51
|
Zubatyuk R, Biczysko M, Ranasinghe K, Moriarty NW, Gokcan H, Kruse H, Poon BK, Adams PD, Waller MP, Roitberg AE, Isayev O, Afonine PV. AQuaRef: Machine learning accelerated quantum refinement of protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604493. [PMID: 39071315 PMCID: PMC11275739 DOI: 10.1101/2024.07.21.604493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical restraints, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions relying solely on nonbonded repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. We present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 neural network potential mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data.
Collapse
Affiliation(s)
- Roman Zubatyuk
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Malgorzata Biczysko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Nigel W. Moriarty
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Hatice Gokcan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Billy K. Poon
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Paul D. Adams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Pavel V. Afonine
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| |
Collapse
|
52
|
Yu Y, Xu F, Zhao W, Thoma C, Che S, Richman JE, Jin B, Zhu Y, Xing Y, Wackett L, Men Y. Electron bifurcation and fluoride efflux systems implicated in defluorination of perfluorinated unsaturated carboxylic acids by Acetobacterium spp. SCIENCE ADVANCES 2024; 10:eado2957. [PMID: 39018407 PMCID: PMC466959 DOI: 10.1126/sciadv.ado2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions. A comparison of defluorination activities among several Acetobacterium species indicated that a functional fluoride exporter was required for the detoxification of the released fluoride. Results from both in vivo inhibition tests and in silico enzyme modeling suggested the involvement of enzymes of the flavin-based electron-bifurcating caffeate reduction pathway [caffeoyl-CoA reductase (CarABCDE)] in the reductive defluorination. This is a report on specific microorganisms carrying out enzymatic reductive defluorination of PFAS, which could be linked to electron-bifurcating reductases that are environmentally widespread.
Collapse
Affiliation(s)
- Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Weiyang Zhao
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Calvin Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Shun Che
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Jack E. Richman
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Bosen Jin
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Yiwen Zhu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Yue Xing
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Lawrence Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, MN 55108, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
53
|
Li Y, Trinh CH, Acevedo-Jake A, Gimenez D, Warriner SL, Wilson AJ. Biophysical and structural analyses of the interaction between the SHANK1 PDZ domain and an internal SLiM. Biochem J 2024; 481:945-955. [PMID: 38899489 PMCID: PMC11346428 DOI: 10.1042/bcj20240126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
The PDZ (Postsynaptic density protein-95[PSD-95]/Discs-large) domain, prevalent as a recognition module, has attracted significant attention given its ability to specifically recognize ligands with consensus motifs (also termed PDZ binding motifs [PBMs]). PBMs typically bear a C-terminal carboxylate as a recognition handle and have been extensively characterized, whilst internal ligands are less well known. Here we characterize a short linear motif (SLiM) - EESTSFQGP - as an internal PBM based on its strong binding affinity towards the SHANK1 PDZ domain (SHANK1656-762 hereafter referred to as SHANK1). Using the acetylated analogue Ac-EESTSFQGP-CONH2 as a competitor for the interaction of SHANK1 with FAM-Ahx-EESTSFQGP-CONH2 or a typical fluorophore-labelled C-terminal PBM - GKAP - FITC-Ahx-EAQTRL-COOH - the internal SLiM was demonstrated to show comparable low-micromolar IC50 by competition fluorescent anisotropy. To gain further insight into the internal ligand interaction at the molecular level, we obtained the X-ray co-crystal structure of the Ac-EESTSFQGP-CONH2/SHANK1 complex and compared this to the Ac-EAQTRL-COOH/SHANK1 complex. The crystallographic studies reveal that the SHANK1 backbones for the two interactions overlap significantly. The main structural differences were shown to result from the flexible loops which reorganize to accommodate the two PBMs with distinct lengths and terminal groups. In addition, the two C-terminal residues Gly and Pro in Ac-EESTSFQGP-CONH2 were shown not to participate in interaction with the target protein, implying further truncation and structural modification using peptidomimetic approaches on this sequence may be feasible. Taken together, the SLiM Ac-EESTSFQGP-CONH2 holds potential as an internal ligand for targeting SHANK1.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Amanda Acevedo-Jake
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Diana Gimenez
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Stuart L. Warriner
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Andrew J. Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
54
|
Ghafoori SM, Sethi A, Petersen GF, Tanipour MH, Gooley PR, Forwood JK. RNA Binding Properties of SOX Family Members. Cells 2024; 13:1202. [PMID: 39056784 PMCID: PMC11274882 DOI: 10.3390/cells13141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
SOX proteins are a family of transcription factors (TFs) that play critical functions in sex determination, neurogenesis, and chondrocyte differentiation, as well as cardiac, vascular, and lymphatic development. There are 20 SOX family members in humans, each sharing a 79-residue L-shaped high mobility group (HMG)-box domain that is responsible for DNA binding. SOX2 was recently shown to interact with long non-coding RNA and large-intergenic non-coding RNA to regulate embryonic stem cell and neuronal differentiation. The RNA binding region was shown to reside within the HMG-box domain; however, the structural details of this binding remain unclear. Here, we show that all SOX family members, except group H, interact with RNA. Our mutational experiments demonstrate that the disordered C-terminal region of the HMG-box domain plays an important role in RNA binding. Further, by determining a high-resolution structure of the HMG-box domain of the group H family member SOX30, we show that despite differences in RNA binding ability, SOX30 shares a very similar secondary structure with other SOX protein HMG-box domains. Together, our study provides insight into the interaction of SOX TFs with RNA.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Ashish Sethi
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
- Australian Nuclear Science Technology Organisation, The Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Gayle F. Petersen
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Mohammad Hossein Tanipour
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
| | - Paul R. Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; (A.S.); (M.H.T.); (P.R.G.)
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| |
Collapse
|
55
|
Palmer N, Agnew C, Benn C, Buffham WJ, Castro JN, Chessari G, Clark M, Cons BD, Coyle JE, Dawson LA, Hamlett CCF, Hodson C, Holding F, Johnson CN, Liebeschuetz JW, Mahajan P, McCarthy JM, Murray CW, O'Reilly M, Peakman T, Price A, Rapti M, Reeks J, Schöpf P, St-Denis JD, Valenzano C, Wallis NG, Walser R, Weir H, Wilsher NE, Woodhead A, Bento CF, Tisi D. Fragment-Based Discovery of a Series of Allosteric-Binding Site Modulators of β-Glucocerebrosidase. J Med Chem 2024; 67:11168-11181. [PMID: 38932616 DOI: 10.1021/acs.jmedchem.4c00702] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
β-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.
Collapse
Affiliation(s)
- Nick Palmer
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher Agnew
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Caroline Benn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - William J Buffham
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joan N Castro
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Mellissa Clark
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Benjamin D Cons
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Joseph E Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Lee A Dawson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | | | - Charlotte Hodson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Finn Holding
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher N Johnson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - John W Liebeschuetz
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Pravin Mahajan
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - James M McCarthy
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Christopher W Murray
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Marc O'Reilly
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Amanda Price
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Magdalini Rapti
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Judith Reeks
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Patrick Schöpf
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Jeffrey D St-Denis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Chiara Valenzano
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola G Wallis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Reto Walser
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Heather Weir
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Nicola E Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Andrew Woodhead
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Carla F Bento
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| | - Dominic Tisi
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
56
|
Lawson CL, Kryshtafovych A, Pintilie GD, Burley SK, Černý J, Chen VB, Emsley P, Gobbi A, Joachimiak A, Noreng S, Prisant MG, Read RJ, Richardson JS, Rohou AL, Schneider B, Sellers BD, Shao C, Sourial E, Williams CI, Williams CJ, Yang Y, Abbaraju V, Afonine PV, Baker ML, Bond PS, Blundell TL, Burnley T, Campbell A, Cao R, Cheng J, Chojnowski G, Cowtan KD, DiMaio F, Esmaeeli R, Giri N, Grubmüller H, Hoh SW, Hou J, Hryc CF, Hunte C, Igaev M, Joseph AP, Kao WC, Kihara D, Kumar D, Lang L, Lin S, Maddhuri Venkata Subramaniya SR, Mittal S, Mondal A, Moriarty NW, Muenks A, Murshudov GN, Nicholls RA, Olek M, Palmer CM, Perez A, Pohjolainen E, Pothula KR, Rowley CN, Sarkar D, Schäfer LU, Schlicksup CJ, Schröder GF, Shekhar M, Si D, Singharoy A, Sobolev OV, Terashi G, Vaiana AC, Vedithi SC, Verburgt J, Wang X, Warshamanage R, Winn MD, Weyand S, Yamashita K, Zhao M, Schmid MF, Berman HM, Chiu W. Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge. Nat Methods 2024; 21:1340-1348. [PMID: 38918604 PMCID: PMC11526832 DOI: 10.1038/s41592-024-02321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.
Collapse
Affiliation(s)
- Catherine L Lawson
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | | - Grigore D Pintilie
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Stephen K Burley
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- RCSB Protein Data Bank and San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Vincent B Chen
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Gobbi
- Discovery Chemistry, Genentech Inc., San Francisco, CA, USA
- , Berlin, Germany
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sigrid Noreng
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Protein Science, Septerna, South San Francisco, CA, USA
| | | | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Alexis L Rohou
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Benjamin D Sellers
- Discovery Chemistry, Genentech Inc., San Francisco, CA, USA
- Computational Chemistry, Vilya, South San Francisco, CA, USA
| | - Chenghua Shao
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | - Ying Yang
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Venkat Abbaraju
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pavel V Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Arthur Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | | | - K D Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nabin Giri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
| | - Corey F Hryc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnel P Joseph
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Lijun Lang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
- The Chinese University of Hong Kong, Hong Kong, China
| | - Sean Lin
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Sumit Mittal
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muenks
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Mateusz Olek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Colin M Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Emmi Pohjolainen
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karunakar R Pothula
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- MSU-DOE Plant Research Laboratory, East Lansing, MI, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Luisa U Schäfer
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Christopher J Schlicksup
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dong Si
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Oleg V Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Andrea C Vaiana
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Nature's Toolbox (NTx), Rio Rancho, NM, USA
| | | | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | | | - Martyn D Winn
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Michael F Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Wah Chiu
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
57
|
Yang Y, Xu L, Zhang S, Yao L, Ding Y, Li W, Chen X. Structural studies of WDR5 in complex with MBD3C WIN motif reveal a unique binding mode. J Biol Chem 2024; 300:107468. [PMID: 38876301 PMCID: PMC11261779 DOI: 10.1016/j.jbc.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex plays a pivotal role in chromatin regulation and transcriptional repression. In mice, methyl-CpG binding domain 3 isoform C (MBD3C) interacts specifically with the histone H3 binding protein WD repeat-containing protein 5 (WDR5) and forms the WDR5-MBD3C/Norde complex. Despite the functional significance of this interaction on embryonic stem cell gene regulation, the molecular mechanism underlying MBD3C recognition by WDR5 remains elusive. Here, we determined the crystal structure of WDR5 in complex with the peptide (residues 40-51) derived from the MBD3C protein at a resolution of 1.9 Å. Structural analysis revealed that MBD3C utilizes a unique binding mode to interact with WDR5, wherein MBD3C Arg43 and Phe47 are involved in recognizing the WDR5-interacting (WIN) site and Tyr191-related B site on the small surface of WDR5, respectively. Notably, the binding induces a ∼91° rotation of WDR5 Tyr191, generating the hydrophobic B site. Furthermore, mutation experiments combined with isothermal titration calorimetry (ITC) assays confirmed the importance of both Arg43 and Phe47 in mediating WDR5 binding affinity. By determining structures of various peptides bound to WDR5, we demonstrated that the WDR5 WIN site and B site can be concurrently recognized by WIN motif peptides containing ''Arg-Cies/Ser-Arg-Val-Phe'' consensus sequence. Overall, this study reveals the structural basis for the formation of the WDR5-MBD3C subcomplex and provides new insights into the recognition mode of WDR5 for the WIN motif. Moreover, these findings shed light on structural-based designs of WDR5-targeted anti-cancer small molecule inhibitors or peptide-mimic drugs.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei, Anhui, China.
| | - Li Xu
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China.
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Liangrui Yao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yuqing Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenwen Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
58
|
Krajczy P, Meyners C, Repity ML, Hausch F. Structure-Based Design of Ultrapotent Tricyclic Ligands for FK506-Binding Proteins. Chemistry 2024:e202401405. [PMID: 38837733 DOI: 10.1002/chem.202401405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Access to small, rigid, and sp3-rich molecules is a major limitation in the drug discovery for challenging protein targets. FK506-binding proteins hold high potential as drug targets or enablers of molecular glues but are fastidious in the chemotypes accepted as ligands. We here report an enantioselective synthesis of a highly rigidified pipecolate-mimicking tricyclic scaffold that precisely positions functional groups for interacting with FKBPs. This was enabled by a 14-step gram-scale synthesis featuring anodic oxidation, stereospecific vinylation, and N-acyl iminium cyclization. Structure-based optimization resulted in the discovery of FKBP inhibitors with picomolar biochemical and subnanomolar cellular activity that represent the most potent FKBP ligands known to date.
Collapse
Affiliation(s)
- Patryk Krajczy
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Maximilian L Repity
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Peter-Grünberg-Straße 4, Darmstadt, 64287, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, 64283, Germany
| |
Collapse
|
59
|
Kita A, Ishida Y, Shimosaka T, Michimori Y, Makarova K, Koonin E, Atomi H, Miki K. Crystal structure of GTP-dependent dephospho-coenzyme A kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis. Proteins 2024; 92:768-775. [PMID: 38235908 DOI: 10.1002/prot.26666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/17/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.
Collapse
Affiliation(s)
- Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Yuna Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takahiro Shimosaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kira Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, USA
| | - Eugene Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, USA
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
60
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
61
|
Subas Satish HP, Iyer S, Shi MX, Wong AW, Fischer KC, Wardak AZ, Lio D, Brouwer JM, Uren RT, Czabotar PE, Miller MS, Kluck RM. A novel inhibitory BAK antibody enables assessment of non-activated BAK in cancer cells. Cell Death Differ 2024; 31:711-721. [PMID: 38582955 PMCID: PMC11164899 DOI: 10.1038/s41418-024-01289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.
Collapse
Affiliation(s)
- Hema Preethi Subas Satish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sweta Iyer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melissa X Shi
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Agnes W Wong
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Karla C Fischer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daisy Lio
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel T Uren
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michelle S Miller
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Ruth M Kluck
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
62
|
Useini A, Schwerin IK, Künze G, Sträter N. Structural Studies on the Binding Mode of Bisphenols to PPARγ. Biomolecules 2024; 14:640. [PMID: 38927044 PMCID: PMC11202036 DOI: 10.3390/biom14060640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and bisphenol B (BPB) are widely used in the production of plastics, and their potential adverse health effects, particularly on endocrine disruption and metabolic health, have raised concern. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a pivotal role in metabolic regulation and adipogenesis, making it a target of interest in understanding the development of obesity and associated health impacts. In this study, we employ X-ray crystallography and molecular dynamics (MD) simulations to study the interaction of PPARγ with BPA and BPB. Crystallographic structures reveal the binding of BPA and BPB to the ligand binding domain of PPARγ, next to C285, where binding of partial agonists as well as antagonists and inverse agonists of PPARγ signaling has been previously observed. However, no interaction of BPA and BPB with Y437 in the activation function 2 site is observed, showing that these ligands cannot stabilize the active conformation of helix 12 directly. Furthermore, free energy analyses of the MD simulations revealed that I341 has a large energetic contribution to the BPA and BPB binding modes characterized in this study.
Collapse
Affiliation(s)
- Abibe Useini
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| | - Inken Kaja Schwerin
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany;
| | - Georg Künze
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany;
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, 04105 Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| |
Collapse
|
63
|
Koller TO, Berger MJ, Morici M, Paternoga H, Bulatov T, Di Stasi A, Dang T, Mainz A, Raulf K, Crowe-McAuliffe C, Scocchi M, Mardirossian M, Beckert B, Vázquez-Laslop N, Mankin A, Süssmuth RD, Wilson DN. Paenilamicins from the honey bee pathogen Paenibacillus larvae are context-specific translocation inhibitors of protein synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595107. [PMID: 38826346 PMCID: PMC11142091 DOI: 10.1101/2024.05.21.595107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The paenilamicins are a group of hybrid non-ribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here, we have determined structures of the paenilamicin PamB2 stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site tRNAs. In addition to providing a precise description of interactions of PamB2 with the ribosome, the structures also rationalize the resistance mechanisms utilized by P. larvae. We could further demonstrate that PamB2 interferes with the translocation of mRNA and tRNAs through the ribosome during translation elongation, and that this inhibitory activity is influenced by the presence of modifications at position 37 of the A-site tRNA. Collectively, our study defines the paenilamicins as a new class of context-specific translocation inhibitors.
Collapse
Affiliation(s)
- Timm O. Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Max J. Berger
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Timur Bulatov
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tam Dang
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | - Karoline Raulf
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Nora Vázquez-Laslop
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | - Alexander Mankin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
64
|
Chinellato M, Perin S, Carli A, Lastella L, Biondi B, Borsato G, Di Giorgio E, Brancolini C, Cendron L, Angelini A. Folding of Class IIa HDAC Derived Peptides into α-helices Upon Binding to Myocyte Enhancer Factor-2 in Complex with DNA. J Mol Biol 2024; 436:168541. [PMID: 38492719 DOI: 10.1016/j.jmb.2024.168541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Interaction of transcription factor myocyte enhancer factor-2 (MEF2) family members with class IIa histone deacetylases (HDACs) has been implicated in a wide variety of diseases. Though considerable knowledge on this topic has been accumulated over the years, a high resolution and detailed analysis of the binding mode of multiple class IIa HDAC derived peptides with MEF2D is still lacking. To fulfil this gap, we report here the crystal structure of MEF2D in complex with double strand DNA and four different class IIa HDAC derived peptides, namely HDAC4, HDAC5, HDAC7 and HDAC9. All class IIa HDAC derived peptides form extended amphipathic α-helix structures that fit snugly in the hydrophobic groove of MEF2D domain. Binding mode of class IIa HDAC derived peptides to MEF2D is very similar and occur primarily through nonpolar interactions mediated by highly conserved branched hydrophobic amino acids. Further studies revealed that class IIa HDAC derived peptides are unstructured in solution and appear to adopt a folded α-helix structure only upon binding to MEF2D. Comparison of our peptide-protein complexes with previously characterized structures of MEF2 bound to different co-activators and co-repressors, highlighted both differences and similarities, and revealed the adaptability of MEF2 in protein-protein interactions. The elucidation of the three-dimensional structure of MEF2D in complex with multiple class IIa HDAC derived peptides provide not only a better understanding of the molecular basis of their interactions but also have implications for the development of novel antagonist.
Collapse
Affiliation(s)
- Monica Chinellato
- Department of Biology, University of Padua, Via U. Bassi 58, 35131 Padova, Italy
| | - Stefano Perin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Alberto Carli
- Department of Biology, University of Padua, Via U. Bassi 58, 35131 Padova, Italy
| | - Luana Lastella
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
| | - Giuseppe Borsato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Eros Di Giorgio
- Department of Medicine, Università Degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università Degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Laura Cendron
- Department of Biology, University of Padua, Via U. Bassi 58, 35131 Padova, Italy.
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy.
| |
Collapse
|
65
|
Burmeister WP, Boutin L, Balestra AC, Gröger H, Ballandras-Colas A, Hutin S, Kraft C, Grimm C, Böttcher B, Fischer U, Tarbouriech N, Iseni F. Structure and flexibility of the DNA polymerase holoenzyme of vaccinia virus. PLoS Pathog 2024; 20:e1011652. [PMID: 38768256 PMCID: PMC11142717 DOI: 10.1371/journal.ppat.1011652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/31/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.
Collapse
Affiliation(s)
- Wim P. Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Laetitia Boutin
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Aurelia C. Balestra
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Henri Gröger
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Allison Ballandras-Colas
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | | | | | | | - Utz Fischer
- Biozentrum, Universität Würzburg, Würzburg, Germany
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes (UGA), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Frédéric Iseni
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| |
Collapse
|
66
|
Lithgo RM, Tomlinson CWE, Fairhead M, Winokan M, Thompson W, Wild C, Aschenbrenner JC, Balcomb BH, Marples PG, Chandran AV, Golding M, Koekemoer L, Williams EP, Wang S, Ni X, MacLean E, Giroud C, Godoy AS, Xavier MA, Walsh M, Fearon D, von Delft F. Crystallographic Fragment Screen of Coxsackievirus A16 2A Protease identifies new opportunities for the development of broad-spectrum anti-enterovirals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591684. [PMID: 38746446 PMCID: PMC11092469 DOI: 10.1101/2024.04.29.591684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Enteroviruses are the causative agents of paediatric hand-foot-and-mouth disease, and a target for pandemic preparedness due to the risk of higher order complications in a large-scale outbreak. The 2A protease of these viruses is responsible for the self-cleavage of the poly protein, allowing for correct folding and assembly of capsid proteins in the final stages of viral replication. These 2A proteases are highly conserved between Enterovirus species, such as Enterovirus A71 and Coxsackievirus A16 . Inhibition of the 2A protease deranges capsid folding and assembly, preventing formation of mature virions in host cells and making the protease a valuable target for antiviral activity. Herein, we describe a crystallographic fragment screening campaign that identified 75 fragments which bind to the 2A protease including 38 unique compounds shown to bind within the active site. These fragments reveal a path for the development of non-peptidomimetic inhibitors of the 2A protease with broad-spectrum anti-enteroviral activity.
Collapse
|
67
|
Dutta A, Kanaujia SP. The Structural Features of MlaD Illuminate its Unique Ligand-Transporting Mechanism and Ancestry. Protein J 2024; 43:298-315. [PMID: 38347327 DOI: 10.1007/s10930-023-10179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 05/01/2024]
Abstract
The membrane-associated solute-binding protein (SBP) MlaD of the maintenance of lipid asymmetry (Mla) system has been reported to help the transport of phospholipids (PLs) between the outer and inner membranes of Gram-negative bacteria. Despite the availability of structural information, the molecular mechanism underlying the transport of PLs and the ancestry of the protein MlaD remain unclear. In this study, we report the crystal structures of the periplasmic region of MlaD from Escherichia coli (EcMlaD) at a resolution range of 2.3-3.2 Å. The EcMlaD protomer consists of two distinct regions, viz. N-terminal β-barrel fold consisting of seven strands (referred to as MlaD domain) and C-terminal α-helical domain (HD). The protein EcMlaD oligomerizes to give rise to a homo-hexameric ring with a central channel that is hydrophobic and continuous with a variable diameter. Interestingly, the structural analysis revealed that the HD, instead of the MlaD domain, plays a critical role in determining the oligomeric state of the protein. Based on the analysis of available structural information, we propose a working mechanism of PL transport, viz. "asymmetric protomer movement (APM)". Wherein half of the EcMlaD hexamer would rise in the periplasmic side along with an outward movement of pore loops, resulting in the change of the central channel geometry. Furthermore, this study highlights that, unlike typical SBPs, EcMlaD possesses a fold similar to EF/AMT-type beta(6)-barrel and a unique ancestry. Altogether, the findings firmly establish EcMlaD to be a non-canonical SBP with a unique ligand-transport mechanism.
Collapse
Affiliation(s)
- Angshu Dutta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
68
|
Zhang S, Jeffreys LN, Poddar H, Yu Y, Liu C, Patel K, Johannissen LO, Zhu L, Cliff MJ, Yan C, Schirò G, Weik M, Sakuma M, Levy CW, Leys D, Heyes DJ, Scrutton NS. Photocobilins integrate B 12 and bilin photochemistry for enzyme control. Nat Commun 2024; 15:2740. [PMID: 38548733 PMCID: PMC10979010 DOI: 10.1038/s41467-024-46995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.
Collapse
Affiliation(s)
- Shaowei Zhang
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China.
| | - Laura N Jeffreys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Harshwardhan Poddar
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yuqi Yu
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Kaylee Patel
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, China
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Cunyu Yan
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044, Grenoble, France
| | - Michiyo Sakuma
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Colin W Levy
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
69
|
Yang Z, Johnson BA, Meliopoulos VA, Ju X, Zhang P, Hughes MP, Wu J, Koreski KP, Clary JE, Chang TC, Wu G, Hixon J, Duffner J, Wong K, Lemieux R, Lokugamage KG, Alvarado RE, Crocquet-Valdes PA, Walker DH, Plante KS, Plante JA, Weaver SC, Kim HJ, Meyers R, Schultz-Cherry S, Ding Q, Menachery VD, Taylor JP. Interaction between host G3BP and viral nucleocapsid protein regulates SARS-CoV-2 replication and pathogenicity. Cell Rep 2024; 43:113965. [PMID: 38492217 PMCID: PMC11044841 DOI: 10.1016/j.celrep.2024.113965] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.
Collapse
Affiliation(s)
- Zemin Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bryan A Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Peipei Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinjun Wu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaitlin P Koreski
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jemma E Clary
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - R Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
70
|
Morici M, Gabrielli S, Fujiwara K, Paternoga H, Beckert B, Bock LV, Chiba S, Wilson DN. RAPP-containing arrest peptides induce translational stalling by short circuiting the ribosomal peptidyltransferase activity. Nat Commun 2024; 15:2432. [PMID: 38503735 PMCID: PMC10951233 DOI: 10.1038/s41467-024-46761-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024] Open
Abstract
Arrest peptides containing RAPP (ArgAlaProPro) motifs have been discovered in both Gram-positive and Gram-negative bacteria, where they are thought to regulate expression of important protein localization machinery components. Here we determine cryo-EM structures of ribosomes stalled on RAPP arrest motifs in both Bacillus subtilis and Escherichia coli. Together with molecular dynamics simulations, our structures reveal that the RAPP motifs allow full accommodation of the A-site tRNA, but prevent the subsequent peptide bond from forming. Our data support a model where the RAP in the P-site interacts and stabilizes a single hydrogen atom on the Pro-tRNA in the A-site, thereby preventing an optimal geometry for the nucleophilic attack required for peptide bond formation to occur. This mechanism to short circuit the ribosomal peptidyltransferase activity is likely to operate for the majority of other RAPP-like arrest peptides found across diverse bacterial phylogenies.
Collapse
Affiliation(s)
- Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
71
|
Gersteuer F, Morici M, Gabrielli S, Fujiwara K, Safdari HA, Paternoga H, Bock LV, Chiba S, Wilson DN. The SecM arrest peptide traps a pre-peptide bond formation state of the ribosome. Nat Commun 2024; 15:2431. [PMID: 38503753 PMCID: PMC10951299 DOI: 10.1038/s41467-024-46762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Nascent polypeptide chains can induce translational stalling to regulate gene expression. This is exemplified by the E. coli secretion monitor (SecM) arrest peptide that induces translational stalling to regulate expression of the downstream encoded SecA, an ATPase that co-operates with the SecYEG translocon to facilitate insertion of proteins into or through the cytoplasmic membrane. Here we present the structure of a ribosome stalled during translation of the full-length E. coli SecM arrest peptide at 2.0 Å resolution. The structure reveals that SecM arrests translation by stabilizing the Pro-tRNA in the A-site, but in a manner that prevents peptide bond formation with the SecM-peptidyl-tRNA in the P-site. By employing molecular dynamic simulations, we also provide insight into how a pulling force on the SecM nascent chain can relieve the SecM-mediated translation arrest. Collectively, the mechanisms determined here for SecM arrest and relief are also likely to be applicable for a variety of other arrest peptides that regulate components of the protein localization machinery identified across a wide range of bacteria lineages.
Collapse
Affiliation(s)
- Felix Gersteuer
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Sara Gabrielli
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Haaris A Safdari
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences and Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| |
Collapse
|
72
|
Lin C, Mazor Y, Reppert M. Feeling the Strain: Quantifying Ligand Deformation in Photosynthesis. J Phys Chem B 2024; 128:2266-2280. [PMID: 38442033 DOI: 10.1021/acs.jpcb.3c06488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Structural distortion of protein-bound ligands can play a critical role in enzyme function by tuning the electronic and chemical properties of the ligand molecule. However, quantifying these effects is difficult due to the limited resolution of protein structures and the difficulty of generating accurate structural restraints for nonprotein ligands. Here, we seek to quantify these effects through a statistical analysis of ligand distortion in chlorophyll proteins (CP), where ring deformation is thought to play a role in energy and electron transfer. To assess the accuracy of ring-deformation estimates from available structural data, we take advantage of the C2 symmetry of photosystem II (PSII), comparing ring-deformation estimates for equivalent sites both within and between 113 distinct X-ray and cryogenic electron microscopy PSII structures. Significantly, we find that several deformation modes exhibit considerable variability in predictions, even for equivalent monomers, down to a 2 Å resolution, to an extent that probably prevents their utilization in optical calculations. We further find that refinement restraints play a critical role in determining deformation values to resolution as low as 2 Å. However, for those modes that are well-resolved in the structural data, ring deformation in PSII is strongly conserved across all species tested from cyanobacteria to algae. These results highlight both the opportunities and limitations inherent in structure-based analyses of the bioenergetic and optical properties of CPs and other protein-ligand complexes.
Collapse
Affiliation(s)
- Chientzu Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, United States
| | - Yuval Mazor
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, United States
| |
Collapse
|
73
|
Aitkenhead H, Riedel C, Cowieson N, Rümenapf HT, Stuart DI, El Omari K. Structural comparison of typical and atypical E2 pestivirus glycoproteins. Structure 2024; 32:273-281.e4. [PMID: 38176409 DOI: 10.1016/j.str.2023.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed β-hairpin reported to be involved in host receptor binding. Functional analysis of this β-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.
Collapse
Affiliation(s)
- Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Hans Tillmann Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - David I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK.
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK.
| |
Collapse
|
74
|
Wachino JI, Jin W, Norizuki C, Kimura K, Tsuji M, Kurosaki H, Arakawa Y. Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in Enterobacterales. Microbiol Spectr 2024; 12:e0234423. [PMID: 38315122 PMCID: PMC10913484 DOI: 10.1128/spectrum.02344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
Metallo-β-lactamases (MBLs) represent one of the main causes of carbapenem resistance in the order Enterobacterales. To combat MBL-producing carbapenem-resistant Enterobacterales, the development of MBL inhibitors can restore carbapenem efficacy for such resistant bacteria. Microbial natural products are a promising source of attractive seed compounds for the development of antimicrobial agents. Here, we report that hydroxyhexylitaconic acids (HHIAs) produced by a member of the genus Aspergillus can suppress carbapenem resistance conferred by MBLs, particularly IMP (imipenemase)-type MBLs. HHIAs were found to be competitive inhibitors with micromolar orders of magnitude against IMP-1 and showed weak inhibitory activity toward VIM-2, while no inhibitory activity against NDM-1 was observed despite the high dosage. The elongated methylene chains of HHIAs seem to play a crucial role in exerting inhibitory activity because itaconic acid, a structural analog without long methylene chains, did not show inhibitory activity against IMP-1. The addition of HHIAs restored meropenem and imipenem efficacy to satisfactory clinical levels against IMP-type MBL-producing Escherichia coli and Klebsiella pneumoniae clinical isolates. Unlike EDTA and Aspergillomarasmine A, HHIAs did not cause the loss of zinc ions from the active site, resulting in the structural instability of MBLs. X-ray crystallography and in silico docking simulation analyses revealed that two neighboring carboxylates of HHIAs coordinated with two zinc ions in the active sites of VIM-2 and IMP-1, which formed a key interaction observed in MBL inhibitors. Our results indicated that HHIAs are promising for initiating the design of potent inhibitors of IMP-type MBLs.IMPORTANCEThe number and type of metallo-β-lactamase (MΒL) are increasing over time. Carbapenem resistance conferred by MΒL is a significant threat to our antibiotic regimen, and the development of MΒL inhibitors is urgently required to restore carbapenem efficacy. Microbial natural products have served as important sources for developing antimicrobial agents targeting pathogenic bacteria since the discovery of antibiotics in the mid-20th century. MΒL inhibitors derived from microbial natural products are still rare compared to those derived from chemical compound libraries. Hydroxyhexylitaconic acids (HHIAs) produced by members of the genus Aspergillus have potent inhibitory activity against clinically relevant IMP-type MBL. HHIAs may be good lead compounds for the development of MBL inhibitors applicable for controlling carbapenem resistance in IMP-type MBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Jun-ichi Wachino
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, Nagoya, Aichi, Japan
| | - Chihiro Norizuki
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | - Yoshichika Arakawa
- Department of Medical Technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Aichi, Japan
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
75
|
Freibaum BD, Messing J, Nakamura H, Yurtsever U, Wu J, Kim HJ, Hixon J, Lemieux RM, Duffner J, Huynh W, Wong K, White M, Lee C, Meyers RE, Parker R, Taylor JP. Identification of small molecule inhibitors of G3BP-driven stress granule formation. J Cell Biol 2024; 223:e202308083. [PMID: 38284934 PMCID: PMC10824102 DOI: 10.1083/jcb.202308083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the RNA-binding proteins G3BP1/2. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting the co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress and dissolve pre-existing stress granules. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent powerful tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.
Collapse
Affiliation(s)
- Brian D. Freibaum
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - James Messing
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Haruko Nakamura
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ugur Yurtsever
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jinjun Wu
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
76
|
Chykunova Y, Plewka J, Wilk P, Torzyk K, Sienczyk M, Dubin G, Pyrc K. Autoinhibition of suicidal capsid protease from O'nyong'nyong virus. Int J Biol Macromol 2024; 262:130136. [PMID: 38354926 DOI: 10.1016/j.ijbiomac.2024.130136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Alphaviruses pose a significant threat to public health. Capsid protein encoded in the alphaviral genomes constitutes an interesting therapy target, as it also serves as a protease (CP). Remarkably, it undergoes autoproteolysis, leading to the generation of the C-terminal tryptophan that localizes to the active pocket, deactivating the enzyme. Lack of activity hampers the viral replication cycle, as the virus is not capable of producing the infectious progeny. We investigated the structure and function of the CP encoded in the genome of O'nyong'nyong virus (ONNV), which has instigated outbreaks in Africa. Our research provides a high-resolution crystal structure of the ONNV CP in its active state and evaluates the enzyme's activity. Furthermore, we demonstrated a dose-dependent reduction in ONNV CP proteolytic activity when exposed to indole, suggesting that tryptophan analogs may be a promising basis for developing small molecule inhibitors. It's noteworthy that the capsid protease plays an essential role in virus assembly, binding viral glycoproteins through its glycoprotein-binding hydrophobic pocket. We showed that non-aromatic cyclic compounds like dioxane disrupt this vital interaction. Our findings provide deeper insights into ONNV's biology, and we believe they will prove instrumental in guiding the development of antiviral strategies against arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Yuliya Chykunova
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jacek Plewka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Wilk
- Structural Biology Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Karolina Torzyk
- Wroclaw University of Science and Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Sienczyk
- Wroclaw University of Science and Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
77
|
Beck IN, Arrowsmith TJ, Grobbelaar MJ, Bromley EC, Marles-Wright J, Blower TR. Toxin release by conditional remodelling of ParDE1 from Mycobacterium tuberculosis leads to gyrase inhibition. Nucleic Acids Res 2024; 52:1909-1929. [PMID: 38113275 PMCID: PMC10899793 DOI: 10.1093/nar/gkad1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a growing threat to global health, with recent efforts towards its eradication being reversed in the wake of the COVID-19 pandemic. Increasing resistance to gyrase-targeting second-line fluoroquinolone antibiotics indicates the necessity to develop both novel therapeutics and our understanding of M. tuberculosis growth during infection. ParDE toxin-antitoxin systems also target gyrase and are regulated in response to both host-associated and drug-induced stress during infection. Here, we present microbiological, biochemical, structural, and biophysical analyses exploring the ParDE1 and ParDE2 systems of M. tuberculosis H37Rv. The structures reveal conserved modes of toxin-antitoxin recognition, with complex-specific interactions. ParDE1 forms a novel heterohexameric ParDE complex, supported by antitoxin chains taking on two distinct folds. Curiously, ParDE1 exists in solution as a dynamic equilibrium between heterotetrameric and heterohexameric complexes. Conditional remodelling into higher order complexes can be thermally driven in vitro. Remodelling induces toxin release, tracked through concomitant inhibition and poisoning of gyrase activity. Our work aids our understanding of gyrase inhibition, allowing wider exploration of toxin-antitoxin systems as inspiration for potential therapeutic agents.
Collapse
Affiliation(s)
- Izaak N Beck
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | - Jon Marles-Wright
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
78
|
Corum MR, Venkannagari H, Hryc CF, Baker ML. Predictive modeling and cryo-EM: A synergistic approach to modeling macromolecular structure. Biophys J 2024; 123:435-450. [PMID: 38268190 PMCID: PMC10912932 DOI: 10.1016/j.bpj.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Over the last 15 years, structural biology has seen unprecedented development and improvement in two areas: electron cryo-microscopy (cryo-EM) and predictive modeling. Once relegated to low resolutions, single-particle cryo-EM is now capable of achieving near-atomic resolutions of a wide variety of macromolecular complexes. Ushered in by AlphaFold, machine learning has powered the current generation of predictive modeling tools, which can accurately and reliably predict models for proteins and some complexes directly from the sequence alone. Although they offer new opportunities individually, there is an inherent synergy between these techniques, allowing for the construction of large, complex macromolecular models. Here, we give a brief overview of these approaches in addition to illustrating works that combine these techniques for model building. These examples provide insight into model building, assessment, and limitations when integrating predictive modeling with cryo-EM density maps. Together, these approaches offer the potential to greatly accelerate the generation of macromolecular structural insights, particularly when coupled with experimental data.
Collapse
Affiliation(s)
- Michael R Corum
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Harikanth Venkannagari
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Corey F Hryc
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas.
| |
Collapse
|
79
|
Lien Y, Lachowicz JC, Mendauletova A, Zizola C, Ngendahimana T, Kostenko A, Eaton SS, Latham JA, Grove TL. Structural, Biochemical, and Bioinformatic Basis for Identifying Radical SAM Cyclopropyl Synthases. ACS Chem Biol 2024; 19:370-379. [PMID: 38295270 PMCID: PMC10878394 DOI: 10.1021/acschembio.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
The importance of radical S-adenosyl-l-methionine (RS) enzymes in the maturation of ribosomally synthesized and post-translationally modified peptides (RiPPs) continues to expand, specifically for the RS-SPASM subfamily. We recently discovered an RS-SPASM enzyme that installs a carbon-carbon bond between the geminal methyls of valine residues, resulting in the formation of cyclopropylglycine (CPG). Here, we sought to define the family of cyclopropyl (CP) synthases because of the importance of cyclopropane scaffolds in pharmaceutical development. Using RadicalSAM.org, we bioinformatically expanded the family of CP synthases and assigned unique peptide sequences to each subclade. We identified a unique RiPP biosynthetic pathway that encodes a precursor peptide, TigB, with a repeating TIGSVS motif. Using LCMS and NMR techniques, we show that the RS enzyme associated with the pathway, TigE, catalyzes the formation of a methyl-CPG from the conserved isoleucine residing in the repeating motif of TigB. Furthermore, we obtained a crystal structure of TigE, which reveals an unusual tyrosyl ligation to the auxiliary I [4Fe-4S] cluster, provided by a glycine-tyrosine-tryptophan motif unique to all CP synthases. Further, we show that this unique tyrosyl ligation is absolutely required for TigE activity. Together, our results provide insight into how CP synthases perform this unique reaction.
Collapse
Affiliation(s)
- Yi Lien
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Jake C. Lachowicz
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Aigera Mendauletova
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Cynthia Zizola
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Thacien Ngendahimana
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Anastasiia Kostenko
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Sandra S. Eaton
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - John A. Latham
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
80
|
Defois M, Josselin B, Brindeau P, Krämer A, Knapp S, Anizon F, Giraud F, Ruchaud S, Moreau P. Synthesis and biological evaluation of 1H-pyrrolo[3,2-g]isoquinolines. Bioorg Med Chem 2024; 100:117619. [PMID: 38320389 DOI: 10.1016/j.bmc.2024.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
A structure-activity relationship study performed on 1H-pyrrolo[3,2-g]isoquinoline scaffold identified new haspin inhibitors with nanomolar potencies and selectivity indices (SI) over 6 (inhibitory potency evaluated against 8 protein kinases). Compound 22 was the most active of the series (haspin IC50 = 76 nM). Cellular evaluation of 22 confirmed its activity for endogenous haspin in U-2 OS cells and its anti-proliferative activity against various cell lines. In addition, the binding mode of analog 22 in complex with haspin was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Mathilde Defois
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Béatrice Josselin
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Brindeau
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
81
|
De Felice S, Romanyuk Z, Chinellato M, Zoia G, Linciano S, Kumada Y, Pardon E, Steyaert J, Angelini A, Cendron L. Crystal structure of human serum albumin in complex with megabody reveals unique human and murine cross-reactive binding site. Protein Sci 2024; 33:e4887. [PMID: 38152025 PMCID: PMC10804666 DOI: 10.1002/pro.4887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/22/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
The pharmacokinetic properties of small biotherapeutics can be enhanced via conjugation to cross-reactive albumin-binding ligands in a process that improves their safety and accelerates testing through multiple pre-clinical animal models. In this context, the small and stable heavy-chain-only nanobody NbAlb1, capable of binding both human and murine albumin, has recently been successfully applied to improve the stability and prolong the in vivo plasma residence time of multiple small therapeutic candidates. Despite its clinical efficacy, the mechanism of cross-reactivity of NbAlb1 between human and murine serum albumins has not yet been investigated. To unveil the molecular basis of such an interaction, we solved the crystal structure of human serum albumin (hSA) in complex with NbAlb1. The structure was obtained by harnessing the unique features of a megabody chimeric protein, comprising NbAlb1 grafted onto a modified version of the circularly permutated and bacterial-derived protein HopQ. This structure showed that NbAlb1 contacts a yet unexplored binding site located in the peripheral region of domain II that is conserved in both human and mouse serum albumin proteins. Furthermore, we show that the binding of NbAlb1 to both serum albumin proteins is retained even at acidic pH levels, thus explaining its extended in vivo half-life. The elucidation of the molecular basis of NbAlb1 cross-reactivity to human and murine albumins might guide the design of novel nanobodies with broader reactivity toward a larger panel of serum albumins, thus facilitating the pre-clinical and clinical phases in humans.
Collapse
Affiliation(s)
| | - Zhanna Romanyuk
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVeniceItaly
| | | | - Giulia Zoia
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVeniceItaly
| | - Sara Linciano
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVeniceItaly
| | - Yoichi Kumada
- Department of Functional Chemistry and EngineeringKyoto Institute of TechnologyKyotoJapan
| | - Els Pardon
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Jan Steyaert
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Alessandro Angelini
- Department of Molecular Sciences and NanosystemsCa’ Foscari University of VeniceVeniceItaly
- European Centre for Living Technology (ECLT), Ca’ BottacinVeniceItaly
| | | |
Collapse
|
82
|
Krahn N, Zhang J, Melnikov SV, Tharp JM, Villa A, Patel A, Howard R, Gabir H, Patel T, Stetefeld J, Puglisi J, Söll D. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Nucleic Acids Res 2024; 52:513-524. [PMID: 38100361 PMCID: PMC10810272 DOI: 10.1093/nar/gkad1188] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).
Collapse
Affiliation(s)
- Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jingji Zhang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Alessandra Villa
- PDC-Center for High Performance Computing, KTH-Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rebecca J Howard
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE-171 65, Sweden
| | - Haben Gabir
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Joseph Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
83
|
Varming AK, Huang Z, Hamad GM, Rasmussen KK, Ingmer H, Kilstrup M, Lo Leggio L. CI:Mor interactions in the lysogeny switches of Lactococcus lactis TP901-1 and Staphylococcus aureus φ13 bacteriophages. MICROBIOME RESEARCH REPORTS 2024; 3:15. [PMID: 38841409 PMCID: PMC11149083 DOI: 10.20517/mrr.2023.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 06/07/2024]
Abstract
Aim: To structurally characterize in detail the interactions between the phage repressor (CI) and the antirepressor (Mor) in the lysis-lysogeny switches of two Gram-positive bacteriophages, the lactococcal TP901-1 and staphylococcal φ13. Methods: We use crystallographic structure determination, computational structural modeling, and analysis, as well as biochemical methods, to elucidate similarities and differences in the CI:Mor interactions for the two genetic switches. Results: By comparing a newly determined and other available crystal structures for the N-terminal domain of CI (CI-NTD), we show that the CI interface involved in Mor binding undergoes structural changes upon binding in TP901-1. Most importantly, we show experimentally for the first time the direct interaction between CI and Mor for φ13, and model computationally the interaction interface. The computational modeling supports similar side chain rearrangements in TP901-1 and φ13. Conclusion: This study ascertains experimentally that, like in the TP901-1 lysogeny switch, staphylococcal φ13 CI and Mor interact with each other. The structural basis of the interaction of φ13 CI and Mor was computationally modeled and is similar to the interaction demonstrated experimentally between TP901-1 CI-NTD and Mor, likely involving similar rearrangement of residue side chains during the formation of the complex. The study identifies one CI residue, Glu69, which unusually interacts primarily through its aliphatic chain with an aromatic residue on Mor after changing its conformation compared to the un-complexed structure. This and other residues at the interface are suggested for investigation in future studies.
Collapse
Affiliation(s)
- Anders K. Varming
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Zhiyu Huang
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Ghofran M. Hamad
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kim K. Rasmussen
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg DK-1870, Denmark
| | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
84
|
Mikhailovskii O, Izmailov SA, Xue Y, Case DA, Skrynnikov NR. X-ray Crystallography Module in MD Simulation Program Amber 2023. Refining the Models of Protein Crystals. J Chem Inf Model 2024; 64:18-25. [PMID: 38147516 DOI: 10.1021/acs.jcim.3c01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The MD simulation package Amber offers an attractive platform to refine crystallographic structures of proteins: (i) state-of-the-art force fields help to regularize protein coordinates and reconstruct the poorly diffracting elements of the structure, such as flexible loops; (ii) MD simulations restrained by the experimental diffraction data provide an effective strategy to optimize structural models of protein crystals, including explicitly modeled interstitial solvent as well as crystal contacts. Here, we present the new crystallography module xray, released as a part of the Amber 2023 package. This module contains functions to calculate and scale structure factors (including the contributions from bulk solvent), evaluate the maximum-likelihood-type crystallographic potential, and compute its derivative forces. The X-ray functionality of Amber no longer relies on external dependencies so that the full advantage of GPU acceleration can be taken. This makes it possible to refine in a short time hundreds of crystal models, including supercell models comprised of multiple unit cells. The new automated Amber-based refinement procedure leads to an appreciable improvement in Rfree (in some cases, by as much as 0.067) as well as MolProbity scores.
Collapse
Affiliation(s)
- Oleg Mikhailovskii
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yi Xue
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
85
|
Wang S, Klein SO, Urban S, Staudt M, Barthes NPF, Willmann D, Bacher J, Sum M, Bauer H, Peng L, Rennar GA, Gratzke C, Schüle KM, Zhang L, Einsle O, Greschik H, MacLeod C, Thomson CG, Jung M, Metzger E, Schüle R. Structure-guided design of a selective inhibitor of the methyltransferase KMT9 with cellular activity. Nat Commun 2024; 15:43. [PMID: 38167811 PMCID: PMC10762027 DOI: 10.1038/s41467-023-44243-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Inhibition of epigenetic regulators by small molecules is an attractive strategy for cancer treatment. Recently, we characterised the role of lysine methyltransferase 9 (KMT9) in prostate, lung, and colon cancer. Our observation that the enzymatic activity was required for tumour cell proliferation identified KMT9 as a potential therapeutic target. Here, we report the development of a potent and selective KMT9 inhibitor (compound 4, KMI169) with cellular activity through structure-based drug design. KMI169 functions as a bi-substrate inhibitor targeting the SAM and substrate binding pockets of KMT9 and exhibits high potency, selectivity, and cellular target engagement. KMT9 inhibition selectively downregulates target genes involved in cell cycle regulation and impairs proliferation of tumours cells including castration- and enzalutamide-resistant prostate cancer cells. KMI169 represents a valuable tool to probe cellular KMT9 functions and paves the way for the development of clinical candidate inhibitors as therapeutic options to treat malignancies such as therapy-resistant prostate cancer.
Collapse
Affiliation(s)
- Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sebastian O Klein
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maximilian Staudt
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nicolas P F Barthes
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Johannes Bacher
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ling Peng
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Georg A Rennar
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Calum MacLeod
- Drug Discovery, Pharmaron UK Ltd, Hoddesdon, United Kingdom
| | | | - Manfred Jung
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.
| |
Collapse
|
86
|
Kao CF, Liu CY, Hsieh CL, Carillo KJD, Tzou DLM, Wang HC, Chang W. Structural and functional analyses of viral H2 protein of the vaccinia virus entry fusion complex. J Virol 2023; 97:e0134323. [PMID: 37975688 PMCID: PMC10734489 DOI: 10.1128/jvi.01343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Vaccinia virus infection requires virus-cell membrane fusion to complete entry during endocytosis; however, it contains a large viral fusion protein complex of 11 viral proteins that share no structure or sequence homology to all the known viral fusion proteins, including type I, II, and III fusion proteins. It is thus very challenging to investigate how the vaccinia fusion complex works to trigger membrane fusion with host cells. In this study, we crystallized the ectodomain of vaccinia H2 protein, one component of the viral fusion complex. Furthermore, we performed a series of mutational, biochemical, and molecular analyses and identified two surface loops containing 170LGYSG174 and 125RRGTGDAW132 as the A28-binding region. We also showed that residues in the N-terminal helical region (amino acids 51-90) are also important for H2 function.
Collapse
Affiliation(s)
- Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Yi Liu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Lin Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
87
|
Lee Y, Kim H, Lee E, Hahn H, Heo Y, Jang DM, Kwak K, Kim HJ, Kim HS. Structural insights into N-terminal methionine cleavage by the human mitochondrial methionine aminopeptidase, MetAP1D. Sci Rep 2023; 13:22326. [PMID: 38102161 PMCID: PMC10724148 DOI: 10.1038/s41598-023-49332-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Isozymes are enzymes that catalyze identical biological reactions, yet exhibit slight variations in structures and catalytic efficiency, which enables the precise adjustment of metabolism to fulfill the specific requirements of a particular tissue or stage of development. Methionine aminopeptidase (MetAP) isozymes function a critical role in cleaving N-terminal methionine from nascent proteins to generate functional proteins. In humans, two distinct MetAP types I and II have been identified, with type I further categorized into cytosolic (MetAP1) and mitochondrial (MetAP1D) variants. However, despite extensive structural studies on both bacterial and human cytosolic MetAPs, the structural information remains unavailable for human mitochondrial MetAP. This study was aimed to elucidate the high-resolution structures of human mitochondrial MetAP1D in its apo-, cobalt-, and methionine-bound states. Through a comprehensive analysis of the determined structures and a docking simulation model with mitochondrial substrate peptides, we present mechanistic insights into the cleavage process of the initiator methionine from mitochondrial proteins. Notably, despite the shared features at the active site between the cytosolic and mitochondrial MetAP type I isozymes, we identified distinct structural disparities within the active-site pocket primarily contributed by two specific loops that could play a role in accommodating specific substrates. These structural insights offer a basis for the further exploration of MetAP isozymes as critical players in cellular processes and potential therapeutic applications.
Collapse
Affiliation(s)
- Yeon Lee
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hayoung Kim
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
- Division of Medical Sciences, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunji Lee
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyunggu Hahn
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Yoonyoung Heo
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Dong Man Jang
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Kihyuck Kwak
- Division of Medical Sciences, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Jung Kim
- College of Pharmacy, Woosuk University, Wanju, 55338, Republic of Korea.
| | - Hyoun Sook Kim
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| |
Collapse
|
88
|
Yu Y, Xu F, Zhao W, Thoma C, Che S, Richman JE, Jin B, Zhu Y, Xing Y, Wackett L, Men Y. Electron-bifurcation and fluoride efflux systems in Acetobacterium spp. drive defluorination of perfluorinated unsaturated carboxylic acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.568471. [PMID: 38168399 PMCID: PMC10760045 DOI: 10.1101/2023.12.13.568471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Enzymatic cleavage of C-F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by Acetobacterium spp. Two critical molecular features in Acetobacterium species enabling reductive defluorination are (i) a functional fluoride efflux transporter (CrcB) and (ii) an electron-bifurcating caffeate reduction pathway (CarABCDE). The fluoride transporter was required for detoxification of released fluoride. Car enzymes were implicated in defluorination by the following evidence: (i) only Acetobacterium spp. with car genes catalyzed defluorination; (ii) caffeate and PFAS competed in vivo ; (iii) models from the X-ray structure of the electron-bifurcating reductase (CarC) positioned the PFAS substrate optimally for reductive defluorination; (iv) products identified by 19 F-NMR and high-resolution mass spectrometry were consistent with the model. Defluorination biomarkers identified here were found in wastewater treatment plant metagenomes on six continents.
Collapse
|
89
|
Kerff F, Jourdan S, Francis IM, Deflandre B, Ribeiro Monteiro S, Stulanovic N, Loria R, Rigali S. Common scab disease: structural basis of elicitor recognition in pathogenic Streptomyces species. Microbiol Spectr 2023; 11:e0197523. [PMID: 37791952 PMCID: PMC10714786 DOI: 10.1128/spectrum.01975-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Common scab is a disease caused by a few Streptomyces species that affects important root and tuber crops including potato, beet, radish, and parsnip, resulting in major economic losses worldwide. In this work, we unveiled the molecular basis of host recognition by these pathogens by solving the structure of the sugar-binding protein CebE of Streptomyces scabiei in complex with cellotriose, the main elicitor of the pathogenic lifestyle of these bacteria. We further revealed that the signaling pathway from CebE-mediated transport of cellotriose is conserved in all pathogenic species except Streptomyces ipomoeae, which causes soft rot disease in sweet potatoes. Our work also provides the structural basis of the uptake of cellobiose and cellotriose in saprophytic Streptomyces species, the first step activating the expression of the enzymatic system degrading the most abundant polysaccharide on earth, cellulose.
Collapse
Affiliation(s)
- Frédéric Kerff
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Samuel Jourdan
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University, Bakersfield, California, USA
| | - Benoit Deflandre
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Silvia Ribeiro Monteiro
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Rosemary Loria
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Sébastien Rigali
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|
90
|
Liu J, Liu G, Han X, Tao F, Xu P. Characterization of the Pro101Gln mutation that enhances the catalytic performance of T. indicus NADH-dependent d-lactate dehydrogenase. Structure 2023; 31:1616-1628.e3. [PMID: 37729918 DOI: 10.1016/j.str.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
NADH-dependent d-lactate dehydrogenases (d-LDH) are important for the industrial production of d-lactic acid. Here, we identify and characterize an improved d-lactate dehydrogenase mutant (d-LDH1) that contains the Pro101Gln mutation. The specific enzyme activities of d-LDH1 toward pyruvate and NADH are 21.8- and 11.0-fold greater compared to the wild-type enzyme. We determined the crystal structure of Apo-d-LDH1 at 2.65 Å resolution. Based on our structural analysis and docking studies, we explain the differences in activity with an altered binding conformation of NADH in d-LDH1. The role of the conserved residue Pro101 in d-LDH was further probed in site-directed mutagenesis experiments. We introduced d-LDH1 into Bacillus licheniformis yielding a d-lactic acid production of 145.9 g L-1 within 60 h at 50°C, which was three times higher than that of the wild-type enzyme. The discovery of d-LDH1 will pave the way for the efficient production of d-lactic acid by thermophilic bacteria.
Collapse
Affiliation(s)
- Jiongqin Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongquan Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
91
|
Catapano L, Long F, Yamashita K, Nicholls RA, Steiner RA, Murshudov GN. Neutron crystallographic refinement with REFMAC5 from the CCP4 suite. Acta Crystallogr D Struct Biol 2023; 79:1056-1070. [PMID: 37921806 PMCID: PMC7615533 DOI: 10.1107/s2059798323008793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Hydrogen (H) atoms are abundant in macromolecules and often play critical roles in enzyme catalysis, ligand-recognition processes and protein-protein interactions. However, their direct visualization by diffraction techniques is challenging. Macromolecular X-ray crystallography affords the localization of only the most ordered H atoms at (sub-)atomic resolution (around 1.2 Å or higher). However, many H atoms of biochemical significance remain undetectable by this method. In contrast, neutron diffraction methods enable the visualization of most H atoms, typically in the form of deuterium (2H) atoms, at much more common resolution values (better than 2.5 Å). Thus, neutron crystallography, although technically demanding, is often the method of choice when direct information on protonation states is sought. REFMAC5 from the Collaborative Computational Project No. 4 (CCP4) is a program for the refinement of macromolecular models against X-ray crystallographic and cryo-EM data. This contribution describes its extension to include the refinement of structural models obtained from neutron crystallographic data. Stereochemical restraints with accurate bond distances between H atoms and their parent atom nuclei are now part of the CCP4 Monomer Library, the source of prior chemical information used in the refinement. One new feature for neutron data analysis in REFMAC5 is refinement of the protium/deuterium (1H/2H) fraction. This parameter describes the relative 1H/2H contribution to neutron scattering for hydrogen isotopes. The newly developed REFMAC5 algorithms were tested by performing the (re-)refinement of several entries available in the PDB and of one novel structure (FutA) using either (i) neutron data only or (ii) neutron data supplemented by external restraints to a reference X-ray crystallographic structure. Re-refinement with REFMAC5 afforded models characterized by R-factor values that are consistent with, and in some cases better than, the originally deposited values. The use of external reference structure restraints during refinement has been observed to be a valuable strategy, especially for structures at medium-low resolution.
Collapse
Affiliation(s)
- Lucrezia Catapano
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Roberto A. Steiner
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
92
|
Tong X, Keung W, Arnold LD, Stevens LJ, Pruijssers AJ, Kook S, Lopatin U, Denison M, Kwong AD. Evaluation of in vitro antiviral activity of SARS-CoV-2 M pro inhibitor pomotrelvir and cross-resistance to nirmatrelvir resistance substitutions. Antimicrob Agents Chemother 2023; 67:e0084023. [PMID: 37800975 PMCID: PMC10649086 DOI: 10.1128/aac.00840-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/31/2023] [Indexed: 10/07/2023] Open
Abstract
The unprecedented scale of the COVID-19 pandemic and the rapid evolution of SARS-CoV-2 variants underscore the need for broadly active inhibitors with a high barrier to resistance. The coronavirus main protease (Mpro) is an essential cysteine protease required for viral polyprotein processing and is highly conserved across human coronaviruses. Pomotrelvir is a novel Mpro inhibitor that has recently completed a phase 2 clinical trial. In this report, we demonstrated that pomotrelvir is a potent competitive inhibitor of SARS-CoV-2 Mpro with high selectivity against human proteases. In the enzyme assay, pomotrelvir is also active against Mpro proteins derived from human coronaviruses CoV-229E, CoV-OC43, CoV-HKU1, CoV-NL63, MERS, and SARS-CoV. In cell-based SARS-CoV-2 replicon and SARS-CoV-2 infection assays, pomotrelvir has shown potent inhibitory activity and is broadly active against SARS-CoV-2 clinical isolates including Omicron variants. Many resistance substitutions of the Mpro inhibitor nirmatrelvir confer cross-resistance to pomotrelvir, consistent with the finding from our enzymatic analysis that pomotrelvir and nirmatrelvir compete for the same binding site. In a SARS-CoV-2 infection assay, pomotrelvir is additive when combined with remdesivir or molnupiravir, two nucleoside analogs targeting viral RNA synthesis. In conclusion, our results from the in vitro characterization of pomotrelvir antiviral activity support its further clinical development as an alternative COVID-19 therapeutic option.
Collapse
Affiliation(s)
- Xiao Tong
- Pardes Biosciences, Inc., Carlsbad, California, USA
| | - Walter Keung
- Pardes Biosciences, Inc., Carlsbad, California, USA
| | | | | | | | - Seunghyi Kook
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Uri Lopatin
- Pardes Biosciences, Inc., Carlsbad, California, USA
| | - Mark Denison
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann D. Kwong
- Pardes Biosciences, Inc., Carlsbad, California, USA
| |
Collapse
|
93
|
Harrison SA, Naretto A, Balakrishnan S, Perera YR, Chazin WJ. Comparative analysis of the physical properties of murine and human S100A7: Insight into why zinc piracy is mediated by human but not murine S100A7. J Biol Chem 2023; 299:105292. [PMID: 37769710 PMCID: PMC10598741 DOI: 10.1016/j.jbc.2023.105292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
S100 proteins are a subfamily of EF-hand calcium-binding proteins found primarily in vertebrate animals. They are distinguished by binding of transition metals and functioning in both the intracellular and extracellular milieu. S100A7 functions in the protection of the skin and mucous membranes and is a biomarker in inflammatory skin disease. A recent study of Neisseria gonorrhoeae infection revealed that human but not murine S100A7 could be used to evade host nutritional immunity. To understand the molecular basis for this difference, we carried out a comparative analysis of the physical and structural properties of human and murine S100A7. The X-ray crystal structure of Ca2+-loaded mouse S100A7 (mS100A7) was determined to 1.69 Å resolution, and Ca2+-induced conformational changes were assessed by NMR. Unlike human S100A7 (hS100A7), which exhibits conformational changes in response to binding of Ca2+, no significant changes in mS100A7 were detected. Dynamic light scattering, circular dichroism, and a competition chelator assay were used to compare the Zn2+ affinity and the effects of ion binding on mS100A7 versus hS100A7. Alignment of their sequences revealed a substantial difference in the C-terminal region, which is an important mediator of protein-protein interactions, suggesting a rationale for the specificity of N. gonorrhoeae for hS100A7. These data, along with more detailed analysis of S100A7 sequence conservation across different species, support the proposal that, although hS100A7 is highly conserved in many mammals, the murine protein is a distinct ortholog. Our results highlight the potential limitations of using mouse models for studying bacterial infections in humans.
Collapse
Affiliation(s)
- Simone A Harrison
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Anais Naretto
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Swati Balakrishnan
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Yasiru R Perera
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J Chazin
- Departments of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
94
|
Schmidt A, Kalms J, Lorent C, Katz S, Frielingsdorf S, Evans RM, Fritsch J, Siebert E, Teutloff C, Armstrong FA, Zebger I, Lenz O, Scheerer P. Stepwise conversion of the Cys 6[4Fe-3S] to a Cys 4[4Fe-4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase. Chem Sci 2023; 14:11105-11120. [PMID: 37860641 PMCID: PMC10583674 DOI: 10.1039/d3sc03739h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
The membrane-bound [NiFe]-hydrogenase of Cupriavidus necator is a rare example of a truly O2-tolerant hydrogenase. It catalyzes the oxidation of H2 into 2e- and 2H+ in the presence of high O2 concentrations. This characteristic trait is intimately linked to the unique Cys6[4Fe-3S] cluster located in the proximal position to the catalytic center and coordinated by six cysteine residues. Two of these cysteines play an essential role in redox-dependent cluster plasticity, which bestows the cofactor with the capacity to mediate two redox transitions at physiological potentials. Here, we investigated the individual roles of the two additional cysteines by replacing them individually as well as simultaneously with glycine. The crystal structures of the corresponding MBH variants revealed the presence of Cys5[4Fe-4S] or Cys4[4Fe-4S] clusters of different architecture. The protein X-ray crystallography results were correlated with accompanying biochemical, spectroscopic and electrochemical data. The exchanges resulted in a diminished O2 tolerance of all MBH variants, which was attributed to the fact that the modified proximal clusters mediated only one redox transition. The previously proposed O2 protection mechanism that detoxifies O2 to H2O using four protons and four electrons supplied by the cofactor infrastructure, is extended by our results, which suggest efficient shutdown of enzyme function by formation of a hydroxy ligand in the active site that protects the enzyme from O2 binding under electron-deficient conditions.
Collapse
Affiliation(s)
- Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics (CC2), Group Structural Biology of Cellular Signaling Charitéplatz 1 10117 Berlin Germany
| | - Jacqueline Kalms
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics (CC2), Group Structural Biology of Cellular Signaling Charitéplatz 1 10117 Berlin Germany
| | - Christian Lorent
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Sagie Katz
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | | | - Johannes Fritsch
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Elisabeth Siebert
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Christian Teutloff
- Department of Physics, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | | | - Ingo Zebger
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Oliver Lenz
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics (CC2), Group Structural Biology of Cellular Signaling Charitéplatz 1 10117 Berlin Germany
| |
Collapse
|
95
|
Li JD, Shen X, Xu ZL, Liang YF, Shen YD, Yang JY, Wang H. Molecular Evolution of Antiparathion Nanobody with Enhanced Sensitivity and Specificity Based on Structural Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14758-14768. [PMID: 37768036 DOI: 10.1021/acs.jafc.3c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nanobody (Nb) has gained significant attention in immunoassays owing to its numerous advantages, particularly its ease of molecular evolution. However, the limited understanding of how high sensitivity and specificity attained for antihapten Nbs hamper the development of high-performance Nbs. Herein, the antiparathion Nb (Nb9) we prepared previously was chosen as the model, and an approach based on X-ray crystallography, molecular docking, and rational site-directed saturation mutation for constructing a rapid and effective platform for nanobody evolution was described. Based on the structural analysis, two mutants, namely Nb-D5 (IC50 = 2.4 ± 0.2 ng/mL) and Nb-D12 (IC50 = 2.7 ± 0.1 ng/mL), were selected out from a six-sites directed saturation mutation library, 3.5-fold and 3.1-fold sensitivity enhancement over Nb9 to parathion, respectively. Besides, Nb-D12 exhibited improved sensitivity for quinalphos, triazophos, and coumaphos (5.4-35.4 ng/mL), indicating its broader detection potential. Overall, our study advances an effective strategy for the future rational evolution of Nbs with desirable performance.
Collapse
Affiliation(s)
- Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
96
|
Wang Q, Liu N, Deng Y, Guan Y, Xiao H, Nitka TA, Yang H, Yadav A, Vukovic L, Mathews II, Chen X, Kim CY. Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis. Nat Commun 2023; 14:6273. [PMID: 37805629 PMCID: PMC10560226 DOI: 10.1038/s41467-023-41889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Ning Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yaming Deng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yuze Guan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Hongli Xiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 95124, USA
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China.
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
97
|
Purder P, Meyners C, Sugiarto WO, Kolos J, Löhr F, Gebel J, Nehls T, Dötsch V, Lermyte F, Hausch F. Deconstructing Protein Binding of Sulfonamides and Sulfonamide Analogues. JACS AU 2023; 3:2478-2486. [PMID: 37772190 PMCID: PMC10523370 DOI: 10.1021/jacsau.3c00241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/30/2023]
Abstract
Sulfonamides are one of the most important pharmacophores in medicinal chemistry, and sulfonamide analogues have gained substantial interest in recent years. However, the protein interactions of sulfonamides and especially of their analogues are underexplored. Using FKBP12 as a model system, we describe the synthesis of optically pure sulfenamide, sulfinamide, and sulfonimidamide analogues of a well characterized sulfonamide ligand. This allowed us to precisely determine the binding contributions of each sulfonamide oxygen atom and the consequences of nitrogen replacements. We also present high-resolution cocrystal structures of sulfonamide analogues buried in the pocket of a protein target. This revealed intimate contacts with the protein including an unprecedented hydrogen bond acceptor of sulfonimidamides. The use of sulfonamide analogues enabled new exit vectors that allowed remodeling of a subpocket in FKBP12. Our results illuminate the protein interaction potential of sulfonamides/sulfonamide analogues and will aid in their rational design.
Collapse
Affiliation(s)
- Patrick
L. Purder
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jürgen Kolos
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Frank Löhr
- Institute
of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Jakob Gebel
- Institute
of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Thomas Nehls
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Volker Dötsch
- Institute
of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Frederik Lermyte
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department
of Organic Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
98
|
Lázár L, Tsagkarakou AS, Stravodimos G, Kontopidis G, Leffler H, Nilsson UJ, Somsák L, Leonidas DD. Strong Binding of C-Glycosylic1,2-Thiodisaccharides to Galectin-3─Enthalpy-Driven Affinity Enhancement by Water-Mediated Hydrogen Bonds. J Med Chem 2023; 66:12420-12431. [PMID: 37658813 DOI: 10.1021/acs.jmedchem.3c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Galectin-3 is involved in multiple pathways of many diseases, including cancer, fibrosis, and diabetes, and it is a validated pharmaceutical target for the development of novel therapeutic agents to address unmet medical needs. Novel 1,2-thiodisaccharides with a C-glycosylic functionality were synthesized by the photoinitiated thiol-ene click reaction of O-peracylated 1-C-substituted glycals and 1-thio-glycopyranoses. Subsequent global deprotection yielded test compounds, which were studied for their binding to human galectin-3 by fluorescence polarization and isothermal titration calorimetry to show low micromolar Kd values. The best inhibitor displayed a Kd value of 8.0 μM. An analysis of the thermodynamic binding parameters revealed that the binding Gibbs free energy (ΔG) of the new inhibitors was dominated by enthalpy (ΔH). The binding mode of the four most efficient 1,2-thiodisaccharides was also studied by X-ray crystallography that uncovered the unique role of water-mediated hydrogen bonds in conferring enthalpy-driven affinity enhancement for the new inhibitors. This 1,2-thiodisaccharide-type scaffold represents a new lead for galectin-3 inhibitor discovery and offers several possibilities for further development.
Collapse
Affiliation(s)
- László Lázár
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Anastasia S Tsagkarakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George Kontopidis
- Department of Biochemistry, Veterinary School, University of Thessaly, 224 Trikalon, 43131 Karditsa, Greece
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, SE-2210 Lund, Sweden
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, SE-2210 Lund, Sweden
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
99
|
Mori G, Liuzzi A, Ronda L, Di Palma M, Chegkazi MS, Bui S, Garcia-Maya M, Ragazzini J, Malatesta M, Della Monica E, Rivetti C, Antin PB, Bettati S, Steiner RA, Percudani R. Cysteine Enrichment Mediates Co-Option of Uricase in Reptilian Skin and Transition to Uricotelism. Mol Biol Evol 2023; 40:msad200. [PMID: 37695804 PMCID: PMC10517255 DOI: 10.1093/molbev/msad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Uric acid is the main means of nitrogen excretion in uricotelic vertebrates (birds and reptiles) and the end product of purine catabolism in humans and a few other mammals. While uricase is inactivated in mammals unable to degrade urate, the presence of orthologous genes without inactivating mutations in avian and reptilian genomes is unexplained. Here we show that the Gallus gallus gene we name cysteine-rich urate oxidase (CRUOX) encodes a functional protein representing a unique case of cysteine enrichment in the evolution of vertebrate orthologous genes. CRUOX retains the ability to catalyze urate oxidation to hydrogen peroxide and 5-hydroxyisourate (HIU), albeit with a 100-fold reduced efficiency. However, differently from all uricases hitherto characterized, it can also facilitate urate regeneration from HIU, a catalytic property that we propose depends on its enrichment in cysteine residues. X-ray structural analysis highlights differences in the active site compared to known orthologs and suggests a mechanism for cysteine-mediated self-aggregation under H2O2-oxidative conditions. Cysteine enrichment was concurrent with the transition to uricotelism and a shift in gene expression from the liver to the skin where CRUOX is co-expressed with β-keratins. Therefore, the loss of urate degradation in amniotes has followed opposite evolutionary trajectories: while uricase has been eliminated by pseudogenization in some mammals, it has been repurposed as a redox-sensitive enzyme in the reptilian skin.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Anastasia Liuzzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Di Palma
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Magda S Chegkazi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Soi Bui
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mitla Garcia-Maya
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Jasmine Ragazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Emanuele Della Monica
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Parker B Antin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto A Steiner
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
100
|
Khersonsky O, Goldsmith M, Zaretsky I, Hamer-Rogotner S, Dym O, Unger T, Yona M, Fridmann-Sirkis Y, Fleishman SJ. Stable Mammalian Serum Albumins Designed for Bacterial Expression. J Mol Biol 2023; 435:168191. [PMID: 37385581 DOI: 10.1016/j.jmb.2023.168191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Albumin is the most abundant protein in the blood serum of mammals and has essential carrier and physiological roles. Albumins are also used in a wide variety of molecular and cellular experiments and in the cultivated meat industry. Despite their importance, however, albumins are challenging for heterologous expression in microbial hosts, likely due to 17 conserved intramolecular disulfide bonds. Therefore, albumins used in research and biotechnological applications either derive from animal serum, despite severe ethical and reproducibility concerns, or from recombinant expression in yeast or rice. We use the PROSS algorithm to stabilize human and bovine serum albumins, finding that all are highly expressed in E. coli. Design accuracy is verified by crystallographic analysis of a human albumin variant with 16 mutations. This albumin variant exhibits ligand binding properties similar to those of the wild type. Remarkably, a design with 73 mutations relative to human albumin exhibits over 40 °C improved stability and is stable beyond the boiling point of water. Our results suggest that proteins with many disulfide bridges have the potential to exhibit extreme stability when subjected to design. The designed albumins may be used to make economical, reproducible, and animal-free reagents for molecular and cell biology. They also open the way to high-throughput screening to study and enhance albumin carrier properties.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irina Zaretsky
- Antibody Engineering Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shelly Hamer-Rogotner
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meital Yona
- Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Fridmann-Sirkis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|