51
|
Wang Q, Gallardo-Macias R, Vomhof-DeKrey EE, Gupta R, Golovko SA, Golovko MY, Oncel S, Gurvich VJ, Basson MD. A novel drug-like water-soluble small molecule Focal Adhesion Kinase (FAK) activator promotes intestinal mucosal healing. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100147. [PMID: 36632414 PMCID: PMC9827036 DOI: 10.1016/j.crphar.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) injure the proximal and distal gut by different mechanisms. While many drugs reduce gastrointestinal injury, no drug directly stimulates mucosal wound healing. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, induces epithelial sheet migration. We synthesized and evaluated a water-soluble FAK-activating small molecule, M64HCl, with drug-like properties. Monolayer wound closure and Western blots measured migration and FAK phosphorylation in Caco-2 cells, in vitro kinase assays established FAK activation, and pharmacologic tests assessed drug-like properties. 30 mg/kg/day M64HCl was administered in two murine small intestine injury models for 4 days. M64HCl (0.1-1000 nM) dose-dependently increased Caco-2 FAK-Tyr 397 phosphorylation, without activating Pyk2 and accelerated Caco-2 monolayer wound closure. M64HCl dose-responsively activates the FAK kinase domain vs. the non-salt M64, increasing the Vmax of ATP-binding. Pharmacologic tests suggested M64HCl has drug-like properties and is enterally absorbed. M64HCl 25 mg/kg/day continuous infusion promoted healing of ischemic jejunal ulcers and indomethacin-induced small intestinal injury in C57Bl/6 mice. M64HCl-treated mice exhibited smaller ulcers 4 days after ischemic ulcer induction or indomethacin injury. Renal histology and plasma creatinine were normal. Mild hepatic inflammatory changes and ALT elevation were similar among M64HCl-treated mice and controls. M64HCl was concentrated in kidney and gastrointestinal mucosa and functional nephrectomy studies suggested predominantly urinary excretion. Little toxicity was observed in vitro or in single-dose mouse toxicity studies until >1000x higher than effective concentrations. M64HCl, a water-soluble FAK activator, promotes epithelial restitution and intestinal mucosal healing and may be useful to treat gut mucosal injury.
Collapse
Affiliation(s)
- Qinggang Wang
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, USA
| | - Ricardo Gallardo-Macias
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, USA
| | - Emilie E. Vomhof-DeKrey
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, USA
| | - Rashmi Gupta
- Currently at Department of Biology, University of Maryland, USA
| | - Svetlana A. Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Mikhail Y. Golovko
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, USA
| | - Vadim J. Gurvich
- Institute for Therapeutics Discovery and Development and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, USA
| | - Marc D. Basson
- Departments of Surgery, Biomedical Sciences, and Pathology, University of North Dakota School of Medicine and Health Sciences, USA
| |
Collapse
|
52
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
53
|
Rubin J, van Wijnen AJ, Uzer G. Architectural control of mesenchymal stem cell phenotype through nuclear actin. Nucleus 2022; 13:35-48. [PMID: 35133922 PMCID: PMC8837231 DOI: 10.1080/19491034.2022.2029297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
There is growing appreciation that architectural components of the nucleus regulate gene accessibility by altering chromatin organization. While nuclear membrane connector proteins link the mechanosensitive actin cytoskeleton to the nucleoskeleton, actin's contribution to the inner architecture of the nucleus remains enigmatic. Control of actin transport into the nucleus, plus the presence of proteins that control actin structure (the actin tool-box) within the nucleus, suggests that nuclear actin may support biomechanical regulation of gene expression. Cellular actin structure is mechanoresponsive: actin cables generated through forces experienced at the plasma membrane transmit force into the nucleus. We posit that dynamic actin remodeling in response to such biomechanical cues provides a novel level of structural control over the epigenetic landscape. We here propose to bring awareness to the fact that mechanical forces can promote actin transfer into the nucleus and control structural arrangements as illustrated in mesenchymal stem cells, thereby modulating lineage commitment.
Collapse
Affiliation(s)
- Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont Medical School, Burlington, Vt, USA
| | - Gunes Uzer
- Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID, USA
| |
Collapse
|
54
|
Qu M, Yu K, Rehman Aziz AU, Zhang H, Zhang Z, Li N, Liu B. The role of Actopaxin in tumor metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:90-102. [PMID: 36150525 DOI: 10.1016/j.pbiomolbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Actopaxin is a newly discovered focal adhesions (FAs) protein, actin-binding protein and pseudopodia-enriched molecule. It can not only bind to a variety of FAs proteins (such as Paxillin, ILK and PINCH) and non-FAs proteins (such as TESK1, CdGAP, β2-adaptin, G3BP2, ADAR1 and CD29), but also participates in multiple signaling pathways. Thus, it plays a crucial role in regulating important processes of tumor metastasis, including matrix degradation, migration, and invasion, etc. This review covers the latest progress in the structure and function of Actopaxin, its interaction with other proteins as well as its involvement in regulating tumor development and metastasis. Additionally, the current limitations for Actopaxin related studies and the possible research directions on it in the future are also discussed. It is hoped that this review can assist relevant researchers to obtain a deep understanding of the role that Actopaxin plays in tumor progression, and also enlighten further research and development of therapeutic approaches for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Manrong Qu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Kehui Yu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| |
Collapse
|
55
|
Fadzil AFBA, Pramanik A, Basak A, Prakash C, Shankar S. Role of surface quality on biocompatibility of implants - A review. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
56
|
Liang C, Liu X, Yan Y, Sun R, Li J, Geng W. Effectiveness and Mechanisms of Low-Intensity Pulsed Ultrasound on Osseointegration of Dental Implants and Biological Functions of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:7397335. [PMID: 36199628 PMCID: PMC9529500 DOI: 10.1155/2022/7397335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dental implant restoration is the preferred choice for patients with dentition defects or edentulous patients, and obtaining stable osseointegration is the determining factor for successful implant healing. The risk of implant failure during the healing stage is still an urgent problem in clinical practice due to differences in bone quality at different implant sites and the impact of some systemic diseases on bone tissue metabolism. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive physical intervention method widely recognized in the treatment of bone fracture and joint damage repair. Moreover, many studies indicated that LIPUS could effectively promote the osseointegration of dental implants and improve the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This review is aimed at investigating the research progress on the use of LIPUS in dental implant medicine from three aspects: (1) discuss the promoting effects of LIPUS on osseointegration and peri-implant bone regeneration, (2) summarize the effects and associated mechanisms of LIPUS on the biological functions of BMSCs, and (3) introduce the application and prospects of LIPUS in the clinical work of dental implantation. Although many challenges need to be overcome in the future, LIPUS is bound to be an efficient and convenient therapeutic method to improve the dental implantation success rate and expand clinical implant indications.
Collapse
Affiliation(s)
- Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuwei Yan
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Rongxin Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
57
|
Han KJ, Mikalayeva V, Gerber SA, Kettenbach AN, Skeberdis VA, Prekeris R. Rab40c regulates focal adhesions and PP6 activity by controlling ANKRD28 ubiquitylation. Life Sci Alliance 2022; 5:5/9/e202101346. [PMID: 35512830 PMCID: PMC9070665 DOI: 10.26508/lsa.202101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Rab40c is a SOCS box-containing protein which binds Cullin5 to form a ubiquitin E3 ligase complex (Rab40c/CRL5) to regulate protein ubiquitylation. However, the exact functions of Rab40c remain to be determined, and what proteins are the targets of Rab40c-Cullin5-mediated ubiquitylation in mammalian cells are unknown. Here we showed that in migrating MDA-MB-231 cells Rab40c regulates focal adhesion's number, size, and distribution. Mechanistically, we found that Rab40c binds the protein phosphatase 6 (PP6) complex and ubiquitylates one of its subunits, ankyrin repeat domain 28 (ANKRD28), thus leading to its lysosomal degradation. Furthermore, we identified that phosphorylation of FAK and MOB1 is decreased in Rab40c knock-out cells, which may contribute to focal adhesion site regulation by Rab40c. Thus, we propose a model where Rab40c/CRL5 regulates ANKRD28 ubiquitylation and degradation, leading to a decrease in PP6 activity, which ultimately affects FAK and Hippo pathway signaling to alter focal adhesion dynamics.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
58
|
Wang R, Chen X, Huang C, Yang X, He H, OuYang C, Li H, Guo J, Yang C, Lin Z. Identification of key genes with prognostic value in gastric cancer by bioinformatics analysis. Front Genet 2022; 13:958213. [PMID: 36110205 PMCID: PMC9468639 DOI: 10.3389/fgene.2022.958213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Gastric cancer (GC) is a digestive system tumor with high morbidity and mortality. It is urgently required to identify genes to elucidate the underlying molecular mechanisms. The aim of this study is to identify the key genes which may affect the prognosis of GC patients and be a therapeutic strategy for GC patients by bioinformatic analysis. Methods: The significant prognostic differentially expressed genes (DEGs) were screened out from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets. The protein–protein interaction (PPI) network was established by STRING and screening key genes by MCODE and CytoNCA plug-ins in Cytoscape. Functional enrichment analysis, construction of a prognostic risk model, and nomograms verify key genes as potential therapeutic targets. Results: In total, 997 genes and 805 genes were related to the prognosis of GC in the GSE84437 and TCGA datasets, respectively. We define the 128 genes shared by the two datasets as prognostic DEGs (P-DEGs). Then, the first four genes (MYLK, MYL9, LUM, and CAV1) with great node importance in the PPI network of P-DEGs were identified as key genes. Independent prognostic risk analysis found that patients with high key gene expression had a poor prognosis, excluding their age, gender, and TNM stage. GO and KEGG enrichment analyses showed that key genes may exert influence through the PI3K-Akt pathway, in which extracellular matrix organization and focal adhesion may play important roles in key genes influencing the prognosis of GC patients. Conclusion: We found that MYLK, MYL9, LUM, and CAV1 are potential and reliable prognostic key genes that affect the invasion and migration of gastric cancer.
Collapse
|
59
|
Harati J, Tao X, Shahsavarani H, Du P, Galluzzi M, Liu K, Zhang Z, Shaw P, Shokrgozar MA, Pan H, Wang PY. Polydopamine-Mediated Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human Adipose-Derived Stem Cells (hASCs). Front Bioeng Biotechnol 2022; 10:934179. [PMID: 36032703 PMCID: PMC9399727 DOI: 10.3389/fbioe.2022.934179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Polydopamine (PDA) is a biocompatible cell-adhesive polymer with versatile applications in biomedical devices. Previous studies have shown that PDA coating could improve cell adhesion and differentiation of human mesenchymal stem cells (hMSCs). However, there is still a knowledge gap in the effect of PDA-mediated protein adsorption on the epigenetic status of MSCs. This work used gelatin-coated cell culture surfaces with and without PDA underlayer (Gel and PDA-Gel) to culture and differentiate primary human adipose-derived stem cells (hASCs). The properties of these two substrates were significantly different, which, in combination with a variation in extracellular matrix (ECM) protein bioactivity, regulated cell adhesion and migration. hASCs reduced focal adhesions by downregulating the expression of integrins such as αV, α1, α2, and β1 on the PDA-Gel compared to the Gel substrate. Interestingly, the ratio of H3K27me3 to H3K27me3+H3K4me3 was decreased, but this only occurred for upregulation of AGG and BMP4 genes during chondrogenic differentiation. This result implies that the PDA-Gel surface positively affects the chondrogenic, but not adipogenic and osteogenic, differentiation. In conclusion, for the first time, this study demonstrates the sequential effects of PDA coating on the biophysical property of adsorbed protein and then focal adhesions and differentiation of hMSCs through epigenetic regulation. This study sheds light on PDA-mediated mechanotransduction.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Mohammad Ali Shokrgozar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| |
Collapse
|
60
|
Trifunovic S, Smiljanić K, Sickmann A, Solari FA, Kolarevic S, Divac Rankov A, Ljujic M. Electronic cigarette liquids impair metabolic cooperation and alter proteomic profiles in V79 cells. Respir Res 2022; 23:191. [PMID: 35840976 PMCID: PMC9285873 DOI: 10.1186/s12931-022-02102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Although still considered a safer alternative to classical cigarettes, growing body of work points to harmful effects of electronic cigarettes (e-cigarettes) affecting a range of cellular processes. The biological effect of e-cigarettes needs to be investigated in more detail considering their widespread use. Methods In this study, we treated V79 lung fibroblasts with sub-cytotoxic concentration of e-cigarette liquids, with and without nicotine. Mutagenicity was evaluated by HPRT assay, genotoxicity by comet assay and the effect on cellular communication by metabolic cooperation assay. Additionally, comprehensive proteome analysis was performed via high resolution, parallel accumulation serial fragmentation-PASEF mass spectrometry. Results E-cigarette liquid concentration used in this study showed no mutagenic or genotoxic effect, however it negatively impacted metabolic cooperation between V79 cells. Both e-cigarette liquids induced significant depletion in total number of proteins and impairment of mitochondrial function in treated cells. The focal adhesion proteins were upregulated, which is in accordance with the results of metabolic cooperation assay. Increased presence of posttranslational modifications (PTMs), including carbonylation and direct oxidative modifications, was observed. Data are available via ProteomeXchange with identifier PXD032071. Conclusions Our study revealed impairment of metabolic cooperation as well as significant proteome and PTMs alterations in V79 cells treated with e-cigarette liquid warranting future studies on e-cigarettes health impact. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02102-w.
Collapse
Affiliation(s)
- Sara Trifunovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences, Split, Croatia.
| | - Katarina Smiljanić
- Department of Biochemistry and Centre of Excellence for Molecular Food Sciences, University of Belgrade, Faculty of Chemistry, Studentski Trg 12-14, 11000, Belgrade, Serbia
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany.,Medizinische Fakultät, Medizinisches Proteom-Center (MPC), Ruhr-Universität Bochum, 44801, Bochum, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB243FX, Scotland, UK
| | - Fiorella A Solari
- Leibniz-Institut Für Analytische Wissenschaften - ISAS - E.V., Bunsen-Kirchhoff-Straße 11, Dortmund, Germany
| | - Stoimir Kolarevic
- Department of Hydroecology and Water Protection, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Divac Rankov
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Mila Ljujic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
61
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
62
|
McDonald PC, Dedhar S. New Perspectives on the Role of Integrin-Linked Kinase (ILK) Signaling in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14133209. [PMID: 35804980 PMCID: PMC9264971 DOI: 10.3390/cancers14133209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Today, the vast majority of deaths from cancer are due to cancer metastasis. Metastasis requires that cancer cells escape from the initial tumor, travel through blood vessels, and form new tumors in distant host tissues. Integrin-linked kinase (ILK) is overexpressed by many types of cancer cells and provides both structural and signaling functions that are important for successful metastasis. Here, we discuss recent findings that show how ILK is involved in promoting physical changes important for cell motility and invasion, and how ILK relays signals to other machinery components during metastasis, including interactions with components of the immune system and communication between cancer cells and normal cells, to affect the process of metastasis. We also discuss the contribution of ILK to therapeutic resistance and examine efforts to target ILK for the treatment of metastatic disease. Abstract Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
63
|
Chepy A, Vivier S, Bray F, Ternynck C, Meneboo JP, Figeac M, Filiot A, Guilbert L, Jendoubi M, Rolando C, Launay D, Dubucquoi S, Marot G, Sobanski V. Effects of Immunoglobulins G From Systemic Sclerosis Patients in Normal Dermal Fibroblasts: A Multi-Omics Study. Front Immunol 2022; 13:904631. [PMID: 35844491 PMCID: PMC9276964 DOI: 10.3389/fimmu.2022.904631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.
Collapse
Affiliation(s)
- Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
| | - Solange Vivier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290, Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Camille Ternynck
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
| | - Alexandre Filiot
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Lucile Guilbert
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290, Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
- *Correspondence: David Launay,
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
- Inria, Models for Data Analysis and Learning, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
64
|
Filhol O, Hesse AM, Bouin AP, Albigès-Rizo C, Jeanneret F, Battail C, Pflieger D, Cochet C. CK2β Is a Gatekeeper of Focal Adhesions Regulating Cell Spreading. Front Mol Biosci 2022; 9:900947. [PMID: 35847979 PMCID: PMC9280835 DOI: 10.3389/fmolb.2022.900947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
CK2 is a hetero-tetrameric serine/threonine protein kinase made up of two CK2α/αʹ catalytic subunits and two CK2β regulatory subunits. The free CK2α subunit and the tetrameric holoenzyme have distinct substrate specificity profiles, suggesting that the spatiotemporal organization of the individual CK2 subunits observed in living cells is crucial in the control of the many cellular processes that are governed by this pleiotropic kinase. Indeed, previous studies reported that the unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition (EMT), a process involved in cancer invasion and metastasis. Moreover, sub-stoichiometric expression of CK2β compared to CK2α in a subset of breast cancer tumors was correlated with the induction of EMT markers and increased epithelial cell plasticity in breast carcinoma progression. Phenotypic changes of epithelial cells are often associated with the activation of phosphotyrosine signaling. Herein, using phosphotyrosine enrichment coupled with affinity capture and proteomic analysis, we show that decreased expression of CK2β in MCF10A mammary epithelial cells triggers the phosphorylation of a number of proteins on tyrosine residues and promotes the striking activation of the FAK1-Src-PAX1 signaling pathway. Moreover, morphometric analyses also reveal that CK2β loss increases the number and the spatial distribution of focal adhesion signaling complexes that coordinate the adhesive and migratory processes. Together, our findings allow positioning CK2β as a gatekeeper for cell spreading by restraining focal adhesion formation and invasion of mammary epithelial cells.
Collapse
Affiliation(s)
- Odile Filhol
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
| | - Anne-Pascale Bouin
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Florian Jeanneret
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Christophe Battail
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| | - Claude Cochet
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| |
Collapse
|
65
|
Ground M, Waqanivavalagi S, Park YE, Callon K, Walker R, Milsom P, Cornish J. Fibroblast growth factor 2 inhibits myofibroblastic activation of valvular interstitial cells. PLoS One 2022; 17:e0270227. [PMID: 35714127 PMCID: PMC9205485 DOI: 10.1371/journal.pone.0270227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Heart valve disease is a growing problem worldwide. Though very common in older adults, the mechanisms behind the development of the disease aren't well understood, and at present the only therapeutic option is valve replacement. Valvular interstitial cells (VICs) may hold the answer. These cells can undergo pathological differentiation into contractile myofibroblasts or osteoblasts, leading to thickening and calcification of the valve tissue. Our study aimed to characterise the effect of fibroblast growth factor 2 (FGF-2) on the differentiation potential of VICs. We isolated VICs from diseased human valves and treated these cells with FGF-2 and TGF-β to elucidate effect of these growth factors on several myofibroblastic outcomes, in particular immunocytochemistry and gene expression. We used TGF-β as a positive control for myofibroblastic differentiation. We found that FGF-2 promotes a 'quiescent-type' morphology and inhibits the formation of α-smooth muscle actin positive myofibroblasts. FGF-2 reduced the calcification potential of VICs, with a marked reduction in the number of calcific nodules. FGF-2 interrupted the 'canonical' TGF-β signalling pathway, reducing the nuclear translocation of the SMAD2/3 complex. The panel of genes assayed revealed that FGF-2 promoted a quiescent-type pattern of gene expression, with significant downregulations in typical myofibroblast markers α smooth muscle actin, extracellular matrix proteins, and scleraxis. We did not see evidence of osteoblast differentiation: neither matrix-type calcification nor changes in osteoblast associated gene expression were observed. Our findings show that FGF-2 can reverse the myofibroblastic phenotype of VICs isolated from diseased valves and inhibit the calcification potential of these cells.
Collapse
Affiliation(s)
- Marcus Ground
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Steve Waqanivavalagi
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Young-Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Karen Callon
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Robert Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paget Milsom
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
66
|
Silvani G, Bradbury P, Basirun C, Mehner C, Zalli D, Poole K, Chou J. Testing 3D printed biological platform for advancing simulated microgravity and space mechanobiology research. NPJ Microgravity 2022; 8:19. [PMID: 35662260 PMCID: PMC9166742 DOI: 10.1038/s41526-022-00207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
The advancement of microgravity simulators is helping many researchers better understanding the impact of the mechanically unloaded space environment on cellular function and disfunction. However, performing microgravity experiments on Earth, using simulators such as the Random Positioning Machine, introduces some unique practical challenges, including air bubble formation and leakage of growth medium from tissue culture flask and plates, all of which limit research progress. Here, we developed an easy-to-use hybrid biological platform designed with the precision of 3D printing technologies combined with PDMS microfluidic fabrication processes to facilitate reliable and reproducible microgravity cellular experiments. The system has been characterized for applications in the contest of brain cancer research by exposing glioblastoma and endothelial cells to 24 h of simulated microgravity condition to investigate the triggered mechanosensing pathways involved in cellular adaptation to the new environment. The platform demonstrated compatibility with different biological assays, i.e., proliferation, viability, morphology, protein expression and imaging of molecular structures, showing advantages over the conventional usage of culture flask. Our results indicated that both cell types are susceptible when the gravitational vector is disrupted, confirming the impact that microgravity has on both cancer and healthy cells functionality. In particular, we observed deactivation of Yap-1 molecule in glioblastoma cells and the remodeling of VE-Cadherin junctional protein in endothelial cells. The study provides support for the application of the proposed biological platform for advancing space mechanobiology research, also highlighting perspectives and strategies for developing next generation of brain cancer molecular therapies, including targeted drug delivery strategies.
Collapse
Affiliation(s)
- Giulia Silvani
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Christine Mehner
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Detina Zalli
- Institute of Continuing Education, University of Cambridge, Camridge, UK
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine & Health, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
67
|
Osouli Tabrizi H, Panahi A, Forouhi S, Sadighbayan D, Soheili F, Haji Hosseini Khani MR, Magierowski S, Ghafar-Zadeh E. Oral Cells-On-Chip: Design, Modeling and Experimental Results. Bioengineering (Basel) 2022; 9:218. [PMID: 35621496 PMCID: PMC9137814 DOI: 10.3390/bioengineering9050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Recent advances in periodontal studies have attracted the attention of researchers to the relation between oral cells and gum diseases, which is a real threat to overall human health. Among various microfabrication technologies, Complementary Metal Oxide Semiconductors (CMOSs) enable the development of low-cost integrated sensors and circuits for rapid and accurate assessment of living cells that can be employed for the early detection and control of periodontal diseases. This paper presents a CMOS capacitive sensing platform that can be considered as an alternative for the analysis of salivatory cells such as oral neutrophils. This platform consists of two sensing electrodes connected to a read-out capacitive circuitry designed and fabricated on the same chip using Austria Mikro Systeme (AMS) 0.35 µm CMOS process. A graphical user interface (GUI) was also developed to interact with the capacitive read-out system and the computer to monitor the capacitance changes due to the presence of saliva cells on top of the chip. Thanks to the wide input dynamic range (IDR) of more than 400 femto farad (fF) and high resolution of 416 atto farad (aF), the experimental and simulation results demonstrate the functionality and applicability of the proposed sensor for monitoring cells in a small volume of 1 µL saliva samples. As per these results, the hydrophilic adhesion of oral cells on the chip varies the capacitance of interdigitated electrodes (IDEs). These capacitance changes then give an assessment of the oral cells existing in the sample. In this paper, the simulation and experimental results set a new stage for emerging sensing platforms for testing oral samples.
Collapse
Affiliation(s)
- Hamed Osouli Tabrizi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Abbas Panahi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Saghi Forouhi
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Fatemeh Soheili
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Mohammad Reza Haji Hosseini Khani
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
| | - Sebastian Magierowski
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; (H.O.T.); (A.P.); (S.F.); (D.S.); (F.S.); (M.R.H.H.K.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada;
- Department of Biology, Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
68
|
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. MICROMACHINES 2022; 13:mi13050780. [PMID: 35630247 PMCID: PMC9144100 DOI: 10.3390/mi13050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| | - Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Fabio De Matteis
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento Ingegneria Industriale, Università Degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Emanuela Tamburri
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Letizia Terranova
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| |
Collapse
|
69
|
Zuidema A, Wang W, Kreft M, Bleijerveld OB, Hoekman L, Aretz J, Böttcher RT, Fässler R, Sonnenberg A. Molecular determinants of αVβ5 localization in flat clathrin lattices: Role of αVβ5 in cell adhesion and proliferation. J Cell Sci 2022; 135:275569. [PMID: 35532004 PMCID: PMC9234671 DOI: 10.1242/jcs.259465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The vitronectin receptor integrin αVβ5 can reside in two distinct adhesion structures: focal adhesions (FAs) and flat clathrin lattices (FCLs). Here we investigated the mechanism that regulates the subcellular distribution of β5 in keratinocytes and show that β5 has approximately 7- and 5-fold higher affinity for the clathrin adaptors ARH and Numb, respectively, than for talin; all proteins that bind to the membrane-proximal NPxY motif of the β5 cytoplasmic domain. Using mass spectrometry, we identified β5 interactors including the Rho GEFs p115Rho-GEF and GEF-H1, and the serine protein kinase MARK2; depletion of which diminishes the clustering of β5 in FCLs. Substitution of two serines (S759/762) in the β5 cytoplasmic domain with phospho-mimetic glutamates causes a shift in the localization of β5 from FAs into FCLs without affecting the interactions with MARK2, p115Rho-GEF or GEF-H1. Instead, we demonstrate that changes in the actomyosin-based cellular contractility by ectopic expression of activated Rho or disruption of microtubules regulates β5 localization. Finally, we present evidence that β5 in either FAs or FCLs functions to promote adhesion to vitronectin, cell spreading, and proliferation.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, The Netherlands
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
70
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
71
|
Norris EG, Pan XS, Hocking DC. Receptor binding domain of SARS-CoV-2 is a functional αv-integrin agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.11.487882. [PMID: 35441172 PMCID: PMC9016641 DOI: 10.1101/2022.04.11.487882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar respiratory coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2 (ACE2)-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. In the present study, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared to RGD-containing, integrin-binding fragments of fibronectin. S1-RBD supported adhesion of both fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells. Cell adhesion to S1-RBD was cation- and RGD-dependent, and was inhibited by blocking antibodies against α v and β 3 , but not α 5 or β 1 , integrins. Similarly, direct binding of S1-RBD to recombinant human α v β 3 and α v β 6 integrins, but not α 5 β 1 integrins, was observed by surface plasmon resonance. Adhesion to S1-RBD initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin, Akt activation, and supported cell proliferation. Together, these data demonstrate that the RGD sequence within S1-RBD can function as an α v -selective integrin agonist. This study provides evidence that cell surface α v -containing integrins can respond functionally to spike protein and raise the possibility that S1-mediated dysregulation of ECM dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G. Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Denise C. Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
72
|
Effects of Electrical Stimulation on the Signal Transduction-Related Proteins, c-Src and Focal Adhesion Kinase, in Fibroblasts. Life (Basel) 2022; 12:life12040531. [PMID: 35455022 PMCID: PMC9024655 DOI: 10.3390/life12040531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022] Open
Abstract
Electrical stimulation of the skin and muscles, e.g., in the fields of rehabilitation medicine and acupuncture, is known to locally increase blood flow and metabolism, and thus have beneficial health effects. However, little is known about the changes in cellular morphology or regulation of the localization of specific proteins in response to electrical stimuli. The present study was performed to examine the effects of electrical stimulation on the cytoskeletal system of cultured fibroblasts. Following application of electrical stimulation to cultured fibroblastic cells for a period of about 2 h, the stress fibers in the cells became thicker and the cells showed a contracted appearance. Cells were subjected to periodic electrical stimulation for 0 (unstimulated control), 2, 5, or 20 h. The stress fibers showed an increase in thickness within 2 h, and became gradually thicker until 20 h. In addition, the focal adhesions and stress fibers were enlarged after 2 h of continuous stimulation, and both stress fibers and focal adhesions became larger and thicker after 20 h of periodic stimulation. Cells showed increased staining of focal adhesions with anti-phosphotyrosine antibody (PY-20) after electrical stimulation. Cells also showed increased staining of tyrosine-phosphorylated focal adhesion kinase (FAK) (pY397) and tyrosine-phosphorylated c-Src (pY418), indicating that electrical stimulation affected signal transduction-related proteins.
Collapse
|
73
|
Liao Y, Liu L, Yang J, Shi Z. ATX/LPA axis regulates FAK activation, cell proliferation, apoptosis, and motility in human pancreatic cancer cells. In Vitro Cell Dev Biol Anim 2022; 58:307-315. [PMID: 35426066 DOI: 10.1007/s11626-022-00660-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Previous studies implicated ATX/LPA axis as a potential driver of tumorigenesis and progression in pancreatic cancer. This study aimed to determine the existence of the autocrine pathway of ATX/LPA action in pancreatic cancer cells, and to elucidate its influence on focal adhesion kinase (FAK) activation, cellular proliferation, apoptosis, and migration. Firstly, we identified the lysophosphatidic acid (LPA) concentrations in cultured cell supernatant by ELISA and observed the effect of the autotaxin (ATX)-specific inhibitor S32826 on LPA concentrations. We found the existence of a certain concentration of LPA in cellular supernatant, which was significantly decreased by S32826 in a dose- and time-dependent manner. A maximum response was observed at 50 μM for 72 h. Secondly, the effect of S32826 on the protein expression and intracellular sublocalization of total FAK and phosphorylated FAK (pY397 FAK) was determined by Western blot and immunofluorescence staining. It was found that the expression of total FAK and pY397 FAK and their distribution along the cell membrane where adhesion structures are located were significantly decreased by S32826. Finally, we observed the influence of S32826 on cell proliferation, apoptosis, and migration by CCK-8 assay, flow cytometric analysis, and transwell migration assay. Results showed that cell viability and migration were significantly declined, and the proportions of apoptotic cells were significantly increased by S32826. This study verified the existence of autocrine regulation of LPA secretion via producing ATX by pancreatic cancer cells in vitro and the important role of LPA/ATX axis on FAK activation, cell proliferation, apoptosis, and motility.
Collapse
Affiliation(s)
- Yan Liao
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China
| | - Lei Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayao Yang
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China
| | - Zhaohong Shi
- Department of Gastroenterology, Wuhan No.1 Hospital (Wuhan Integrated TCM and Western Medicine Hospital), No. 215, Zhongshan Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
74
|
The Hippo Pathway Effectors YAP/TAZ Are Essential for Mineralized Tissue Homeostasis in the Alveolar Bone/Periodontal Complex. J Dev Biol 2022; 10:jdb10010014. [PMID: 35323233 PMCID: PMC8948986 DOI: 10.3390/jdb10010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
YAP and TAZ are essential transcriptional co-activators and downstream effectors of the Hippo pathway, regulating cell proliferation, organ growth, and tissue homeostasis. To ask how the Hippo pathway affects mineralized tissue homeostasis in a tissue that is highly reliant on a tight homeostatic control of mineralized deposition and resorption, we determined the effects of YAP/TAZ dysregulation on the periodontal tissues alveolar bone, root cementum, and periodontal ligament. Loss of YAP/TAZ was associated with a reduction of mineralized tissue density in cellular cementum and alveolar bone, a downregulation in collagen I, alkaline phosphatase, and RUNX2 gene expression, an increase in the resorption markers TRAP and cathepsin K, and elevated numbers of TRAP-stained osteoclasts. Cyclic strain applied to periodontal ligament cells resulted in YAP nuclear localization, an effect that was abolished after blocking YAP. The rescue of YAP signaling with the heparan sulfate proteoglycan agrin resulted in a return of the nuclear YAP signal. Illustrating the key role of YAP on mineralization gene expression, the YAP inhibition-related downregulation of mineralization-associated genes was reversed by the extracellular matrix YAP activator agrin. Application of the unopposed mouse molar model to transform the periodontal ligament into an unloaded state and facilitate the distal drift of teeth resulted in an overall increase in mineralization-associated gene expression, an effect that was 10–20% diminished in Wnt1Cre/YAP/TAZ mutant mice. The unloaded state of the unopposed molar model in Wnt1Cre/YAP/TAZ mutant mice also caused a significant three-fold increase in osteoclast numbers, a substantial increase in bone/cementum resorption, pronounced periodontal ligament hyalinization, and thickened periodontal fiber bundles. Together, these data demonstrated that YAP/TAZ signaling is essential for the microarchitectural integrity of the periodontium by regulating mineralization gene expression and preventing excessive resorption during bodily movement of the dentoalveolar complex.
Collapse
|
75
|
Gardiner JC, Cukierman E. Meaningful connections: Interrogating the role of physical fibroblast cell-cell communication in cancer. Adv Cancer Res 2022; 154:141-168. [PMID: 35459467 PMCID: PMC9483832 DOI: 10.1016/bs.acr.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.
Collapse
Affiliation(s)
- Jaye C Gardiner
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States.
| |
Collapse
|
76
|
Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med 2022; 8:773573. [PMID: 35004889 PMCID: PMC8733325 DOI: 10.3389/fcvm.2021.773573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Pathological tissue remodeling such as fibrosis is developed in various cardiac diseases. As one of cardiac activated-myofibroblast protein markers, CKAP4 may be involved in this process and the mechanisms have not been explored. Methods: We assumed that CKAP4 held a role in the regulation of cardiac fibrotic remodeling as an RNA-binding protein. Using improved RNA immunoprecipitation and sequencing (iRIP-seq), we sought to analyze the RNAs bound by CKAP4 in normal atrial muscle (IP1 group) and remodeling fibrotic atrial muscle (IP2 group) from patients with cardiac valvular disease. Quantitative PCR and Western blotting were applied to identify CKAP4 mRNA and protein expression levels in human right atrium samples. Results: iRIP-seq was successfully performed, CKAP4-bound RNAs were characterized. By statistically analyzing the distribution of binding peaks in various regions on the reference human genome, we found that the reads of IP samples were mainly distributed in the intergenic and intron regions implying that CKAP4 is more inclined to combine non-coding RNAs. There were 913 overlapping binding peaks between the IP1 and IP2 groups. The top five binding motifs were obtained by HOMER, in which GGGAU was the binding sequence that appeared simultaneously in both IP groups. Binding peak-related gene cluster enrichment analysis demonstrated these genes were mainly involved in biological processes such as signal transduction, protein phosphorylation, axonal guidance, and cell connection. The signal pathways ranking most varied in the IP2 group compared to the IP1 group were relating to mitotic cell cycle, protein ubiquitination and nerve growth factor receptors. More impressively, peak analysis revealed the lncRNA-binding features of CKAP4 in both IP groups. Furthermore, qPCR verified CKAP4 differentially bound lncRNAs including LINC00504, FLJ22447, RP11-326N17.2, and HELLPAR in remodeling myocardial tissues when compared with normal myocardial tissues. Finally, the expression of CKAP4 is down-regulated in human remodeling fibrotic atrium. Conclusions: We reveal certain RNA-binding features of CKAP4 suggesting a relevant role as an unconventional RNA-binding protein in cardiac remodeling process. Deeper structural and functional analysis will be helpful to enrich the regulatory network of cardiac remodeling and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshang Xie
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
77
|
Li Y, Yang X, Sun J, Zhao Y, Zhou Q, Hua B. ADAMTS8 Expression is a Potential Prognostic Biomarker for Postoperative Metastasis in Lymph Node-Negative Early-Stage Invasive Breast Carcinoma Patients. Pharmgenomics Pers Med 2022; 14:1701-1713. [PMID: 35002288 PMCID: PMC8722701 DOI: 10.2147/pgpm.s339919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Invasive breast carcinoma (BC) is the most common malignant breast tumor. Most lymph node-negative (LN-) early-stage BC patients usually have a good prognosis, but 7% of patients still develop metastasis after surgery. It is not yet clear how to screen candidates with poorer prognosis in LN- early-stage patients, so that they can receive intensive therapy. Hence, we expect to identify a prognostic biomarker to assess postoperative metastasis in LN- early-stage BC patients. Patients and Methods Screening and verifying of candidate genes by gene expression profiling of LN- early-stage BC samples (n = 640) from 3 independent public datasets. Univariable and multivariable Cox regression analyses showed the relation between the candidate genes and postoperative metastasis. Distant metastasis-free survival (DMFS) analysis was performed to examine the prognostic significance. Quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to examine ADAMTS8 expression and prognostic association in our clinical samples (n = 25). Results In the discovery cohort (TCGA and GSE20685 datasets), we found that ADAMTS8 tend to be low expression in LN- early-stage BC, and low ADAMTS8 expression was associated with postoperative metastasis and shortened DMFS. Moreover, the above finding was confirmed in the validation cohort (GSE6538 dataset). Lower ADAMTS8 expression was related to poorer prognostic clinical stage and PAM50 subtypes and shorter DMFS. Gene enrichment analysis indicated that ADAMTS8 may be correlated with BC metastasis. qRT-PCR assays of our clinical tumor sample showed that patients with low ADAMTS8 expression seem to be prone to developing metastasis and have a shorter DMFS time. Conclusion Our research shows that low ADAMTS8 expression is associated with postoperative metastasis and shortened DMFS in LN- early-stage BC patients, which suggests that ADAMTS8 may be a potential prognostic marker for postoperative metastasis in LN- early-stage BC patients.
Collapse
Affiliation(s)
- Yao Li
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xin Yang
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jie Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yangyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qi Zhou
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Bin Hua
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
78
|
DOK5 as a Prognostic Biomarker of Gastric Cancer Immunoinvasion: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9914778. [PMID: 35036444 PMCID: PMC8754673 DOI: 10.1155/2022/9914778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
Background Docking protein 5 (DOK5) is a member of the docking protein group of membrane proteins and is an adapter protein involved in signal transduction. Nevertheless, the role of DOK5 expression in the prognosis of gastric cancer (GC) remains unclear. Methods In this study, clinical prognostic parameters and survival data related to DOK5, in patients with GC, were analyzed using bioinformatics analysis comprising Oncomine and TIMER, UALCAN database, Kaplan-Meier plotter, GEPIA, GSEA, DAVID, and cBioPortal websites. Results In our study, GC contained various DOK5 expressions, which forecasted poor survival outcomes. Moreover, our research showed that high DOK5 could predict high-level infiltration of several GC immune cells, as evidenced by M1, TAM, M2, B cell, and T cell failure. Hence, DOK5 might become a new gastric cancer biomarker and therapeutic target. In the following analysis, in order to explore the prognostic value of DOK5 in GC, more clinical trials are needed to validate our results. Conclusions Through multiple database verifications, DOK5 was found to be part of the pathogenic genes for GC. Thus, it can change the formation and progression of tumors by acting on human immunity.
Collapse
|
79
|
Lu J, Linares B, Xu Z, Rui YN. Mechanisms of FA-Phagy, a New Form of Selective Autophagy/Organellophagy. Front Cell Dev Biol 2021; 9:799123. [PMID: 34950664 PMCID: PMC8689057 DOI: 10.3389/fcell.2021.799123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Focal adhesions (FAs) are adhesive organelles that attach cells to the extracellular matrix and can mediate various biological functions in response to different environmental cues. Reduced FAs are often associated with enhanced cell migration and cancer metastasis. In addition, because FAs are essential for preserving vascular integrity, the loss of FAs leads to hemorrhages and is frequently observed in many vascular diseases such as intracranial aneurysms. For these reasons, FAs are an attractive therapeutic target for treating cancer or vascular diseases, two leading causes of death world-wide. FAs are controlled by both their formation and turnover. In comparison to the large body of literature detailing FA formation, the mechanisms of FA turnover are poorly understood. Recently, autophagy has emerged as a major mechanism to degrade FAs and stabilizing FAs by inhibiting autophagy has a beneficial effect on breast cancer metastasis, suggesting autophagy-mediated FA turnover is a promising drug target. Intriguingly, autophagy-mediated FA turnover is a selective process and the cargo receptors for recognizing FAs in this process are context-dependent, which ensures the degradation of specific cargo. This paper mainly reviews the cargo recognition mechanisms of FA-phagy (selective autophagy-mediated FA turnover) and its disease relevance. We seek to outline some new points of understanding that will facilitate further study of FA-phagy and precise therapeutic strategies for related diseases associated with aberrant FA functions.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Bernard Linares
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
80
|
Williams DF. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact Mater 2021; 10:306-322. [PMID: 34901548 PMCID: PMC8636667 DOI: 10.1016/j.bioactmat.2021.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
This essay analyzes the scientific evidence that forms the basis of bioactive materials, covering the fundamental understanding of bioactivity phenomena and correlation with the mechanisms of biocompatibility of biomaterials. This is a detailed assessment of performance in areas such as bone-induction, cell adhesion, immunomodulation, thrombogenicity and antimicrobial behavior. Bioactivity is the modulation of biological activity by characteristics of the interfacial region that incorporates the material surface and the immediate local host tissue. Although the term ‘bioactive material’ is widely used and has a well understood general meaning, it would be useful now to concentrate on this interfacial region, considered as ‘the bioactivity zone’. Bioactivity phenomena are either due to topographical/micromechanical characteristics, or to biologically active species that are presented in the bioactivity zone. Examples of topographical/micromechanical effects are the modulation of the osteoblast – osteoclast balance, nanotopographical regulation of cell adhesion, and bactericidal nanostructures. Regulation of bioactivity by biologically active species include their influence, especially of metal ions, on signaling pathways in bone formation, the role of cell adhesion molecules and bioactive peptides in cell attachment, macrophage polarization by immunoregulatory molecules and antimicrobial peptides. While much experimental data exists to demonstrate the potential of such phenomena, there are considerable barriers to their effective clinical translation. This essay shows that there is solid scientific evidence of the existence of bioactivity mechanisms that are associated with some types of biomaterials, especially when the material is modified in a manner designed to specifically induce that activity.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, 391 Technology Way. Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
81
|
Suleiman L, Muataz Y, Négrier C, Boukerche H. Protein S-mediated signal transduction pathway regulates lung cancer cell proliferation, migration and angiogenesis. Hematol Oncol Stem Cell Ther 2021:S1658-3876(21)00111-4. [PMID: 34906536 DOI: 10.1016/j.hemonc.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE/BACKGROUND Protein S (PS; encoded by the PROS1 gene), a key vitamin K-dependent anticoagulant protein, is emerging as a key structural and functional protein that is overexpressd in various malignancies, but how PS signals to promote lung cancer progression is unclear. METHODS We used immortalized, nontumorigenic human lung epithelial cell line NL-20, A549 cells as experimental cellular models for lung cancer, and human microvascular endothelial cells (HMEC-1) as a model system for angiogenesis. A loss- and gain-of-function approach was then used to analyze the role of tumor-derived PS and their natural TAM receptors Tyro3 and MerTK in regulating cell proliferation, migration, anchorage-independent growth, and capillary-like tube formation, all prominent attributes of the metastatic phenotype of tumor cells. RESULTS Evidence is now provided that regulation of PROS1 gene expression using either stable cell lines expressing lentiviral-short hairpin RNA (shRNAs) or a replication-incompetent adenovirus alters the phosphorylation of several major signaling pathways, including Erk, PKB/Akt, p38, and focal adhesion kinase (FAK), and modulates PS-dependent Tyro3- and MerTK-mediated cell migration, proliferation, and anchorage-independent growth of lung cancer cells, and endothelial cell capillary-like tube formation. CONCLUSION These finding suggest that the PS-Tyro3 and -MerTK axis mediates important signaling pathways to promote lung cancer progression. Genetic inhibition of endogenous PS may serve as a promising target for anticancer drug development.
Collapse
Affiliation(s)
- Lutfi Suleiman
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France
| | - Yacoub Muataz
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France
| | - Claude Négrier
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France
| | - Habib Boukerche
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France.
| |
Collapse
|
82
|
Petzold J, Gentleman E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front Cell Dev Biol 2021; 9:761871. [PMID: 34820380 PMCID: PMC8606660 DOI: 10.3389/fcell.2021.761871] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.
Collapse
Affiliation(s)
- Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
83
|
Slater B, Li J, Indana D, Xie Y, Chaudhuri O, Kim T. Transient mechanical interactions between cells and viscoelastic extracellular matrix. SOFT MATTER 2021; 17:10274-10285. [PMID: 34137758 PMCID: PMC8695121 DOI: 10.1039/d0sm01911a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
During various physiological processes, such as wound healing and cell migration, cells continuously interact mechanically with a surrounding extracellular matrix (ECM). Contractile forces generated by the actin cytoskeleton are transmitted to a surrounding ECM, resulting in structural remodeling of the ECM. To better understand how matrix remodeling takes place, a myriad of in vitro experiments and simulations have been performed during recent decades. However, physiological ECMs are viscoelastic, exhibiting stress relaxation or creep over time. The time-dependent nature of matrix remodeling induced by cells remains poorly understood. Here, we employed a discrete model to investigate how the viscoelastic nature of ECMs affects matrix remodeling and stress profiles. In particular, we used explicit transient cross-linkers with varied density and unbinding kinetics to capture viscoelasticity unlike most of the previous models. Using this model, we quantified the time evolution of generation, propagation, and relaxation of stresses induced by a contracting cell in an ECM. It was found that matrix connectivity, regulated by fiber concentration and cross-linking density, significantly affects the magnitude and propagation of stress and subsequent matrix remodeling, as characterized by fiber displacements and local net deformation. In addition, we demonstrated how the base rate and force sensitivity of cross-linker unbinding regulate stress profiles and matrix remodeling. We verified simulation results using in vitro experiments performed with fibroblasts encapsulated in a three-dimensional collagen matrix. Our study provides key insights into the dynamics of physiologically relevant mechanical interactions between cells and a viscoelastic ECM.
Collapse
Affiliation(s)
- Brandon Slater
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Yihao Xie
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 452 Escondido Mall, Stanford, CA, 94305, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN 47907, USA.
| |
Collapse
|
84
|
Cui Q, Wang C, Liu S, Du R, Tian S, Chen R, Geng H, Subramanian S, Niu Y, Wang Y, Yue D. YBX1 knockdown induces renal cell carcinoma cell apoptosis via Kindlin-2. Cell Cycle 2021; 20:2413-2427. [PMID: 34709966 DOI: 10.1080/15384101.2021.1985771] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Among urological tumors, renal cell carcinoma (RCC) is the third-highest mortality rate tumor, and 20%-30% of RCC patients present with metastases at the time of diagnosis. While the treatment of RCC has been improved over the last few years, its mortality stays high. Y-box binding protein 1 (YBX1) is a well-known oncoprotein that has tumor-promoting functions. YBX1 is widely considered to be an attractive therapeutic target in cancer. To develop novel therapeutics to target YBX1, it is of great importance to understand how YBX1 is finely regulated in cancer. Our previous studies showed that YBX1 in RCC cells significantly promoted cell adhesion, migration, and invasion. However, the role of YBX1 in RCC cells apoptosis has not been reported. In this study, we investigated the effect of YBX1 on cell apoptosis and elucidated the mechanisms involved. Results showed that YBX1 regulated RCC cells apoptosis and reactive oxygen species (ROS) generation via Kindlin-2. These findings indicated that YBX1 inhibited RCC cells apoptosis and may serve as a candidate RCC prognostic marker and a potential therapeutic target. Abbreviations: RCC: Renal cell carcinoma; YBX1: Y-box binding protein 1; ROS: Reactive oxygen species; ccRCC: Clear cell renal cell carcinoma; mccRCC: Metastatic clear cell renal cell carcinoma; G3BP1: Ras-GTPase activating protein SH3 domain-binding proteins 1; SPP1: Secreted phosphoprotein 1; NF-κB: Nuclear factor kappa beta; ECM: Extracellular matrix; EMT: Epithelial-mesenchymal transition; PYCR1: Pyrroline-5-carboxylate reductase 1; MEM: Eagle's Minimum Essential Medium; DMEM: Dulbecco's modified Eagle medium; FBS: Fetal bovine serum; PCR: Polymerase chain reaction; shRNA: Short hairpin RNA; siRNA: Small interfering RNA; BSA: Bovine serum albumin; DCFH-DA: 2,7-Dichlorodihydrofluorescein diacetate; FITC: Fluorescein isothiocyanate; PI: Propidium iodide.
Collapse
Affiliation(s)
- Qiqi Cui
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Chao Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Shuang Liu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Runxuan Du
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Shaoping Tian
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin China
| | - Hua Geng
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Saravanan Subramanian
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Yong Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| | - Dan Yue
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and School of Medical Laboratory, Tianjin Medical University, Tianjin China
| |
Collapse
|
85
|
Uray IP, Uray K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int J Mol Sci 2021; 22:11566. [PMID: 34768998 PMCID: PMC8584042 DOI: 10.3390/ijms222111566] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually every cell type. The transduction of mechanical messages into intracellular biochemical messages is termed mechanotransduction. While significant advances in biochemical signaling have been made in the last few decades, the role of mechanotransduction in physiological and pathological processes has been largely overlooked until recently. In this review, the role of interactions between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction plays a significant role in normal physiology and disease development. The first example is the role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system, the role of mechanotransduction in cellular processes, including proliferation, differentiation, and motility, is described. In the second example, the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to normal physiology and the development of motility disorders.
Collapse
Affiliation(s)
- Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
86
|
Abstract
INTRODUCTION The matrisome and adhesome comprise proteins that are found within or are associated with the extracellular matrix (ECM) and adhesion complexes, respectively. Interactions between cells and their microenvironment are mediated by key matrisome and adhesome proteins, which direct fundamental processes, including growth and development. Due to their underlying complexity, it has historically been challenging to undertake mass spectrometry (MS)-based profiling of these proteins. New developments in sample preparative workflows, informatics databases, and MS techniques have enabled in-depth proteomic characterization of the matrisome and adhesome, resulting in a comprehensive understanding of the interactomes, and cellular signaling that occur at the cell-ECM interface. AREA COVERED This review summarizes recent advances in proteomic characterization of the matrisome and adhesome. It focuses on the importance of curated databases and discusses key strengths and limitations of different workflows. EXPERT OPINION MS-based proteomics has shown promise in characterizing the matrisome and topology of adhesome networks in health and disease. Moving forward, it will be important to incorporate integrative analysis to define the bidirectional signaling between the matrisome and adhesome, and adopt new methods for post-translational modification and in vivo analyses to better dissect the critical roles that these proteins play in human pathophysiology.
Collapse
Affiliation(s)
- Lukas Krasny
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
87
|
Li H, Wang G, Wang W, Pan J, Zhou H, Han X, Su L, Ma Z, Hou L, Xue X. A Focal Adhesion-Related Gene Signature Predicts Prognosis in Glioma and Correlates With Radiation Response and Immune Microenvironment. Front Oncol 2021; 11:698278. [PMID: 34631528 PMCID: PMC8493301 DOI: 10.3389/fonc.2021.698278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most frequent brain malignancy presenting very poor prognosis and high recurrence rate. Focal adhesion complexes play pivotal roles in cell migration and act as hubs of several signaling pathways. Methods We used bioinformatic databases (CGGA, TCGA, and GEO) and identified a focal adhesion-related differential gene expression (FADG) signature by uniCox and LASSO regression analysis. We calculated the risk score of every patient using the regression coefficient value and expression of each gene. Survival analysis, receiver operating characteristic curve (ROC), principal component analysis (PCA), and stratified analysis were used to validate the FADG signature. Then, we conducted GSEA to identify the signaling pathways related to the FADG signature. Correlation analysis of risk scores between the immune checkpoint was performed. In addition, the correlation of risk scores and genes related with DNA repair was performed. CIBERSORT and ssGSEA were used to explore the tumor microenvironment (TME). A nomogram that involved our FADG signature was also constructed. Results In total, 1,726 (528 patients diagnosed with WHO II, 591 WHO III, and 603 WHO IV) cases and 23 normal samples were included in our study. We identified 29 prognosis-related genes in the LASSO analysis and constructed an eight FADG signature. The results from the survival analysis, stratified analysis, ROC curve, and univariate and multivariate regression analysis revealed that the prognosis of the high-risk group was significantly worse than the low-risk group. Correlation analysis between risk score and genes that related with DNA repair showed that the risk score was positively related with BRCA1, BRCA2, RAD51, TGFB1, and TP53. Besides, we found that the signature could predict the prognosis of patients who received radiation therapy. SsGSEA indicated that the high-risk score was positively correlated with the ESTIMATE, immune, and stromal scores but negatively correlated with tumor purity. Notably, patients in the high-risk group had a high infiltration of immunocytes. The correlation analysis revealed that the risk score was positively correlated with B7-H3, CTLA4, LAG3, PD-L1, and TIM3 but inversely correlated with PD-1. Conclusion The FADG signature we constructed could provide a sensitive prognostic model for patients with glioma and contribute to improve immunotherapy management guidelines.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiation Oncology, PekingUniversity China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Wenyan Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Pan
- The Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Huandi Zhou
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenghui Ma
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
88
|
Plectin in the Central Nervous System and a Putative Role in Brain Astrocytes. Cells 2021; 10:cells10092353. [PMID: 34572001 PMCID: PMC8464768 DOI: 10.3390/cells10092353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.
Collapse
|
89
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
90
|
Han X, Su X, Li Z, Liu Y, Wang S, Zhu M, Zhang C, Yang F, Zhao J, Li X, Chen F, Han L. Complement receptor 3 mediates Aspergillus fumigatus internalization into alveolar epithelial cells with the increase of intracellular phosphatidic acid by activating FAK. Virulence 2021; 12:1980-1996. [PMID: 34338598 PMCID: PMC8331038 DOI: 10.1080/21505594.2021.1958042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complement receptor 3 (CD11b/CD18) is an important receptor that mediates adhesion, phagocytosis and chemotaxis in various immunocytes. The conidia of the medically-important pathogenic fungus, Aspergillus fumigatus can be internalized into alveolar epithelial cells to disseminate its infection in immunocompromised host; however, the role of CR3 in this process is poorly understood. In the present study, we investigated the potential role of CR3 on A. fumigatus internalization into type II alveolar epithelial cells and its effect on host intracellular PA content induced by A. fumigatus. We found that CR3 is expressed in alveolar epithelial cells and that human serum and bronchoalveolar lavage fluid (BALF) could improve A. fumigatus conidial internalization into A549 type II alveolar epithelial cell line and mouse primary alveolar epithelial cells, which were significantly inhibited by the complement C3 quencher and CD11b-blocking antibody. Serum-opsonization of swollen conidia, but not resting conidia led to the increase of cellular phosphatidic acid (PA) in A549 cells during infection. Moreover, both conidial internalization and induced PA production were interfered by CD11b-blocking antibody and dependent on FAK activity, but not Syk in alveolar epithelial cells. Overall, our results revealed that CR3 is a critical modulator of Aspergillus fumigatus internalization into alveolar epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xueting Su
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhiqian Li
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Laboratory Medicine & Blood Transfusion, the 907th Hospital, Fujian, Nanping, China
| | - Yanxi Liu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shuo Wang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Northwest Institute of Plateau Biology, Chinese Academy of Science, Qinghai, Xining, China
| | - Miao Zhu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjian Zhang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Central Laboratory of the sixth medical center of PLA general hospital, Beijing, China
| | - Fan Yang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangyan Chen
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
91
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
92
|
Behnami S, Bonetta D. With an Ear Up against the Wall: An Update on Mechanoperception in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1587. [PMID: 34451632 PMCID: PMC8398075 DOI: 10.3390/plants10081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.
Collapse
Affiliation(s)
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada;
| |
Collapse
|
93
|
Zhou LL, Cheng PP, He XL, Liang LM, Wang M, Lu YZ, Song LJ, Xiong L, Xiang F, Yu F, Wang X, Xin JB, Greer PA, Su Y, Ma WL, Ye H. Pleural mesothelial cell migration into lung parenchyma by calpain contributes to idiopathic pulmonary fibrosis. J Cell Physiol 2021; 237:566-579. [PMID: 34231213 DOI: 10.1002/jcp.30500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia. It is unknown why fibrosis in IPF distributes in the peripheral or named sub-pleural area. Migration of pleural mesothelial cells (PMC) should contribute to sub-pleural fibrosis. Calpain is known to be involved in cell migration, but the role of calpain in PMC migration has not been investigated. In this study, we found that PMCs migrated into lung parenchyma in patients with IPF. Then using Wt1tm1(EGFP/Cre)Wtp /J knock-in mice, we observed PMC migration into lung parenchyma in bleomycin-induced pleural fibrosis models, and calpain inhibitor attenuated pulmonary fibrosis with prevention of PMC migration. In vitro studies revealed that bleomycin and transforming growth factor-β1 increased calpain activity in PMCs, and activated calpain-mediated focal adhesion (FA) turnover as well as cell migration, cell proliferation, and collagen-I synthesis. Furthermore, we determined that calpain cleaved FA kinase in both C-terminal and N-terminal regions, which mediated FA turnover. Lastly, the data revealed that activated calpain was also involved in phosphorylation of cofilin-1, and p-cofilin-1 induced PMC migration. Taken together, this study provides evidence that calpain mediates PMC migration into lung parenchyma to promote sub-pleural fibrosis in IPF.
Collapse
Affiliation(s)
- Li-Ling Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Zhi Lu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| |
Collapse
|
94
|
King O, Sunyovszki I, Terracciano CM. Vascularisation of pluripotent stem cell-derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Arch 2021; 473:1117-1136. [PMID: 33855631 PMCID: PMC8245389 DOI: 10.1007/s00424-021-02557-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell-derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.
Collapse
Affiliation(s)
- Oisín King
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK.
| | - Ilona Sunyovszki
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| | - Cesare M Terracciano
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
95
|
Ordas L, Costa L, Lozano A, Chevillard C, Calovoulos A, Kantar D, Fernandez L, Chauvin L, Dosset P, Doucet C, Heron-Milhavet L, Odintsova E, Berditchevski F, Milhiet PE, Bénistant C. Mechanical Control of Cell Migration by the Metastasis Suppressor Tetraspanin CD82/KAI1. Cells 2021; 10:cells10061545. [PMID: 34207462 PMCID: PMC8234748 DOI: 10.3390/cells10061545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023] Open
Abstract
The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.
Collapse
Affiliation(s)
- Laura Ordas
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Luca Costa
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Anthony Lozano
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, 34293 Montpellier, France
| | - Christopher Chevillard
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Alexia Calovoulos
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Diala Kantar
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194—University Montpellier—Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France; (D.K.); (L.H.-M.)
| | - Laurent Fernandez
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- European Institute of Chemistry and Biology (IECB), University of Bordeaux, 33607 Pessac, France
| | - Lucie Chauvin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, University Montpellier, 34293 Montpellier, France;
| | - Patrice Dosset
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Christine Doucet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Lisa Heron-Milhavet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194—University Montpellier—Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France; (D.K.); (L.H.-M.)
| | - Elena Odintsova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.O.); (F.B.)
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.O.); (F.B.)
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Correspondence: (P.-E.M.); (C.B.)
| | - Christine Bénistant
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Correspondence: (P.-E.M.); (C.B.)
| |
Collapse
|
96
|
Kong Y, Tian X, He R, Li C, Xu H, Tian L, Liu Z. The accumulation of exosome-associated microRNA-1246 and microRNA-150-3p in human red blood cell suspensions. J Transl Med 2021; 19:225. [PMID: 34044888 PMCID: PMC8157439 DOI: 10.1186/s12967-021-02887-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Transfusion-related immunomodulation (TRIM) can be caused by exosomes, in which case, microRNAs (miRNAs) are one critical factor impacting exosome behavior. This study aims to investigate and analyze the expression profiles of exosomal miRNA in red blood cell (RBC) suspensions during storage and to identify potential TRIM-related miRNAs as well as their potential functions. Methods A total of 25 packs of RBC suspensions were randomly collected. Exosome were extracted by ultracentrifugation and then identified and characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and western blot (WB). Exosomal miRNA profiles were acquired using gene chips in five packs on week 1 and week 5. The expression data were compared from the two time points identifying accumulated miRNAs with statistical significance and their predicted targeting genes were analyzed. Based on the gene chip results, quantitative reverse transcription-polymerase chain reactions (qRT-PCR) were performed to verify miRNA accumulation in the rest 20 packs sampling on week 1, 3 and 5. Results Gene chip analysis revealed that most exosomal miRNAs were enriched as the storage period progressed. Compared to samples from week 1, week 5 samples exhibited a total of 539 differential miRNA expressions, among which, 159 were statistically significant (P < 0.05) and 148 (93.08%) were accumulated. In the bioinformatics functional analysis, significant immunoregulatory annotations related to the thyroid hormone, mitogen-activated protein kinase (MAPK), focal adhesion and RAS signaling pathways were identified. The top 17 differential expression miRNAs were validated by qRT-PCR. The results confirmed that all the 17 miRNAs were accumulated with increasing storage time. In particular, miRNA-1246 and miRNA-150-3p were the most enriched strands by more than 150-folds in the 5-week storage period. Conclusions As storage progressed, numerous exosomal miRNAs accumulated in the RBC suspensions, which are informatically connected to multiple immuno-signaling pathways. MiRNA-1246 and miRNA-150-3p may be essential mediators impacting the immunoregulation functions of exosomes in RBC suspensions, considering their significant accumulating scales. Further research should therefore focus on the relationship between these miRNAs and TRIM. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02887-2.
Collapse
Affiliation(s)
- Yujie Kong
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China
| | - Xue Tian
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China
| | - Rui He
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China
| | - Chenyue Li
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China
| | - Haixia Xu
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China
| | - Li Tian
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China. .,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.
| | - Zhong Liu
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China. .,Key Laboratory of Transfusion Adverse Reactions, CAMS, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan Province, People's Republic of China.
| |
Collapse
|
97
|
Li X, Chen X, Hu X, Shen Y, Xu R, Wu L, Shen X. Overexpression of GUCY1A2 Correlates With Poor Prognosis in Gastric Cancer Patients. Front Oncol 2021; 11:632172. [PMID: 34113559 PMCID: PMC8185334 DOI: 10.3389/fonc.2021.632172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
Background Nitric oxide (NO) and cyclic guanosine phosphate (cGMP) play important roles in blood pressure regulation, neurotransmitter delivery, renal function, and tumorigenesis and development. The intermediate link of this signaling pathway, soluble guanylyl cyclase (sGC), is particularly important. However, the role of the GUCY1A2 gene encoding the sGC α2 subunit is unknown. Methods Gene expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. After screening for GUCY1A2 expression, the expression differences between gastric cancer (GC) tissues and adjacent noncancerous tissues were determined using R software. Quantitative real-time polymerase chain reaction (qRT-PCR) and meta-analysis were used to verify the result. The correlation between the expression of GUCY1A2 and clinicopathological parameters was explored by logistic regression. Then, Kaplan-Meier survival analysis and the Cox proportional hazards regression were used to evaluate the relationship between the expression of GUCY1A2 and the survival of GC patients. Finally, gene set enrichment analysis (GSEA) was used to explore and analyze the GC-related signaling pathways affected by high GUCY1A2 expression. Results We found that GUCY1A2 was highly expressed in GC tissues compared to adjacent noncancerous tissues (P < 0.001). qRT-PCR (P < 0.001) and meta-analysis (SMD = 0.65, 95% CI: 0.20-1.10) confirmed the difference in GUCY1A2 expression. Logistic regression analysis showed that high expression of GUCY1A2 was associated with histological grade (OR=1.858 for poor vs. well or moderate, P = 0.004) and T stage (OR = 3.389 for T3 vs. T1, P = 0.025; OR = 3.422 for T4 vs. T1, P = 0.028). Kaplan-Meier curves indicated that GC patients with high expression of GUCY1A2 had a poor prognosis than that of patients with low expression. Univariate analysis indicated that GUCY1A2 and some clinicopathological parameters, such as age, pathological stage, and TNM stage, may predict poor prognosis. Multivariate analysis further confirmed that GUCY1A2 was an independent prognostic marker (HR = 1.699; 95%CI, 1.175-2.456; P = 0.005). GSEA showed that the high GUCY1A2 phenotype is significantly enriched for tumor-associated signaling pathways. Conclusions GUCY1A2 is highly expressed in GC and may be used as a potential prognostic marker.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xueju Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Leilei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
98
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
99
|
ZINC40099027 Promotes Gastric Mucosal Repair in Ongoing Aspirin-Associated Gastric Injury by Activating Focal Adhesion Kinase. Cells 2021; 10:cells10040908. [PMID: 33920786 PMCID: PMC8071155 DOI: 10.3390/cells10040908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs cause gastric ulcers and gastritis. No drug that treats GI injury directly stimulates mucosal healing. ZINC40099027 (ZN27) activates focal adhesion kinase (FAK) and heals acute indomethacin-induced small bowel injury. We investigated the efficacy of ZN27 in rat and human gastric epithelial cells and ongoing aspirin-associated gastric injury. ZN27 (10 nM) stimulated FAK activation and wound closure in rat and human gastric cell lines. C57BL/6J mice were treated with 300 mg/kg/day aspirin for five days to induce ongoing gastric injury. One day after the initial injury, mice received 900 µg/kg/6 h ZN27, 10 mg/kg/day omeprazole, or 900 µg/kg/6 h ZN27 plus 10 mg/kg/day omeprazole. Like omeprazole, ZN27 reduced gastric injury vs. vehicle controls. ZN27-treated mice displayed better gastric architecture, with thicker mucosa and less hyperemia, inflammation, and submucosal edema, and lost less weight than vehicle controls. Gastric pH, serum creatinine, serum alanine aminotransferase (ALT), and renal and hepatic histology were unaffected by ZN27. Blinded scoring of pFAK-Y-397 immunoreactivity at the edge of ZN27-treated lesions demonstrated increased FAK activation, compared to vehicle-treated lesions, confirming target activation in vivo. These results suggest that ZN27 ameliorates ongoing aspirin-associated gastric mucosal injury by a pathway involving FAK activation. ZN27-derivatives may be useful to promote gastric mucosal repair.
Collapse
|
100
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|