51
|
Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. Light and gravity signals synergize in modulating plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:563. [PMID: 25389428 PMCID: PMC4211383 DOI: 10.3389/fpls.2014.00563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.
Collapse
Affiliation(s)
| | - John Z. Kiss
- Department of Biology, University of Mississippi, UniversityMS, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), MadridSpain
| | | |
Collapse
|
52
|
Komatsu A, Terai M, Ishizaki K, Suetsugu N, Tsuboi H, Nishihama R, Yamato KT, Wada M, Kohchi T. Phototropin encoded by a single-copy gene mediates chloroplast photorelocation movements in the liverwort Marchantia polymorpha. PLANT PHYSIOLOGY 2014; 166:411-27. [PMID: 25096976 PMCID: PMC4149725 DOI: 10.1104/pp.114.245100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/02/2014] [Indexed: 05/18/2023]
Abstract
Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Mika Terai
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Hidenori Tsuboi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Katsuyuki T Yamato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Masamitsu Wada
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (A.K., M.T., K.I., N.S., R.N., K.T.Y., T.K.); andFaculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan (N.S., H.T., M.W.)
| |
Collapse
|
53
|
Aggarwal C, Banaś AK, Kasprowicz-Maluśki A, Borghetti C, Labuz J, Dobrucki J, Gabryś H. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3263-76. [PMID: 24821953 PMCID: PMC4071840 DOI: 10.1093/jxb/eru172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Carolina Borghetti
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Labuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jerzy Dobrucki
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
54
|
Barbosa ICR, Zourelidou M, Willige BC, Weller B, Schwechheimer C. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev Cell 2014; 29:674-85. [PMID: 24930721 DOI: 10.1016/j.devcel.2014.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/20/2014] [Accepted: 05/09/2014] [Indexed: 12/19/2022]
Abstract
The directed cell-to-cell transport of the phytohormone auxin by efflux and influx transporters is essential for proper plant growth and development. Like auxin efflux facilitators of the PIN-FORMED (PIN) family, D6 PROTEIN KINASE (D6PK) from Arabidopsis thaliana localizes to the basal plasma membrane of many cells, and evidence exists that D6PK may directly phosphorylate PINs. We find that D6PK is a membrane-bound protein that is associated with either the basal domain of the plasma membrane or endomembranes. Inhibition of the trafficking regulator GNOM leads to a rapid internalization of D6PK to endomembranes. Interestingly, the dissociation of D6PK from the plasma membrane is also promoted by auxin. Surprisingly, we find that auxin transport-dependent tropic responses are critically and reversibly controlled by D6PK and D6PK-dependent PIN phosphorylation at the plasma membrane. We conclude that D6PK abundance at the plasma membrane and likely D6PK-dependent PIN phosphorylation are prerequisites for PIN-mediated auxin transport.
Collapse
Affiliation(s)
- Inês C R Barbosa
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Melina Zourelidou
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Björn C Willige
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Benjamin Weller
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Claus Schwechheimer
- Department of Plant Systems Biology, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany.
| |
Collapse
|
55
|
Peter E, Dick B, Stambolic I, Baeurle SA. Exploring the multiscale signaling behavior of phototropin1 from Chlamydomonas reinhardtii using a full-residue space kinetic Monte Carlo molecular dynamics technique. Proteins 2014; 82:2018-40. [PMID: 24623633 DOI: 10.1002/prot.24556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Devising analysis tools for elucidating the regulatory mechanism of complex enzymes has been a challenging task for many decades. It generally requires the determination of the structural-dynamical information of protein solvent systems far from equilibrium over multiple length and time scales, which is still difficult both theoretically and experimentally. To cope with the problem, we introduce a full-residue space multiscale simulation method based on a combination of the kinetic Monte Carlo and molecular dynamics techniques, in which the rates of the rate-determining processes are evaluated from a biomolecular forcefield on the fly during the simulation run by taking into account the full space of residues. To demonstrate its reliability and efficiency, we explore the light-induced functional behavior of the full-length phototropin1 from Chlamydomonas reinhardtii (Cr-phot1) and its various subdomains. Our results demonstrate that in the dark state the light oxygen voltage-2-Jα (LOV2-Jα) photoswitch inhibits the enzymatic activity of the kinase, whereas the LOV1-Jα photoswitch controls the dimerization with the LOV2 domain. This leads to the repulsion of the LOV1-LOV2 linker out of the interface region between both LOV domains, which results in a positively charged surface suitable for cell-membrane interaction. By contrast, in the light state, we observe that the distance between both LOV domains is increased and the LOV1-LOV2 linker forms a helix-turn-helix (HTH) motif, which enables gene control through nucleotide binding. Finally, we find that the kinase is activated through the disruption of the Jα-helix from the LOV2 domain, which is followed by a stretching of the activation loop (A-loop) and broadening of the catalytic cleft of the kinase.
Collapse
Affiliation(s)
- Emanuel Peter
- Department of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040, Regensburg, Germany
| | | | | | | |
Collapse
|
56
|
Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A. The phototropic response is locally regulated within the topmost light-responsive region of the Arabidopsis thaliana seedling. PLANT & CELL PHYSIOLOGY 2014; 55:497-506. [PMID: 24334375 DOI: 10.1093/pcp/pct184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropism is caused by differential cell elongation between the irradiated and shaded sides of plant organs, such as the stem. It is widely accepted that an uneven auxin distribution between the two sides crucially participates in this response. Plant-specific blue-light photoreceptors, phototropins (phot1 and phot2), mediate this response. In grass coleoptiles, the sites of light perception and phototropic bending are spatially separated. However, these sites are less clearly distinguished in dicots. Furthermore, the exact placement of the action of each phototropic signaling factor remains unknown. Here, we investigated the spatial aspects of phototropism using spotlight irradiation with etiolated Arabidopsis seedlings. The results demonstrated that the topmost part of about 1.1 mm of the hypocotyl constituted the light-responsive region in which both light perception and actual bending occurred. In addition, cotyledons and the shoot apex were dispensable for the response. Hence, the response was more region autonomous in dicots than in monocots. We next examined the elongation rates, the levels of phot1 and the auxin-reporter gene expression along the hypocotyl during the phototropic response. The light-responsive region was more active than the non-responsive region with respect to all of those parameters.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:393-403. [PMID: 24286493 DOI: 10.1111/tpj.12395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 05/05/2023]
Abstract
Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Okajima K, Aihara Y, Takayama Y, Nakajima M, Kashojiya S, Hikima T, Oroguchi T, Kobayashi A, Sekiguchi Y, Yamamoto M, Suzuki T, Nagatani A, Nakasako M, Tokutomi S. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin. J Biol Chem 2014; 289:413-22. [PMID: 24285544 PMCID: PMC3879564 DOI: 10.1074/jbc.m113.515403] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/25/2013] [Indexed: 01/27/2023] Open
Abstract
Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.
Collapse
Affiliation(s)
- Koji Okajima
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Yusuke Aihara
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Yuki Takayama
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Mihoko Nakajima
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Sachiko Kashojiya
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Takaaki Hikima
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Tomotaka Oroguchi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Amane Kobayashi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Yuki Sekiguchi
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Masaki Yamamoto
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
| | - Tomomi Suzuki
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Akira Nagatani
- the Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Masayoshi Nakasako
- RIKEN Harima Institute, SPring-8, 1-1-1 Kouto, Mikaduki, Sayo, Hyogo 679-5148, Japan
- the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Kanagawa 223-8522, Japan
| | - Satoru Tokutomi
- From the Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
59
|
Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR. Phototropism: growing towards an understanding of plant movement. THE PLANT CELL 2014; 26:38-55. [PMID: 24481074 PMCID: PMC3963583 DOI: 10.1105/tpc.113.119727] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 05/19/2023]
Abstract
Phototropism, or the differential cell elongation exhibited by a plant organ in response to directional blue light, provides the plant with a means to optimize photosynthetic light capture in the aerial portion and water and nutrient acquisition in the roots. Tremendous advances have been made in our understanding of the molecular, biochemical, and cellular bases of phototropism in recent years. Six photoreceptors and their associated signaling pathways have been linked to phototropic responses under various conditions. Primary detection of directional light occurs at the plasma membrane, whereas secondary modulatory photoreception occurs in the cytoplasm and nucleus. Intracellular responses to light cues are processed to regulate cell-to-cell movement of auxin to allow establishment of a trans-organ gradient of the hormone. Photosignaling also impinges on the transcriptional regulation response established as a result of changes in local auxin concentrations. Three additional phytohormone signaling pathways have also been shown to influence phototropic responsiveness, and these pathways are influenced by the photoreceptor signaling as well. Here, we will discuss this complex dance of intra- and intercellular responses that are regulated by these many systems to give rise to a rapid and robust adaptation response observed as organ bending.
Collapse
Affiliation(s)
- Emmanuel Liscum
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Address correspondence to
| | - Scott K. Askinosie
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Daniel L. Leuchtman
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Johanna Morrow
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Kyle T. Willenburg
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Diana Roberts Coats
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
60
|
Chloroplast Movement in Higher Plants, Ferns and Bryophytes: A Comparative Point of View. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
61
|
Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:522-30. [PMID: 24333784 DOI: 10.1016/j.bbabio.2013.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/25/2013] [Accepted: 12/04/2013] [Indexed: 11/21/2022]
Abstract
Plants are photosynthetic organisms that have evolved unique systems to adapt fluctuating environmental light conditions. In addition to well-known movement responses such as phototropism, stomatal opening, and nastic leaf movements, chloroplast photorelocation movement is one of the essential cellular responses to optimize photosynthetic ability and avoid photodamage. For these adaptations, chloroplasts accumulate at the areas of cells illuminated with low light (called accumulation response), while they scatter from the area illuminated with strong light (called avoidance response). Plant-specific photoreceptors (phototropin, phytochrome, and/or neochrome) mediate these dynamic directional movements in response to incident light position and intensity. Several factors involved in the mechanisms underlying the processes from light perception to actin-based movements have also been identified through molecular genetic approach. This review aims to discuss recent findings in the field relating to how chloroplasts move at molecular levels. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
|
62
|
Fraikin GY, Strakhovskaya MG, Rubin AB. Biological photoreceptors of light-dependent regulatory processes. BIOCHEMISTRY (MOSCOW) 2013; 78:1238-53. [DOI: 10.1134/s0006297913110047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Zhang KX, Xu HH, Yuan TT, Zhang L, Lu YT. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:308-21. [PMID: 23888933 DOI: 10.1111/tpj.12298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/04/2013] [Accepted: 07/12/2013] [Indexed: 05/04/2023]
Abstract
Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.
Collapse
Affiliation(s)
- Kun-Xiao Zhang
- Key Lab of MOE for Plant Development, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
64
|
Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z, Botella MA, Wang H, Lin J. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 2013; 140:3826-37. [DOI: 10.1242/dev.095711] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clathrin-mediated endocytosis, which depends on the AP2 complex, plays an essential role in many cellular and developmental processes in mammalian cells. However, the function of the AP2 complex in plants remains largely unexplored. Here, we show in Arabidopsis that the AP2 σ subunit mutant (ap2 σ) displays various developmental defects that are similar to those of mutants defective in auxin transport and/or signaling, including single, trumpet-shaped and triple cotyledons, impaired vascular pattern, reduced vegetative growth, defective silique development and drastically reduced fertility. We demonstrate that AP2 σ is closely associated and physically interacts with the clathrin light chain (CLC) in vivo using fluorescence cross-correlation spectroscopy (FCCS), protein proximity analyses and co-immunoprecipitation assays. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), we show that AP2 σ-mCherry spots colocalize with CLC-EGFP at the plasma membrane, and that AP2 σ-mCherry fluorescence appears and disappears before CLC-EGFP fluorescence. The density and turnover rate of the CLC-EGFP spots are significantly reduced in the ap2 σ mutant. The internalization and recycling of the endocytic tracer FM4-64 and the auxin efflux carrier protein PIN1 are also significantly reduced in the ap2 σ mutant. Further, the polar localization of PIN1-GFP is significantly disrupted during embryogenesis in the ap2 σ mutant. Taken together, our results support an essential role of AP2 σ in the assembly of a functional AP2 complex in plants, which is required for clathrin-mediated endocytosis, polar auxin transport and plant growth regulation.
Collapse
Affiliation(s)
- Lusheng Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiqun Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Ding
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Miguel A. Botella
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
65
|
Goyal A, Szarzynska B, Fankhauser C. Phototropism: at the crossroads of light-signaling pathways. TRENDS IN PLANT SCIENCE 2013; 18:393-401. [PMID: 23562459 DOI: 10.1016/j.tplants.2013.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 05/11/2023]
Abstract
Phototropism enables plants to orient growth towards the direction of light and thereby maximizes photosynthesis in low-light environments. In angiosperms, blue-light photoreceptors called phototropins are primarily involved in sensing the direction of light. Phytochromes and cryptochromes (sensing red/far-red and blue light, respectively) also modulate asymmetric hypocotyl growth, leading to phototropism. Interactions between different light-signaling pathways regulating phototropism occur in cryptogams and angiosperms. In this review, we focus on the molecular mechanisms underlying the co-action between photosensory systems in the regulation of hypocotyl phototropism in Arabidopsis thaliana. Recent studies have shown that phytochromes and cryptochromes enhance phototropism by controlling the expression of important regulators of phototropin signaling. In addition, phytochromes may also regulate growth towards light via direct interaction with the phototropins.
Collapse
Affiliation(s)
- Anupama Goyal
- Centre for Integrative Genomics, University of Lausanne, Genopode Building, CH 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
66
|
Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. PLANT PHYSIOLOGY 2013; 162:1539-51. [PMID: 23674105 PMCID: PMC3700674 DOI: 10.1104/pp.113.216556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/10/2013] [Indexed: 05/07/2023]
Abstract
Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca(2+)]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca(2+) increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca(2+)]cyt mainly by an inner store-dependent Ca(2+)-release pathway, not by activating plasma membrane Ca(2+) channels. Further analysis showed that the increase in [Ca(2+)]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca(2+)]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca(2+) signaling-related HBL modulates hypocotyl phototropic responses.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Lin-Dan Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Chang-Shui Xu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|
67
|
Christie JM, Murphy AS. Shoot phototropism in higher plants: new light through old concepts. AMERICAN JOURNAL OF BOTANY 2013; 100:35-46. [PMID: 23048016 DOI: 10.3732/ajb.1200340] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Light is a key environmental factor that drives many aspects of plant growth and development. Phototropism, the reorientation of growth toward or away from light, represents one of these important adaptive processes. Modern studies of phototropism began with experiments conducted by Charles Darwin demonstrating that light perception at the shoot apex of grass coleoptiles induces differential elongation in the lower epidermal cells. This led to the discovery of the plant growth hormone auxin and the Cholodny-Went hypothesis attributing differential tropic bending to lateral auxin relocalization. In the past two decades, molecular-genetic analyses in the model flowering plant Arabidopsis thaliana has identified the principal photoreceptors for phototropism and their mechanism of activation. In addition, several protein families of auxin transporters have been identified. Despite extensive efforts, however, it still remains unclear as to how photoreceptor activation regulates lateral auxin transport to establish phototropic growth. This review aims to summarize major developments from over the last century and how these advances shape our current understanding of higher plant phototropism. Recent progress in phototropism research and the way in which this research is shedding new light on old concepts, including the Cholodny-Went hypothesis, is also highlighted.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK.
| | | |
Collapse
|
68
|
Shimazaki KI, Tokutomi S. Diverse responses to blue light via LOV photoreceptors. PLANT & CELL PHYSIOLOGY 2013; 54:1-4. [PMID: 23300091 DOI: 10.1093/pcp/pcs172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
69
|
Kong SG, Suetsugu N, Kikuchi S, Nakai M, Nagatani A, Wada M. Both phototropin 1 and 2 localize on the chloroplast outer membrane with distinct localization activity. PLANT & CELL PHYSIOLOGY 2013; 54:80-92. [PMID: 23161859 DOI: 10.1093/pcp/pcs151] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplasts change their position to adapt cellular activities to fluctuating environmental light conditions. Phototropins (phot1 and phot2 in Arabidopsis) are plant-specific blue light photoreceptors that perceive changes in light intensity and direction, and mediate actin-based chloroplast photorelocation movements. Both phot1 and phot2 regulate the chloroplast accumulation response, while phot2 is mostly responsible for the regulation of the avoidance response. Although it has been widely accepted that distinct intracellular localizations of phototropins are implicated in the specificity, the mechanism underlying the phot2-specific avoidance response has remained elusive. In this study, we examined the relationship of the phot2 localization pattern to the chloroplast photorelocation movement. First, the fusion of a nuclear localization signal with phot2, which effectively reduced the amount of phot2 in the cytoplasm, retained the activity for both the accumulation and avoidance responses, indicating that membrane-localized phot2 but not cytoplasmic phot2 is functional to mediate the responses. Importantly, some fractions of phot2, and of phot1 to a lesser extent, were localized on the chloroplast outer membrane. Moreover, the deletion of the C-terminal region of phot2, which was previously shown to be defective in blue light-induced Golgi localization and avoidance response, affected the localization pattern on the chloroplast outer membrane. Taken together, these results suggest that dynamic phot2 trafficking from the plasma membrane to the Golgi apparatus and the chloroplast outer membrane might be involved in the avoidance response.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, 812-8581 Japan
| | | | | | | | | | | |
Collapse
|
70
|
Harada A, Takemiya A, Inoue SI, Sakai T, Shimazaki KI. Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. PLANT & CELL PHYSIOLOGY 2013; 54:36-47. [PMID: 22739508 DOI: 10.1093/pcp/pcs094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigated the roles of the blue light receptors phototropins (phot1 and phot2) and ROOT PHOTOTROPISM 2 (RPT2) in leaf positioning and flattening, and plant growth under weak, moderate and strong white light (10, 25 and 70 µmol m(-2 )s(-1)). RPT2 mediated leaf positioning and flattening, and enhanced plant growth in a phot1-dependent manner. Under weak light, phot1 alone controls these responses. Under moderate and strong light, both phot1 and phot2 affect the responses. These results indicate that plants utilize a wide range of light intensities through phot1 and phot2 to optimize plant growth. The rpt2 single mutant generally exhibited phenotypes that resembled those of the phot1 phot2 double mutant. To our surprise, when the PHOT1 gene was disrupted in the rpt2 mutant, the resulting phot1 rpt2 double mutant showed the morphology of the wild-type plant under strong light, and additional disruption of PHOT2 in the double mutant abolished this recovery. This suggested that phot2 may function in the absence of phot1 and bypass RPT2 to transmit the signal to downstream elements. Expression and light-induced autophosphorylation of phot2 were not affected in the rpt2 mutant. We conclude that RPT2 mediates leaf flattening and positioning in a phot1-dependent manner, and that phot1 may inhibit the phot2 signaling pathways. We discuss the functional role of RPT2 in phototropin signaling.
Collapse
Affiliation(s)
- Akiko Harada
- Department of Biology, Faculty of Liberal Arts, Osaka Medical College, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan.
| | | | | | | | | |
Collapse
|
71
|
Kong SG, Kagawa T, Wada M, Nagatani A. A C-terminal membrane association domain of phototropin 2 is necessary for chloroplast movement. PLANT & CELL PHYSIOLOGY 2013; 54:57-68. [PMID: 23012349 DOI: 10.1093/pcp/pcs132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phototropins (phot1 and phot2), plant-specific blue light receptor kinases, mediate a range of physiological responses in Arabidopsis, including phototropism, chloroplast photorelocation movement, stomatal opening and leaf flattening. Phototropins consist of two photoreceptive domains at their N-terminus, LOV1 (light, oxygen or voltage 1) and LOV2, and a serine/threonine kinase domain at their C-terminus. Here, we determined the molecular moiety for the membrane association of phototropins using the yeast CytoTrap and Arabidopsis protoplast systems. We then examined the physiological significance of the membrane association of phototropins. This detailed study with serial deletions narrowed down the association domain to a relatively small part of the C-terminal domain of phototropin. The functional analysis of phot2 deletion mutants in the phot2-deficient Adiantum and Arabidopsis mutants revealed that the ability to mediate the chloroplast avoidance response correlated well with phot2's membrane association, especially with the Golgi apparatus. Taken together, our data suggest that a small part of the C-terminal domain of phototropins is necessary not only for membrane association but also for the physiological activities that elicit phototropin-specific responses.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan.
| | | | | | | |
Collapse
|
72
|
Hohm T, Preuten T, Fankhauser C. Phototropism: translating light into directional growth. AMERICAN JOURNAL OF BOTANY 2013; 100:47-59. [PMID: 23152332 DOI: 10.3732/ajb.1200299] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
73
|
Han IS, Cho HY, Moni A, Lee AY, Briggs WR. Investigations on the photoregulation of chloroplast movement and leaf positioning in Arabidopsis. PLANT & CELL PHYSIOLOGY 2013; 54:48-56. [PMID: 22782888 PMCID: PMC3539441 DOI: 10.1093/pcp/pcs098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We recently investigated the roles of the phototropin 1 (PHOT1) LOV (light, oxygen or voltage) domains in mediating phototropic curvature in transgenic Arabidopsis seedlings expressing either wild-type PHOT1 or PHOT1 with one or both LOV domains inactivated by a single amino acid replacement. We have now investigated the role of the PHOT1 LOV domains in chloroplast movement and in leaf positioning in response to blue light. Low fluence rate blue light is known to mediate a chloroplast accumulation response and high fluence rate blue light an avoidance response in Arabidopsis leaves. As was the case for phototropism, LOV2 of PHOT1 is essential for chloroplast accumulation and LOV1 is dispensable. PHOT1 LOV2 is also essential to maintain developing primary leaves in a horizontal position under white light from above and LOV1 is again dispensable. A red light pulse given to dark-adapted light-grown plants followed by 2 h of darkness enhances both the chloroplast accumulation response under dim blue light and the chloroplast avoidance response under strong blue light. The effect is far-red reversible. This photoreversible response is normal in a phyB null mutant but does not appear in a phyA null mutant. These results suggest that phyA mediates the enhancement, induced by a red light pulse, of blue light-induced chloroplast movements.
Collapse
Affiliation(s)
- In-Seob Han
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
- *Corresponding authors: Winslow R. Briggs: E-mail, ; Fax, +-1 650-325-6857; In-Seob Han: E-mail, ; Fax +82-52-259-2352
| | - Hae-Young Cho
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Akhi Moni
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Ah-Young Lee
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Winslow R. Briggs
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- *Corresponding authors: Winslow R. Briggs: E-mail, ; Fax, +-1 650-325-6857; In-Seob Han: E-mail, ; Fax +82-52-259-2352
| |
Collapse
|
74
|
Suetsugu N, Wada M. Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome. ACTA ACUST UNITED AC 2012; 54:8-23. [DOI: 10.1093/pcp/pcs165] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
75
|
Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G. Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:4687-4702. [PMID: 23204408 PMCID: PMC3531860 DOI: 10.1105/tpc.112.103523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/21/2012] [Accepted: 11/09/2012] [Indexed: 05/21/2023]
Abstract
The eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected. We restored this dysfunction in different phototropin complementation experiments. Complementation with the phototropin kinase fragment reduced the eyespot size, independent of light. Interestingly, overexpression of the N-terminal light, oxygen or voltage sensing domains (LOV1+LOV2) alone also affected eyespot size and phototaxis, suggesting that aside from activation of the kinase domain, they fulfill an independent signaling function in the cell. Moreover, phototropin is involved in adjusting the level of channelrhodopsin-1, the dominant primary receptor for phototaxis within the eyespot. Both the level of channelrhodopsin-1 at the onset of illumination and its steady state level during the light period are downregulated by phototropin, whereas the level of channelrhodopsin-2 is not significantly altered. Furthermore, a light intensity-dependent formation of a C-terminal truncated phototropin form was observed. We propose that phototropin is a light regulator of phototaxis that desensitizes the eyespot when blue light intensities increase.
Collapse
Affiliation(s)
- Jessica Trippens
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Andre Greiner
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Jana Schellwat
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Martin Neukam
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Theresa Rottmann
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Yinghong Lu
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, 110021 Delhi, India
| | - Peter Hegemann
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-University, 91058 Erlangen, Germany
- Address correspondence to
| |
Collapse
|
76
|
Okajima K, Kashojiya S, Tokutomi S. Photosensitivity of kinase activation by blue light involves the lifetime of a cysteinyl-flavin adduct intermediate, S390, in the photoreaction cycle of the LOV2 domain in phototropin, a plant blue light receptor. J Biol Chem 2012; 287:40972-81. [PMID: 23066024 DOI: 10.1074/jbc.m112.406512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391-3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.
Collapse
Affiliation(s)
- Koji Okajima
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
77
|
Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. THE PLANT CELL 2012; 24:4205-19. [PMID: 23085733 PMCID: PMC3516521 DOI: 10.1105/tpc.112.100263] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/17/2012] [Accepted: 09/25/2012] [Indexed: 05/18/2023]
Abstract
The activity of surface receptors is location specific, dependent upon the dynamic membrane trafficking network and receptor-mediated endocytosis (RME). Therefore, the spatio-temporal dynamics of RME are critical to receptor function. The plasma membrane receptor flagellin sensing2 (FLS2) confers immunity against bacterial infection through perception of flagellin (flg22). Following elicitation, FLS2 is internalized into vesicles. To resolve FLS2 trafficking, we exploited quantitative confocal imaging for colocalization studies and chemical interference. FLS2 localizes to bona fide endosomes via two distinct endocytic trafficking routes depending on its activation status. FLS2 receptors constitutively recycle in a Brefeldin A (BFA)-sensitive manner, while flg22-activated receptors traffic via ARA7/Rab F2b- and ARA6/Rab F1-positive endosomes insensitive to BFA. FLS2 endocytosis required a functional Rab5 GTPase pathway as revealed by dominant-negative ARA7/Rab F2b. Flg22-induced FLS2 endosomal numbers were increased by Concanamycin A treatment but reduced by Wortmannin, indicating that activated FLS2 receptors are targeted to late endosomes. RME inhibitors Tyrphostin A23 and Endosidin 1 altered but did not block induced FLS2 endocytosis. Additional inhibitor studies imply the involvement of the actin-myosin system in FLS2 internalization and trafficking. Altogether, we report a dynamic pattern of subcellular trafficking for FLS2 and reveal a defined framework for ligand-dependent endocytosis of this receptor.
Collapse
|
78
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
79
|
Mao D, Tao J, Li C, Luo C, Zheng L, He C. Identification of novel oxygen sensors using a combined approach in Xanthomonas campestris pv. campestris. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-011-0334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
80
|
Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. MOLECULAR PLANT 2012; 5:533-44. [PMID: 22431563 DOI: 10.1093/mp/sss020] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Optogenetics is an emerging field that combines optical and genetic approaches to non-invasively interfere with cellular events with exquisite spatiotemporal control. Although it arose originally from neuroscience, optogenetics is widely applicable to the study of many different biological systems and the range of applications arising from this technology continues to increase. Moreover, the repertoire of light-sensitive proteins used for devising new optogenetic tools is rapidly expanding. Light, Oxygen, or Voltage sensing (LOV) and Blue-Light-Utilizing flavin adenine dinucleotide (FAD) (BLUF) domains represent new contributors to the optogenetic toolkit. These small (100-140-amino acids) flavoprotein modules are derived from plant and bacterial photoreceptors that respond to UV-A/blue light. In recent years, considerable progress has been made in uncovering the photoactivation mechanisms of both LOV and BLUF domains. This knowledge has been applied in the design of synthetic photoswitches and fluorescent reporters with applications in cell biology and biotechnology. In this review, we summarize the photochemical properties of LOV and BLUF photosensors and highlight some of the recent advances in how these flavoproteins are being employed to artificially regulate and image a variety of biological processes.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | | | | | | | | |
Collapse
|
81
|
Tseng TS, Whippo C, Hangarter RP, Briggs WR. The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. THE PLANT CELL 2012; 24:1114-26. [PMID: 22408078 PMCID: PMC3336120 DOI: 10.1105/tpc.111.092130] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The 14-3-3 λ isoform is required for normal stomatal opening mediated by PHOT2 in Arabidopsis thaliana. Arabidopsis phototropin2 (PHOT2) interacts with the λ-isoform 14-3-3 protein both in yeast two-hybrid screening and in an in vitro pull-down assay. Further yeast two-hybrid analysis also showed that the PHOT2 C-terminal kinase domain was required for the interaction. Site-directed mutagenesis indicated that PHOT2 Ser-747 is essential for the yeast interaction. Phenotypic characterization of a loss-of-function 14-3-3 λ mutant in a phot1 mutant background showed that the 14-3-3 λ protein was necessary for normal PHOT2-mediated blue light-induced stomatal opening. PHOT2 Ser-747 was necessary for complementation of the blue light-activated stomatal response in a phot1 phot2 double mutant. The 14-3-3 λ mutant in the phot1 mutant background allowed normal phototropism and normal chloroplast accumulation and avoidance responses. It also showed normal stomatal opening mediated by PHOT1 in a phot2 mutant background. The 14-3-3 κ mutant had no effect on stomatal opening in response to blue light. Although the 14-3-3 λ mutant had no chloroplast movement phenotype, the 14-3-3 κ mutation caused a weaker avoidance response at an intermediate blue light intensity by altering the balance between the avoidance and accumulation responses. The results highlight the strict specificity of phototropin-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Craig Whippo
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | - Winslow R. Briggs
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Address correspondence to
| |
Collapse
|
82
|
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1559-74. [PMID: 22312115 DOI: 10.1093/jxb/err429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
83
|
Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. THE PLANT CELL 2012; 24:551-65. [PMID: 22374399 PMCID: PMC3315232 DOI: 10.1105/tpc.111.094284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/04/2012] [Accepted: 02/13/2012] [Indexed: 05/04/2023]
Abstract
Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.
Collapse
Affiliation(s)
- Yinglang Wan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jan Jasik
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Li Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Diedrik Menzel
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Stefano Mancuso
- Department of Plant, Soil, and Environmental Science, University of Florence, 50019 Sesto Fiorentino, Italy
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
- Institute of Botany, Slovak Academy of Sciences, SK-845 23 Bratislava, Slovak Republic
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
84
|
Rademacher EH, Offringa R. Evolutionary Adaptations of Plant AGC Kinases: From Light Signaling to Cell Polarity Regulation. FRONTIERS IN PLANT SCIENCE 2012; 3:250. [PMID: 23162562 PMCID: PMC3499706 DOI: 10.3389/fpls.2012.00250] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/22/2012] [Indexed: 05/19/2023]
Abstract
Signaling and trafficking over membranes involves a plethora of transmembrane proteins that control the flow of compounds or relay specific signaling events. Next to external cues, internal stimuli can modify the activity or abundance of these proteins at the plasma membrane (PM). One such regulatory mechanism is protein phosphorylation by membrane-associated kinases, several of which are AGC kinases. The AGC kinase family is one of seven kinase families that are conserved in all eukaryotic genomes. In plants evolutionary adaptations introduced specific structural changes within the AGC kinases that most likely allow modulation of kinase activity by external stimuli (e.g., light). Starting from the well-defined structural basis common to all AGC kinases we review the current knowledge on the structure-function relationship in plant AGC kinases. Nine of the 39 Arabidopsis AGC kinases have now been shown to be involved in the regulation of auxin transport. In particular, AGC kinase-mediated phosphorylation of the auxin transporters ABCB1 and ABCB19 has been shown to regulate their activity, while auxin transporters of the PIN family are located to different positions at the PM depending on their phosphorylation status, which is a result of counteracting AGC kinase and PP6 phosphatase activities. We therefore focus on regulation of AGC kinase activity in this context. Identified structural adaptations of the involved AGC kinases may provide new insight into AGC kinase functionality and demonstrate their position as central hubs in the cellular network controlling plant development and growth.
Collapse
Affiliation(s)
- Eike H. Rademacher
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden UniversityLeiden, Netherlands
- *Correspondence: Remko Offringa, Molecular and Developmental Genetics, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, Netherlands. e-mail:
| |
Collapse
|
85
|
Losi A, Gärtner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:49-72. [PMID: 22136567 DOI: 10.1146/annurev-arplant-042811-105538] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photoreceptor flavoproteins of the LOV, BLUF, and cryptochrome families are ubiquitous among the three domains of life and are configured as UVA/blue-light systems not only in plants-their original arena-but also in prokaryotes and microscopic algae. Here, we review these proteins' structure and function, their biological roles, and their evolution and impact in the living world, and underline their growing application in biotechnologies. We present novel developments such as the interplay of light and redox stimuli, emerging enzymatic and biological functions, lessons on evolution from picoalgae, metagenomics analysis, and optogenetics applications.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics, University of Parma, Parma, Italy.
| | | |
Collapse
|
86
|
Roberts D, Pedmale UV, Morrow J, Sachdev S, Lechner E, Tang X, Zheng N, Hannink M, Genschik P, Liscum E. Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3). THE PLANT CELL 2011; 23:3627-40. [PMID: 21990941 PMCID: PMC3229139 DOI: 10.1105/tpc.111.087999] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/19/2011] [Accepted: 09/29/2011] [Indexed: 05/05/2023]
Abstract
Plant phototropism is an adaptive response to changes in light direction, quantity, and quality that results in optimization of photosynthetic light harvesting, as well as water and nutrient acquisition. Though several components of the phototropic signal response pathway have been identified in recent years, including the blue light (BL) receptors phototropin1 (phot1) and phot2, much remains unknown. Here, we show that the phot1-interacting protein NONPHOTOTROPIC HYPOCOTYL3 (NPH3) functions as a substrate adapter in a CULLIN3-based E3 ubiquitin ligase, CRL3(NPH3). Under low-intensity BL, CRL3(NPH3) mediates the mono/multiubiquitination of phot1, likely marking it for clathrin-dependent internalization from the plasma membrane. In high-intensity BL, phot1 is both mono/multi- and polyubiquitinated by CRL3(NPH3), with the latter event targeting phot1 for 26S proteasome-mediated degradation. Polyubiquitination and subsequent degradation of phot1 under high-intensity BL likely represent means of receptor desensitization, while mono/multiubiquitination-stimulated internalization of phot1 may be coupled to BL-induced relocalization of hormone (auxin) transporters.
Collapse
Affiliation(s)
- Diana Roberts
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Ullas V. Pedmale
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Johanna Morrow
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shrikesh Sachdev
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Biochemistry Department, University of Missouri, Columbia, Missouri 65211
| | - Esther Lechner
- Institut de Biologie Moleculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | - Xiaobo Tang
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Ning Zheng
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
- Biochemistry Department, University of Missouri, Columbia, Missouri 65211
| | - Pascal Genschik
- Institut de Biologie Moleculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | - Emmanuel Liscum
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
87
|
Wan Y, Ash WM, Fan L, Hao H, Kim MK, Lin J. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. PLANT METHODS 2011; 7:27. [PMID: 21943324 PMCID: PMC3219692 DOI: 10.1186/1746-4811-7-27] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/24/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Total internal reflection fluorescence microscopy (TIRFM) is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM) was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. RESULTS Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein) and clathrin light chain (a vesicle coat protein) support our theoretical analysis. CONCLUSIONS These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yinglang Wan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - William M Ash
- Digital Holography and Microscopy Laboratory, Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Lusheng Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Gradual School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiqin Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Myung K Kim
- Digital Holography and Microscopy Laboratory, Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
88
|
Peter E, Dick B, Baeurle SA. Signals of LOV1: a computer simulation study on the wildtype LOV1-domain of Chlamydomonas reinhardtii and its mutants. J Mol Model 2011; 18:1375-88. [PMID: 21761179 DOI: 10.1007/s00894-011-1165-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/24/2011] [Indexed: 01/12/2023]
Abstract
Phototropins are photoreceptors regulating the blue-light response in plants and bacteria. They consist of two LOV (light oxygen voltage sensitive) domains each containing a non-covalently bound flavin-mononucleotide (FMN) chromophore, which are connected to a serine/threonine-kinase. Upon illumination, the LOV-domains undergo conformational changes, triggering a signal cascade in the organism through kinase activation. Here, we present results from molecular dynamics simulations in which we investigate the signal transduction pathway of the wildtype LOV1-domain of Chlamydomonas reinhardtii and a methyl-mercaptan (MM) adduct of its Cys57Gly-mutant at the molecular level. In particular, we analyzed the effect of covalent-bond formation between the reactive cysteine Cys57 and the FMN-reaction center, as well as the subsequent charge redistribution, on the spatio-dynamical behavior of the LOV1-domain. We compare the calculation results with experimental data and demonstrate that these adduct state characteristics have an important influence on the response of this photosensor. The light-induced changes implicate primarily an alteration of the surface charge distribution through rearrangement of the highly flexible Cα-, Dα- and Eα-helices including the Glu51-Lys91-salt bridge on the hydrophilic side of the protein domain and a β-sheet tightening process via coupling of the Aβ- and Bβ-strands. Our findings confirm the aptitude of the LOV1-domain to function as a dimerization partner, allowing the green alga to adapt its reproduction and growth speed to the environmental conditions.
Collapse
Affiliation(s)
- Emanuel Peter
- Department of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | | | |
Collapse
|
89
|
Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS. phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 2011; 9:e1001076. [PMID: 21666806 PMCID: PMC3110179 DOI: 10.1371/journal.pbio.1001076] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperms. Plants depend on sunlight for photosynthesis and adapt their growth to optimize light capture. Phototropism, the reorientation of growth towards light, is one important adaptive response. Modern studies of phototropism began with experiments in monocotyledonous grasses by Charles Darwin and led ultimately to the discovery of the plant growth hormone auxin, establishing the concept that light perception at the shoot apex triggers differential bending in the tissues below. In the past two decades, molecular-genetic analysis in the model flowering plant Arabidopsis thaliana has identified the principle photoreceptor for phototropism, phot1, as well as the major auxin transporters. Despite extensive efforts, how the photoreceptor regulates auxin transport so as to establish differential growth is still poorly understood, as is whether this process is conserved between monocots and dicots. Here, we introduce a new approach to the study of Arabidopsis phototropism in the absence of developmental events associated with seedling photomorphogenesis. In doing so, we show that the proximity of light perception and differential growth is conserved between monocots and dicots: in both plant types, differential growth is a consequence of lateral auxin movements across the shoot apex. Moreover, we identify two auxin transporters, PIN3 and ABCB19, that contribute to these movements, the latter serving to prime lateral auxin fluxes in the shoot apex. ABCB19 function is regulated by phot1, identifying it as a substrate for this class of photoreceptor kinase.
Collapse
Affiliation(s)
- John M. Christie
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JMC); (ASM)
| | - Haibing Yang
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
| | - Gregory L. Richter
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
| | - Stuart Sullivan
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Catriona E. Thomson
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Jinshan Lin
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
| | - Boosaree Titapiwatanakun
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
| | - Margaret Ennis
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Eirini Kaiserli
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Ok Ran Lee
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
| | - Jiri Adamec
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Wendy A. Peer
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
| | - Angus S. Murphy
- Department of Horticulture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (JMC); (ASM)
| |
Collapse
|
90
|
Abstract
Plants reach for the sun by avoiding the shade and by directly growing towards the light. Two studies now suggest that the polar relocation of PIN3, a transporter directing the flow of the plant hormone auxin, drives both growth processes. PIN3 repolarization occurs downstream of shade perception through phytochrome photoreceptors, whereas blue light perceived by phototropin initiates polar recycling of PIN3 and growth towards the light.
Collapse
|
91
|
Inoue SI, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama KI, Kinoshita T, Shimazaki KI. Functional analyses of the activation loop of phototropin2 in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:117-28. [PMID: 21427282 PMCID: PMC3091063 DOI: 10.1104/pp.111.175943] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/17/2011] [Indexed: 05/18/2023]
Abstract
Phototropins (phot1 and phot2) are autophosphorylating blue-light receptor kinases that mediate blue-light responses such as phototropism, chloroplast accumulation, and stomatal opening in Arabidopsis (Arabidopsis thaliana). Only phot2 induces the chloroplast avoidance response under strong blue light. The serine (Ser) residues of the kinase activation loop in phot1 are autophosphorylated by blue light, and autophosphorylation is essential for the phot1-mediated responses. However, the role of autophosphorylation in phot2 remains to be determined. In this study, we substituted the conserved residues of Ser-761 and Ser-763 with alanine (S761A S763A) in the phot2 activation loop and analyzed their function by investigating the phot2-mediated responses after the transformation of phot1 phot2 double mutant with this mutant phot2 gene. Transgenic plants expressing the mutant phot2 protein exhibited impaired responses in chloroplast movement, stomatal opening, phototropic bending, leaf flattening, and plant growth; and those expressing phot2 with S761D S763D mutations showed the normal responses. Substitution of both Ser-761 and Ser-763 with alanine in phot2 did not significantly affect the kinase activity in planta. From these results, we conclude that phosphorylation of Ser-761 and Ser-763 in the activation loop may be a common primary step for phot2-mediated responses.
Collapse
|
92
|
Knauer T, Dümmer M, Landgraf F, Forreiter C. A negative effector of blue light-induced and gravitropic bending in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:439-47. [PMID: 21367967 PMCID: PMC3091041 DOI: 10.1104/pp.110.167411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although sessile, plants are able to grow toward or away from an environmental stimulus. Important examples are stem or leaf orientation of higher plants in response to the direction of the incident light. The responsible photoreceptors belong to the phototropin photoreceptor family. Although the mode of phototropin action is quite well understood, much less is known of how the light signal is transformed into a bending response. Several lines of evidence indicate that a lateral auxin gradient is responsible for asymmetric cell elongation along the light gradient within the stem. However, some of the molecular key players leading to this asymmetric auxin distribution are, as yet, unidentified. Previously, it was shown that phototropin gets autophosphorylated upon illumination and binds to a scaffold protein termed NPH3 (for nonphototropic hypocotyl 3). Using a yeast three-hybrid approach with phototropin and NPH3 as a bait complex, we isolated a protein, termed EHB1 (for enhanced bending 1), with a so far unknown function, which binds to this binary complex. This novel interacting factor negatively affects hypocotyl bending under blue light conditions in Arabidopsis (Arabidopsis thaliana) and thus seems to be an important component regulating phototropism. Interestingly, it could be shown that the gravitropic response was also affected. Thus, it cannot be ruled out that this protein might also have a more general role in auxin-mediated bending toward an environmental stimulus.
Collapse
|
93
|
Light input and processing in the circadian clock ofNeurospora. FEBS Lett 2011; 585:1467-73. [DOI: 10.1016/j.febslet.2011.03.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 02/28/2011] [Accepted: 03/23/2011] [Indexed: 11/24/2022]
|
94
|
Losi A, Gärtner W. Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors†. Photochem Photobiol 2011; 87:491-510. [DOI: 10.1111/j.1751-1097.2011.00913.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
95
|
Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 2011; 13:447-52. [DOI: 10.1038/ncb2208] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 01/11/2011] [Indexed: 12/15/2022]
|
96
|
Lehmann P, Nöthen J, von Braun SS, Bohnsack MT, Mirus O, Schleiff E. Transitions of gene expression induced by short-term blue light. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:349-61. [PMID: 21309982 DOI: 10.1111/j.1438-8677.2010.00377.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blue light modulates many processes in plants and plant cells. It influences global and long-term responses, such as seedling development and phototropism, and induces short-term adaptations like stomatal opening and chloroplast movement. Three genes were identified as important for the latter process, namely PHOT1, PHOT2 and CHUP1. The former two phototropin blue light receptors act in perception of the blue light signal. The protein CHUP1 is localised to the outer envelope membrane of chloroplasts and is involved in chloroplast movement. To explore whether short-term reactions required for chloroplast movement are under transcriptional control, we analysed the transcriptome in wild-type Arabidopsis thaliana, phot1, phot2 and chup1 with different blue light treatments for 5 or 30 min. Blue light-induced changes in transcription depended on illumination time and intensity. Illumination with 100 μmol·m(-2) · s(-1) blue light induced down-regulation of several genes and might point to cascades that could be important for sensing low levels of blue light. Analysis of the transcriptome of the mutants in response to the different light regimes suggests that the transcriptional response to blue light in the wild-type can be attributed to phot1 rather than phot2, suggesting that blue light-induced alteration of expression is a function of phot1. In contrast, the blue light response at the transcriptional level of chup1 plants was unique, and confirmed the higher light sensitivity of this mutant.
Collapse
Affiliation(s)
- P Lehmann
- JWGU Frankfurt am Main, CEF Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
97
|
Djouani-Tahri EB, Christie JM, Sanchez-Ferandin S, Sanchez F, Bouget FY, Corellou F. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:578-88. [PMID: 21235644 DOI: 10.1111/j.1365-313x.2010.04444.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The marine environment has unique properties of light transmission, with an attenuation of long wavelengths within the first meters of the water column. Marine organisms have therefore evolved specific blue-light receptors such as aureochromes to absorb shorter-wavelength light. Here, we identify and characterize a light, oxygen, or voltage sensing (LOV) containing histidine kinase (LOV-HK) that functions as a new class of eukaryotic blue-light receptor in the pico-phytoplanktonic cell Ostreococcus tauri. This LOV-HK is related to the large family of LOV-HKs found in prokaryotes. Phylogenetic analysis indicates that the LOV domains from LOV-HKs, including O. tauri LOV-HK, and phototropins (phot; plant and green algal LOV serine/threonine kinases) have different evolutionary histories. Photochemical analysis shows that the LOV domain of LOV-HK binds a flavin cofactor and absorbs blue light with a fast photocycle compared with its prokaryotic counterparts. Ostreococcus tauri LOV-HK expression is induced by blue light and is under circadian control. Further, both overexpression and downregulation of LOV-HK result in arrhythmia of the circadian reporter CCA1:Luc under constant blue light. In contrast, photochemical inactivation of O. tauri LOV-HK is without effect, demonstrating its importance for function of the circadian clock under blue light. Overexpression/downregulation of O. tauriLOV-HK alters CCA1 rhythmicity under constant red light, irrespective of LOV-HK's photochemical reactivity, suggesting that O. tauri LOV-HK also participates in regulation of the circadian clock independent of its blue-light-sensing property. Molecular characterization of O. tauri LOV-HK demonstrates that this type of photoreceptor family is not limited to prokaryotes.
Collapse
Affiliation(s)
- El-Batoul Djouani-Tahri
- UPMC Univ Paris 06, CNRS, UMR7621 Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66651, Banyuls-sur-Mer, France
| | | | | | | | | | | |
Collapse
|
98
|
Suetsugu N, Takano A, Kohda D, Wada M. Structure and activity of JAC1 J-domain implicate the involvement of the cochaperone activity with HSC70 in chloroplast photorelocation movement. PLANT SIGNALING & BEHAVIOR 2010; 5:1602-6. [PMID: 21139434 PMCID: PMC3115112 DOI: 10.4161/psb.5.12.13915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 05/20/2023]
Abstract
Chloroplast photorelocation movement towards weak light and away from strong light is essential for plants to adapt to the fluctuation of ambient light conditions. In the previous study, we showed that blue light receptor phototropins mediated blue light-induced chloroplast movement in Arabidopsis by regulating short actin filaments localized at the chloroplast periphery (cp-actin filaments) rather than actin cables in the cytoplasm. However, the signaling pathway for the chloroplast photorelocation movement is still unclear. We also identified JAC1 (J-domain protein required for chloroplast accumulation response 1) as an essential component for the accumulation response and dark positioning in Arabidopsis. We recently determined the crystal structure of the J-domain of JAC1. The JAC1 J-domain has a positively charged surface, which forms a putative interface with the Hsc70 chaperone by analogy to that of bovine auxilin. Furthermore, the mutation of the highly conserved HPD motif in the JAC1 J-domain impaired the in vivo activity of JAC1. These data suggest that JAC1 cochaperone activity with HSC70 is essential for chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Akira Takano
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka, Japan
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
99
|
Salomon S, Grunewald D, Stüber K, Schaaf S, MacLean D, Schulze-Lefert P, Robatzek S. High-throughput confocal imaging of intact live tissue enables quantification of membrane trafficking in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1096-104. [PMID: 20841454 PMCID: PMC2971591 DOI: 10.1104/pp.110.160325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/13/2010] [Indexed: 05/19/2023]
Abstract
Membrane compartmentalization and trafficking within and between cells is considered an essential cellular property of higher eukaryotes. We established a high-throughput imaging method suitable for the quantitative detection of membrane compartments at subcellular resolution in intact epidermal tissue. Whole Arabidopsis (Arabidopsis thaliana) cotyledon leaves were subjected to quantitative confocal laser microscopy using automated image acquisition, computational pattern recognition, and quantification of membrane compartments. This revealed that our method is sensitive and reliable to detect distinct endomembrane compartments. We applied quantitative confocal laser microscopy to a transgenic line expressing GFP-2xFYVE as a marker for endosomal compartments during biotic or abiotic stresses, and detected markedly quantitative adaptations in response to changing environments. Using a transgenic line expressing the plasma membrane-resident syntaxin GFP-PEN1, we quantified the pathogen-inducible extracellular accumulation of this fusion protein at fungal entry sites. Our protocol provides a platform to study the quantitative and dynamic changes of endomembrane trafficking, and potential adaptations of this machinery to physiological stress.
Collapse
|
100
|
Photoadaptation in Neurospora by Competitive Interaction of Activating and Inhibitory LOV Domains. Cell 2010; 142:762-72. [DOI: 10.1016/j.cell.2010.08.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/16/2010] [Accepted: 08/07/2010] [Indexed: 11/21/2022]
|