51
|
Placzek MS, Schroeder FA, Che T, Wey HY, Neelamegam R, Wang C, Roth BL, Hooker JM. Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging. ACS Chem Neurosci 2019; 10:384-395. [PMID: 30212182 DOI: 10.1021/acschemneuro.8b00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kappa opioid receptor (KOR) modulation has been pursued in many conceptual frameworks for the treatment of human pain, depression, and anxiety. As such, several imaging tools have been developed to characterize the density of KORs in the human brain and its occupancy by exogenous drug-like compounds. While exploring the pharmacology of KOR tool compounds using positron emission tomography (PET), we observed discrepancies in the apparent competition binding as measured by changes in binding potential (BPND, binding potential with respect to non-displaceable uptake). This prompted us to systematically look at the relationships between baseline BPND maps for three common KOR PET radioligands, the antagonists [11C]LY2795050 and [11C]LY2459989, and the agonist [11C]GR103545. We then measured changes in BPND using kappa antagonists (naloxone, naltrexone, LY2795050, JDTic, nor-BNI), and found BPND was affected similarly between [11C]GR103545 and [11C]LY2459989. Longitudinal PET studies with nor-BNI and JDTic were also examined, and we observed a persistent decrease in [11C]GR103545 BPND up to 25 days after drug administration for both nor-BNI and JDTic. Kappa agonists were also administered, and butorphan and GR89696 (racemic GR103545) impacted binding to comparable levels between the two radiotracers. Of greatest significance, kappa agonists salvinorin A and U-50488 caused dramatic reductions in [11C]GR103545 BPND but did not change [11C]LY2459989 binding. This discrepancy was further examined in dose-response studies with each radiotracer as well as in vitro binding experiments.
Collapse
Affiliation(s)
- Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
52
|
Zjawiony JK, Machado AS, Menegatti R, Ghedini PC, Costa EA, Pedrino GR, Lukas SE, Franco OL, Silva ON, Fajemiroye JO. Cutting-Edge Search for Safer Opioid Pain Relief: Retrospective Review of Salvinorin A and Its Analogs. Front Psychiatry 2019; 10:157. [PMID: 30971961 PMCID: PMC6445891 DOI: 10.3389/fpsyt.2019.00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Over the years, pain has contributed to low life quality, poor health, and economic loss. Opioids are very effective analgesic drugs for treating mild, moderate, or severe pain. Therapeutic application of opioids has been limited by short and long-term side effects. These side effects and opioid-overuse crisis has intensified interest in the search for new molecular targets and drugs. The present review focuses on salvinorin A and its analogs with the aim of exploring their structural and pharmacological profiles as clues for the development of safer analgesics. Ethnopharmacological reports and growing preclinical data have demonstrated the antinociceptive effect of salvinorin A and some of its analogs. The pharmacology of analogs modified at C-2 dominates the literature when compared to the ones from other positions. The distinctive binding affinity of these analogs seems to correlate with their chemical structure and in vivo antinociceptive effects. The high susceptibility of salvinorin A to chemical modification makes it an important pharmacological tool for cellular probing and developing analogs with promising analgesic effects. Additional research is still needed to draw reliable conclusions on the therapeutic potential of salvinorin A and its analogs.
Collapse
Affiliation(s)
- Jordan K Zjawiony
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, United States
| | - Antônio S Machado
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Paulo C Ghedini
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elson A Costa
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gustavo R Pedrino
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil
| | - Scott E Lukas
- McLean Imaging Center, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-graduação em Patologia Molecular, Universidade de Brasília, Brasília, Brazil
| | - Osmar N Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - James O Fajemiroye
- Department of Physiology, Universidade Federal de Goiás, Goiânia, Brazil.,Centro Universitário de Anápolis, Unievangélica, Anápolis, Brazil
| |
Collapse
|
53
|
Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018; 43:2514-2520. [PMID: 30250308 PMCID: PMC6224460 DOI: 10.1038/s41386-018-0225-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Mu opioid receptor agonists are among the most powerful analgesic medications but also among the most addictive. The current opioid crisis has energized a quest to develop opioid analgesics that are devoid of untoward effects. Since their discovery in the 1970's, there have been major advances in our understanding of the endogenous opioid systems that these drugs target. Yet many questions remain and the development of non-addictive opioid analgesics has not been achieved. However, access to new molecular, genetic and computational tools have begun to elucidate the structural dynamics of opioid receptors, the scaffolding that links them to intracellular signaling cascades, their cellular trafficking and the distinct ways that various opioid drugs modify them. This mini-review highlights some of the chemical and pharmacological findings and new perspectives that have arisen from studies using these tools. They reveal multiple layers of complexity of opioid receptor function, including a spatiotemporal specificity in opioid receptor-induced cellular signaling, ligand-directed biased signaling, allosteric modulation of ligand interactions, heterodimerization of different opioid receptors, and the existence of slice variants with different ligand specificity. By untangling these layers, basic research into the chemistry and pharmacology of opioid receptors is guiding the way towards deciphering the mysteries of tolerance and physical dependence that have plagued the field and is providing a platform for the development of more effective and safer opioids.
Collapse
|
54
|
Martin C, Dumitrascuta M, Mannes M, Lantero A, Bucher D, Walker K, Van Wanseele Y, Oyen E, Hernot S, Van Eeckhaut A, Madder A, Hoogenboom R, Spetea M, Ballet S. Biodegradable Amphipathic Peptide Hydrogels as Extended-Release System for Opioid Peptides. J Med Chem 2018; 61:9784-9789. [DOI: 10.1021/acs.jmedchem.8b01282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Dominik Bucher
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Katja Walker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Yannick Van Wanseele
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edith Oyen
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
55
|
Liu JJ, Sharma K, Zangrandi L, Chen C, Humphrey SJ, Chiu YT, Spetea M, Liu-Chen LY, Schwarzer C, Mann M. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science 2018; 360:360/6395/eaao4927. [PMID: 29930108 DOI: 10.1126/science.aao4927] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
A systems view of G protein-coupled receptor (GPCR) signaling in its native environment is central to the development of GPCR therapeutics with fewer side effects. Using the kappa opioid receptor (KOR) as a model, we employed high-throughput phosphoproteomics to investigate signaling induced by structurally diverse agonists in five mouse brain regions. Quantification of 50,000 different phosphosites provided a systems view of KOR in vivo signaling, revealing novel mechanisms of drug action. Thus, we discovered enrichment of the mechanistic target of rapamycin (mTOR) pathway by U-50,488H, an agonist causing aversion, which is a typical KOR-mediated side effect. Consequently, mTOR inhibition during KOR activation abolished aversion while preserving beneficial antinociceptive and anticonvulsant effects. Our results establish high-throughput phosphoproteomics as a general strategy to investigate GPCR in vivo signaling, enabling prediction and modulation of behavioral outcomes.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Kirti Sharma
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Luca Zangrandi
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sean J Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research and Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
56
|
Ho JH, Stahl EL, Schmid CL, Scarry SM, Aubé J, Bohn LM. G protein signaling-biased agonism at the κ-opioid receptor is maintained in striatal neurons. Sci Signal 2018; 11:11/542/eaar4309. [PMID: 30087177 DOI: 10.1126/scisignal.aar4309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Biased agonists of G protein-coupled receptors may present a means to refine receptor signaling in a way that separates side effects from therapeutic properties. Several studies have shown that agonists that activate the κ-opioid receptor (KOR) in a manner that favors G protein coupling over β-arrestin2 recruitment in cell culture may represent a means to treat pain and itch while avoiding sedation and dysphoria. Although it is attractive to speculate that the bias between G protein signaling and β-arrestin2 recruitment is the reason for these divergent behaviors, little evidence has emerged to show that these signaling pathways diverge in the neuronal environment. We further explored the influence of cellular context on biased agonism at KOR ligand-directed signaling toward G protein pathways over β-arrestin-dependent pathways and found that this bias persists in striatal neurons. These findings advance our understanding of how a G protein-biased agonist signal differs between cell lines and primary neurons, demonstrate that measuring [35S]GTPγS binding and the regulation of adenylyl cyclase activity are not necessarily orthogonal assays in cell lines, and emphasize the contributions of the environment to assessing biased agonism.
Collapse
Affiliation(s)
- Jo-Hao Ho
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cullen L Schmid
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sarah M Scarry
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey Aubé
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
57
|
Dunn AD, Reed B, Guariglia C, Dunn AM, Hillman JM, Kreek MJ. Structurally Related Kappa Opioid Receptor Agonists with Substantial Differential Signaling Bias: Neuroendocrine and Behavioral Effects in C57BL6 Mice. Int J Neuropsychopharmacol 2018; 21:847-857. [PMID: 29635340 PMCID: PMC6119295 DOI: 10.1093/ijnp/pyy034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/30/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The kappa opioid receptor system has been revealed as a potential pharmacotherapeutic target for the treatment of addictions to substances of abuse. Kappa opioid receptor agonists have been shown to block the rewarding and dopamine-releasing effects of psychostimulants. Recent investigations have profiled the in vivo effects of compounds biased towards G-protein-mediated signaling, with less potent arrestin-mediated signaling. The compounds studied here derive from a series of trialkylamines: N-substituted-N- phenylethyl-N-3-hydroxyphenylethyl-amine, with N-substituents including n-butyl (BPHA), methylcyclobutyl (MCBPHA), and methylcyclopentyl (MCPPHA). METHODS BPHA, MCBPHA, and MCPPHA were characterized in vitro in a kappa opioid receptor-expressing cell line in binding assays and functional assays. We also tested the compounds in C57BL6 mice, assaying incoordination with rotarod, as well as circulating levels of the neuroendocrine kappa opioid receptor biomarker, prolactin. RESULTS BPHA, MCBPHA, and MCPPHA showed full kappa opioid receptor agonism for G-protein coupling compared with the reference compound U69,593. BPHA showed no measurable β-arrestin-2 recruitment, indicating that it is extremely G-protein biased. MCBPHA and MCPPHA, however, showed submaximal efficacy for recruiting β-arrestin-2. Studies in C57BL6 mice reveal that all compounds stimulate release of prolactin, consistent with dependence on G-protein signaling. MCBPHA and MCPPHA result in rotarod incoordination, whereas BPHA does not, consistent with the reported requirement of intact kappa opioid receptor/β-arrestin-2 mediated coupling for kappa opioid receptor agonist-induced rotarod incoordination. CONCLUSIONS BPHA, MCBPHA, and MCPPHA are thus novel differentially G-protein-biased kappa opioid receptor agonists. They can be used to investigate how signaling pathways mediate kappa opioid receptor effects in vitro and in vivo and to explore the effects of candidate kappa opioid receptor-targeted pharmacotherapeutics.
Collapse
Affiliation(s)
- Amelia D Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York,Correspondence: Amelia Dunn, BS, BA, 1230 York Ave, Box 243, New York, NY 10065 ()
| | - Brian Reed
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Catherine Guariglia
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Alexandra M Dunn
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Joshua M Hillman
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, Rockefeller University, New York, New York
| |
Collapse
|
58
|
Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 2018; 172:55-67.e15. [PMID: 29307491 PMCID: PMC5802374 DOI: 10.1016/j.cell.2017.12.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.
Collapse
Affiliation(s)
- Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Susruta Majumdar
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Saheem A Zaidi
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Pauline Ondachi
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sheng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonweath University, Richmond, VA 23298, USA
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eyal Vardy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gye Won Han
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Ming-Yue Lee
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; School of Molecular Sciences, Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Institute of Natural Resources and Environmental Audits, Nanjing Audit University, Nanjing, China
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Alexandra R Tribo
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gavril W Pasternak
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Raymond C Stevens
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel Wacker
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
59
|
Harland AA, Pogozheva ID, Griggs NW, Trask TJ, Traynor JR, Mosberg HI. Placement of Hydroxy Moiety on Pendant of Peptidomimetic Scaffold Modulates Mu and Kappa Opioid Receptor Efficacy. ACS Chem Neurosci 2017; 8:2549-2557. [PMID: 28796483 PMCID: PMC5691919 DOI: 10.1021/acschemneuro.7b00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
In
an effort to expand the structure–activity relationship (SAR)
studies of a series of mixed-efficacy opioid ligands, peptidomimetics
that incorporate methoxy and hydroxy groups around a benzyl or 2-methylindanyl
pendant on a tetrahydroquinoline (THQ) core of the peptidomimetics
were evaluated. Compounds containing a methoxy or hydroxy moiety in
the o- or m-positions increased
binding affinity to the kappa opioid receptor (KOR), whereas compounds
containing methoxy or hydroxy groups in the p-position
decreased KOR affinity and reduced or eliminated efficacy at the mu
opioid receptor (MOR). The results from a substituted 2-methylindanyl
series aligned with the findings from the substituted benzyl series.
Our studies culminated in the development of 8c, a mixed-efficacy
MOR agonist/KOR agonist with subnanomolar binding affinity for both
MOR and KOR.
Collapse
Affiliation(s)
- Aubrie A. Harland
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler J. Trask
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
60
|
Erli F, Guerrieri E, Ben Haddou T, Lantero A, Mairegger M, Schmidhammer H, Spetea M. Highly Potent and Selective New Diphenethylamines Interacting with the κ-Opioid Receptor: Synthesis, Pharmacology, and Structure-Activity Relationships. J Med Chem 2017; 60:7579-7590. [PMID: 28825813 PMCID: PMC5601360 DOI: 10.1021/acs.jmedchem.7b00981] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We previously reported on a series of small molecules targeting the κ-opioid (KOP) receptor featuring a diphenethylamine scaffold and showed the promise of these ligands as effective analgesics with reduced liability for adverse effects. This study expands the structure-activity relationships on our original series by presenting several modifications in the lead compounds 1 (HS665) and 2 (HS666). A library of new diphenethylamines was designed, synthesized, and pharmacologically evaluated. In comparison with 1 and 2, the KOP receptor affinity, selectivity, and agonist activity were modulated by introducing bulkier N-substituents, a 2-fluoro substitution, and additional hydroxyl groups at positions 3' and 4'. Several analogues showed subnanomolar affinity and excellent KOP receptor selectivity acting as full or partial agonists, and one as an antagonist. The new diphenethylamines displayed antinociceptive efficacies with increased potencies than U50,488, 1 and 2 in the writhing assay and without inducing motor dysfunction after sc administration in mice.
Collapse
Affiliation(s)
- Filippo Erli
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Tanila Ben Haddou
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Mairegger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
61
|
Spetea M, Eans SO, Ganno ML, Lantero A, Mairegger M, Toll L, Schmidhammer H, McLaughlin JP. Selective κ receptor partial agonist HS666 produces potent antinociception without inducing aversion after i.c.v. administration in mice. Br J Pharmacol 2017; 174:2444-2456. [PMID: 28494108 PMCID: PMC5513865 DOI: 10.1111/bph.13854] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/09/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The κ receptor has a central role in modulating neurotransmission in central and peripheral neuronal circuits that subserve pain and other behavioural responses. Although κ receptor agonists do not produce euphoria or lead to respiratory suppression, they induce dysphoria and sedation. We hypothesized that brain-penetrant κ receptor ligands possessing biased agonism towards G protein signalling over β-arrestin2 recruitment would produce robust antinociception with fewer associated liabilities. EXPERIMENTAL APPROACH Two new diphenethylamines with high κ receptor selectivity, HS665 and HS666, were assessed following i.c.v. administration in mouse assays of antinociception with the 55°C warm-water tail withdrawal test, locomotor activity in the rotorod and conditioned place preference. The [35 S]-GTPγS binding and β-arrestin2 recruitment in vitro assays were used to characterize biased agonism. KEY RESULTS HS665 (κ receptor agonist) and HS666 (κ receptor partial agonist) demonstrated dose-dependent antinociception after i.c.v. administration mediated by the κ receptor. These highly selective κ receptor ligands displayed varying biased signalling towards G protein coupling in vitro, consistent with a reduced liability profile, reflected by reduced sedation and absence of conditioned place aversion for HS666. CONCLUSIONS AND IMPLICATIONS HS665 and HS666 activate central κ receptors to produce potent antinociception, with HS666 displaying pharmacological characteristics of a κ receptor analgesic with reduced liability for aversive effects correlating with its low efficacy in the β-arrestin2 signalling pathway. Our data provide further understanding of the contribution of central κ receptors in pain suppression, and the prospect of dissociating the antinociceptive effects of HS665 and HS666 from κ receptor-mediated adverse effects.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
| | - Shainnel O Eans
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
- Department of PharmacodynamicsUniversity of FloridaGainesvilleFLUSA
| | | | - Aquilino Lantero
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Michael Mairegger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Lawrence Toll
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Jay P McLaughlin
- Torrey Pines Institute for Molecular StudiesPort St. LucieFLUSA
- Department of PharmacodynamicsUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|