51
|
Tan S, Li G, Liu Z, Wang H, Guo X, Xu B. Effects of glyphosate exposure on honeybees. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103792. [PMID: 34971799 DOI: 10.1016/j.etap.2021.103792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Honeybees show an important pollination ability and play vital roles in improving crop yields and increasing plant genetic diversity, thereby generating tremendous economic benefits for humans. However, honeybee survival is affected by a number of biological and abiotic stresses, including the effects of fungi, bacteria, viruses, parasites, and especially agrochemicals. Glyphosate, a broad-spectrum herbicide that is primarily used for weed control in agriculture, has been reported to have lethal and sublethal effects on honeybees. Here, we summarize recent advances in research on the effects of glyphosate on honeybees, including effects on their behaviors, growth and development, metabolic processes, and immune defense, providing a detailed reference for studying the mechanism of action of pesticides. Furthermore, we provide possible directions for future research on glyphosate toxicity to honeybees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
52
|
Dominance of Fructose-Associated Fructobacillus in the Gut Microbiome of Bumblebees (Bombus terrestris) Inhabiting Natural Forest Meadows. INSECTS 2022; 13:insects13010098. [PMID: 35055941 PMCID: PMC8779478 DOI: 10.3390/insects13010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary A vast array of microorganisms colonize invertebrates and vertebrates. Most of these microbes reside in the digestive tract, where they constitute the intestinal (gut) microbiome. Some microbes are commensal, coexisting with their host without causing harm, while others can be mutualistic or pathogenic. Mutualistic microorganisms perform many health-related functions such as promoting digestion and acquisition of nutrients; hormone regulation; maintenance and control of the immune system; regulation of homeostasis and stress physiology of the body; insecticide resistance; production of certain vitamins; and providing protection against pathogenic microorganisms, parasites, and diseases. Bee-specific bacterial genera such as Lactobacillus, Snodgrassella, and Gilliamella dominate the gut communities of many bumblebees. This study confirmed Lactobacillus, Snodgrassella, and Gilliamella as dominant gut bacteria of the buff-tailed bumblebee Bombus terrestris in the agricultural landscape. However, we show that the guts of B. terrestris from natural forest habitats can be dominated by fructose-associated Fructobacillus spp. Our findings may have important implications for understanding the ecological role of bumblebees and the reasons for the decline of key pollinators. Abstract Bumblebees are key pollinators in agricultural landscapes. However, little is known about how gut microbial communities respond to anthropogenic changes. We used commercially produced colonies of buff-tailed bumblebees (Bombus terrestris) placed in three habitats. Whole guts (midgut, hindgut, and rectum) of B. terrestris specimens were dissected from the body and analyzed using 16S phylogenetic community analysis. We observed significantly different bacterial community composition between the agricultural landscapes (apple orchards and oilseed rape (Brassica napus) fields) and forest meadows, whereas differences in gut communities between the orchards and oilseed rape fields were nonsignificant. Bee-specific bacterial genera such as Lactobacillus, Snodgrassella, and Gilliamella dominated gut communities of B. terrestris specimens. In contrast, the guts of B. terrestris from forest meadows were dominated by fructose-associated Fructobacillus spp. Bacterial communities of workers were the most diverse. At the same time, those of males and young queens were less diverse, possibly reflecting greater exposure to the colony’s inner environment compared to the environment outside the colony, as well as bumblebee age. Our results suggest that habitat quality, exposure to environmental microbes, nectar quality and accessibility, and land use significantly affect gut bacterial composition in B. terrestris.
Collapse
|
53
|
Díaz S, Camargo C, Avila FW. Characterization of the reproductive tract bacterial microbiota of virgin, mated, and blood-fed Aedes aegypti and Aedes albopictus females. Parasit Vectors 2021; 14:592. [PMID: 34852835 PMCID: PMC8638121 DOI: 10.1186/s13071-021-05093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Aedes aegypti and Ae. albopictus are vectors of numerous arboviruses that adversely affect human health. In mosquito vectors of disease, the bacterial microbiota influence several physiological processes, including fertility and vector competence, making manipulation of the bacterial community a promising method to control mosquito vectors. In this study, we describe the reproductive tract tissue microbiota of lab-reared virgin Ae. aegypti and Ae. albopictus males, and virgin, mated, and mated + blood-fed females of each species, comparing the bacterial composition found there to the well-described gut microbiota. Methods We performed metabarcoding of the 16S rRNA isolated from the gut, upper reproductive tract (URT; testes or ovaries), and lower reproductive tract (LRT; males: seminal vesicles and accessory glands; females: oviduct, spermathecae, and bursa) for each species, and evaluated the influence of host species, tissue, nutritional status, and reproductive status on microbiota composition. Finally, based on the identified taxonomic profiles of the tissues assessed, bacterial metabolic pathway abundance was predicted. Results The community structure of the reproductive tract is unique compared to the gut. Asaia is the most prevalent OTU in the LRTs of both Ae. aegypti and Ae. albopictus. In the URT, we observed differences between species, with Wolbachia OTUs being dominant in the Ae. albopictus URT, while Enterobacter and Serratia were dominant in Ae. aegypti URT. Host species and tissue were the best predictors of the community composition compared to reproductive status (i.e., virgin or mated) and nutritional status (i.e., sugar or blood-fed). The predicted functional profile shows changes in the abundance of specific microbial pathways that are associated with mating and blood-feeding, like energy production in mated tissues and siderophore synthesis in blood-fed female tissues. Conclusions Aedes aegypti and Ae. albopictus have distinct differences in the composition of microbiota found in the reproductive tract. The distribution of the bacterial taxonomic groups indicates that some bacteria have tissue-specific tropism for reproductive tract tissue, such as Asaia and Wolbachia. No significant differences in the taxonomic composition were observed in the reproductive tract between virgin, mated, and mated + blood-fed females, but changes in the abundance of specific metabolic pathways were found in the predicted microbial functional profiles in mated and blood-fed females. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05093-7.
Collapse
Affiliation(s)
- Sebastián Díaz
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Carolina Camargo
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia
| | - Frank W Avila
- Max Planck Tandem Group in Mosquito Reproductive Biology, Universidad de Antioquia, Medellín, 050010, Antioquia, Colombia.
| |
Collapse
|
54
|
Kodrík D, Krištůfek V, Svobodová Z. Bee year: Basic physiological strategies to cope with seasonality. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111115. [PMID: 34775045 DOI: 10.1016/j.cbpa.2021.111115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
Worker honey bees are subject to biochemical and physiological changes throughout the year. This study aimed to provide the reasons behind these fluctuations. The markers analysed included lipid, carbohydrate, and protein levels in the haemolymph; the activity of digestive enzymes in the midgut; the levels of adipokinetic hormone (AKH) in the bee central nervous system; the levels of vitellogenins in the bee venom and haemolymph; and the levels of melittin in the venom. The levels of all the main nutrients in the haemolymph peaked mostly within the period of maximal bee activity, whereas the activity of digestive enzymes mostly showed a two-peak course. Furthermore, the levels of AKHs fluctuated throughout the year, with modest but significant variations. These data suggest that the role of AKHs in bee energy metabolism is somewhat limited, and that bees rely more on available food and less on body deposits. Interestingly, the non-metabolic characteristics also fluctuated over the year. The vitellogenin peak reached its maximum in the haemolymph in winter, which is probably associated with the immunoprotection of long-lived winter bees. The analysis of bee venom showed the maximal levels of vitellogenin in autumn; however, it is not entirely clear why this is the case. Finally, melittin levels showed strong fluctuations, suggesting that seasonal control was unlikely.
Collapse
Affiliation(s)
- Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre, CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Zdeňka Svobodová
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
55
|
Abstract
Optimal nutrition is crucial for honey bee colony growth and robust immune systems. Honey bee nutrition is complex and depends on the floral composition of the landscape. Foraging behavior of honey bees depends on both colony environment and external environment. There are significant gaps in knowledge regarding honey bee nutrition, and hence no optimal diet is available for honey bees, as there is for other livestock. In this review, we discuss (1) foraging behavior of honey bees, (2) nutritional needs, (3) nutritional supplements used by beekeepers, (4) probiotics, and (5) supplemental forage and efforts integrating floral diversity into cropping systems.
Collapse
Affiliation(s)
- Jennifer M Tsuruda
- University of Tennessee - Knoxville, 2505 E J Chapman Drive, Knoxville, TN 37996, USA
| | - Priyadarshini Chakrabarti
- Mississippi State University, P.O. Box 5307, Mississippi State, MS 39762, USA; Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA
| | - Ramesh R Sagili
- Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA.
| |
Collapse
|
56
|
Soares KO, Oliveira CJBD, Rodrigues AE, Vasconcelos PC, Silva NMVD, Cunha Filho OGD, Madden C, Hale VL. Tetracycline Exposure Alters Key Gut Microbiota in Africanized Honey Bees (Apis mellifera scutellata x spp.). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.716660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Honey bees play a critical role in ecosystem health, biodiversity maintenance, and crop yield. Antimicrobials, such as tetracyclines, are used widely in agriculture, medicine, and in bee keeping, and bees can be directly or indirectly exposed to tetracycline residues in the environment. In European honey bees, tetracycline exposure has been linked with shifts in the gut microbiota that negatively impact bee health. However, the effects of antimicrobials on Africanized honey bee gut microbiota have not been examined. The aim of this study was to investigate the effects of tetracycline exposure on the gut microbial community of Africanized honey bees (Apis mellifera scutellata x spp.), which are important pollinators in South, Central, and North America. Bees (n = 1,000) were collected from hives in Areia-PB, Northeastern Brazil, placed into plastic chambers and kept under controlled temperature and humidity conditions. The control group (CON) was fed daily with syrup (10 g) consisting of a 1:1 solution of demerara sugar and water, plus a solid protein diet (10 g) composed of 60% soy extract and 40% sugar syrup. The tetracycline group (TET) was fed identically but with the addition of tetracycline hydrochloride (450 μg/g) to the sugar syrup. Bees were sampled from each group before (day 0), and after tetracycline exposure (days 3, 6, and 9). Abdominal contents dissected out of each bee underwent DNA extraction and 16S rRNA sequencing (V3-V4) on an Illumina MiSeq. Sequences were filtered and processed through QIIME2 and DADA2. Microbial community composition and diversity and differentially abundant taxa were evaluated by treatment and time. Bee gut microbial composition (Jaccard) and diversity (Shannon) differed significantly and increasingly over time and between CON and TET groups. Tetracycline exposure was associated with decreased relative abundances of Bombella and Fructobacillus, along with decreases in key core microbiota such as Snodgrassella, Gilliamella, Rhizobiaceae, and Apibacter. These microbes are critical for nutrient metabolism and pathogen defense, and it is possible that decreased abundances of these microbes could negatively affect bee health. Considering the global ecological and economic importance of honey bees as pollinators, it is critical to understand the effects of agrochemicals including antimicrobials on honey bees.
Collapse
|
57
|
Damico ME, Rueppell O, Shaffer Z, Han B, Raymann K. High royal jelly production does not impact the gut microbiome of honey bees. Anim Microbiome 2021; 3:60. [PMID: 34517918 PMCID: PMC8439078 DOI: 10.1186/s42523-021-00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Honey bees are not only essential for pollination services, but are also economically important as a source of hive products (e.g., honey, royal jelly, pollen, wax, and propolis) that are used as foods, cosmetics, and alternative medicines. Royal jelly is a popular honey bee product with multiple potential medicinal properties. To boost royal jelly production, a long-term genetic selection program of Italian honey bees (ITBs) in China has been performed, resulting in honey bee stocks (here referred to as RJBs) that produce an order of magnitude more royal jelly than ITBs. Although multiple studies have investigated the molecular basis of increased royal jelly yields, one factor that has not been considered is the role of honey bee-associated gut microbes. Results Based on the behavioral, morphological, physiological, and neurological differences between RJBs and ITBs, we predicted that the gut microbiome composition of RJBs bees would differ from ITBs. To test this hypothesis, we investigated the bacterial composition of RJB and ITB workers from an urban location and RJBs from a rural location in China. Based on 16S rRNA gene profiling, we did not find any evidence that RJBs possess a unique bacterial gut community when compared to ITBs. However, we observed differences between honey bees from the urban versus rural sites. Conclusions Our results suggest that the environmental factors rather than stock differences are more important in shaping the bacterial composition in honey bee guts. Further studies are needed to investigate if the observed differences in relative abundance of taxa between the urban and rural bees correspond to distinct functional capabilities that impact honey bee health. Because the lifestyle, diet, and other environmental variables are different in rural and urban areas, controlled studies are needed to determine which of these factors are responsible for the observed differences in gut bacterial composition between urban and rural honeybees. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00124-1.
Collapse
Affiliation(s)
- Megan E Damico
- Biology Department, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Zack Shaffer
- Biology Department, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.,School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Bin Han
- Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, 100093, China
| | - Kasie Raymann
- Biology Department, University of North Carolina at Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
58
|
Abstract
Several studies have outlined that a balanced gut microbiota offers metabolic and protective functions supporting honeybee health and performance. The present work contributes to increasing knowledge on the impact on the honeybee gut microbiota of the three most common veterinary drugs (oxytetracycline, sulfonamides, and tylosin). The study was designed with a semi-field approach in micro-hives containing about 500 honeybees. Micro-hives were located in an incubator during the day and moved outdoors in the late afternoon, considering the restrictions on the use of antibiotics in the open field but allowing a certain freedom to honeybees; 6 replicates were considered for each treatment. The absolute abundance of the major gut microbial taxa in newly eclosed individuals was studied with qPCR and next-generation sequencing. Antimicrobial resistance genes for the target antibiotics were also monitored using a qPCR approach. The results showed that the total amount of gut bacteria was not altered by antibiotic treatment, but qualitative variations were observed. Tylosin treatment determined a significant decrease of α- and β-diversity indices and a strong depletion of the rectum population (lactobacilli and bifidobacteria) while favoring the ileum microorganisms (Gilliamella, Snodgrassella, and Frischella spp.). Major changes were also observed in honeybees treated with sulfonamides, with a decrease in Bartonella and Frischella core taxa and an increase of Bombilactobacillus spp. and Snodgrassella spp. The present study also shows an important effect of tetracycline that is focused on specific taxa with minor impact on alfa and beta diversity. Monitoring of antibiotic resistance genes confirmed that honeybees represent a great reservoir of tetracycline resistance genes. Tetracycline and sulfonamides resistance genes tended to increase in the gut microbiota population upon antibiotic administration. IMPORTANCE This study investigates the impact of the three most widely used antibiotics in the beekeeping sector (oxytetracycline, tylosin, and sulfonamides) on the honeybee gut microbiota and on the spread of antibiotic resistance genes. The research represents an advance to the present literature, considering that the tylosin and sulfonamides effects on the gut microbiota have never been studied. Another original aspect lies in the experimental approach used, as the study looks at the impact of veterinary drugs and feed supplements 24 days after the beginning of the administration, in order to explore perturbations in newly eclosed honeybees, instead of the same treated honeybee generation. Moreover, the study was not performed with cage tests but in micro-hives, thus achieving conditions closer to real hives. The study reaches the conclusion that the most common veterinary drugs determine changes in some core microbiota members and that incidence of resistance genes for tetracycline and sulfonamides increases following antibiotic treatment.
Collapse
|
59
|
Biopolymer production by bacteria isolated from native stingless bee honey, Scaptotrigona jujuyensis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
60
|
Wang W, Huang S, Yang L, Zhang G. Comparative Analysis of the Fecal Bacterial Microbiota of Wintering Whooper Swans ( Cygnus Cygnus). Front Vet Sci 2021; 8:670645. [PMID: 34322532 PMCID: PMC8310996 DOI: 10.3389/fvets.2021.670645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
There are many and diverse intestinal microbiota, and they are closely related to various physiological functions of the body. They directly participate in the host's food digestion, nutrient absorption, energy metabolism, immune response, and many other physiological activities and are also related to the occurrence of many diseases. The intestinal microbiota are extremely important for maintaining normal physical health. In order to explore the composition and differences of the intestinal microbiota of whooper swans in different wintering areas, we collected fecal samples of whooper swans in Sanmenxia, Henan, and Rongcheng, Shandong, and we used the Illumina HiSeq platform to perform high-throughput sequencing of bacterial 16S rRNA genes. Comparison between Sanmenxia and Rongcheng showed no significant differences in ACE, Chao 1, Simpson, and Shannon indices (p > 0.05). Beta diversity results showed significant differences in bacterial communities between two groups [analysis of similarity (ANOSIM): R = 0.80, p = 0.011]. Linear discriminant analysis effect size (LEfSe) analysis showed that at the phylum level, the relative abundance of Actinobacteria was significantly higher in Sanmenxia whooper swans than Rongcheng whooper swans. At the genus level, the amount of Psychrobacter and Carnobacterium in Sanmenxia was significantly higher in Rongcheng, while the relative abundance Catellicoccus and Lactobacillus was significantly higher in Rongcheng than in Sanmenxia. This study analyzed the composition, characteristics, and differences of the intestinal microbiota of the whooper swans in different wintering environments and provided theoretical support for further exploring the relationship between the intestinal microbiota of the whooper swans and the external environment. And it played an important role in the overwintering physiology and ecology, population management, and epidemic prevention and control of whooper swans.
Collapse
Affiliation(s)
- Wenxia Wang
- Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Beijing, China
| | - Songlin Huang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing, China
| | - Liangliang Yang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing, China
| | - Guogang Zhang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Beijing, China
| |
Collapse
|
61
|
Panjad P, Yongsawas R, Sinpoo C, Pakwan C, Subta P, Krongdang S, In-on A, Chomdej S, Chantawannakul P, Disayathanoowat T. Impact of Nosema Disease and American Foulbrood on Gut Bacterial Communities of Honeybees Apis mellifera. INSECTS 2021; 12:insects12060525. [PMID: 34204079 PMCID: PMC8227250 DOI: 10.3390/insects12060525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees' guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees' gut.
Collapse
Affiliation(s)
- Poonnawat Panjad
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Chonthicha Pakwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Phakamas Subta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
| | - Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sakaeo Campus, Sakaeo 27160, Thailand;
| | - Ammarin In-on
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi (Bang Khun Thian Campus), Bang Khun Thian, Bangkok 10150, Thailand;
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (R.Y.); (C.S.); (C.P.); (P.S.); (S.C.); (P.C.)
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-81-7249624
| |
Collapse
|
62
|
Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, Romano D, Borin S, Tsiamis G, Cherif A, Alma A, Daffonchio D. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 2021; 7:42. [PMID: 33963194 PMCID: PMC8105395 DOI: 10.1038/s41522-021-00212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.
Collapse
Affiliation(s)
- Matteo Callegari
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy.
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Diego Romano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinion, Greece
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST), BVBGR-LR11ES31, Biotechpole Sidi Thabet, University Manouba, Ariana, Tunisia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
63
|
Jose PA, Ben-Yosef M, Lahuatte P, Causton CE, Heimpel GE, Jurkevitch E, Yuval B. Shifting microbiomes complement life stage transitions and diet of the bird parasite Philornis downsi from the Galapagos Islands. Environ Microbiol 2021; 23:5014-5029. [PMID: 33587780 DOI: 10.1111/1462-2920.15435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Domestication disconnects an animal from its natural environment and diet, imposing changes in the attendant microbial community. We examine these changes in Philornis downsi (Muscidae), an invasive parasitic fly of land birds in the Galapagos Islands. Using a 16S rDNA profiling approach we studied the microbiome of larvae and adults of wild and laboratory-reared populations. These populations diverged in their microbiomes, significantly more so in larval than in adult flies. In field-collected second-instar larvae, Klebsiella (70.3%) was the most abundant taxon, while in the laboratory Ignatzschineria and Providencia made up 89.2% of the community. In adults, Gilliamella and Dysgonomonas were key members of the core microbiome of field-derived females and males but had no or very low representation in the laboratory. Adult flies harbour sex-specific microbial consortia in their gut, as male core microbiomes were significantly dominated by Klebsiella. Thus, P. downsi microbiomes are dynamic and shift correspondingly with life cycle and diet. Sex-specific foraging behaviour of adult flies and nest conditions, which are absent in the laboratory, may contribute to shaping distinct larval, and adult male and female microbiomes. We discuss these findings in the context of microbe-host co-evolution and the implications for control measures.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Michael Ben-Yosef
- Department of Entomology, Agricultural Research Organization, Gilat Center, M. P. Negev, 85280, Israel
| | - Paola Lahuatte
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, MN, 55108, USA
| | - Edouard Jurkevitch
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Boaz Yuval
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| |
Collapse
|
64
|
Kapheim KM, Johnson MM, Jolley M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci Rep 2021; 11:2993. [PMID: 33542351 PMCID: PMC7862682 DOI: 10.1038/s41598-021-82573-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
Increasing evidence suggests the microbiome plays an important role in bee ecology and health. However, the relationship between bees and their bacterial symbionts has only been explored in a handful of species. We characterized the microbiome across the life cycle of solitary, ground-nesting alkali bees (Nomia melanderi). We find that feeding status is a major determinant of microbiome composition. The microbiome of feeding larvae was similar to that of pollen provisions, but the microbiome of post-feeding larvae (pre-pupae) was similar to that of the brood cell walls and newly-emerged females. Feeding larvae and pollen provisions had the lowest beta diversity, suggesting the composition of larval diet is highly uniform. Comparisons between lab-reared, newly-emerged, and nesting adult females suggest that the hindgut bacterial community is largely shaped by the external environment. However, we also identified taxa that are likely acquired in the nest or which increase or decrease in relative abundance with age. Although Lactobacillus micheneri was highly prevalent in pollen provisions, it was only detected in one lab-reared female, suggesting it is primarily acquired from environmental sources. These results provide the foundation for future research on metagenomic function and development of probiotics for these native pollinators.
Collapse
Affiliation(s)
- Karen M. Kapheim
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Makenna M. Johnson
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| | - Maggi Jolley
- grid.53857.3c0000 0001 2185 8768Department of Biology, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
65
|
Wan X, Jiang Y, Cao Y, Sun B, Xiang X. Divergence in Gut Bacterial Community Structure between Male and Female Stag Beetles Odontolabis fallaciosa (Coleoptera, Lucanidae). Animals (Basel) 2020; 10:ani10122352. [PMID: 33317133 PMCID: PMC7764088 DOI: 10.3390/ani10122352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Intestinal microbiota play crucial roles for their hosts. Odontolabis fallaciosa shows striking sexual dimorphism and male trimorphism, which represents an interesting system to study their gut microbiota. We have compared the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa. The gut bacterial community structure was significantly different between males and females. The females were associated with higher bacterial alpha-diversity relative to males. Large males had a higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which contributed to nutritional efficiency. The results increased our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among three male morphs, which might reveal the relationship among the gut microbiota, nutrition level, and phenotypic evolution of the stag beetle. Abstract Odontolabis fallaciosa (Coleoptera: Lucanidae) is a giant and popular stag beetle with striking sexual dimorphism and male trimorphism. However, little is known about their intestinal microbiota, which might play an indispensable role in shaping the health of their hosts. The aim of this study was to investigate the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa from China using high-throughput sequencing (Illumina MiSeq). The gut bacterial community structure was significantly different between males and females, suggesting that sex appeared to be the crucial factor shaping the intestinal bacterial community. Females had higher bacterial alpha-diversity than males. There was little difference in gut bacterial community structure among the three male morphs. However, compared to medium and small males, large individuals were associated with the higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which might contribute to nutritional efficiency. Overall, these results might help to further our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among the three male morphs.
Collapse
|
66
|
Insects' potential: Understanding the functional role of their gut microbiome. J Pharm Biomed Anal 2020; 194:113787. [PMID: 33272789 DOI: 10.1016/j.jpba.2020.113787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
The study of insect-associated microbial communities is a field of great importance in agriculture, principally because of the role insects play as pests. In addition, there is a recent focus on the potential of the insect gut microbiome in areas such as biotechnology, given some microorganisms produce molecules with biotechnological and industrial applications, and also in biomedicine, since some bacteria and fungi are a reservoir of antibiotic resistance genes (ARGs). To date, most studies aiming to characterize the role of the gut microbiome of insects have been based on high-throughput sequencing of the 16S rRNA gene and/or metagenomics. However, recently functional approaches such as metatranscriptomics, metaproteomics and metabolomics have also been employed. Besides providing knowledge about the taxonomic distribution of microbial populations, these techniques also reveal their functional and metabolic capabilities. This information is essential to gain a better understanding of the role played by microbes comprising the microbial communities in their hosts, as well as to indicate their possible exploitation. This review provides an overview of how far we have come in characterizing insect gut functionality through omics, as well as the challenges and future perspectives in this field.
Collapse
|
67
|
Ortiz-Alvarado Y, Clark DR, Vega-Melendez CJ, Flores-Cruz Z, Domingez-Bello MG, Giray T. Antibiotics in hives and their effects on honey bee physiology and behavioral development. Biol Open 2020; 9:bio053884. [PMID: 33106276 PMCID: PMC7710009 DOI: 10.1242/bio.053884] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Recurrent honeybee losses make it critical to understand the impact of human interventions, such as antibiotic use in apiculture. Antibiotics are used to prevent or treat bacterial infections in colonies. However, little is known about their effects on honeybee development. We studied the effect of two commercial beekeeping antibiotics on the bee physiology and behavior throughout development. Our results show that antibiotic treatments have an effect on amount of lipids and rate of behavioral development. Lipid amount in treated bees was higher than those not treated. Also, the timing of antibiotic treatment had distinct effects for the age of onset of behaviors, starting with cleaning, then nursing and lastly foraging. Bees treated during larva-pupa stages demonstrated an accelerated behavioral development and loss of lipids, while bees treated from larva to adulthood had a delay in behavioral development and loss of lipids. The effects were shared across the two antibiotics tested, TerramycinR (oxytetracycline) and TylanR (tylosin tartrate). These effects of antibiotic treatments suggest a role of microbiota in the interaction between the fat body and brain that is important for honeybee behavioral development.This paper has an associated First Person interview with the first author of the article.
Collapse
Affiliation(s)
| | - David R Clark
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA, USA
| | | | - Zomary Flores-Cruz
- University of Puerto Rico, Department of Biology, Rio Piedras, Puerto Rico
| | - Maria G Domingez-Bello
- Rutgers State University of New Jersey, Department of Biochemistry and Microbiology, Camden, NJ, USA
| | - Tugrul Giray
- University of Puerto Rico, Department of Biology, Rio Piedras, Puerto Rico
| |
Collapse
|
68
|
Geldert C, Abdo Z, Stewart JE, H S A. Dietary supplementation with phytochemicals improves diversity and abundance of honey bee gut microbiota. J Appl Microbiol 2020; 130:1705-1720. [PMID: 33058297 DOI: 10.1111/jam.14897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
AIM Determine the impact of beneficial phytochemicals on diversity and abundance of the gut microbiome in the honey bee (Apis mellifera). METHODS AND RESULTS Eight-day-old honey bee workers were fed 25 ppm of phytochemical (caffeine, gallic acid, p-coumaric acid or kaempferol) in 20% sucrose. Guts of bees collected at 3 and 6 days were excised and subjected to next-generation sequencing for bacterial 16S and fungal ITS regions. Although phytochemical supplementation fostered gut microbial diversity and abundance, the patterns differed between phytochemicals and there was a temporal stabilization of the bacterial community. While bacterial and fungal communities responded differently, all phytochemical treatments displayed increased abundance of the most represented bacterial genera, Snodgrassella sp. and Lactobacillus sp. CONCLUSIONS Phytochemical supplementation improves gut microbial diversity and abundance, reiterating the need for diverse habitats that provide bees with access to pollen and nectar rich in these micronutrients. Diverse gut microbiota can provide a strong line of defense for bees against biotic stressors while improving worker bee lifespan. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the impact of phytochemical supplementation on gut microbiota in honey bees and these findings have implications for strategic hive management through standardization of effective phytochemical and probiotic feed supplements.
Collapse
Affiliation(s)
- C Geldert
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Z Abdo
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J E Stewart
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Arathi H S
- USDA/ARS, WRRC Invasive Species and Pollinator Health Research Unit, Davis, CA, USA
| |
Collapse
|
69
|
McAulay MK, Killingsworth SZ, Forrest JRK. Understanding pollen specialization in mason bees: a case study of six species. Oecologia 2020; 195:559-574. [PMID: 33106935 DOI: 10.1007/s00442-020-04786-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Many bee species are dietary specialists and restrict their pollen foraging to a subset of the available flowers. However, the reasons for specialization-and the reasons certain plant taxa support numerous specialists-are often unclear. Many bees specialize on the plant family Asteraceae, despite evidence its pollen is a poor food for non-specialists. Here, we studied six mason bee (Osmia) species, including three Asteraceae specialists, to test whether observed pollen-usage patterns reflect larval nutritional requirements, to investigate what aspects of Asteraceae pollen make it unsuitable for non-specialists, and to understand how Asteraceae specialists tolerate their seemingly low-quality diet. We reared larval bees on host and nonhost pollen and found that Asteraceae specialists could develop on nonhost provisions, but that other bees could not survive on Asteraceae provisions. These effects did not seem related to nutritional deficiencies, since Asteraceae provisions were not amino acid deficient, and we found no consistent differences in digestive efficiency among pollen types. However, Asteraceae specialists completed more foraging flights per larva, generally collected relatively larger provisions, and produced more frass (waste) than the other species, suggesting quantitative compensation for low food quality. Toxins, deficiencies in unmeasured nutrients, or aspects of pollen grain structure might explain poor survival of non-specialists on Asteraceae provisions. Our results suggest that floral host selection by specialist bees is not related to optimizing larval nutrition. We recommend further investigation of host-selection behaviour in adult bees and of pollen digestion in larvae to better understand the evolution of bee-flower associations.
Collapse
Affiliation(s)
- Megan K McAulay
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada. .,Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA.
| | | | - Jessica R K Forrest
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.,Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| |
Collapse
|
70
|
Iorizzo M, Pannella G, Lombardi SJ, Ganassi S, Testa B, Succi M, Sorrentino E, Petrarca S, De Cristofaro A, Coppola R, Tremonte P. Inter- and Intra-Species Diversity of Lactic Acid Bacteria in Apis mellifera ligustica Colonies. Microorganisms 2020; 8:microorganisms8101578. [PMID: 33066358 PMCID: PMC7602248 DOI: 10.3390/microorganisms8101578] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022] Open
Abstract
Lactic acid bacteria could positively affect the health of honey bees, including nutritional supplementation, immune system development and pathogen colonization resistance. Based on these considerations the present study evaluated predominant Lactic Acid Bacteria (LAB) species from beebread as well as from the social stomach and midgut of Apis mellifera ligustica honey bee foragers. In detail, for each compartment, the diversity in species and biotypes was ascertained through multiple culture-dependent approaches, consisting of Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE), 16S rRNA gene sequencing and Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR). The study of a lactic acid bacteria community, performed with PCR-DGGE and sequence analysis targeting the V1-V3 region of the 16S rRNA gene (rDNA), highlighted the presence of a few species, including Apilactobacillus kunkeei, Lactiplantibacillus plantarum, Fructobacillus fructosus, Levilactobacillus brevis and Lactobacillus delbrueckii subsp. lactis. Depending on the different compartments, diverse levels of biodiversity in species were found. Particularly, a very low inter-species biodiversity was detected in the midgut that was prevalently dominated by the presence of Apilactobacillus kunkeei. On the other hand, the beebread was characterized by a reasonable biodiversity showing the presence of five species and the predominance of Apilactobacillus kunkeei, Lactiplantibacillus plantarum and Fructobacillus fructosus. The RAPD-PCR analysis performed on the three predominant species allowed the differentiation into several biotypes for each species. Moreover, a relationship between biotypes and compartments has been detected and each biotype was able to express a specific biochemical profile. The biotypes that populated the social stomach and midgut were able to metabolize sugars considered toxic for bees while those isolated from beebread could contribute to release useful compounds with functional properties. Based on this knowledge, new biotechnological approaches could be developed to improve the health of honey bees and the quality of bee products.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
- Correspondence:
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Sonia Petrarca
- Consorzio Nazionale Produttori Apistici CONAPROA, 86100 Campobasso, Italy;
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy; (M.I.); (G.P.); (S.G.); (B.T.); (M.S.); (E.S.); (A.D.C.); (R.C.); (P.T.)
| |
Collapse
|
71
|
Pavelková A, Haščík P, Capcarová M, Kalafová A, Hanusová E, Tkáčová J, Bobko M, Čuboň J, Čech M, Kačániová M. Meat performance of Japanese quails after the application of bee bread powder. POTRAVINARSTVO 2020. [DOI: 10.5219/1330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was the evaluation of meat performance of Japanese quails after the addition of bee bread powder into their diet. A total of 80 one day-old Japanese quails were randomly divided into 4 groups (n = 20): the control group (C) without additional supplementation, the experimental group E1 supplemented with 2 mg bee bread powder per 1 kg of feed mixture; the experimental group E2 supplemented with 4 mg bee bread powder per 1 kg of feed mixture and the experimental group E3 supplemented with 6 mg bee bread powder per 1 kg of feed mixture. The groups were kept under the same conditions and the quails were slaughtered at 56 days of age. Based on the results, we can conclude that the application of bee bread powder generally has not confirmed a positive effect on the meat performance of Japanese quails, regarding to the quantities of bee bread powder in the experimental groups.
Collapse
|
72
|
Tlak Gajger I, Vlainić J, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee ( Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. INSECTS 2020; 11:insects11090638. [PMID: 32957451 PMCID: PMC7563132 DOI: 10.3390/insects11090638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary Various negative factors contribute to a decline in insect pollinators. The aim of this study was to assess the impact of commercial probiotic EM® PROBIOTIC FOR BEES on honey bees. The study was conducted in field and laboratory-controlled conditions. In the field, the sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in order to evaluate the colonies’ strength and Nosema spp. infection levels. In the laboratory, the adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies’ strength was increased. The results at the individual level showed positive physiological changes in treated groups of adult bees, but, at the same time, a higher mortality rate. Our findings indicate that the EM® for bees is a promising food additive for nosemosis combating. Therefore, additional emphasis needs to be placed on studies investigating the nutritional requirements crucial to improve and sustain honey bee colonies health. Abstract Several negative factors contribute to a decline in the number of insect pollinators. As a novel approach in therapy, we hypothesize that the EM® for bees could potentially have an important therapeutic and immunomodulatory effect on honey bee colonies. The aim of our study was to evaluate its impact on honey bees at the individual and colony level. This is the first appliance of the commercial probiotic mix EM® PROBIOTIC FOR BEES in honey bees as economically important social insects. The sugar syrup with 10% of probiotic was administered by spraying or feeding the honey bee colonies in the field conditions, in order to evaluate the infection levels with spores of Nosema spp. and colonies’ strength. Moreover, in laboratory-controlled conditions, in the hoarding cages, adult workers have been fed with sugar syrup supplemented with 2.5, 5, and 10% of EM® for bees for biochemical and immunological analyses of hemolymph, and with 5 and 10% for measuring the size of hypopharyngeal glands. It was found that following the EM® for bees administration the Nosema spp. spore counts in colonies were significantly reduced, and colonies’ strength was increased. The results at the individual level showed significant positive physiological changes in treated groups of adult bees, revealing at the same time a higher mortality rate when feeding sugar syrup supplemented with the probiotic.
Collapse
Affiliation(s)
- Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-91-2390-041
| | - Josipa Vlainić
- Division of Molecular Medicine, Laboratory for Advanced Genomics, Institute Ruđer Bošković, 10 000 Zagreb, Croatia;
| | - Petra Šoštarić
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Janez Prešern
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.P.); (J.B.); (M.I.S.Š.)
| | - Jernej Bubnič
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.P.); (J.B.); (M.I.S.Š.)
| | | |
Collapse
|
73
|
Wu Y, Chen C, Wang G, Xiong B, Zhou W, Xue F, Qi W, Qiu C, Liu Z. Mechanism underlying earthworm on the remediation of cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138904. [PMID: 32570329 DOI: 10.1016/j.scitotenv.2020.138904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination of soil becomes a potential agricultural and global environmental problem due to the need to ensure safe food. In this study, earthworms (Eisenia fetida) and plants (vetiver grass) were prepared for removal Cd from soil. The results showed the Cd concentration in the soil of all experimental groups decreased, notably by 17.60% in the group with 20 mg/kg Cd concentration. In the roots of vetiver, the content of Cd increased by 57% after earthworms were added and the transfer coefficient of Cd was also significantly increased. Moreover, Cd in the soil was generally absorbed by the intestinal tract of earthworms and became concentrated, mainly in the midgut and hindgut accounting for >77.78% of the total. In addition, enteric microorganism analysis demonstrated that the bacterial community structure played an important role in Cd enrichment and metabolism regulation. There was a significant correlation between some bacteria and Cd concentration. Among these bacteria, Pseudomonas brenneri, were involved in the adsorption and metabolism of Cd to reduce the toxicity of Cd to the earthworms. On the other hand, in order to cope with the external Cd stress, the malondialdehyde (MDA) and hydrogen critically (CAT) enzymes in the earthworms increased with the concentration. Therefore, the high tolerance of earthworms to Cd is related to its physiological adjustment and the balance of intestinal bacteria. The combination of earthworms, microorganisms and plants can result a good alternative to diminish the impact of Cd in soils.
Collapse
Affiliation(s)
- Yong Wu
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - Cun Chen
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China.
| | - Gang Wang
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - Binjun Xiong
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - Wenmin Zhou
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - Feilong Xue
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - Weiliang Qi
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - ChengShu Qiu
- Provincial Demonstration Center for Applied Biology, Chengdu normal university, Chengdu 611130, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
74
|
Bacterial Composition, Community Structure, and Diversity in Apis nigrocincta Gut. Int J Microbiol 2020; 2020:6906921. [PMID: 32802072 PMCID: PMC7414324 DOI: 10.1155/2020/6906921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the honeybee gut bacteria is an essential aspect as honeybees are the primary pollinators of many crops. In this study, the honeybee-associated gut bacteria were investigated by targeting the V3-V4 region of 16S rRNA genes using the Illumina MiSeq. The adult worker was captured in an urban area in a dense settlement. In total, 83,018 reads were obtained, revealing six phyla from 749 bacterial operational taxonomic units (OTUs). The gut was dominated by Proteobacteria (58% of the total reads, including Enterobacteriaceae 28.2%, Erwinia 6.43%, and Klebsiella 4.90%), Firmicutes (29% of the total reads, including Lactococcus garvieae 13.45%, Lactobacillus spp. 8.19%, and Enterococcus spp. 4.47%), and Actinobacteria (8% of the total reads, including Bifidobacterium spp. 7.96%). Many of these bacteria belong to the group of lactic acid bacteria (LAB), which was claimed to be composed of beneficial bacteria involved in maintaining a healthy host. The honeybee was identified as Apis nigrocincta based on an identity BLAST search of its COI region. This study is the first report on the gut microbial community structure and composition of A. nigrocincta from Indonesia.
Collapse
|
75
|
Antimicrobial Activity against Paenibacillus larvae and Functional Properties of Lactiplantibacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics (Basel) 2020; 9:antibiotics9080442. [PMID: 32722196 PMCID: PMC7460353 DOI: 10.3390/antibiotics9080442] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545 were selected for further physiological and biochemical characterizations. In particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.
Collapse
|
76
|
Ma W, Zheng X, Li L, Shen J, Li W, Gao Y. Changes in the gut microbiota of honey bees associated with jujube flower disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110616. [PMID: 32334202 DOI: 10.1016/j.ecoenv.2020.110616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Honeybees are prone to poisoning after collecting jujube nectar during the jujube flowering period ('honeybee's jujube flower disease'). To explore the mechanism of honeybee poisoning, the gut microbiota of honeybees undergoing the disease were characterised based on amplicon sequencing of the 16 S rRNA gene. Our results showed that the composition and diversity of the gut microbiota were significantly altered in diseased honeybees. We observed a decrease in the relative abundance of Proteobacteria and increased abundances of Firmicutes and Actinobacteria in the midgut and hindgut of diseased honeybees. Moreover, linear discriminant analysis (LDA) effect size revealed significantly selected enrichment of Fructobacillus and Snodgrassella in the midguts from diseased honeybees and Lactobacillus, Bifidobacterium, and Snodgrassella in the hindguts from diseased honeybees. Tax4Fun anylasis indicated that the functional potential of the diseased honeybee gut bacterial community was significantly changed relative to the healthy honeybee. Carbohydrate metabolism, nucleotides metabolism, amino acid synthesis metabolism, coenzyme and vitamins metabolism were increased, while energy metabolism and xenobiotic biodegradation and metabolism were decreased in the diseased honeybees. These results provide a new perspective for evaluating the response of honeybees to jujube flower disease based on changes in the intestinal microflora.
Collapse
Affiliation(s)
- WeiHua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China.
| | - Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi, China.
| | - Lixin Li
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Jinshan Shen
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, Shanxi, China
| | - Wanghong Li
- School of Physical Exercise and Education, Shanxi University, Taiyuan, Shanxi, China
| | - Ye Gao
- School of Physical Exercise and Education, Shanxi University, Taiyuan, Shanxi, China
| |
Collapse
|
77
|
Luo ZW, Dong ZX, Chen YF, Li HY, Tang QH, Li JL, Guo J. Comparative analysis of the gut microbiota of Apis cerana in Yunnan using high-throughput sequencing. Arch Microbiol 2020; 202:2557-2567. [PMID: 32666301 DOI: 10.1007/s00203-020-01974-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Gut microbes play an important role in host disease and health. The Asian honey bee Apis cerana is an important pollinator of agricultural crops in China. However, there are still few studies on the structure and composition of the microbiota in the intestine of A. cerana, especially A. cerana in Yunnan. To understand the species and composition of the microbiota in the intestine of A. cerana in Yunnan, we used high-throughput sequencing technology to carry out 16S rRNA sequencing on 50 samples from Kunming, Xishuangbanna and Mengzi. The results show that both from the phylum level and the genus level, the structure and abundance of the microbiota in the gut of A. cerana from the three regions tended to be the same. At the phylum level, the abundance of Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Acidobacteria and other species was high in A. cerana from different areas. At the genus level, the abundance of Lactobacillus, Gilliamella, Snodgrassella, Apibacter, Candidatus Schmidhempelia and other species was high in A. cerana from different areas. Due to its unique geographical environment and climatic conditions, at the genus level, the diversity of bacterial communities in Xishuangbanna was significantly lower than that in the other two regions, which was about 100 genera less. In conclusion, our results reveal the composition and structure of the intestinal microbiota of bees in Yunnan and deepen our understanding of the intestinal microbiota of bees.
Collapse
Affiliation(s)
- Zhi-Wen Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ji-Lian Li
- Institute of Apiculture, Chinese Academy of Agricultural Science/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, 100093, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
78
|
Yongsawas R, Chaimanee V, Pettis JS, Boncristiani Junior HF, Lopez D, In-on A, Chantawannakul P, Disayathanoowat T. Impact of Sacbrood Virus on Larval Microbiome of Apis mellifera and Apis cerana. INSECTS 2020; 11:insects11070439. [PMID: 32668740 PMCID: PMC7411915 DOI: 10.3390/insects11070439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022]
Abstract
In this study, we examined the impact of Sacbrood virus (SBV), the cause of larval honeybee (Apis mellifera) death, producing a liquefied a larva sac, on the gut bacterial communities on two larval honeybee species, Apis mellifera and Apis cerana. SBV was added into a worker jelly food mixture and bee larvae were grafted into each of the treatment groups for 24 h before DNA/RNA extraction. Confirmation of SBV infection was achieved using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and visual symptomology. The 16S rDNA was sequenced by Illumina sequencing. The results showed the larvae were infected with SBV. The gut communities of infected A. cerana larvae exhibited a dramatic change compared with A. mellifera. In A. mellifera larvae, the Illumina sequencing revealed the proportion of Gilliamella, Snodgrassella and Fructobacillus was not significantly different, whereas in A. cerana, Gilliamella was significantly decreased (from 35.54% to 2.96%), however, with significant increase in Snodgrassella and Fructobacillus. The possibility of cross-infection should be further investigated.
Collapse
Affiliation(s)
- Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (P.C.)
| | - Veeranan Chaimanee
- Department of Agro-Industrial Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
- Correspondence: (V.C.); (T.D.); Tel.: +66-81-7249624 (T.D.)
| | | | | | - Dawn Lopez
- Bee Research Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | - Ammarin In-on
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi (Bang Khun Thian Campus), Bang Khun Thian, Bangkok 10150, Thailand;
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (P.C.)
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.Y.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (V.C.); (T.D.); Tel.: +66-81-7249624 (T.D.)
| |
Collapse
|
79
|
Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions. Biomolecules 2020; 10:biom10060923. [PMID: 32570769 PMCID: PMC7356725 DOI: 10.3390/biom10060923] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Stingless bees are a type of honey producers that commonly live in tropical countries. Their use for honey is being abandoned due to its limited production. However, the recent improvements in stingless bee honey production, particularly in South East Asia, have brought stingless bee products back into the picture. Although there are many stingless bee species that produce a wide spread of products, known since old eras in traditional medicine, the modern medical community is still missing more investigational studies on stingless bee products. Whereas comprehensive studies in the current era attest to the biological and medicinal properties of honeybee (Apis mellifera) products, the properties of stingless bee products are less known. This review highlights for the first time the medicinal benefits of stingless bee products (honey, propolis, pollen and cerumen), recent investigations and promising future directions. This review emphasizes the potential antioxidant properties of these products that in turn play a vital role in preventing and treating diseases associated with oxidative stress, microbial infections and inflammatory disorders. Summarizing all these data and insights in one manuscript may increase the commercial value of stingless bee products as a food ingredient. This review will also highlight the utility of stingless bee products in the context of medicinal and therapeutic properties, some of which are yet to be discovered.
Collapse
|
80
|
|
81
|
Ricigliano VA, Anderson KE. Probing the Honey Bee Diet-Microbiota-Host Axis Using Pollen Restriction and Organic Acid Feeding. INSECTS 2020; 11:insects11050291. [PMID: 32397440 PMCID: PMC7291221 DOI: 10.3390/insects11050291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
Microbial metabolites are considered important drivers of diet-based microbiota influence on the host, however, mechanistic models are confounded by interactions between diet, microbiota function, and host physiology. The honey bee harbors a simple microbiota that produces organic acids as fermentation products of dietary nectar and pollen, making it a model for gut microbiota research. Herein, we demonstrate that bacterial abundance in the honey bee gut is partially associated with the anterior rectum epithelium. We used dietary pollen restriction and organic acid feeding treatments to obtain information about the role of undigested pollen as a microbiota growth substrate and the impact of bacterial fermentation products on honey bee enteroendocrine signaling. Pollen restriction markedly reduced total and specific bacterial 16S rRNA abundance in the anterior rectum but not in the ileum. Anterior rectum expression levels of bacterial fermentative enzyme gene transcripts (acetate kinase, lactate dehydrogenase, and hydroxybutyryl-CoA dehydrogenase) were reduced in association with diet-induced microbiota shifts. To evaluate the effects of fermentative metabolites on host enteroendocrine function, pollen-restricted bees were fed an equimolar mixture of organic acid sodium salts (acetate, lactate, butyrate, formate, and succinate). Organic acid feeding significantly impacted hindgut enteroendocrine signaling gene expression, rescuing some effects of pollen restriction. This was specifically manifested by tissue-dependent expression patterns of neuropeptide F and allatostatin pathways, which are implicated in energy metabolism and feeding behaviors. Our findings provide new insights into the diet-microbiota-host axis in honey bees and may inform future efforts to improve bee health through diet-based microbiota manipulations.
Collapse
Affiliation(s)
- Vincent A. Ricigliano
- USDA-ARS, Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
- Correspondence: (V.A.R.); (K.E.A.)
| | - Kirk E. Anderson
- USDA-ARS, Carl Hayden Bee Research Center, Tucson, AZ 85719, USA
- Correspondence: (V.A.R.); (K.E.A.)
| |
Collapse
|
82
|
Liu YJ, Qiao NH, Diao QY, Jing Z, Vukanti R, Dai PL, Ge Y. Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121818. [PMID: 31818660 DOI: 10.1016/j.jhazmat.2019.121818] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 05/25/2023]
Abstract
Honeybees (Apis mellifera) offer ecosystem services such as pollination, conservation of biodiversity, and provision of food. However, in recent years, the number of honeybee colonies is diminishing rapidly, which is probably linked to the wide use of neonicotinoid insecticides. Middle-aged honeybees were fed with 50% (w/v) sucrose solution containing 0, 0.2, 0.6, and 2.0 mg/L thiacloprid (a neonicotinoid insecticide) for up to 13 days, and on each day of exposure experiment, percentage survival, sucrose consumption, and bodyweight of honeybees were measured. Further, changes in honeybee gut microbial community were examined using next-generation 16S rDNA amplicon sequencing on day 1, 7, and 13 of the exposure. When compared to control-treatment, continuous exposure to high (0.6 mg/L) and very high (2.0 mg/L) concentrations of thiacloprid significantly reduced percentage survival of honeybees (p < 0.001) and led to dysbiosis of their gut microbial community on day 7 of the exposure. However, during subsequent developmental stages of middle-aged honeybees (i.e. on day 13), their gut microbiome recovered from dysbiosis that occurred previously due to thiacloprid exposure. Taken together, improper application of thiacloprid can cause loss of honeybee colonies, while the microbial gut community of honeybee is an independent variable in this process.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Department of Honeybee Protection and Biosafety, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Neng-Hu Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing-Yun Diao
- Department of Honeybee Protection and Biosafety, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Raja Vukanti
- Department of Microbiology, Bharatiya Vidya Bhavan Bhavan's Vivekananda College, Secunderabad, 500094, India
| | - Ping-Li Dai
- Department of Honeybee Protection and Biosafety, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
83
|
Honey-bee-associated prokaryotic viral communities reveal wide viral diversity and a profound metabolic coding potential. Proc Natl Acad Sci U S A 2020; 117:10511-10519. [PMID: 32341166 PMCID: PMC7229680 DOI: 10.1073/pnas.1921859117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study uses viral-like particle purification and subsequent unbiased genome sequencing to identify prokaryotic viruses associated with Apis mellifera. Interestingly, bacteriophages found in honey bees show a high diversity and span different viral taxa. This diversity sharply contrasts with the state-of-the-art knowledge on the relatively simple bee bacterial microbiome. The identification of multiple auxiliary metabolic genes suggests that these bacteriophages possess the coding potential to intervene in essential microbial pathways related to health and possibly also to disease. This study sheds light on a neglected part of the bee microbiota and opens avenues of in vivo research on the interaction of bacteriophages with their bacterial host, which likely has strongly underappreciated consequences on bee health. Honey bees (Apis mellifera) produce an enormous economic value through their pollination activities and play a central role in the biodiversity of entire ecosystems. Recent efforts have revealed the substantial influence that the gut microbiota exert on bee development, food digestion, and homeostasis in general. In this study, deep sequencing was used to characterize prokaryotic viral communities associated with honey bees, which was a blind spot in research up until now. The vast majority of the prokaryotic viral populations are novel at the genus level, and most of the encoded proteins comprise unknown functions. Nevertheless, genomes of bacteriophages were predicted to infect nearly every major bee-gut bacterium, and functional annotation and auxiliary metabolic gene discovery imply the potential to influence microbial metabolism. Furthermore, undiscovered genes involved in the synthesis of secondary metabolic biosynthetic gene clusters reflect a wealth of previously untapped enzymatic resources hidden in the bee bacteriophage community.
Collapse
|
84
|
Vuong HQ, McFrederick QS. Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biol Evol 2020; 11:2151-2161. [PMID: 31243442 PMCID: PMC6685495 DOI: 10.1093/gbe/evz136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/18/2023] Open
Abstract
Symbiosis with bacteria is common across insects, resulting in adaptive host phenotypes. The recently described bacterial symbionts Lactobacillus micheneri, Lactobacillus timberlakei, and Lactobacillus quenuiae are found in wild bee pollen provisions, bee guts, and flowers but have small genomes in comparison to other lactobacilli. We sequenced, assembled, and analyzed 27 new L. micheneri clade genomes to identify their possible ecological functions in flower and bee hosts. We determined possible key functions for the L. micheneri clade by identifying genes under positive selection, balancing selection, genes gained or lost, and population structure. A host adherence factor shows signatures of positive selection, whereas other orthologous copies are variable within the L. micheneri clade. The host adherence factors serve as strong evidence that these lactobacilli are adapted to animal hosts as their targets are found in the digestive tract of insects. Next, the L. micheneri clade is adapted toward a nutrient-rich environment, corroborating observations of where L. micheneri is most abundant. Additionally, genes involved in osmotolerance, pH tolerance, temperature resistance, detoxification, and oxidative stress response show signatures of selection that allow these bacteria to thrive in pollen and nectar masses in bee nests and in the bee gut. Altogether, these findings not only suggest that the L. micheneri clade is primarily adapted to the wild bee gut but also exhibit genomic features that would be beneficial to survival in flowers.
Collapse
Affiliation(s)
- Hoang Q Vuong
- Department of Entomology, University California Riverside.,Department of Plant Pathology and Microbiology, University California Riverside
| | | |
Collapse
|
85
|
Paris L, Peghaire E, Moné A, Diogon M, Debroas D, Delbac F, El Alaoui H. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae. J Invertebr Pathol 2020; 172:107348. [PMID: 32119953 DOI: 10.1016/j.jip.2020.107348] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Honeybees ensure a key ecosystem service by pollinating many agricultural crops and wild plants. However, in the past few decades, managed bee colonies have been declining in Europe and North America. Researchers have emphasized both parasites and pesticides as the most important factors. Infection by the parasite Nosema ceranae and exposure to pesticides can contribute to gut dysbiosis, impacting the honeybee physiology. Here, we examined and quantified the effects of N. ceranae, the neonicotinoid thiamethoxam, the phenylpyrazole fipronil and the carboxamide boscalid, alone and in combination, on the honeybee gut microbiota. Chronic exposures to fipronil and thiamethoxam alone or combined with N. ceranae infection significantly decreased honeybee survival whereas the fungicide boscalid had no effect on uninfected bees. Interestingly, increased mortality was observed in N. ceranae-infected bees after exposure to boscalid, with synergistic negative effects. Regarding gut microbiota composition, co-exposure to the parasite and each pesticide led to decreased abundance of Alphaproteobacteria, and increased abundance of Gammaproteobacteria. The parasite also induced an increase of bacterial alpha-diversity (species richness). Our findings demonstrated that exposure of honeybees to N. ceranae and/or pesticides play a significant role in colony health and is associated with the establishment of a dysbiotic gut microbiota.
Collapse
Affiliation(s)
- Laurianne Paris
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Elodie Peghaire
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Anne Moné
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Marie Diogon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Hicham El Alaoui
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
86
|
Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
87
|
Disayathanoowat T, Li H, Supapimon N, Suwannarach N, Lumyong S, Chantawannakul P, Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020; 8:microorganisms8020264. [PMID: 32075309 PMCID: PMC7074699 DOI: 10.3390/microorganisms8020264] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated both bacterial and fungal communities in corbicular pollen and hive-stored bee bread of two commercial honey bees, Apis mellifera and Apis cerana, in China. Although both honey bees favor different main floral sources, the dynamics of each microbial community is similar. During pH reduction in hive-stored bee bread, results from conventional culturable methods and next-generation sequencing showed a declining bacterial population but a stable fungal population. Different honey bee species and floral sources might not affect the core microbial community structure but could change the number of bacteria. Corbicular pollen was colonized by the Enterobacteriaceae bacterium (Escherichia-Shiga, Panteoa, Pseudomonas) group; however, the number of bacteria significantly decreased in hive-stored bee bread in less than 72 h. In contrast, Acinetobacter was highly abundant and could utilize protein sources. In terms of the fungal community, the genus Cladosporium remained abundant in both corbicular pollen and hive-stored bee bread. This filamentous fungus might encourage honey bees to reserve pollen by releasing organic acids. Furthermore, several filamentous fungi had the potential to inhibit both commensal/contaminant bacteria and the growth of pathogens. Filamentous fungi, in particular, the genus Cladosporium, could support pollen preservation of both honey bee species.
Collapse
Affiliation(s)
- Terd Disayathanoowat
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (T.D.); (J.G.)
| | - HuanYuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Natapon Supapimon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (T.D.); (J.G.)
| |
Collapse
|
88
|
Oppenheim S, Cao X, Rueppel O, Krongdang S, Phokasem P, DeSalle R, Goodwin S, Xing J, Chantawannakul P, Rosenfeld JA. Whole Genome Sequencing and Assembly of the Asian Honey Bee Apis dorsata. Genome Biol Evol 2020; 12:3677-3683. [PMID: 31860080 PMCID: PMC6953811 DOI: 10.1093/gbe/evz277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
The Asian honey bee (Apis dorsata) is distinct from its more widely distributed cousin Apis mellifera by a few key characteristics. Most prominently, A. dorsata, nest in the open by forming a colony clustered around the honeycomb, whereas A. mellifera nest in concealed cavities. Additionally, the worker and reproductive castes are all of the same size in A. dorsata. In order to investigate these differences, we performed whole genome sequencing of A. dorsata using a hybrid Oxford Nanopore and Illumina approach. The 223 Mb genome has an N50 of 35 kb with the largest scaffold of 302 kb. We have found that there are many genes in the dorsata genome that are distinct from other hymenoptera and also large amounts of transposable elements, and we suggest some candidate genes for A. dorsata's exceptional level of defensive aggression.
Collapse
Affiliation(s)
- Sara Oppenheim
- Sackler Institute for Comparative Genomics, American Museum of Natural History
| | - Xiaolong Cao
- Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey
| | - Olav Rueppel
- Biology Department, University of North Carolina at Greensboro
| | - Sasiprapa Krongdang
- Department of Biology & Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| | - Patcharin Phokasem
- Department of Biology & Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History
| | | | - Jinchuan Xing
- Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey
| | - Panuwan Chantawannakul
- Department of Biology & Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| | - Jeffrey A Rosenfeld
- Sackler Institute for Comparative Genomics, American Museum of Natural History
- Rutgers Cancer Institute of New Jersey
- Department of Pathology, Robert Wood Johnson Medical School
| |
Collapse
|
89
|
The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One 2019; 14:e0225845. [PMID: 31800608 PMCID: PMC6892475 DOI: 10.1371/journal.pone.0225845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Bacteria within the digestive tract of adult honey bees are likely to play a key role in the digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not well understood. During periods of low floral abundance, beekeepers often supplement the natural sources of carbohydrate that honey bees collect, such as nectar, with various forms of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the monosaccharides glucose and fructose). We compared the effect of these sugar supplements on the relative abundance of bacteria in the gut of bees by feeding bees from a single colony, two natural diets: mānuka honey, a monofloral honey with known antibacterial properties, and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions containing synthesised compounds associated with the antibacterial properties of mānuka honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes containing mānuka honey, sucrose and invert sugar did not alter the relative abundance of dominant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae, Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bacteria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides, and then to acetate.
Collapse
|
90
|
Characterization of the microbiome along the gastrointestinal tracts of semi-artificially reared bar-headed geese (Anser indicus). Folia Microbiol (Praha) 2019; 65:533-543. [PMID: 31768913 DOI: 10.1007/s12223-019-00758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
As one of the dominant waterfowl species of wetland areas in the Qinghai-Tibet Plateau, since 2003, artificial rearing of bar-headed geese (Anser indicus) has increased in several provinces of China for the purpose of conservation and economic development. In this study, we systematically characterized the microbial community diversity, compositions and predicted functions of semi-artificially reared bar-headed geese by sampling five different gut locations (the oropharynxs, crops, gizzards, ceca, and cloacae) along the gastrointestinal tracts of three individuals. Alpha diversity analyses showed that the gizzards had the richest species diversity and that the ceca had the least. Beta diversity analyses showed that the cecal samples formed their own cluster, while samples from the oropharynxs, crops, gizzards, and cloacae overlapped with each other. At the phylum level, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria constituted the top five dominant phyla among all five gastrointestinal sections. At the genus level, a total of 10 genera with proportions above 2.5% were found to be significantly different among the gastrointestinal sections. Furthermore, 53 genera were detected in all gastrointestinal sections of bar-headed geese. PICRUSt data also predicted a group of microbial functions overrepresented in the different segments of the gastrointestinal tracts. Understanding the microbiota along the bar-headed geese gastrointestinal tracts is essential for future microbiological study of this bird and may contribute to the development of geese husbandry.
Collapse
|
91
|
Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc Natl Acad Sci U S A 2019; 116:25909-25916. [PMID: 31776248 DOI: 10.1073/pnas.1916224116] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bees acquire carbohydrates from nectar and lipids; and amino acids from pollen, which also contains polysaccharides including cellulose, hemicellulose, and pectin. These potential energy sources could be degraded and fermented through microbial enzymatic activity, resulting in short chain fatty acids available to hosts. However, the contributions of individual microbiota members to polysaccharide digestion have remained unclear. Through analysis of bacterial isolate genomes and a metagenome of the honey bee gut microbiota, we identify that Bifidobacterium and Gilliamella are the principal degraders of hemicellulose and pectin. Both Bifidobacterium and Gilliamella show extensive strain-level diversity in gene repertoires linked to polysaccharide digestion. Strains from honey bees possess more such genes than strains from bumble bees. In Bifidobacterium, genes encoding carbohydrate-active enzymes are colocated within loci devoted to polysaccharide utilization, as in Bacteroides from the human gut. Carbohydrate-active enzyme-encoding gene expressions are up-regulated in response to particular hemicelluloses both in vitro and in vivo. Metabolomic analyses document that bees experimentally colonized by different strains generate distinctive gut metabolomic profiles, with enrichment for specific monosaccharides, corresponding to predictions from genomic data. The other 3 core gut species clusters (Snodgrassella and 2 Lactobacillus clusters) possess few or no genes for polysaccharide digestion. Together, these findings indicate that strain composition within individual hosts determines the metabolic capabilities and potentially affects host nutrition. Furthermore, the niche specialization revealed by our study may promote overall community stability in the gut microbiomes of bees.
Collapse
|
92
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
93
|
Dai P, Wang M, Geng L, Yan Z, Yang Y, Guo L, Ma S, Diao Q. The effect of Bt Cry9Ee toxin on honey bee brood and adults reared in vitro, Apis mellifera (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:381-387. [PMID: 31212186 DOI: 10.1016/j.ecoenv.2019.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
The effects of Bt Cry9Ee toxin on honey bee, Apis mellifera L., survival, developmental rate, larval weight, pollen consumption, and midgut bacterial diversity were tested in the laboratory. Honey bee larvae and adults were reared in vitro and fed a diet that contained Cry9Ee toxin at 0.01, 0.1, 1, and 10 mg/L. Cry9Ee toxin 0.01, 0.1, and 1 mg/L in diet used in this study may represent a value closer to field relevance and the highest concentration is unlikely to be encountered in the field and thus represent a worst case scenario. The dependent variables were compared for groups of honey bees feeding on treated diet and those feeding on negative control (no addition of a test substance), solvent control (0.01 mM Na2CO3), and positive control diet (dimethoate 45 mg/L). Bt Cry9Ee toxin did not affect survival or larval weight, and the result was great confidence in accepting the null hypothesis by power analysis. The effect on development rates and pollen consumption were the inconclusive results because the post-hoc power was less than 0.8. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial class such as γ-Proteobacteria, Actinobacteria, α-Proteobacteria, Bacilli, β-Proteobacteria, and Bacteroidia were detected, and no significant changes were found in the species diversity and richness between Cry9Ee treatments and laboratory control.
Collapse
Affiliation(s)
- Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Mengyue Wang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenxiong Yan
- Beijing University of Agriculture, Beijing, 102206, China
| | - Yang Yang
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Lin Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shilong Ma
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China; College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
94
|
Ma S, Yang Y, Jack CJ, Diao Q, Fu Z, Dai P. Effects of Tropilaelaps mercedesae on midgut bacterial diversity of Apis mellifera. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:169-186. [PMID: 31602536 DOI: 10.1007/s10493-019-00424-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Tropilaelaps mercedesae is an ectoparasite of Apis mellifera in Asia and is considered a major threat to honey bee health. Herein, we used the Illumina MiSeq platform 16S rDNA Amplicon Sequencing targeting the V3-V4 regions and analysed the effects on the midgut bacterial communities of honey bees infested with T. mercedesae. The overall bacterial community in honey bees infested with T. mercedesae were observed at different developmental stages. Honey bee core intestinal bacterial genera such as Gilliamella, Lactobacillus and Frischella were detected. Tropilaelapsmercedesae infestation changed the bacterial communities in the midgut of A. mellifera. Tropilaelapsmercedesae-infested pupae had greatly increased relative abundances of Micrococcus and Sphingomonas, whereas T. mercedesae-infested 15-day-old workers had significantly reduced relative abundance of non-core microbes: Corynebacterium, Sphingomonas, Acinetobacter and Enhydrobacter compared to T. mercedesae-infested newly emerged bees. The bacterial community was significantly changed at the various T. mercedesae-infested developmental stages of A. mellifera. Tropilaelapsmercedesae infestation also changed the non-core bacterial community from larvae to newly emerged honey bees. Bacterial communities were significantly different between T. mercedesa-infested and non-mite-infested 15-day-old workers. Lactobacillus was dominant in T. mercedesae-infested 15-day-old workers compared to non-mite-infested 15-day-old workers.
Collapse
Affiliation(s)
- Shilong Ma
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
- Bee Academy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Yang
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL, 32611, USA
| | - Qingyun Diao
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Zhongmin Fu
- Bee Academy, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
95
|
Miller DL, Parish AJ, Newton IL. Transitions and transmission: behavior and physiology as drivers of honey bee-associated microbial communities. Curr Opin Microbiol 2019; 50:1-7. [PMID: 31563000 DOI: 10.1016/j.mib.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Microbial communities have considerable impacts on animal health. However, only in recent years have the host factors impacting microbiome composition been explored. An increasing wealth of microbiome data in combination with decades of research on behavior, physiology, and development have resulted in the European honey bee (Apis mellifera) as a burgeoning model system for studying the influence of host behavior on the microbiota. Honey bees are eusocial insects which exhibit striking behavioral and physiological differences between castes and life stages. These include changes in social contact, environmental exposure, diet, and physiology: all factors which can affect microbial composition and function. The honey bee system offers an opportunity to tease apart the interactive effects of all these factors on microbiota composition, abundance, and diversity.
Collapse
Affiliation(s)
- Delaney L Miller
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Audrey J Parish
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Irene Lg Newton
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States.
| |
Collapse
|
96
|
Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends Microbiol 2019; 27:1034-1044. [PMID: 31451346 DOI: 10.1016/j.tim.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating reports of global bee declines have drawn much attention to the bee microbiota and its importance. Most research has focused on social bees, while solitary species have received scant attention despite their enormous biodiversity, ecological importance, and agroeconomic value. We review insights from several recent studies on diversity, function, and drivers of the solitary-bee microbiota, and compare these factors with those relevant to the social-bee microbiota. Despite basic similarities, the social-bee model, with host-specific core microbiota and social transmission, is not representative of the vast majority of bee species. The solitary-bee microbiota exhibits greater variability and biodiversity, with a strong impact of environmental acquisition routes. Our synthesis identifies outstanding questions that will build understanding of these interactions, responses to environmental threats, and consequences for health.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany
| | - Quinn S McFrederick
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany.
| |
Collapse
|
97
|
Ngalimat MS, Raja Abd. Rahman RNZ, Yusof MT, Syahir A, Sabri S. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ 2019; 7:e7478. [PMID: 31497388 PMCID: PMC6708576 DOI: 10.7717/peerj.7478] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/15/2019] [Indexed: 02/02/2023] Open
Abstract
Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by Bacillus aryabhattai, Bacillus oleronius, Bacillus stratosphericus, Bacillus altitudinis, Bacillus amyloliquefaciens, Bacillus nealsonii, Bacillus toyonensis, Bacillus subtilis, Bacillus safensis, Bacillus pseudomycoides, Enterobacter asburiae, Enterobacter cloacae, Pantoea dispersa and Streptomyces kunmingensis. Phenotypic profile of 15 bacterial isolates using GEN III MicroPlate™ system revealed most of the isolates as capable to utilise carbohydrates as well as amino acids and carboxylic acids and derivatives. Proteolytic, lipolytic and cellulolytic activities as determined by enzymatic assays were detected in Bacillus stratosphericus PD6, Bacillus amyloliquefaciens PD9, Bacillus subtilis BD3 and Bacillus safensis BD9. Bacillus amyloliquefaciens PD9 showed broad-spectrum of antimicrobial activity against Gram-positive and Gram-negative bacteria in vitro. The multienzymes and antimicrobial activities exhibited by the bacterial isolates from H. itama nest products could provide potential sources of enzymes and antimicrobial compounds for biotechnological applications.
Collapse
Affiliation(s)
- Mohamad Syazwan Ngalimat
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Amir Syahir
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
98
|
Rouzé R, Moné A, Delbac F, Belzunces L, Blot N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema ceranae. Microbes Environ 2019; 34:226-233. [PMID: 31378758 PMCID: PMC6759349 DOI: 10.1264/jsme2.me18169] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont.
Collapse
Affiliation(s)
- Régis Rouzé
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Anne Moné
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | | | - Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| |
Collapse
|
99
|
Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. INSECT MOLECULAR BIOLOGY 2019; 28:455-472. [PMID: 30652367 DOI: 10.1111/imb.12567] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota-microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.
Collapse
Affiliation(s)
- S Romero
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Nastasa
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Chapman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W K Kwong
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - L J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
100
|
Lee FJ, Miller KI, McKinlay JB, Newton ILG. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol Ecol 2019; 94:5033678. [PMID: 29878200 DOI: 10.1093/femsec/fiy113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
The honey bee worker gut hosts a community of bacteria that comprises 8-10 core bacterial species, along with a set of more transient environmental microbes. Collectively, these microbes break down and ferment saccharides present in the host's diet, based on analyses of metagenomes, and metatranscriptomes from this environment. As part of this metabolism, the bacteria produce short-chain fatty acids that may serve as a food source for the host bee, stimulating biological processes that may contribute to host weight gain. To identify metabolic contributions of symbionts within the honey bee gut, we utilized a combination of molecular and biochemical approaches. We show significant variation in the metabolic capabilities of honey bee-associated taxa, highlighting the fact that honey bee gut microbiota members of the same clade are highly variable in their ability to use specific carbohydrates and produce organic acids. Finally, we confirm that the honey bee core microbes are active in vivo, expressing key enzymatic genes critical for utilizing plant-derived molecules and producing organic acids (i.e. acetate and lactate). These results suggest that core taxa may contribute significantly to weight gain in the honey bee, specifically through the production of organic acids.
Collapse
Affiliation(s)
- Fredrick J Lee
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kayla I Miller
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|