51
|
Thylakoid localized bestrophin-like proteins are essential for the CO 2 concentrating mechanism of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2019; 116:16915-16920. [PMID: 31391312 PMCID: PMC6708349 DOI: 10.1073/pnas.1909706116] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Models of the CO2 concentrating mechanism (CCM) of green algae and diatoms postulate that chloroplast CO2 is generated from HCO3− brought into the acidic thylakoid lumen and converted to CO2 by specific thylakoid carbonic anhydrases. However, the identity of the transporter required for thylakoid HCO3− uptake has remained elusive. In this work, 3 bestrophin-like proteins, BST1–3, located on the thylakoid membrane have been found to be essential to the CCM of Chlamydomonas. Reduction in expression of BST1–3 markedly reduced the inorganic carbon affinity of the alga. These proteins are prime candidates to be thylakoid HCO3− transporters, a critical currently missing step of the CCM required for future engineering efforts of the Chlamydomonas CCM into plants to improve photosynthesis. The green alga Chlamydomonas reinhardtii possesses a CO2 concentrating mechanism (CCM) that helps in successful acclimation to low CO2 conditions. Current models of the CCM postulate that a series of ion transporters bring HCO3− from outside the cell to the thylakoid lumen, where the carbonic anhydrase 3 (CAH3) dehydrates accumulated HCO3− to CO2, raising the CO2 concentration for Ribulose bisphosphate carboxylase/oxygenase (Rubisco). Previously, HCO3− transporters have been identified at both the plasma membrane and the chloroplast envelope, but the transporter thought to be on the thylakoid membrane has not been identified. Three paralogous genes (BST1, BST2, and BST3) belonging to the bestrophin family have been found to be up-regulated in low CO2 conditions, and their expression is controlled by CIA5, a transcription factor that controls many CCM genes. YFP fusions demonstrate that all 3 proteins are located on the thylakoid membrane, and interactome studies indicate that they might associate with chloroplast CCM components. A single mutant defective in BST3 has near-normal growth on low CO2, indicating that the 3 bestrophin-like proteins may have redundant functions. Therefore, an RNA interference (RNAi) approach was adopted to reduce the expression of all 3 genes at once. RNAi mutants with reduced expression of BST1–3 were unable to grow at low CO2 concentrations, exhibited a reduced affinity to inorganic carbon (Ci) compared with the wild-type cells, and showed reduced Ci uptake. We propose that these bestrophin-like proteins are essential components of the CCM that deliver HCO3− accumulated in the chloroplast stroma to CAH3 inside the thylakoid lumen.
Collapse
|
52
|
Salomé PA, Merchant SS. A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. THE PLANT CELL 2019; 31:1682-1707. [PMID: 31189738 PMCID: PMC6713297 DOI: 10.1105/tpc.18.00952] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/20/2019] [Accepted: 06/08/2019] [Indexed: 05/13/2023]
Abstract
The unicellular alga Chlamydomonas reinhardtii is a classical reference organism for studying photosynthesis, chloroplast biology, cell cycle control, and cilia structure and function. It is also an emerging model for studying sensory cilia, the production of high-value bioproducts, and in situ structural determination. Much of the early appeal of Chlamydomonas was rooted in its promise as a genetic system, but like other classic model organisms, this rise to prominence predated the discovery of the structure of DNA, whole-genome sequences, and molecular techniques for gene manipulation. The haploid genome of C. reinhardtii facilitates genetic analyses and offers many of the advantages of microbial systems applied to a photosynthetic organism. C. reinhardtii has contributed to our understanding of chloroplast-based photosynthesis and cilia biology. Despite pervasive transgene silencing, technological advances have allowed researchers to address outstanding lines of inquiry in algal research. The most thoroughly studied unicellular alga, C. reinhardtii, is the current standard for algal research, and although genome editing is still far from efficient and routine, it nevertheless serves as a template for other algae. We present a historical retrospective of the rise of C. reinhardtii to illuminate its past and present. We also present resources for current and future scientists who may wish to expand their studies to the realm of microalgae.
Collapse
Affiliation(s)
- Patrice A Salomé
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
| | - Sabeeha S Merchant
- University of California, Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, CA 90095
- University of California, Berkeley, Departments of Plant and Microbial Biology and Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
53
|
Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level. Metab Eng 2019; 54:96-108. [DOI: 10.1016/j.ymben.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
|
54
|
Terentyev VV, Shukshina AK, Shitov AV. Carbonic anhydrase CAH3 supports the activity of photosystem II under increased pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:582-590. [DOI: 10.1016/j.bbabio.2019.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
|
55
|
Improved Algal Toxicity Test System for Robust Omics-Driven Mode-of-Action Discovery in Chlamydomonas reinhardtii. Metabolites 2019; 9:metabo9050094. [PMID: 31083411 PMCID: PMC6572051 DOI: 10.3390/metabo9050094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
Algae are key components of aquatic food chains. Consequently, they are internationally recognised test species for the environmental safety assessment of chemicals. However, existing algal toxicity test guidelines are not yet optimized to discover molecular modes of action, which require highly-replicated and carefully controlled experiments. Here, we set out to develop a robust, miniaturised and scalable Chlamydomonas reinhardtii toxicity testing approach tailored to meet these demands. We primarily investigated the benefits of synchronised cultures for molecular studies, and of exposure designs that restrict chemical volatilisation yet yield sufficient algal biomass for omics analyses. Flow cytometry and direct-infusion mass spectrometry metabolomics revealed significant and time-resolved changes in sample composition of synchronised cultures. Synchronised cultures in sealed glass vials achieved adequate growth rates at previously unachievably-high inoculation cell densities, with minimal pH drift and negligible chemical loss over 24-h exposures. Algal exposures to a volatile test compound (chlorobenzene) yielded relatively high reproducibility of metabolic phenotypes over experimental repeats. This experimental test system extends existing toxicity testing formats to allow highly-replicated, omics-driven, mode-of-action discovery.
Collapse
|
56
|
Colina F, Amaral J, Carbó M, Pinto G, Soares A, Cañal MJ, Valledor L. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep 2019; 9:350. [PMID: 30674892 PMCID: PMC6344539 DOI: 10.1038/s41598-018-35625-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays an important role in energy sensing and stress-adaptive responses in plant systems. In this study, Chlamydomonas CKIN family (SnRK in Arabidopsis) was defined after a genome-wide analysis of all sequenced Chlorophytes. Twenty-two sequences were defined as plant SnRK orthologs in Chlamydomonas and classified into two subfamilies: CKIN1 and CKIN2. While CKIN1 subfamily is reduced to one conserved member and a close protein (CKIN1L), a large CKIN2 subfamily clusters both plant-like and algae specific CKIN2s. The responsiveness of these genes to abiotic stress situations was tested by RT-qPCR. Results showed that almost all elements were sensitive to osmotic stress while showing different degrees of sensibility to other abiotic stresses, as occurs in land plants, revealing their specialization and the family pleiotropy for some elements. The regulatory pathway of this family may differ from land plants since these sequences shows unique regulatory features and some of them are sensitive to ABA, despite conserved ABA receptors (PYR/PYL/RCAR) and regulatory domains are not present in this species. Core Chlorophytes and land plant showed divergent stress signalling, but SnRKs/CKINs share the same role in cell survival and stress response and adaption including the accumulation of specific biomolecules. This fact places the CKIN family as well-suited target for bioengineering-based studies in microalgae (accumulation of sugars, lipids, secondary metabolites), while promising new findings in stress biology and specially in the evolution of ABA-signalling mechanisms.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Joana Amaral
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Amadeu Soares
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain.
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
57
|
Kerney R, Leavitt J, Hill E, Zhang H, Kim E, Burns J. Co-cultures of Oophila amblystomatis between Ambystoma maculatum and Ambystoma gracile hosts show host-symbiont fidelity. Symbiosis 2019. [DOI: 10.1007/s13199-018-00591-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
58
|
Tirumani S, Gothandam KM, J Rao B. Coordination between photorespiration and carbon concentrating mechanism in Chlamydomonas reinhardtii: transcript and protein changes during light-dark diurnal cycles and mixotrophy conditions. PROTOPLASMA 2019; 256:117-130. [PMID: 29987443 DOI: 10.1007/s00709-018-1283-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Carbon concentrating mechanism (CCM) and photorespiration (PR) are interlinked and co-regulated in Chlamydomonas reinhardtii, but conditions where co-regulation alters are not sufficiently explored. Here, we uncover that PR gene transcripts, like CCM transcripts, are induced even in the dark when both processes are not active. Such diurnal cycles show that transcript levels peak in the middle of 12 h day, decline by early part of 12-h dark followed by their onset again at mid-dark. Interestingly, the onset in the mid-dark phase is sensitive to high CO2, implying that the active carbon sensing mechanism operates even in the dark. The rhythmic alterations of both CCM and PR transcript levels are unlinked to circadian clock: the "free-running state" reveals no discernible rhythmicity in transcript changes. Only continuous light leads to high transcript levels but no detectable transcripts were observed in continuous dark. Asynchronous continuous light cultures, upon shifting to low from high CO2 exhibit only transient induction of PR transcripts/proteins while CCM transcript induction is stable, indicating the loss of co-regulation between PR and CCM gene transcription. Lastly, we also describe that both CCM and PR transcripts/proteins are induced in low CO2 even in mixotrophic cultures, but only in high light, the same being attenuated in high CO2, implying that high light is a mandatory "trigger" for CCM and PR induction in low CO2 mixotrophy. Our study provides comprehensive analyses of conditions where CCM and PR were differently regulated, setting a paradigm for a detailed mechanistic probing of these responses.
Collapse
Affiliation(s)
- S Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - K M Gothandam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Basuthkar J Rao
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India.
- Indian Institute of Science Education and Research, Karkambadi Road, Mangalam (B.O.), Tirupati, AP, 517507, India.
| |
Collapse
|
59
|
Wei L, El Hajjami M, Shen C, You W, Lu Y, Li J, Jing X, Hu Q, Zhou W, Poetsch A, Xu J. Transcriptomic and proteomic responses to very low CO 2 suggest multiple carbon concentrating mechanisms in Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:168. [PMID: 31297156 PMCID: PMC6599299 DOI: 10.1186/s13068-019-1506-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND In industrial oleaginous microalgae such as Nannochloropsis spp., the key components of the carbon concentration mechanism (CCM) machineries are poorly defined, and how they are mobilized to facilitate cellular utilization of inorganic carbon remains elusive. RESULTS For Nannochloropsis oceanica, to unravel genes specifically induced by CO2 depletion which are thus potentially underpinning its CCMs, transcriptome, proteome and metabolome profiles were tracked over 0 h, 3 h, 6 h, 12 h and 24 h during cellular response from high CO2 level (HC; 50,000 ppm) to very low CO2 (VLC; 100 ppm). The activity of a biophysical CCM is evidenced based on induction of transcripts encoding a bicarbonate transporter and two carbonic anhydrases under VLC. Moreover, the presence of a potential biochemical CCM is supported by the upregulation of a number of key C4-like pathway enzymes in both protein abundance and enzymatic activity under VLC, consistent with a mitochondria-implicated C4-based CCM. Furthermore, a basal CCM underpinned by VLC-induced upregulation of photorespiration and downregulation of ornithine-citrulline shuttle and the ornithine urea cycles is likely present, which may be responsible for efficient recycling of mitochondrial CO2 for chloroplastic carbon fixation. CONCLUSIONS Nannochloropsis oceanica appears to mobilize a comprehensive set of CCMs in response to very low CO2. Its genes induced by the stress are quite distinct from those of Chlamydomonas reinhardtii and Phaeodactylum tricornutum, suggesting tightly regulated yet rather unique CCMs. These findings can serve the first step toward rational engineering of the CCMs for enhanced carbon fixation and biomass productivity in industrial microalgae.
Collapse
Affiliation(s)
- Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Mohamed El Hajjami
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Wuxin You
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yandu Lu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Jing Li
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| | - Qiang Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei China
- University of Chinese Academy of Science, Beijing, China
| | - Wenxu Zhou
- Department of Chemistry and Biochemistry, Center for Chemical Biology, Texas Tech University, Lubbock, TX USA
| | - Ansgar Poetsch
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, UK
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
60
|
Sung YJ, Kwak HS, Hong ME, Choi HI, Sim SJ. Two-Dimensional Microfluidic System for the Simultaneous Quantitative Analysis of Phototactic/Chemotactic Responses of Microalgae. Anal Chem 2018; 90:14029-14038. [DOI: 10.1021/acs.analchem.8b04121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ho Seok Kwak
- Department of Food Engineering, Dongyang Mirae University, 445, Gyeongin-ro, Guro-gu, Seoul, 08221, Republic of Korea
| | - Min Eui Hong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
61
|
Mora Salguero DA, Fernández-Niño M, Serrano-Bermúdez LM, Páez Melo DO, Winck FV, Caldana C, González Barrios AF. Development of a Chlamydomonas reinhardtii metabolic network dynamic model to describe distinct phenotypes occurring at different CO 2 levels. PeerJ 2018; 6:e5528. [PMID: 30202653 PMCID: PMC6126472 DOI: 10.7717/peerj.5528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The increase in atmospheric CO2 due to anthropogenic activities is generating climate change, which has resulted in a subsequent rise in global temperatures with severe environmental impacts. Biological mitigation has been considered as an alternative for environmental remediation and reduction of greenhouse gases in the atmosphere. In fact, the use of easily adapted photosynthetic organisms able to fix CO2 with low-cost operation is revealing its high potential for industry. Among those organism, the algae Chlamydomonas reinhardtii have gain special attention as a model organism for studying CO2 fixation, biomass accumulation and bioenergy production upon exposure to several environmental conditions. In the present study, we studied the Chlamydomonas response to different CO2 levels by comparing metabolomics and transcriptomics data with the predicted results from our new-improved genomic-scale metabolic model. For this, we used in silico methods at steady dynamic state varying the levels of CO2. Our main goal was to improve our capacity for predicting metabolic routes involved in biomass accumulation. The improved genomic-scale metabolic model presented in this study was shown to be phenotypically accurate, predictive, and a significant improvement over previously reported models. Our model consists of 3726 reactions and 2436 metabolites, and lacks any thermodynamically infeasible cycles. It was shown to be highly sensitive to environmental changes under both steady-state and dynamic conditions. As additional constraints, our dynamic model involved kinetic parameters associated with substrate consumption at different growth conditions (i.e., low CO2-heterotrophic and high CO2-mixotrophic). Our results suggest that cells growing at high CO2 (i.e., photoautotrophic and mixotrophic conditions) have an increased capability for biomass production. In addition, we have observed that ATP production also seems to be an important limiting factor for growth under the conditions tested. Our experimental data (metabolomics and transcriptomics) and the results predicted by our model clearly suggest a differential behavior between low CO2-heterotrophic and high CO2-mixotrophic growth conditions. The data presented in the current study contributes to better dissect the biological response of C. reinhardtii, as a dynamic entity, to environmental and genetic changes. These findings are of great interest given the biotechnological potential of this microalga for CO2 fixation, biomass accumulation, and bioenergy production.
Collapse
Affiliation(s)
- Daniela Alejandra Mora Salguero
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - David O. Páez Melo
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Flavia V. Winck
- Laboratory of Regulatory Systems Biology, Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | |
Collapse
|
62
|
Tang Y, Li X, Lu W, Wei X, Zhang Q, Lv C, Song N. Enhanced photorespiration in transgenic rice over-expressing maize C 4 phosphoenolpyruvate carboxylase gene contributes to alleviating low nitrogen stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:577-588. [PMID: 30114676 DOI: 10.1016/j.plaphy.2018.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 05/27/2023]
Abstract
The objective of this study was to reveal the physiological and molecular mechanisms of low-nitrogen (N) tolerance in transgenic plant lines containing C4 phosphoenolpyruvate carboxylase (C4-PEPC) gene. The transgenic rice lines only over-expressing the maize C4-PEPC) (PC) and their untransformed wild type, Kitaake (WT), were used in this study. At different N levels, the dry weight, total N content, carbon and N levels, photorespiration-related enzymatic activities, gene expression levels and photorespiration-related product accumulations were measured, as were the transgenic lines' agronomic traits. The PC line, having lower total N and higher soluble sugar contents, was more tolerant to low-N stress than WT, which was consistent with its higher PEPC and lower N-assimilation-related enzyme activity levels. The photosynthetic parameters, enzymatic activity levels, transcripts and products related to photorespiration in PC were also greater than in WT under low-N conditions. This study showed that increased carbon levels in transgenic rice lines overexpressing C4-PEPC could help regulate the photorespiratory pathway under low-N conditions, conferring low-N tolerance and a higher grain yield per plant.
Collapse
Affiliation(s)
- Yuting Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xia Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wei Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodong Wei
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qijun Zhang
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chuangen Lv
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ningxi Song
- Institute of Food Crops, Jiangsu Rice Engineering Research Center, National Center for Rice Improvement (Nanjing), Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
63
|
Rea G, Antonacci A, Lambreva MD, Mattoo AK. Features of cues and processes during chloroplast-mediated retrograde signaling in the alga Chlamydomonas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:193-206. [PMID: 29807591 DOI: 10.1016/j.plantsci.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/04/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Retrograde signaling is an intracellular communication process defined by cues generated in chloroplast and mitochondria which traverse membranes to their destination in the nucleus in order to regulate nuclear gene expression and protein synthesis. The coding and decoding of such organellar message(s) involve gene medleys and metabolic components about which more is known in higher plants than the unicellular organisms such as algae. Chlamydomonas reinhardtii is an oxygenic microalgal model for genetic and physiological studies. It harbors a single chloroplast and is amenable for generating mutants. The focus of this review is on studies that delineate retrograde signaling in Chlamydomonas vis a vis higher plants. Thus, communication networks between chloroplast and nucleus involving photosynthesis- and ROS-generated signals, functional tetrapyrrole biosynthesis intermediates, and Ca2+-signaling that modulate nuclear gene expression in this alga are discussed. Conceptually, different signaling components converge to regulate either the same or functionally-overlapping gene products.
Collapse
Affiliation(s)
- Giuseppina Rea
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Maya D Lambreva
- Institute of Crystallography, National Research Council of Italy, Via Salaria Km 29, 3 00015 Monterotondo Scalo, Rome, Italy
| | - Autar K Mattoo
- The Henry A Wallace Agricultural Research Centre, U.S. Department of Agriculture, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
64
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
65
|
Zhan Y, Marchand CH, Maes A, Mauries A, Sun Y, Dhaliwal JS, Uniacke J, Arragain S, Jiang H, Gold ND, Martin VJJ, Lemaire SD, Zerges W. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii. PLoS One 2018; 13:e0185039. [PMID: 29481573 PMCID: PMC5826530 DOI: 10.1371/journal.pone.0185039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Alexandre Maes
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Adeline Mauries
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Yi Sun
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James S. Dhaliwal
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James Uniacke
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Simon Arragain
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Heng Jiang
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas D. Gold
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
- * E-mail: (SDL); (WZ)
| | - William Zerges
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- * E-mail: (SDL); (WZ)
| |
Collapse
|
66
|
Rai S, Lucius S, Kern R, Bauwe H, Kaplan A, Kopka J, Hagemann M. The Synechocystis sp. PCC 6803 Genome Encodes Up to Four 2-Phosphoglycolate Phosphatases. FRONTIERS IN PLANT SCIENCE 2018; 9:1718. [PMID: 30542360 PMCID: PMC6278635 DOI: 10.3389/fpls.2018.01718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/05/2018] [Indexed: 05/07/2023]
Abstract
Photorespiratory phosphoglycolate (2PG) metabolism is essential for cyanobacteria, algae, and plants. The first enzyme of the pathway, 2PG phosphatase (PGPase), is known from plants and algae but was scarcely investigated in cyanobacteria. In silico analysis revealed four candidate genes (slr0458, slr0586, sll1349, and slr1762) in the genome of the model cyanobacterium Synechocystis sp. PCC 6803 that all belong to the 2-haloacid dehalogenase (HAD) superfamily and could possibly encode PGPase proteins. However, in contrast to known algal and plant PGPases, the putative cyanobacterial PGPases belong to another HAD subfamily implying that PGPases in eukaryotic phototrophs did not originate from cyanobacterial PGPases. To verify their function, these four genes were inactivated both individually and in combination. A mild high-CO2-requiring (HCR) growth phenotype typical for photorespiratory mutants was observed only in Δsll1349. Combinatorial inactivation enhanced the HCR phenotype in specific double and triple mutants. Heterologous expression of the putative cyanobacterial PGPases in E. coli led to higher PGPase activities in crude cell extracts, but only the purified Slr0458 protein showed PGPase activity. Hence, we propose that a consortium of up to four photorespiratory PGPases may initiate photorespiratory 2PG metabolism in Synechocystis. We suggest that redundancy of this essential enzyme activity could be related to the highly adaptive lifestyle of cyanobacteria such as Synechocystis sp. PCC 6803, which allows them to grow under very diverse conditions.
Collapse
Affiliation(s)
- Snigdha Rai
- Department of Plant Physiology, University of Rostock, Rostock, Germany
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Stefan Lucius
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Ramona Kern
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim Kopka
- Applied Metabolome Analysis, Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
- *Correspondence: Martin Hagemann,
| |
Collapse
|
67
|
Mackinder LCM. The Chlamydomonas CO 2 -concentrating mechanism and its potential for engineering photosynthesis in plants. THE NEW PHYTOLOGIST 2018; 217:54-61. [PMID: 28833179 DOI: 10.1111/nph.14749] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
Contents Summary I. Introduction 54 II. Recent advances in our understanding of the Chlamydomonas CCM 55 III. Current gaps in our understanding of the Chlamydomonas CCM 58 IV. Approaches to rapidly advance our understanding of the Chlamydomonas CCM 58 V. Engineering a CCM into higher plants 58 VI. Conclusion and outlook 59 Acknowledgements 60 References 60 SUMMARY: To meet the food demands of a rising global population, innovative strategies are required to increase crop yields. Improvements in plant photosynthesis by genetic engineering show considerable potential towards this goal. One prospective approach is to introduce a CO2 -concentrating mechanism into crop plants to increase carbon fixation by supplying the central carbon-fixing enzyme, Rubisco, with a higher concentration of its substrate, CO2 . A promising donor organism for the molecular machinery of this mechanism is the eukaryotic alga Chlamydomonas reinhardtii. This review summarizes the recent advances in our understanding of carbon concentration in Chlamydomonas, outlines the most pressing gaps in our knowledge and discusses strategies to transfer a CO2 -concentrating mechanism into higher plants to increase photosynthetic performance.
Collapse
|
68
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
69
|
Zhu B, Chen G, Cao X, Wei D. Molecular characterization of CO 2 sequestration and assimilation in microalgae and its biotechnological applications. BIORESOURCE TECHNOLOGY 2017; 244:1207-1215. [PMID: 28606753 DOI: 10.1016/j.biortech.2017.05.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Microalgae are renewable feedstock for sustainable biofuel production, cell factory for valuable chemicals and promising in alleviation of greenhouse gas CO2. However, the carbon assimilation capacity is still the bottleneck for higher productivity. Molecular characterization of CO2 sequestration and assimilation in microalgae has advanced in the past few years and are reviewed here. In some cyanobacteria, genes for 2-oxoglytarate dehydrogenase was replaced by four alternative mechanisms to fulfill TCA cycle. In green algae Coccomyxa subellipsoidea C-169, alternative carbon assimilation pathway was upregulated under high CO2 conditions. These advances thus provide new insights and new targets for accelerating CO2 sequestration rate and enhancing bioproduct synthesis in microalgae. When integrated with conventional parameter optimization, molecular approach for microalgae modification targeting at different levels is promising in generating value-added chemicals from green algae and cyanobacteria efficiently in the near future.
Collapse
Affiliation(s)
- Baojun Zhu
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Gu Chen
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Dong Wei
- School of Food Sciences and Engineering, South China University of Technology, Wushan Rd. 381, Guangzhou 510641, PR China.
| |
Collapse
|
70
|
Jüppner J, Mubeen U, Leisse A, Caldana C, Brust H, Steup M, Herrmann M, Steinhauser D, Giavalisco P. Dynamics of lipids and metabolites during the cell cycle of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:331-343. [PMID: 28742931 DOI: 10.1111/tpj.13642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 05/12/2023]
Abstract
Metabolites and lipids are the final products of enzymatic processes, distinguishing the different cellular functions and activities of single cells or whole tissues. Understanding these cellular functions within a well-established model system requires a systemic collection of molecular and physiological information. In the current report, the green alga Chlamydomonas reinhardtii was selected to establish a comprehensive workflow for the detailed multi-omics analysis of a synchronously growing cell culture system. After implementation and benchmarking of the synchronous cell culture, a two-phase extraction method was adopted for the analysis of proteins, lipids, metabolites and starch from a single sample aliquot of as little as 10-15 million Chlamydomonas cells. In a proof of concept study, primary metabolites and lipids were sampled throughout the diurnal cell cycle. The results of these time-resolved measurements showed that single compounds were not only coordinated with each other in different pathways, but that these complex metabolic signatures have the potential to be used as biomarkers of various cellular processes. Taken together, the developed workflow, including the synchronized growth of the photoautotrophic cell culture, in combination with comprehensive extraction methods and detailed metabolic phenotyping has the potential for use in in-depth analysis of complex cellular processes, providing essential information for the understanding of complex biological systems.
Collapse
Affiliation(s)
- Jessica Jüppner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Umarah Mubeen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrea Leisse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Brazilian Bioethanol Science and Technology Laboratory/CNPEM, Rua Giuseppe Máximo Scolfano 10000, 13083-970, Campinas, Brazil
| | - Henrike Brust
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Martin Steup
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
- University of Toronto c/o Hospital for Sick Children, PGCRL 14.9420, 72 Elm St, Toronto, ON M561H3, Canada
| | - Marion Herrmann
- Institute for Human Genetics, Humboldt University Berlin, Charité, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
71
|
Rademacher N, Wrobel TJ, Rossoni AW, Kurz S, Bräutigam A, Weber APM, Eisenhut M. Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO 2 concentrations. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:49-56. [PMID: 28705662 DOI: 10.1016/j.jplph.2017.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/19/2023]
Abstract
Cyanidioschyzon merolae (C. merolae) is an acidophilic red alga growing in a naturally low carbon dioxide (CO2) environment. Although it uses a ribulose 1,5-bisphosphate carboxylase/oxygenase with high affinity for CO2, the survival of C. merolae relies on functional photorespiratory metabolism. In this study, we quantified the transcriptomic response of C. merolae to changes in CO2 conditions. We found distinct changes upon shifts between CO2 conditions, such as a concerted up-regulation of photorespiratory genes and responses to carbon starvation. We used the transcriptome data set to explore a hypothetical CO2 concentrating mechanism in C. merolae, based on the assumption that photorespiratory genes and possible candidate genes involved in a CO2 concentrating mechanism are co-expressed. A putative bicarbonate transport protein and two α-carbonic anhydrases were identified, which showed enhanced transcript levels under reduced CO2 conditions. Genes encoding enzymes of a PEPCK-type C4 pathway were co-regulated with the photorespiratory gene cluster. We propose a model of a hypothetical low CO2 compensation mechanism in C. merolae integrating these low CO2-inducible components.
Collapse
Affiliation(s)
- Nadine Rademacher
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Samantha Kurz
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
72
|
Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC. A Spatial Interactome Reveals the Protein Organization of the Algal CO 2-Concentrating Mechanism. Cell 2017; 171:133-147.e14. [PMID: 28938113 PMCID: PMC5616186 DOI: 10.1016/j.cell.2017.08.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022]
Abstract
Approximately one-third of global CO2 fixation is performed by eukaryotic algae. Nearly all algae enhance their carbon assimilation by operating a CO2-concentrating mechanism (CCM) built around an organelle called the pyrenoid, whose protein composition is largely unknown. Here, we developed tools in the model alga Chlamydomonas reinhardtii to determine the localizations of 135 candidate CCM proteins and physical interactors of 38 of these proteins. Our data reveal the identity of 89 pyrenoid proteins, including Rubisco-interacting proteins, photosystem I assembly factor candidates, and inorganic carbon flux components. We identify three previously undescribed protein layers of the pyrenoid: a plate-like layer, a mesh layer, and a punctate layer. We find that the carbonic anhydrase CAH6 is in the flagella, not in the stroma that surrounds the pyrenoid as in current models. These results provide an overview of proteins operating in the eukaryotic algal CCM, a key process that drives global carbon fixation.
Collapse
Affiliation(s)
- Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Chris Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Matthew Rodman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Christopher M Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
73
|
Jensen E, Clément R, Maberly SC, Gontero B. Regulation of the Calvin-Benson-Bassham cycle in the enigmatic diatoms: biochemical and evolutionary variations on an original theme. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160401. [PMID: 28717027 PMCID: PMC5516110 DOI: 10.1098/rstb.2016.0401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/19/2023] Open
Abstract
In Plantae, the Calvin-Benson-Bassham (CBB) cycle is highly regulated and most of its enzymes have been thoroughly studied. Since diatoms arose as a result of secondary endosymbiosis with one or more Plantae ancestors, their precise evolutionary history is enigmatic and complex resulting in biochemical variations on the original CBB cycle theme. The Rubisco Michaelis constant for CO2 is higher in diatoms than land plants and the nuclear-encoded Rubisco activase in Plantae is replaced by an analogous chloroplast-encoded CbbX (Calvin-Benson-Bassham protein X) in diatoms. In the CBB cycle reduction phase, phosphoglycerate kinase in diatoms is redox-regulated and similar to that in red algae; however, glyceraldehyde phosphate dehydrogenase (GAPDH) is not redox-regulated, unlike in Plantae. The phosphoribulokinase (PRK)-GAPDH-CP12 complex found in many photosynthetic organisms has not yet been found in diatoms, but a ferredoxin-NADP reductase (FNR)-GAPDH-CP12 complex has been found in one species. In the CBB cycle regeneration phase, sedoheptulose 1,7-bisphosphatase and PRK are not redox-regulated in diatoms, unlike in Plantae. Regulation at the transcriptional level seems to be important in diatoms. CBB cycle enzyme properties appear to be variable among diatoms, but this view relies on results from a few model species: a greater range of diatoms need to be studied to test this.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Erik Jensen
- Aix Marseille Univ CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Romain Clément
- Aix Marseille Univ CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Stephen C Maberly
- Lake Ecosystems Group, Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Brigitte Gontero
- Aix Marseille Univ CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
74
|
Venkanna D, Südfeld C, Baier T, Homburg SV, Patel AV, Wobbe L, Kruse O. Knock-Down of the IFR1 Protein Perturbs the Homeostasis of Reactive Electrophile Species and Boosts Photosynthetic Hydrogen Production in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2017; 8:1347. [PMID: 28824682 PMCID: PMC5540887 DOI: 10.3389/fpls.2017.01347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/19/2017] [Indexed: 05/26/2023]
Abstract
The protein superfamily of short-chain dehydrogenases/reductases (SDR), including members of the atypical type (aSDR), covers a huge range of catalyzed reactions and in vivo substrates. This superfamily also comprises isoflavone reductase-like (IRL) proteins, which are aSDRs highly homologous to isoflavone reductases from leguminous plants. The molecular function of IRLs in non-leguminous plants and green microalgae has not been identified as yet, but several lines of evidence point at their implication in reactive oxygen species homeostasis. The Chlamydomonas reinhardtii IRL protein IFR1 was identified in a previous study, analyzing the transcriptomic changes occurring during the acclimation to sulfur deprivation and anaerobiosis, a condition that triggers photobiological hydrogen production in this microalgae. Accumulation of the cytosolic IFR1 protein is induced by sulfur limitation as well as by the exposure of C. reinhardtii cells to reactive electrophile species (RES) such as reactive carbonyls. The latter has not been described for IRL proteins before. Over-accumulation of IFR1 in the singlet oxygen response 1 (sor1) mutant together with the presence of an electrophile response element, known to be required for SOR1-dependent gene activation as a response to RES, in the promoter of IFR1, indicate that IFR1 expression is controlled by the SOR1-dependent pathway. An implication of IFR1 into RES homeostasis, is further implied by a knock-down of IFR1, which results in a diminished tolerance toward RES. Intriguingly, IFR1 knock-down has a positive effect on photosystem II (PSII) stability under sulfur-deprived conditions used to trigger photobiological hydrogen production, by reducing PSII-dependent oxygen evolution, in C. reinhardtii. Reduced PSII photoinhibition in IFR1 knock-down strains prolongs the hydrogen production phase resulting in an almost doubled final hydrogen yield compared to the parental strain. Finally, IFR1 knock-down could be successfully used to further increase hydrogen yields of the high hydrogen-producing mutant stm6, demonstrating that IFR1 is a promising target for genetic engineering approaches aiming at an increased hydrogen production capacity of C. reinhardtii cells.
Collapse
Affiliation(s)
- Deepak Venkanna
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Christian Südfeld
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Thomas Baier
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Sarah V. Homburg
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied SciencesBielefeld, Germany
| | - Anant V. Patel
- Faculty of Engineering and Mathematics, Fermentation and Formulation of Biologicals and Chemicals, Bielefeld University of Applied SciencesBielefeld, Germany
| | - Lutz Wobbe
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| | - Olaf Kruse
- Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
75
|
Li K, Cheng J, Lu H, Yang W, Zhou J, Cen K. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO 2. BIORESOURCE TECHNOLOGY 2017; 233:313-321. [PMID: 28285223 DOI: 10.1016/j.biortech.2017.02.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/20/2023]
Abstract
To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60Co-γ rays and domesticated with 15% CO2, transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO2 fixation rate of mutant cells increased to 2.57gL-1d-1 under 15% CO2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO2. The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Hongxiang Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
76
|
Chen B, Lee K, Plucinak T, Duanmu D, Wang Y, Horken KM, Weeks DP, Spalding MH. A novel activation domain is essential for CIA5-mediated gene regulation in response to CO2 changes in Chlamydomonas reinhardtii. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
77
|
Mitchell MC, Metodieva G, Metodiev MV, Griffiths H, Meyer MT. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3891-3902. [PMID: 28520898 PMCID: PMC5853466 DOI: 10.1093/jxb/erx121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/22/2017] [Indexed: 05/25/2023]
Abstract
Carbon-concentrating mechanisms (CCMs) enable efficient photosynthesis and growth in CO2-limiting environments, and in eukaryotic microalgae localisation of Rubisco to a microcompartment called the pyrenoid is key. In the model green alga Chlamydomonas reinhardtii, Rubisco preferentially relocalises to the pyrenoid during CCM induction and pyrenoid-less mutants lack a functioning CCM and grow very poorly at low CO2. The aim of this study was to investigate the CO2 response of pyrenoid-positive (pyr+) and pyrenoid-negative (pyr-) mutant strains to determine the effect of pyrenoid absence on CCM induction and gene expression. Shotgun proteomic analysis of low-CO2-adapted strains showed reduced accumulation of some CCM-related proteins, suggesting that pyr- has limited capacity to respond to low-CO2 conditions. Comparisons between gene transcription and protein expression revealed potential regulatory interactions, since Rubisco protein linker (EPYC1) protein did not accumulate in pyr- despite increased transcription, while elements of the LCIB/LCIC complex were also differentially expressed. Furthermore, pyr- showed altered abundance of a number of proteins involved in primary metabolism, perhaps due to the failure to adapt to low CO2. This work highlights two-way regulation between CCM induction and pyrenoid formation, and provides novel candidates for future studies of pyrenoid assembly and CCM function.
Collapse
Affiliation(s)
| | | | | | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
78
|
Tsuji Y, Nakajima K, Matsuda Y. Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3763-3772. [PMID: 28633304 DOI: 10.1093/jxb/erx173] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Diatoms operate a CO2-concentrating mechanism (CCM) that drives upwards of 20% of annual global primary production. Recent progress in CCM research in the marine pennate diatom Phaeodactylum tricornutum revealed that this diatom directly takes up HCO3- from seawater through low-CO2-inducible plasma membrane HCO3- transporters, which belong to the solute carrier (SLC) 4 family. Apart from this, studies of carbonic anhydrases (CAs) in diatoms have revealed considerable diversity in classes and localization among species. This strongly suggests that the CA systems, which control permeability and flux of dissolved inorganic carbon (DIC) by catalysing reversible CO2 hydration, have evolved from diverse origins. Of particular interest is the occurrence of low-CO2-inducible external CAs in the centric marine diatom Thalassiosira pseudonana, offering a strategy of CA-catalysed initial CO2 entry via passive diffusion, contrasting with active DIC transport in P. tricornutum. Molecular mechanisms to transport DIC across chloroplast envelopes are likely also through specific HCO3- transporters, although details have yet to be elucidated. Furthermore, recent discovery of a luminal θ-CA in the diatom thylakoid implied a common strategy in the mechanism to supply CO2 to RubisCO in the pyrenoid, which is conserved among green algae and some heterokontophytes. These results strongly suggest an occurrence of convergent coevolution between the pyrenoid and thylakoid membrane in aquatic photosynthesis.
Collapse
Affiliation(s)
- Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
79
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
80
|
Guan X, Okazaki Y, Lithio A, Li L, Zhao X, Jin H, Nettleton D, Saito K, Nikolau BJ. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System. PLANT PHYSIOLOGY 2017; 173:2010-2028. [PMID: 28202596 PMCID: PMC5373057 DOI: 10.1104/pp.16.01732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/08/2017] [Indexed: 05/06/2023]
Abstract
We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Blotting, Western
- Carbon Dioxide/metabolism
- Fatty Acid Synthase, Type II/genetics
- Fatty Acid Synthase, Type II/metabolism
- Fatty Acid Synthases/genetics
- Fatty Acid Synthases/metabolism
- Gene Expression Regulation, Plant
- Glycolates/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Metabolomics/methods
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/ultrastructure
- Mutation
- Myristic Acids/metabolism
- Plants, Genetically Modified
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Sequence Homology, Amino Acid
- Sucrose/metabolism
Collapse
Affiliation(s)
- Xin Guan
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Yozo Okazaki
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Andrew Lithio
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Ling Li
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Xuefeng Zhao
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Huanan Jin
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Dan Nettleton
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Kazuki Saito
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics, and Molecular Biology (X.G., H.J., B.J.N.), National Science Foundation Engineering Research Center for Biorenewable Chemicals (X.G., B.J.N.), Department of Statistics (A.L., D.N.), Department of Genetics, Development, and Cellular Biology (L.L.), Laurence H. Baker Center for Bioinformatics and Biological Statistics (X.Z.), and Center for Metabolic Biology (B.J.N.), Iowa State University, Ames, Iowa 50011;
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan (Y.O., K.S.); and
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan (K.S.)
| |
Collapse
|
81
|
Anderson MS, Muff TJ, Georgianna DR, Mayfield SP. Towards a synthetic nuclear transcription system in green algae: Characterization of Chlamydomonas reinhardtii nuclear transcription factors and identification of targeted promoters. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
82
|
Yin Z, Balmant K, Geng S, Zhu N, Zhang T, Dufresne C, Dai S, Chen S. Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:58. [PMID: 28184230 PMCID: PMC5266719 DOI: 10.3389/fpls.2017.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/10/2017] [Indexed: 05/12/2023]
Abstract
Climate change as a result of increasing atmospheric CO2 affects plant growth and productivity. CO2 is not only a carbon donor for photosynthesis but also an environmental signal that can perturb cellular redox homeostasis and lead to modifications of redox-sensitive proteins. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, protein redox modifications and how they function in plant CO2 response remain unclear. Here a new iodoTMTRAQ proteomics technology was employed to analyze changes in protein redox modifications in Arabidopsis thaliana suspension cells in response to bicarbonate (mimic of elevated CO2) in a time-course study. A total of 47 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, transport, ROS scavenging, cell structure modulation and protein turnover. This inventory of previously unknown redox responsive proteins in Arabidopsis bicarbonate responses lays a foundation for future research toward understanding the molecular mechanisms underlying plant CO2 responses.
Collapse
Affiliation(s)
- Zepeng Yin
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Alkali Soil Natural Environmental Science Center, Ministry of Education, Northeast Forestry UniversityHarbin, China
| | - Kelly Balmant
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sisi Geng
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ning Zhu
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
| | | | - Shaojun Dai
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Alkali Soil Natural Environmental Science Center, Ministry of Education, Northeast Forestry UniversityHarbin, China
- *Correspondence: Shaojun Dai
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Sixue Chen
| |
Collapse
|
83
|
Jin S, Sun J, Wunder T, Tang D, Cousins AB, Sze SK, Mueller-Cajar O, Gao YG. Structural insights into the LCIB protein family reveals a new group of β-carbonic anhydrases. Proc Natl Acad Sci U S A 2016; 113:14716-14721. [PMID: 27911826 PMCID: PMC5187666 DOI: 10.1073/pnas.1616294113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aquatic microalgae have evolved diverse CO2-concentrating mechanisms (CCMs) to saturate the carboxylase with its substrate, to compensate for the slow kinetics and competing oxygenation reaction of the key photosynthetic CO2-fixing enzyme rubisco. The limiting CO2-inducible B protein (LCIB) is known to be essential for CCM function in Chlamydomonas reinhardtii To assign a function to this previously uncharacterized protein family, we purified and characterized a phylogenetically diverse set of LCIB homologs. Three of the six homologs are functional carbonic anhydrases (CAs). We determined the crystal structures of LCIB and limiting CO2-inducible C protein (LCIC) from C. reinhardtii and a CA-functional homolog from Phaeodactylum tricornutum, all of which harbor motifs bearing close resemblance to the active site of canonical β-CAs. Our results identify the LCIB family as a previously unidentified group of β-CAs, and provide a biochemical foundation for their function in the microalgal CCMs.
Collapse
Affiliation(s)
- Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Jian Sun
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Tobias Wunder
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Desong Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- School of Agriculture and Food Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99163
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551;
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| |
Collapse
|
84
|
Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa SI, Tokutsu R, Takahashi Y, Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:12586-12591. [PMID: 27791081 PMCID: PMC5098658 DOI: 10.1073/pnas.1606519113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic activity in CO2-limiting conditions by sensing environmental CO2 and light availability. Previously, a novel high-CO2-requiring mutant, H82, defective in the induction of the CCM, was isolated. A homolog of calcium (Ca2+)-binding protein CAS, originally found in Arabidopsis thaliana, was disrupted in H82 cells. Although Arabidopsis CAS is reported to be associated with stomatal closure or immune responses via a chloroplast-mediated retrograde signal, the relationship between a Ca2+ signal and the CCM associated with the function of CAS in an aquatic environment is still unclear. In this study, the introduction of an intact CAS gene into H82 cells restored photosynthetic affinity for inorganic carbon, and RNA-seq analyses revealed that CAS could function in maintaining the expression levels of nuclear-encoded CO2-limiting-inducible genes, including the HCO3- transporters high-light activated 3 (HLA3) and low-CO2-inducible gene A (LCIA). CAS changed its localization from dispersed across the thylakoid membrane in high-CO2 conditions or in the dark to being associated with tubule-like structures in the pyrenoid in CO2-limiting conditions, along with a significant increase of the fluorescent signals of the Ca2+ indicator in the pyrenoid. Chlamydomonas CAS had Ca2+-binding activity, and the perturbation of intracellular Ca2+ homeostasis by a Ca2+-chelator or calmodulin antagonist impaired the accumulation of HLA3 and LCIA. These results suggest that Chlamydomonas CAS is a Ca2+-mediated regulator of CCM-related genes via a retrograde signal from the pyrenoid in the chloroplast to the nucleus.
Collapse
Affiliation(s)
- Lianyong Wang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shunsuke Takane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
85
|
Misra BB, Yin Z, Geng S, de Armas E, Chen S. Metabolomic Responses of Arabidopsis Suspension Cells to Bicarbonate under Light and Dark Conditions. Sci Rep 2016; 6:35778. [PMID: 27762345 PMCID: PMC5071901 DOI: 10.1038/srep35778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/05/2016] [Indexed: 11/25/2022] Open
Abstract
Global CO2 level presently recorded at 400 ppm is expected to reach 550 ppm in 2050, an increment likely to impact plant growth and productivity. Using targeted LC-MS and GC-MS platforms we quantified 229 and 29 metabolites, respectively in a time-course study to reveal short-term responses to different concentrations (1, 3, and 10 mM) of bicarbonate (HCO3−) under light and dark conditions. Results indicate that HCO3− treatment responsive metabolomic changes depend on the HCO3− concentration, time of treatment, and light/dark. Interestingly, 3 mM HCO3− concentration treatment induced more significantly changed metabolites than either lower or higher concentrations used. Flavonoid biosynthesis and glutathione metabolism were common to both light and dark-mediated responses in addition to showing concentration-dependent changes. Our metabolomics results provide insights into short-term plant cellular responses to elevated HCO3− concentrations as a result of ambient increases in CO2 under light and dark.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Zepeng Yin
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.,Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | - Sisi Geng
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Evaldo de Armas
- Training Institute, Thermo Fisher Scientific, 1400 North point Parkway, Ste 10., West Palm Beach, FL 33407, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.,Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
86
|
Transcriptome-based global analysis of gene expression in response to carbon dioxide deprivation in the green algae Chlorella pyrenoidosa. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
87
|
Meyer MT, McCormick AJ, Griffiths H. Will an algal CO2-concentrating mechanism work in higher plants? CURRENT OPINION IN PLANT BIOLOGY 2016; 31:181-8. [PMID: 27194106 DOI: 10.1016/j.pbi.2016.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/17/2016] [Accepted: 04/21/2016] [Indexed: 05/19/2023]
Abstract
Many algae use a biophysical carbon concentrating mechanism for active accumulation and retention of inorganic carbon within chloroplasts, with CO2 fixation by RuBisCO within a micro-compartment, the pyrenoid. Engineering such mechanisms into higher plant chloroplasts is a possible route to augment RuBisCO operating efficiency and photosynthetic rates. Significant progress has been made recently in characterising key algal transporters and identifying factors responsible for the aggregation of RuBisCO into the pyrenoid. Several transporters have now also been successfully incorporated into higher plant chloroplasts. Consistent with the predictions from modelling, regulation of higher plant plastidic carbonic anhydrases and some form of RuBisCO aggregation will be needed before the mechanism delivers potential benefits. Key research priorities include a better understanding of the regulation of the algal carbon concentrating mechanism, advancing the fundamental characterisation of known components, evaluating whether higher plant chloroplasts can accommodate a pyrenoid, and, ultimately, testing transgenic lines under realistic growth conditions.
Collapse
Affiliation(s)
- Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, CB2 3EA, UK.
| |
Collapse
|
88
|
Transcriptome profiling of the microalga Chlorella pyrenoidosa in response to different carbon dioxide concentrations. Mar Genomics 2016; 29:81-87. [PMID: 27209568 DOI: 10.1016/j.margen.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/21/2022]
Abstract
To enrich our knowledge of carbon dioxide (CO2)-concentrating mechanism (CCM) in eukaryotic algae, we used high-throughput sequencing to investigate the transcriptome profiling of the microalga Chlorella pyrenoidosa (Chlorophyta) response to different CO2 levels. Altogether, 53.86 million (M) and 62.10M clean short reads of 100 nucleotides (nt) were generated from this microalga cultured at 4-fold air CO2 (control) and air CO2 concentrations by Illumina sequencing. A total of 32,662 unigenes were assembled from the two pooled samples. With an E-value cut-off of 1e-5, 9590, 6782, 5954, and 9092 unigenes were annotated in NR, Gene Ontology (GO), Eukaryotic Cluster of Orthologous Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. After screening, 51 differentially expressed unigenes were up-regulated and 8 were down-regulated in the air CO2 group, relative to the control. The transcript levels of eight differentially expressed unigenes were validated by real-time quantitative PCR, which manifested that thioredoxin-like protein, laminin subunit beta-1, and chlorophyll a/b binding protein might be associated with the utilization of inorganic carbon at low CO2 levels.
Collapse
|
89
|
Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM, Sage RF, Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2963-76. [PMID: 26931168 DOI: 10.1093/jxb/erw063] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration and oxygenic photosynthesis are intimately linked processes. It has been shown that under the present day atmospheric conditions cyanobacteria and all eukaryotic phototrophs need functional photorespiration to grow autotrophically. The question arises as to when this essential partnership evolved, i.e. can we assume a coevolution of both processes from the beginning or did photorespiration evolve later to compensate for the generation of 2-phosphoglycolate (2PG) due to Rubisco's oxygenase reaction? This question is mainly discussed here using phylogenetic analysis of proteins involved in the 2PG metabolism and the acquisition of different carbon concentrating mechanisms (CCMs). The phylogenies revealed that the enzymes involved in the photorespiration of vascular plants have diverse origins, with some proteins acquired from cyanobacteria as ancestors of the chloroplasts and others from heterotrophic bacteria as ancestors of mitochondria in the plant cell. Only phosphoglycolate phosphatase was found to originate from Archaea. Notably glaucophyte algae, the earliest branching lineage of Archaeplastida, contain more photorespiratory enzymes of cyanobacterial origin than other algal lineages or land plants indicating a larger initial contribution of cyanobacterial-derived proteins to eukaryotic photorespiration. The acquisition of CCMs is discussed as a proxy for assessing the timing of periods when photorespiratory activity may have been enhanced. The existence of CCMs also had marked influence on the structure and function of photorespiration. Here, we discuss evidence for an early and continuous coevolution of photorespiration, CCMs and photosynthesis starting from cyanobacteria via algae, to land plants.
Collapse
Affiliation(s)
- Martin Hagemann
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Ramona Kern
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| | - Veronica G Maurino
- University of Düsseldorf, Institute of Developmental and Molecular Biology of Plants and Biotechnology, Cluster of Excellence on Plant Science (CEPLAS), Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Rowan F Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Hermann Bauwe
- Universität Rostock, Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, A.- Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
90
|
Rademacher N, Kern R, Fujiwara T, Mettler-Altmann T, Miyagishima SY, Hagemann M, Eisenhut M, Weber APM. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3165-75. [PMID: 26994474 PMCID: PMC4867895 DOI: 10.1093/jxb/erw118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photorespiration is essential for all organisms performing oxygenic photosynthesis. The evolution of photorespiratory metabolism began among cyanobacteria and led to a highly compartmented pathway in plants. A molecular understanding of photorespiration in eukaryotic algae, such as glaucophytes, rhodophytes, and chlorophytes, is essential to unravel the evolution of this pathway. However, mechanistic detail of the photorespiratory pathway in red algae is scarce. The unicellular red alga Cyanidioschyzon merolae represents a model for the red lineage. Its genome is fully sequenced, and tools for targeted gene engineering are available. To study the function and importance of photorespiration in red algae, we chose glycolate oxidase (GOX) as the target. GOX catalyses the conversion of glycolate into glyoxylate, while hydrogen peroxide is generated as a side-product. The function of the candidate GOX from C. merolae was verified by the fact that recombinant GOX preferred glycolate over L-lactate as a substrate. Yellow fluorescent protein-GOX fusion proteins showed that GOX is targeted to peroxisomes in C. merolae The GOX knockout mutant lines showed a high-carbon-requiring phenotype with decreased growth and reduced photosynthetic activity compared to the wild type under ambient air conditions. Metabolite analyses revealed glycolate and glycine accumulation in the mutant cells after a shift from high CO2 conditions to ambient air. In summary, or results demonstrate that photorespiratory metabolism is essential for red algae. The use of a peroxisomal GOX points to a high photorespiratory flux as an ancestral feature of all photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Nadine Rademacher
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ramona Kern
- University Rostock, Department Plant Physiology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Takayuki Fujiwara
- Division of Symbiosis and Cell Evolution, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Shin-Ya Miyagishima
- Division of Symbiosis and Cell Evolution, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Shizuoka, Japan Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Martin Hagemann
- University Rostock, Department Plant Physiology, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
91
|
Atkinson N, Feike D, Mackinder LCM, Meyer MT, Griffiths H, Jonikas MC, Smith AM, McCormick AJ. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1302-15. [PMID: 26538195 PMCID: PMC5102585 DOI: 10.1111/pbi.12497] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 05/13/2023]
Abstract
Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that enhance photosynthetic efficiency and thus permit high growth rates at low CO2 concentrations. They are thus an attractive option for improving productivity in higher plants. In this study, the intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas reinhardtii were confirmed. When expressed in tobacco, all of these components except chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2 proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3, membrane location and Ci transport capacity were confirmed by heterologous expression and H(14) CO3 (-) uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in growth comparable with that of wild-type plants. We conclude that CCM components from Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and retargeted to appropriate locations in higher plant cells. As expression of individual Ci transporters did not enhance Arabidopsis growth, stacking of further CCM components will probably be required to achieve a significant increase in photosynthetic efficiency in this species.
Collapse
Affiliation(s)
- Nicky Atkinson
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Doreen Feike
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Luke C M Mackinder
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Moritz T Meyer
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Alison M Smith
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
92
|
Scranton MA, Ostrand JT, Georgianna DR, Lofgren SM, Li D, Ellis RC, Carruthers DN, Dräger A, Masica DL, Mayfield SP. Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
93
|
Winck FV, Melo DOP, Riaño-Pachón DM, Martins MCM, Caldana C, Barrios AFG. Analysis of Sensitive CO2 Pathways and Genes Related to Carbon Uptake and Accumulation in Chlamydomonas reinhardtii through Genomic Scale Modeling and Experimental Validation. FRONTIERS IN PLANT SCIENCE 2016; 7:43. [PMID: 26904035 PMCID: PMC4746324 DOI: 10.3389/fpls.2016.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/11/2016] [Indexed: 05/25/2023]
Abstract
The development of microalgae sustainable applications needs better understanding of microalgae biology. Moreover, how cells coordinate their metabolism toward biomass accumulation is not fully understood. In this present study, flux balance analysis (FBA) was performed to identify sensitive metabolic pathways of Chlamydomonas reinhardtii under varied CO2 inputs. The metabolic network model of Chlamydomonas was updated based on the genome annotation data and sensitivity analysis revealed CO2 sensitive reactions. Biological experiments were performed with cells cultivated at 0.04% (air), 2.5, 5, 8, and 10% CO2 concentration under controlled conditions and cell growth profiles and biomass content were measured. Pigments, lipids, proteins, and starch were further quantified for the reference low (0.04%) and high (10%) CO2 conditions. The expression level of candidate genes of sensitive reactions was measured and validated by quantitative real time PCR. The sensitive analysis revealed mitochondrial compartment as the major affected by changes on the CO2 concentrations and glycolysis/gluconeogenesis, glyoxylate, and dicarboxylate metabolism among the affected metabolic pathways. Genes coding for glycerate kinase (GLYK), glycine cleavage system, H-protein (GCSH), NAD-dependent malate dehydrogenase (MDH3), low-CO2 inducible protein A (LCIA), carbonic anhydrase 5 (CAH5), E1 component, alpha subunit (PDC3), dual function alcohol dehydrogenase/acetaldehyde dehydrogenase (ADH1), and phosphoglucomutase (GPM2), were defined, among other genes, as sensitive nodes in the metabolic network simulations. These genes were experimentally responsive to the changes in the carbon fluxes in the system. We performed metabolomics analysis using mass spectrometry validating the modulation of carbon dioxide responsive pathways and metabolites. The changes on CO2 levels mostly affected the metabolism of amino acids found in the photorespiration pathway. Our updated metabolic network was compared to previous model and it showed more consistent results once considering the experimental data. Possible roles of the sensitive pathways in the biomass metabolism are discussed.
Collapse
Affiliation(s)
- Flavia V. Winck
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los AndesBogotá, Colombia
| | - David O. Páez Melo
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los AndesBogotá, Colombia
| | - Diego M. Riaño-Pachón
- Group of Computational and Evolutionary Biology, Department of Biological Sciences, Universidad de los AndesBogotá, Colombia
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and MaterialsCampinas, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and MaterialsCampinas, Brazil
- Max Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and MaterialsCampinas, Brazil
| | - Andrés F. González Barrios
- Grupo de Diseño de Productos y Procesos, Department of Chemical Engineering, Universidad de los AndesBogotá, Colombia
| |
Collapse
|
94
|
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:367-87. [PMID: 26764374 PMCID: PMC4790863 DOI: 10.1105/tpc.15.00465] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Spencer S Gang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Nina Ivanova
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Rebecca Yue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Jacob M Robertson
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Paul A Lefebvre
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
95
|
Choi HI, Kim JYH, Kwak HS, Sung YJ, Sim SJ. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. BIOMICROFLUIDICS 2016; 10:014121. [PMID: 26958101 PMCID: PMC4769253 DOI: 10.1063/1.4942756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/12/2016] [Indexed: 05/24/2023]
Abstract
There is a growing interest in the photosynthetic carbon fixation by microalgae for the production of valuable products from carbon dioxide (CO2). Microalgae are capable of transporting bicarbonate (HCO3 (-)), the most abundant form of inorganic carbon species in the water, as a source of CO2 for photosynthesis. Despite the importance of HCO3 (-) as the carbon source, little is known about the chemotactic response of microalgae to HCO3 (-). Here, we showed the chemotaxis of a model alga, Chlamydomonas reinhardtii, towards HCO3 (-) using an agarose gel-based microfluidic device with a flow-free and stable chemical gradient during the entire assay period. The device was validated by analyzing the chemotactic responses of C. reinhardtii to the previously known chemoattractants (NH4Cl and CoCl2) and chemotactically neutral molecule (NaCl). We found that C. reinhardtii exhibited the strongest chemotactic response to bicarbonate at the concentration of 26 mM in a microfluidic device. The chemotactic response to bicarbonate showed a circadian rhythm with a peak during the dark period and a valley during the light period. We also observed the changes in the chemotaxis to bicarbonate by an inhibitor of bicarbonate transporters and a mutation in CIA5, a transcriptional regulator of carbon concentrating mechanism, indicating the relationship between chemotaxis to bicarbonate and inorganic carbon metabolism in C. reinhardtii. To the best of our knowledge, this is the first report of the chemotaxis of C. reinhardtii towards HCO3 (-), which contributes to the understanding of the physiological role of the chemotaxis to bicarbonate and its relevance to inorganic carbon utilization.
Collapse
Affiliation(s)
- Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Jaoon Young Hwan Kim
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Ho Seok Kwak
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University , Seoul 136-713, South Korea
| | | |
Collapse
|
96
|
Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate. PLoS One 2015; 10:e0144206. [PMID: 26641455 PMCID: PMC4671721 DOI: 10.1371/journal.pone.0144206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023] Open
Abstract
Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.
Collapse
|
97
|
Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M. Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle. PLANT PHYSIOLOGY 2015; 169:2730-43. [PMID: 26450704 PMCID: PMC4677889 DOI: 10.1104/pp.15.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 05/02/2023]
Abstract
The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages. Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions. We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.
Collapse
Affiliation(s)
- David Lopez
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Takashi Hamaji
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Janette Kropat
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Peter De Hoff
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Marco Morselli
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Liudmilla Rubbi
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sorel Fitz-Gibbon
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sean D Gallaher
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sabeeha S Merchant
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - James Umen
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Matteo Pellegrini
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| |
Collapse
|
98
|
Zones JM, Blaby IK, Merchant SS, Umen JG. High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation. THE PLANT CELL 2015; 27:2743-69. [PMID: 26432862 PMCID: PMC4682324 DOI: 10.1105/tpc.15.00498] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expression in Chlamydomonas. Over 80% of the measured transcriptome was expressed with strong periodicity, forming 18 major clusters. Genes associated with complex structures and processes, including cell cycle control, flagella and basal bodies, ribosome biogenesis, and energy metabolism, all had distinct signatures of coexpression with strong predictive value for assigning and temporally ordering function. Importantly, the frequent sampling regime allowed us to discern meaningful fine-scale phase differences between and within subgroups of genes and enabled the identification of a transiently expressed cluster of light stress genes. Coexpression was further used both as a data-mining tool to classify and/or validate genes from other data sets related to the cell cycle and to flagella and basal bodies and to assign isoforms of duplicated enzymes to their cognate pathways of central carbon metabolism. Our diurnal coexpression data capture functional relationships established by dozens of prior studies and are a valuable new resource for investigating a variety of biological processes in Chlamydomonas and other eukaryotes.
Collapse
Affiliation(s)
- James Matt Zones
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Ian K Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
99
|
Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2015; 112:7315-20. [PMID: 26015566 PMCID: PMC4466737 DOI: 10.1073/pnas.1501659112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The supply of inorganic carbon (Ci; CO2 and HCO3 (-)) is an environmental rate-limiting factor in aquatic photosynthetic organisms. To overcome the difficulty in acquiring Ci in limiting-CO2 conditions, an active Ci uptake system called the CO2-concentrating mechanism (CCM) is induced to increase CO2 concentrations in the chloroplast stroma. An ATP-binding cassette transporter, HLA3, and a formate/nitrite transporter homolog, LCIA, are reported to be associated with HCO3 (-) uptake [Wang and Spalding (2014) Plant Physiol 166(4):2040-2050]. However, direct evidence of the route of HCO3 (-) uptake from the outside of cells to the chloroplast stroma remains elusive owing to a lack of information on HLA3 localization and comparative analyses of the contribution of HLA3 and LCIA to the CCM. In this study, we revealed that HLA3 and LCIA are localized to the plasma membrane and chloroplast envelope, respectively. Insertion mutants of HLA3 and/or LCIA showed decreased Ci affinities/accumulation, especially in alkaline conditions where HCO3 (-) is the predominant form of Ci. HLA3 and LCIA formed protein complexes independently, and the absence of LCIA decreased HLA3 mRNA accumulation, suggesting the presence of unidentified retrograde signals from the chloroplast to the nucleus to maintain HLA3 mRNA expression. Furthermore, although single overexpression of HLA3 or LCIA in high CO2 conditions did not affect Ci affinity, simultaneous overexpression of HLA3 with LCIA significantly increased Ci affinity/accumulation. These results highlight the HLA3/LCIA-driven cooperative uptake of HCO3 (-) and a key role of LCIA in the maintenance of HLA3 stability as well as Ci affinity/accumulation in the CCM.
Collapse
|
100
|
Zheng Y, Giordano M, Gao K. The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3(-) and CO2 availability. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:18-26. [PMID: 25899727 DOI: 10.1016/j.jplph.2015.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 11/18/2014] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Increasing atmospheric pCO2 and its dissolution into oceans leads to ocean acidification and warming, which reduces the thickness of upper mixing layer (UML) and upward nutrient supply from deeper layers. These events may alter the nutritional conditions and the light regime to which primary producers are exposed in the UML. In order to better understand the physiology behind the responses to the concomitant climate changes factors, we examined the impact of light fluctuation on the dinoflagellate Prorocentrum micans grown at low (1 μmol L(-1)) or high (800 μmol L(-1)) [NO3(-)] and at high (1000 μatm) or low (390 μatm, ambient) pCO2. The light regimes to which the algal cells were subjected were (1) constant light at a photon flux density (PFD) of either 100 (C100) or 500 (C500) μmol m(-2) s(-1) or (2) fluctuating light between 100 or 500 μmol photons m(-2) s(-1) with a frequency of either 15 (F15) or 60 (F60) min. Under continuous light, the initial portion of the light phase required the concomitant presence of high CO2 and NO3(-) concentrations for maximum growth. After exposure to light for 3h, high CO2 exerted a negative effect on growth and effective quantum yield of photosystem II (F'(v)/F'(m)). Fluctuating light ameliorated growth in the first period of illumination. In the second 3h of treatment, higher frequency (F15) of fluctuations afforded high growth rates, whereas the F60 treatment had detrimental consequences, especially when NO3(-) concentration was lower. F'(v)/F'(m) respondent differently from growth to fluctuating light: the fluorescence yield was always lower than at continuous light at 100 μmol m(-2) s(-1), and always higher at 500 μmol m(-2) s(-1). Our data show that the impact of atmospheric pCO2 increase on primary production of dinoflagellate depends on the availability of nitrate and the irradiance (intensity and the frequency of irradiance fluctuations) to which the cells are exposed. The impact of global change on oceanic primary producers would therefore be different in waters with different chemical and physical (mixing) properties.
Collapse
Affiliation(s)
- Ying Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Institute of Microbiology ASCR, Algatech, Trebon 37981, Czech Republic
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|