongly induced by heat, and transgenic Arabidopsis plants overexpressing MsHsp16.9 displayed improved heat resistance, enhanced antioxidant enzyme activity, and decreased peroxide content. Overexpression of MsHsp16.9 did not alter the growth or development under normal conditions, or the hypersensitivity to exogenous ABA. Gene expression analysis indicated that MsHsp16.9 mainly modulates the expression of proteins involved in antioxidant enzyme synthesis, as well as ABA-independent stress signaling in 35S:MsHsp16.9-L11. However, MsHsp16.9 could activate ABA-dependent signaling pathways in all transgenic plants. Additionally, MsHsp16.9 may function alongside AtHsp70 to maintain protein homeostasis and protect against cell damage. Our results suggest that MsHsp16.9 is a protein chaperone that positively regulates antioxidant enzyme activity and ABA-dependent and independent signaling pathway to attenuate plant responses to severe stress. Transgenic plants exhibited luxuriant growth in high temperature environments.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Yunxiu Zhang
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Huanhuan Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbin Wang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Wei
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyou Che
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Lipeng Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Baoquan Hu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Hong Long
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Wenqin Song
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Wenqin Song
| | - Weiwei Yu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Weiwei Yu
| | - Guorong Yan
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Guorong Yan
| |
Collapse
|