51
|
Erlandson S, Wei X, Savage J, Cavender-Bares J, Peay K. Soil abiotic variables are more important than Salicaceae phylogeny or habitat specialization in determining soil microbial community structure. Mol Ecol 2018; 27:2007-2024. [PMID: 29603835 DOI: 10.1111/mec.14576] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/21/2018] [Indexed: 01/03/2023]
Abstract
Predicting the outcome of interspecific interactions is a central goal in ecology. The diverse soil microbes that interact with plants are shaped by different aspects of plant identity, such as phylogenetic history and functional group. Species interactions may also be strongly shaped by abiotic environment, but there is mixed evidence on the relative importance of environment, plant identity and their interactions in shaping soil microbial communities. Using a multifactor, split-plot field experiment, we tested how hydrologic context, and three facets of Salicaceae plant identity-habitat specialization, phylogenetic distance and species identity-influence soil microbial community structure. Analysis of microbial community sequencing data with generalized dissimilarity models showed that abiotic environment explained up to 25% of variation in community composition of soil bacteria, fungi and archaea, while Salicaceae identity influenced <1% of the variation in community composition of soil microbial taxa. Multivariate linear models indicated that the influence of Salicaceae identity was small, but did contribute to differentiation of soil microbes within treatments. Moreover, results from a microbial niche breadth analysis show that soil microbes in wetlands have more specialized host associations than soil microbes in drier environments-showing that abiotic environment changed how plant identity correlated with soil microbial communities. This study demonstrates the predominance of major abiotic factors in shaping soil microbial community structure; the significance of abiotic context to biotic influence on soil microbes; and the utility of field experiments to disentangling the abiotic and biotic factors that are thought to be most essential for soil microbial communities.
Collapse
Affiliation(s)
- Sonya Erlandson
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Xiaojing Wei
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Jessica Savage
- Department of Biology, University of Minnesota, Duluth, MN, USA
| | | | - Kabir Peay
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
52
|
Liu X, Burslem DFRP, Taylor JD, Taylor AFS, Khoo E, Majalap-Lee N, Helgason T, Johnson D. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol Lett 2018. [DOI: 10.1111/ele.12939] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xubing Liu
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
- Department of Ecology; School of Life Sciences; Sun Yat-sen University; Guangzhou 510275 China
| | - David F. R. P. Burslem
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
| | - Joe D. Taylor
- Department of Biology; University of York; Heslington York YO10 5DD UK
- School of Environment and Life Sciences; University of Salford; The Crescent Salford M5 4WT UK
| | - Andy F. S. Taylor
- School of Biological Sciences; University of Aberdeen; Cruickshank Building, St Machar Drive Aberdeen AB24 3UU UK
- The James Hutton Institute; Craigiebuckler, Aberdeen AB15 8QH UK
| | - Eyen Khoo
- Forest Research Centre; Sabah Forestry Department; Sandakan 90715 Malaysia
| | - Noreen Majalap-Lee
- Forest Research Centre; Sabah Forestry Department; Sandakan 90715 Malaysia
| | - Thorunn Helgason
- Department of Biology; University of York; Heslington York YO10 5DD UK
| | - David Johnson
- School of Earth and Environmental Sciences; The University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
53
|
Toju H, Sato H. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest. Front Microbiol 2018; 9:433. [PMID: 29593682 PMCID: PMC5858530 DOI: 10.3389/fmicb.2018.00433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/26/2018] [Indexed: 11/29/2022] Open
Abstract
Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal (Chamaecyparis obtusa) and ectomycorrhizal (Pinus densiflora) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as “generalists,” which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium, and Mortierella. Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula) or Pinus (e.g., Neolecta). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
54
|
Mucha J, Peay KG, Smith DP, Reich PB, Stefański A, Hobbie SE. Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. MICROBIAL ECOLOGY 2018; 75:348-363. [PMID: 28741266 PMCID: PMC5742605 DOI: 10.1007/s00248-017-1044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/13/2017] [Indexed: 05/05/2023]
Abstract
Ectomycorrhizal (ECM) fungi can influence the establishment and performance of host species by increasing nutrient and water absorption. Therefore, understanding the response of ECM fungi to expected changes in the global climate is crucial for predicting potential changes in the composition and productivity of forests. While anthropogenic activity has, and will continue to, cause global temperature increases, few studies have investigated how increases in temperature will affect the community composition of ectomycorrhizal fungi. The effects of global warming are expected to be particularly strong at biome boundaries and in the northern latitudes. In the present study, we analyzed the effects of experimental manipulations of temperature and canopy structure (open vs. closed) on ectomycorrhizal fungi identified from roots of host seedlings through 454 pyrosequencing. The ecotonal boundary site selected for the study was between the southern boreal and temperate forests in northern Minnesota, USA, which is the southern limit range for Picea glauca and Betula papyrifera and the northern one for Pinus strobus and Quercus rubra. Manipulations that increased air and soil temperature by 1.7 and 3.4 °C above ambient temperatures, respectively, did not change ECM richness but did alter the composition of the ECM community in a manner dependent on host and canopy structure. The prediction that colonization of boreal tree species with ECM symbionts characteristic of temperate species would occur was not substantiated. Overall, only a small proportion of the ECM community appears to be strongly sensitive to warming.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland.
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Dylan P Smith
- University of California, California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Western Sydney University, Hawkesbury Institute for the Environment, Penrith, NSW, Australia
| | - Artur Stefański
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
55
|
Glassman SI, Wang IJ, Bruns TD. Environmental filtering by
pH
and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol 2017; 26:6960-6973. [DOI: 10.1111/mec.14414] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Sydney I. Glassman
- Department of Environmental Science Policy and Management University of California, Berkeley CA USA
- Department of Ecology and Evolutionary Biology University of California, Irvine CA USA
- Department of Plant & Microbial Biology University of California Berkeley CA USA
| | - Ian J. Wang
- Department of Environmental Science Policy and Management University of California, Berkeley CA USA
| | - Thomas D. Bruns
- Department of Environmental Science Policy and Management University of California, Berkeley CA USA
- Department of Plant & Microbial Biology University of California Berkeley CA USA
| |
Collapse
|
56
|
Essene AL, Shek KL, Lewis JD, Peay KG, McGuire KL. Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest. FRONTIERS IN PLANT SCIENCE 2017; 8:1828. [PMID: 29163567 PMCID: PMC5663695 DOI: 10.3389/fpls.2017.01828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/10/2017] [Indexed: 05/12/2023]
Abstract
The role that mycorrhizal fungal associations play in the assembly of long-lived tree communities is poorly understood, especially in tropical forests, which have the highest tree diversity of any ecosystem. The lowland tropical rain forests of Southeast Asia are characterized by high levels of species richness within the family Dipterocarpaceae, the entirety of which has been shown to form obligate ectomycorrhizal (ECM) fungal associations. Differences in ECM assembly between co-occurring species of dipterocarp have been suggested, but never tested in adult trees, as a mechanism for maintaining the coexistence of closely related tree species in this family. Testing this hypothesis has proven difficult because the assembly of both dipterocarps and their ECM associates co-varies with the same edaphic variables. In this study, we used high-throughput DNA sequencing of soils and Sanger sequencing of root tips to evaluate how ECM fungi were structured within and across a clay-sand soil nutrient ecotone in a mixed-dipterocarp rain forest in Malaysian Borneo. We compared assembly patterns of ECM fungi in bulk soil to ECM root tips collected from three ecologically distinct species of dipterocarp. This design allowed us to test whether ECM fungi are more strongly structured by soil type or host specificity. As with previous studies of ECM fungi on this plot, we observed that clay vs. sand soil type strongly structured both the bulk soil and root tip ECM fungal communities. However, we also observed significantly different ECM communities associated with two of the three dipterocarp species evaluated on this plot. These results suggest that ECM fungal assembly on these species is shaped by a combination of biotic and abiotic factors, and that the soil edaphic niche occupied by different dipterocarp species may be mediated by distinct ECM fungal assemblages.
Collapse
Affiliation(s)
- Adam L. Essene
- Department of Biological Sciences, Fordham University, New York City, NY, United States
| | - Katherine L. Shek
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - J. D. Lewis
- Department of Biological Sciences, Fordham University, New York City, NY, United States
| | - Kabir G. Peay
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Krista L. McGuire
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| |
Collapse
|
57
|
Peay KG, von Sperber C, Cardarelli E, Toju H, Francis CA, Chadwick OA, Vitousek PM. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation-climate gradient. FEMS Microbiol Ecol 2017; 93:3586621. [PMID: 28402397 DOI: 10.1093/femsec/fix045] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Changes in species richness along climatological gradients have been instrumental in developing theories about the general drivers of biodiversity. Previous studies on microbial communities along climate gradients on mountainsides have revealed positive, negative and neutral richness trends. We examined changes in richness and composition of Fungi, Bacteria and Archaea in soil along a 50-1000 m elevation, 280-3280 mm/yr precipitation gradient in Hawai'i. Soil properties and their drivers are exceptionally well understood along this gradient. All three microbial groups responded strongly to the gradient, with community ordinations being similar along axes of environmental conditions (pH, rainfall) and resource availability (nitrogen, phosphorus). However, the form of the richness-climate relationship varied between Fungi (positive linear), Bacteria (unimodal) and Archaea (negative linear). These differences were related to resource-ecology and limiting conditions for each group, with fungal richness increasing most strongly with soil carbon, ammonia-oxidizing Archaea increasing with nitrogen mineralization rate, and Bacteria increasing with both carbon and pH. Reponses to the gradient became increasingly variable at finer taxonomic scales and within any taxonomic group most individual OTUs occurred in narrow climate-elevation ranges. These results show that microbial responses to climate gradients are heterogeneous due to complexity of underlying environmental changes and the diverse ecologies of microbial taxa.
Collapse
Affiliation(s)
- Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Emily Cardarelli
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | | | - Oliver A Chadwick
- Geography Department, University of California, Santa Barbara CA 93106, USA
| | - Peter M Vitousek
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
58
|
Fukami T, Nakajima M, Fortunel C, Fine PVA, Baraloto C, Russo SE, Peay KG. Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees. Am Nat 2017; 190:S105-S122. [DOI: 10.1086/692439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
59
|
Mushegian AA, Walser JC, Sullam KE, Ebert D. The microbiota of diapause: How host-microbe associations are formed after dormancy in an aquatic crustacean. J Anim Ecol 2017; 87:400-413. [DOI: 10.1111/1365-2656.12709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 01/28/2023]
Affiliation(s)
| | - Jean-Claude Walser
- Zoological Institute; University of Basel; Basel Switzerland
- Genetic Diversity Centre; ETH Zürich; Zürich Switzerland
| | - Karen E. Sullam
- Zoological Institute; University of Basel; Basel Switzerland
| | - Dieter Ebert
- Zoological Institute; University of Basel; Basel Switzerland
| |
Collapse
|
60
|
Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. THE NEW PHYTOLOGIST 2017; 215:443-453. [PMID: 28493414 DOI: 10.1111/nph.14570] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Temperate ectomycorrhizal (ECM) fungi show segregation whereby some species dominate in organic layers and others favor mineral soils. Weak layering in tropical soils is hypothesized to decrease niche space and therefore reduce the diversity of ectomycorrhizal fungi. The Neotropical ECM tree Dicymbe corymbosa forms monodominant stands and has a distinct physiognomy with vertical crown development, adventitious roots and massive root mounds, leading to multi-stemmed trees with spatially segregated rooting environments: aerial litter caches, aerial decayed wood, organic root mounds and mineral soil. We hypothesized that these microhabitats host distinct fungal assemblages and therefore promote diversity. To test our hypothesis, we sampled D. corymbosa ectomycorrhizal root tips from the four microhabitats and analyzed community composition based on pyrosequencing of fungal internal transcribed spacer (ITS) barcode markers. Several dominant fungi were ubiquitous but analyses nonetheless suggested that communities in mineral soil samples were statistically distinct from communities in organic microhabitats. These data indicate that distinctive rooting zones of D. corymbosa contribute to spatial segregation of the fungal community and likely enhance fungal diversity.
Collapse
Affiliation(s)
- Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | | | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Alexander K Fremier
- School of the Environment, Washington State University, Pullman, WA, 99164, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
61
|
Veen GFC, De Long JR, Kardol P, Sundqvist MK, Snoek LB, Wardle DA. Coordinated responses of soil communities to elevation in three subarctic vegetation types. OIKOS 2017. [DOI: 10.1111/oik.04158] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. F. Ciska Veen
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
| | - Jonathan R. De Long
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
- School of Earth and Environmental Sciences, The Univ. of Manchester; Manchester England
| | - Paul Kardol
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
| | - Maja K. Sundqvist
- Dept of Ecology and Environmental Science, Umeå Univ.; Umeå Sweden
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, Univ. of Copenhagen; Copenhagen Denmark
| | - L. Basten Snoek
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology PO Box 50; NL-6700 AB, Wageningen Netherlands
- Laboratory of Nematology, Wageningen Univ.; Wageningen Netherlands
| | - David A. Wardle
- Dept of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences; Umeå Sweden
- Asian School of the Environment, Nanyang Technological Univ.; Singapore
| |
Collapse
|
62
|
Abstract
Fungi represent a large proportion of the genetic diversity on Earth and fungal activity influences the structure of plant and animal communities, as well as rates of ecosystem processes. Large-scale DNA-sequencing datasets are beginning to reveal the dimensions of fungal biodiversity, which seem to be fundamentally different to bacteria, plants and animals. In this Review, we describe the patterns of fungal biodiversity that have been revealed by molecular-based studies. Furthermore, we consider the evidence that supports the roles of different candidate drivers of fungal diversity at a range of spatial scales, as well as the role of dispersal limitation in maintaining regional endemism and influencing local community assembly. Finally, we discuss the ecological mechanisms that are likely to be responsible for the high heterogeneity that is observed in fungal communities at local scales.
Collapse
Affiliation(s)
- Kabir G Peay
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Peter G Kennedy
- Department of Plant Biology, University of Minnesota.,Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Jennifer M Talbot
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
63
|
|
64
|
Pec GJ, Karst J, Taylor DL, Cigan PW, Erbilgin N, Cooke JEK, Simard SW, Cahill JF. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. THE NEW PHYTOLOGIST 2017; 213:864-873. [PMID: 27659418 DOI: 10.1111/nph.14195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi.
Collapse
Affiliation(s)
- Gregory J Pec
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Justine Karst
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 104, Albuquerque, NM, 87131, USA
| | - Paul W Cigan
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Forest Sciences Centre #3601-2424 Main Hall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, B717a Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
65
|
|
66
|
Jacquemyn H, Waud M, Merckx VSFT, Brys R, Tyteca D, Hedrén M, Lievens B. Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Sci Rep 2016; 6:37182. [PMID: 27883008 PMCID: PMC5121631 DOI: 10.1038/srep37182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023] Open
Abstract
Orchid species are critically dependent on mycorrhizal fungi for completion of their life cycle, particularly during the early stages of their development when nutritional resources are scarce. As such, orchid mycorrhizal fungi play an important role in the population dynamics, abundance, and spatial distribution of orchid species. However, less is known about the ecology and distribution of orchid mycorrhizal fungi. In this study, we used 454 amplicon pyrosequencing to investigate ecological and geographic variation in mycorrhizal associations in fourteen species of the orchid genus Dactylorhiza. More specifically, we tested the hypothesis that variation in orchid mycorrhizal communities resulted primarily from differences in habitat conditions where the species were growing. The results showed that all investigated Dactylorhiza species associated with a large number of fungal OTUs, the majority belonging to the Tulasnellaceae, Ceratobasidiaceae and Sebacinales. Mycorrhizal specificity was low, but significant variation in mycorrhizal community composition was observed between species inhabiting different ecological habitats. Although several fungi had a broad geographic distribution, Species Indicator Analysis revealed some fungi that were characteristic for specific habitats. Overall, these results indicate that orchid mycorrhizal fungi may have a broad geographic distribution, but that their occurrence is bounded by specific habitat conditions.
Collapse
Affiliation(s)
- Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium
| | - Michael Waud
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium.,KU Leuven, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), B-2860 Sint-Katelijne-Waver, Belgium
| | | | - Rein Brys
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium
| | - Daniel Tyteca
- Biodiversity Research Centre (BDIV), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Mikael Hedrén
- Department of Biology, Biodiversity, Lund University, Sölvegatan 37, S-22362 Lund, Sweden
| | - Bart Lievens
- KU Leuven, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
67
|
Toju H, Kishida O, Katayama N, Takagi K. Networks Depicting the Fine-Scale Co-Occurrences of Fungi in Soil Horizons. PLoS One 2016; 11:e0165987. [PMID: 27861486 PMCID: PMC5115672 DOI: 10.1371/journal.pone.0165987] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
Fungi in soil play pivotal roles in nutrient cycling, pest controls, and plant community succession in terrestrial ecosystems. Despite the ecosystem functions provided by soil fungi, our knowledge of the assembly processes of belowground fungi has been limited. In particular, we still have limited knowledge of how diverse functional groups of fungi interact with each other in facilitative and competitive ways in soil. Based on the high-throughput sequencing data of fungi in a cool-temperate forest in northern Japan, we analyzed how taxonomically and functionally diverse fungi showed correlated fine-scale distributions in soil. By uncovering pairs of fungi that frequently co-occurred in the same soil samples, networks depicting fine-scale co-occurrences of fungi were inferred at the O (organic matter) and A (surface soil) horizons. The results then led to the working hypothesis that mycorrhizal, endophytic, saprotrophic, and pathogenic fungi could form compartmentalized (modular) networks of facilitative, antagonistic, and/or competitive interactions in belowground ecosystems. Overall, this study provides a research basis for further understanding how interspecific interactions, along with sharing of niches among fungi, drive the dynamics of poorly explored biospheres in soil.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Takaoka, Tomakomai, Hokkaido, Japan
| | - Noboru Katayama
- Center for Ecological Research, Kyoto University, 2-chome, Hirano, Otsu, Shiga, Japan
| | - Kentaro Takagi
- Teshio Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Aza-Toikanbetsu 131, Horonobe-cho, Teshio-gun, Hokkaido, Japan
| |
Collapse
|
68
|
Peay KG. The Mutualistic Niche: Mycorrhizal Symbiosis and Community Dynamics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032100] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The niche is generally viewed in terms of species' intrinsic physiological potential and limitations due to competition. Although DNA sequencing has revealed the ubiquity of beneficial microbial symbioses, the role of mutualisms in shaping species niches is not broadly recognized. In this review, I use a widespread terrestrial mutualism, the ectomycorrhizal symbiosis, to help develop the mutualistic niche concept. Using contemporary niche theory, I show how mycorrhizal symbioses expand environmental ranges (requirement niche) and influence resource use (impact niche) for both plants and fungi. Simple niche models for competition between resource specialists and generalists also predict a range of ecological phenomena, from unexpected monodominance by some tropical trees to the functional biogeography of mycorrhizal symbiosis. A niche-based view of mutualism may also help explain stability of mutualisms even in the absence of clear benefits. The niche is a central concept in ecology, and better integration of mutualism will more accurately reflect the positive interactions experienced by nearly all species.
Collapse
Affiliation(s)
- Kabir G. Peay
- Department of Biology, Stanford University, Stanford, California 94122
| |
Collapse
|
69
|
Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ. Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis. Am Nat 2016; 188:E113-E125. [DOI: 10.1086/688675] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
70
|
Bauman D, Raspé O, Meerts P, Degreef J, Ilunga Muledi J, Drouet T. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest. FEMS Microbiol Ecol 2016; 92:fiw151. [PMID: 27402715 DOI: 10.1093/femsec/fiw151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/14/2022] Open
Abstract
Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity.
Collapse
Affiliation(s)
- David Bauman
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| | - Olivier Raspé
- Department of Bryophyta and Thallophyta, Botanic Garden Meise, 38 Nieuwlaan, B-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Pierre Meerts
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| | - Jérôme Degreef
- Department of Bryophyta and Thallophyta, Botanic Garden Meise, 38 Nieuwlaan, B-1860 Meise, Belgium Fédération Wallonie-Bruxelles, Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Jonathan Ilunga Muledi
- Faculté des Sciences agronomiques, Université de Lubumbashi, Route Kasapa, BP 1825 Lubumbashi, The Democratic Republic of the Congo
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, CP 244, 1050 Brussels, Belgium
| |
Collapse
|
71
|
Lankau RA, Keymer DP. Ectomycorrhizal fungal richness declines towards the host species’ range edge. Mol Ecol 2016; 25:3224-41. [DOI: 10.1111/mec.13628] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Richard A. Lankau
- Department of Plant Biology University of Georgia Athens GA 30606 USA
| | - Daniel P. Keymer
- Department of Plant Biology University of Georgia Athens GA 30606 USA
| |
Collapse
|
72
|
Jacquemyn H, Waud M, Lievens B, Brys R. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. ANNALS OF BOTANY 2016; 118:105-14. [PMID: 26946528 PMCID: PMC4934391 DOI: 10.1093/aob/mcw015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/11/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats. METHODS In this study, 454 amplicon pyrosequencing was used to investigate mycorrhizal communities associating with Epipactis helleborine in its typical forest habitat and with its presumed sister species E. neerlandica that almost exclusively occurs in coastal dune habitats. Samples of the phylogenetically more distant E. palustris, which co-occurred with E. neerlandica, were also included to investigate the role of habitat-specific conditions on mycorrhizal communities. RESULTS A total of 105 operational taxonomic units (OTUs) of putative orchid mycorrhizal fungi were observed in the three studied species. The majority of these fungi were endophytic fungi of Helotiales and ectomycorrhizal fungi belonging to Thelephoraceae, Sebacinaceae and Inocybaceae. In addition, a large number of other ectomycorrhizal taxa were detected, including Cortinarius, Cenococcum, Tuber, Geopora, Wilcoxina, Meliniomyces, Hebeloma, Tricholoma, Russula and Peziza Mycorrhizal communities differed significantly between the three species, but differences were most pronounced between the forest species (E. helleborine) and the two dune slack species (E. neerlandica and E. palustris). CONCLUSION The results clearly showed that recently diverged orchid species that occupy different habitats were characterized by significantly different mycorrhizal communities and call for more detailed experiments that aim at elucidating the contribution of habitat-specific adaptations in general and mycorrhizal divergence in particular to the process of speciation in orchids.
Collapse
Affiliation(s)
- Hans Jacquemyn
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| | - Michael Waud
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| | - Bart Lievens
- KU Leuven, Campus De Nayer, Department of Microbial and Molecular Systems, Laboratory for Process Microbial Ecology and Bioinspirational Management, B-2860 Sint-Katelijne-Waver, Belgium
| | - Rein Brys
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, B-3001 Leuven, Belgium and
| |
Collapse
|
73
|
Toju H, Tanabe AS, Ishii HS. Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol Ecol 2016; 25:3242-57. [DOI: 10.1111/mec.13680] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Affiliation(s)
- H. Toju
- Graduate School of Human and Environmental Studies; Kyoto University; Sakyo Kyoto 606-8501 Japan
| | - A. S. Tanabe
- National Research Institute of Fisheries Science; Japan Fisheries Research and Education Agency; 2-12-4 Fukuura Kanazawa-ku Yokohama Kanagawa 236-8648 Japan
| | - H. S. Ishii
- Department of Environmental Biology and Chemistry; Graduate School of Science and Engineering; University of Toyama; 3190 Gofuku Toyama 930-8555 Japan
| |
Collapse
|
74
|
Kivlin SN, Hawkes CV. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environ Microbiol 2016; 18:4662-4673. [PMID: 27130750 DOI: 10.1111/1462-2920.13342] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/13/2016] [Indexed: 11/29/2022]
Abstract
Tropical ecosystems remain poorly understood and this is particularly true for belowground soil fungi. Soil fungi may respond to plant identity when, for example, plants differentially allocate resources belowground. However, spatial and temporal heterogeneity in factors such as plant inputs, moisture, or nutrients can also affect fungal communities and obscure our ability to detect plant effects in single time point studies or within diverse forests. To address this, we sampled replicated monocultures of four tree species and secondary forest controls sampled in the drier and wetter seasons over 2 years. Fungal community composition was primarily related to vegetation type and spatial heterogeneity in the effects of vegetation type, with increasing divergence partly reflecting greater differences in soil pH and soil moisture. Across wetter versus drier dates, fungi were 7% less diverse, but up to four-fold more abundant. The combined effects of tree species and seasonality suggest that predicted losses of tropical tree diversity and intensification of drought have the potential to cascade belowground to affect both diversity and abundance of tropical soil fungi.
Collapse
Affiliation(s)
- Stephanie N Kivlin
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78701, USA
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78701, USA
| |
Collapse
|
75
|
Looby CI, Maltz MR, Treseder KK. Belowground responses to elevation in a changing cloud forest. Ecol Evol 2016; 6:1996-2009. [PMID: 27066220 PMCID: PMC4767876 DOI: 10.1002/ece3.2025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/08/2016] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Few studies have investigated how soil fungal communities respond to elevation, especially within TMCF (tropical montane cloud forests). We used an elevation gradient in a TMCF in Costa Rica to determine how soil properties, processes, and community composition of fungi change in response to elevation and across seasons. As elevation increased, soil temperature and soil pH decreased, while soil moisture and soil C:N ratios increased with elevation. Responses of these properties varied seasonally. Fungal abundance increased with elevation during wet and dry seasons. Fungal community composition shifted in response to elevation, and to a lesser extent by season. These shifts were accompanied by varying responses of important fungal functional groups during the wet season and the relative abundance of certain fungal phyla. We suggest that elevation and the responses of certain fungal functional groups may be structuring fungal communities along this elevation gradient. TMCF are ecosystems that are rapidly changing due to climate change. Our study suggests that these changes may affect how fungal communities are structured.
Collapse
Affiliation(s)
- Caitlin I. Looby
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia92697
| | - Mia R. Maltz
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia92697
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia92697
| |
Collapse
|
76
|
Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS. Network modules and hubs in plant-root fungal biomes. J R Soc Interface 2016; 13:20151097. [PMID: 26962029 PMCID: PMC4843674 DOI: 10.1098/rsif.2015.1097] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont-symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e., 'enterotype') and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont-symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root-microbiome dynamics.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Satoshi Yamamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| | - Akifumi S Tanabe
- National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Takashi Hayakawa
- Department of Wildlife Science (Nagoya Railroad Co., Ltd.), Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Hiroshi S Ishii
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
77
|
Roy‐Bolduc A, Laliberté E, Hijri M. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol Evol 2016; 6:349-62. [PMID: 26811798 PMCID: PMC4716518 DOI: 10.1002/ece3.1881] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023] Open
Abstract
Ectomycorrhizal (EM) fungi are ubiquitous in temperate and boreal forests, comprising over 20,000 species forming root symbiotic associations with Pinaceae and woody angiosperms. As much as 100 different EM fungal species can coexist and interact with the same tree species, forming complex multispecies networks in soils. The degree of host specificity and structural properties of these interaction networks (e.g., nestedness and modularity) may influence plant and fungal community assembly and species coexistence, yet their structure has been little studied in northern coniferous forests, where trees depend on EM fungi for nutrient acquisition. We used high-throughput sequencing to characterize the composition and diversity of bulk soil and root-associated fungal communities in four co-occurring Pinaceae in a relic foredune plain located at Îles de la Madeleine, Québec, Canada. We found high EM fungal richness across the four hosts, with a total of 200 EM operational taxonomic units (OTUs), mainly belonging to the Agaricomycetes. Network analysis revealed an antinested pattern in both bulk soil and roots EM fungal communities. However, there was no detectable modularity (i.e., subgroups of interacting species) in the interaction networks, indicating a low level of specificity in these EM associations. In addition, there were no differences in EM fungal OTU richness or community structure among the four tree species. Limited shared resources and competitive exclusion typically restrict the number of taxa coexisting within the same niche. As such, our finding of high EM fungal richness and low host specificity highlights the need for further studies to determine the mechanisms enabling such a large number of EM fungal species to coexist locally on the same hosts.
Collapse
Affiliation(s)
- Alice Roy‐Bolduc
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuébecCanadaH1X 2B2
| | - Etienne Laliberté
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuébecCanadaH1X 2B2
| | - Mohamed Hijri
- Département de Sciences BiologiquesInstitut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuébecCanadaH1X 2B2
| |
Collapse
|
78
|
Erlandson SR, Savage JA, Cavender-Bares JM, Peay KG. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol Ecol 2015; 92:fiv148. [DOI: 10.1093/femsec/fiv148] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2015] [Indexed: 11/13/2022] Open
|
79
|
Toju H, Guimarães PR, Olesen JM, Thompson JN. Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology. SCIENCE ADVANCES 2015; 1:e1500291. [PMID: 26601279 PMCID: PMC4646793 DOI: 10.1126/sciadv.1500291] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/05/2015] [Indexed: 05/21/2023]
Abstract
In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant-fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant-partner networks. Specifically, plant-fungus networks lacked a "nested" architecture, which has been considered to promote species coexistence in plant-partner networks. Rather, the below-ground networks had a conspicuous "antinested" topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions.
Collapse
Affiliation(s)
- Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Jens M. Olesen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - John N. Thompson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|