51
|
PmrC (EptA) and CptA Negatively Affect Outer Membrane Vesicle Production in Citrobacter rodentium. J Bacteriol 2019; 201:JB.00454-18. [PMID: 30670547 PMCID: PMC6416907 DOI: 10.1128/jb.00454-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/15/2019] [Indexed: 01/12/2023] Open
Abstract
Although OMVs secreted by Gram-negative bacteria fulfill multiple functions, the molecular mechanism of OMV biogenesis remains ill defined. Our group has previously shown that PmrC (also known as EptA) and CptA maintain OM integrity and provide resistance to iron toxicity and antibiotics in the murine pathogen Citrobacter rodentium. In several enteric bacteria, these proteins modify the lipid A and core regions of lipopolysaccharide with phosphoethanolamine moieties. Here, we show that these proteins also repress OMV production in response to environmental iron in C. rodentium. These data support the emerging understanding that lipopolysaccharide modifications are important regulators of OMV biogenesis in Gram-negative bacteria. Outer membrane vesicles (OMVs) are naturally produced by Gram-negative bacteria by a bulging of the outer membrane (OM) and subsequent release into the environment. By serving as vehicles for various cargos, including proteins, nucleic acids and small metabolites, OMVs are central to interbacterial interactions and both symbiotic and pathogenic host bacterial interactions. However, despite their importance, the mechanism of OMV formation remains unclear. Recent evidence indicates that covalent modifications of lipopolysaccharides (LPS) influence OMV biogenesis. Several enteric bacteria modify LPS with phosphoethanolamine (pEtN) using the iron-regulated PmrC (EptA) and CptA pEtN transferases. In wild-type Citrobacter rodentium, the presence of increasing subtoxic concentrations of iron was found to stimulate OMV production 4- to 9-fold above baseline. C. rodentium uses the two-component system PmrAB to sense and adapt to environmental iron. Compared to the wild type, the C. rodentium ΔpmrAB strain exhibited heightened OMV production at similar iron concentrations. PmrAB regulates transcription of pmrC (also known as eptA) and cptA. OMV production in strains lacking either pmrC (eptA) or cptA was similarly increased in comparison to that of the wild type. Importantly, plasmid complementation of C. rodentium strains with either pmrC (eptA) or cptA resulted in a drastic inhibition of OMV production. Finally, we showed that β-lactamase and CroP, two enzymes found in the C. rodentium periplasm and outer membrane (OM), respectively, are associated with OMVs. These data suggest a novel mechanism by which C. rodentium and possibly other Gram-negative bacteria can negatively affect OMV production through the PmrAB-regulated genes pmrC (eptA) and cptA. IMPORTANCE Although OMVs secreted by Gram-negative bacteria fulfill multiple functions, the molecular mechanism of OMV biogenesis remains ill defined. Our group has previously shown that PmrC (also known as EptA) and CptA maintain OM integrity and provide resistance to iron toxicity and antibiotics in the murine pathogen Citrobacter rodentium. In several enteric bacteria, these proteins modify the lipid A and core regions of lipopolysaccharide with phosphoethanolamine moieties. Here, we show that these proteins also repress OMV production in response to environmental iron in C. rodentium. These data support the emerging understanding that lipopolysaccharide modifications are important regulators of OMV biogenesis in Gram-negative bacteria.
Collapse
|
52
|
Transcriptional Sequencing Uncovers Survival Mechanisms of Salmonella enterica Serovar Enteritidis in Antibacterial Egg White. mSphere 2019; 4:4/1/e00700-18. [PMID: 30760616 PMCID: PMC6374596 DOI: 10.1128/msphere.00700-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a major foodborne pathogen that causes salmonellosis mainly through contaminated chicken eggs or egg products and has been a worldwide public health threat since 1980. Frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival ability in the antibacterial egg white. Research on the survival mechanism of S. Enteritidis in egg white will help to further understand the complex and highly effective antibacterial mechanisms of egg white and lay the foundation for the development of safe and effective vaccines to prevent egg contamination by this Salmonella serotype. Key pathways and genes that were previously overlooked under bactericidal conditions were characterized as being induced in egg white, and synergistic effects between different antimicrobial factors appear to exist according to the gene expression changes. Our work provides new insights into the survival mechanism of S. Enteritidis in egg white. The survival mechanism of Salmonella enterica serovar Enteritidis in antibacterial egg white is not fully understood. In our lab, an egg white-resistant strain, S. Enteritidis SJTUF 10978, was identified. Cell envelope damage and osmotic stress response (separation of cell wall and inner membrane as well as cytoplasmic shrinkage) of this strain surviving in egg white were identified through microscopic observation. RNA-Seq analysis of the transcriptome of Salmonella survival in egg white showed that a considerable number of genes involved in DNA damage repair, alkaline pH adaptation, osmotic stress adaptation, envelope damage repair, Salmonella pathogenicity island 2 (SPI-2), iron absorption, and biotin synthesis were significantly upregulated (fold change ≥ 2) in egg white, indicating that these pathways or genes might be critical for bacterial survival. RNA-Seq results were confirmed by qRT-PCR, and the survival analysis of six gene deletion mutants confirmed their importance in the survival of bacteria in egg white. The importance of alkaline pH adaptation and envelope damage repair for Salmonella to survive in egg white were further confirmed by analysis of nhaA, cpxR, waaH, and eco deletion mutants. According to the RNA-Seq results, we propose that alkaline pH adaptation might be the cause of bacterial osmotic stress phenotype and that the synergistic effect between alkaline pH and other inhibitory factors can enhance the bacteriostatic effect of egg white. Moreover, cpxR and sigE were recognized as the central regulators that coordinate bacterial metabolism to adapt to envelope damage and alkaline pH. IMPORTANCESalmonella enterica serovar Enteritidis is a major foodborne pathogen that causes salmonellosis mainly through contaminated chicken eggs or egg products and has been a worldwide public health threat since 1980. Frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival ability in the antibacterial egg white. Research on the survival mechanism of S. Enteritidis in egg white will help to further understand the complex and highly effective antibacterial mechanisms of egg white and lay the foundation for the development of safe and effective vaccines to prevent egg contamination by this Salmonella serotype. Key pathways and genes that were previously overlooked under bactericidal conditions were characterized as being induced in egg white, and synergistic effects between different antimicrobial factors appear to exist according to the gene expression changes. Our work provides new insights into the survival mechanism of S. Enteritidis in egg white.
Collapse
|
53
|
Abstract
A growing body of research suggests bacterial metabolism and membrane bioenergetics affect the lethality of a broad spectrum of antibiotics. Electrochemical gradients spanning energy-transducing membranes are the foundation of the chemiosmotic hypothesis and are essential for life; accordingly, their dysfunction appears to be a critical factor in bacterial death. Proton flux across energy-transducing membranes is central for cellular homeostasis as vectorial proton translocation generates a proton motive force used for ATP synthesis, pH homeostasis, and maintenance of solute gradients. Our recent investigations indicate that maintenance of pH homeostasis is a critical factor in antibiotic killing and suggest an imbalance in proton flux initiates disruptions in chemiosmotic gradients that lead to cell death. The complex and interconnected relationships between electron transport systems, central carbon metabolism, oxidative stress generation, pH homeostasis, and electrochemical gradients provide challenging obstacles to deciphering the roles for each of these processes in antibiotic lethality. In this chapter, we will present evidence for the pH homeostasis hypothesis of antibiotic lethality that bactericidal activity flows from disruption of cellular energetics and loss of chemiosmotic homeostasis. A holistic understanding of the interconnection of energetic processes and antibiotic activity may direct future research toward the development of more effective therapeutic interventions.
Collapse
|
54
|
Hong X, Chen HD, Groisman EA. Gene expression kinetics governs stimulus-specific decoration of the Salmonella outer membrane. Sci Signal 2018; 11:11/529/eaar7921. [PMID: 29739882 DOI: 10.1126/scisignal.aar7921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lipid A is the innermost component of the lipopolysaccharide (LPS) molecules that occupy the outer leaflet of the outer membrane in Gram-negative bacteria. Lipid A is recognized by the host immune system and targeted by cationic antimicrobial compounds. In Salmonella enterica serovar Typhimurium, the phosphates of lipid A are chemically modified by enzymes encoded by targets of the transcriptional regulator PmrA. These modifications increase resistance to the cationic peptide antibiotic polymyxin B by reducing the negative charge of the LPS. We report the mechanism by which Salmonella produces different lipid A profiles when PmrA is activated by low Mg2+ versus a mildly acidic pH. Low Mg2+ favored modification of the lipid A phosphates with 4-amino-4-deoxy-l-aminoarabinose (l-Ara4N) by activating the regulatory protein PhoP, which initially increased the LPS negative charge by promoting transcription of lpxT, encoding an enzyme that adds an additional phosphate group to lipid A. Later, PhoP activated PmrA posttranslationally, resulting in expression of PmrA-activated genes, including those encoding the LpxT inhibitor PmrR and enzymes responsible for the incorporation of l-Ara4N. By contrast, a mildly acidic pH favored modification of the lipid A phosphates with a mixture of l-Ara4N and phosphoethanolamine (pEtN) by simultaneously inducing the PhoP-activated lpxT and PmrA-activated pmrR genes. Although l-Ara4N reduces the LPS negative charge more than does pEtN, modification of lipid A phosphates solely with l-Ara4N required a prior transient increase in lipid A negative charge. Our findings demonstrate how bacteria tailor their cell surface to different stresses, such as those faced inside phagocytes.
Collapse
Affiliation(s)
- Xinyu Hong
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06536, USA
| | - H Deborah Chen
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
55
|
Fernández I, Sycz G, Goldbaum FA, Carrica MDC. Acidic pH triggers the phosphorylation of the response regulator NtrX in alphaproteobacteria. PLoS One 2018; 13:e0194486. [PMID: 29634773 PMCID: PMC5892882 DOI: 10.1371/journal.pone.0194486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
Many signaling pathways that control cellular development, cell-cycle progression and nutritional versatility have been studied in Caulobacter crescentus. For example, it was suggested that the response regulator NtrX is conditionally essential for this bacterium and that it might be necessary for responding to a signal produced in phosphate-replete minimal medium. However, such signal has not been identified yet and the role of NtrX in C. crescentus biology remains elusive. Here, using wild-type C. crescentus and a strain with a chromosomally myc-tagged ntrX gene, we demonstrate that high concentrations of phosphate (10 mM) regulate ntrX transcription and the abundance of the protein. We also show that the pH of the medium acts as a switch able to regulate the phosphorylation status of NtrX, promoting its phosphorylation under mildly acidic conditions and its dephosphorylation at neutral pH. Moreover, we demonstrate that the ntrX gene is required for survival in environments with low pH and under acidic stress. Finally, we prove that NtrX phosphorylation is also triggered by low pH in Brucella abortus, a pathogenic alphaproteobacterium. Overall, our work contributes to deepen the general knowledge of this system and provides tools to elucidate the NtrX regulon.
Collapse
Affiliation(s)
- Ignacio Fernández
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | | | | |
Collapse
|
56
|
Herrera CM, Henderson JC, Crofts AA, Trent MS. Novel coordination of lipopolysaccharide modifications in Vibrio cholerae promotes CAMP resistance. Mol Microbiol 2017; 106:582-596. [PMID: 28906060 DOI: 10.1111/mmi.13835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/02/2023]
Abstract
In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.
Collapse
Affiliation(s)
- Carmen M Herrera
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy C Henderson
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| | - Alexander A Crofts
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - M Stephen Trent
- Department of Infectious Diseases, Center for Vaccines and Immunology, University of Georgia, College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
57
|
Virulent and pathogenic features on the Cronobacter sakazakii polymyxin resistant pmr mutant strain s-3. Microb Pathog 2017; 110:359-364. [DOI: 10.1016/j.micpath.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022]
|
58
|
Choi J, Groisman EA. Activation of master virulence regulator PhoP in acidic pH requires the Salmonella-specific protein UgtL. Sci Signal 2017; 10:10/494/eaan6284. [PMID: 28851823 DOI: 10.1126/scisignal.aan6284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acidic conditions, such as those inside phagosomes, stimulate the intracellular pathogen Salmonella enterica to activate virulence genes. The sensor PhoQ responds to a mildly acidic pH by phosphorylating, and thereby activating, the virulence regulator PhoP. This PhoP/PhoQ two-component system is conserved in a subset of Gram-negative bacteria. PhoQ is thought to be sufficient to activate PhoP in mildly acidic pH. However, we found that the Salmonella-specific protein UgtL, which was horizontally acquired by Salmonella before the divergence of S. enterica and Salmonella bongori, was also necessary for PhoQ to activate PhoP under mildly acidic pH conditions but not for PhoQ to activate PhoP in response to low Mg2+ or the antimicrobial peptide C18G. UgtL increased the abundance of phosphorylated PhoP by stimulating autophosphorylation of PhoQ, thereby increasing the amount of the phosphodonor for PhoP. Deletion of ugtL attenuated Salmonella virulence and further reduced PhoP activation in a strain bearing a form of PhoQ that is not responsive to acidic pH. These data suggest that when Salmonella experiences mildly acidic pH, PhoP activation requires PhoQ to detect pH and UgtL to amplify the PhoQ response. Our findings reveal how acquisition of a foreign gene can strengthen signal responsiveness in an ancestral regulatory system.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA. .,Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT 06516, USA
| |
Collapse
|
59
|
Abstract
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516
| |
Collapse
|
60
|
The Legionella pneumophila Incomplete Phosphotransferase System Is Required for Optimal Intracellular Growth and Maximal Expression of PmrA-Regulated Effectors. Infect Immun 2017; 85:IAI.00121-17. [PMID: 28373357 DOI: 10.1128/iai.00121-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
The nitrogen phosphotransferase system (PTSNtr) is a regulatory cascade present in many bacteria, where it controls different functions. This system is usually composed of three basic components: enzyme INtr (EINtr), NPr, and EIIANtr (encoded by the ptsP, ptsO, and ptsN genes, respectively). In Legionella pneumophila, as well as in many other Legionella species, the EIIANtr component is missing. However, we found that deletion mutations in both ptsP and ptsO are partially attenuated for intracellular growth. Furthermore, these two PTSNtr components were found to be required for maximal expression of effector-encoding genes regulated by the transcriptional activator PmrA. Genetic analyses which include the construction of single and double deletion mutants and overexpression of wild-type and mutated forms of EINtr, NPr, and PmrA indicated that the PTSNtr components affect the expression of PmrA-regulated genes via PmrA and independently from PmrB and that EINtr and NPr are part of the same cascade and require their conserved histidine residues in order to function. Furthermore, expression of the Legionella micdadei EIINtr component in L. pneumophila resulted in a reduction in the levels of expression of PmrA-regulated genes which was completely dependent on the L. pneumophila PTS components and the L. micdadei EIINtr conserved histidine residue. Moreover, reconstruction of the L. pneumophila PTS in vitro indicated that EINtr is phosphorylated by phosphoenolpyruvate (PEP) and transfers its phosphate to NPr. Our results demonstrate that the L. pneumophila incomplete PTSNtr is functional and involved in the expression of effector-encoding genes regulated by PmrA.
Collapse
|
61
|
Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 2017; 49:526-535. [PMID: 28163137 DOI: 10.1016/j.ijantimicag.2016.11.029] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/10/2016] [Accepted: 11/25/2016] [Indexed: 12/30/2022]
Abstract
Polymyxins have recently been re-introduced into the therapeutic arsenal to combat infections caused by multidrug-resistant Gram-negative bacteria. However, the emergence of strains resistant to these last-resort drugs is becoming a critical issue in a growing number of countries. Both intrinsic and transferable mechanisms of polymyxin resistance have been characterised. These mechanisms as well as the epidemiological data regarding four relevant bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa) are considered in this review. A special focus is made on plasmid-mediated resistance and the spread of mcr genes.
Collapse
Affiliation(s)
- Katy Jeannot
- Laboratoire de bactériologie, Centre national de référence (CNR) de la résistance aux antibiotiques, Centre hospitalier universitaire (CHRU) de Besançon, boulevard Fleming, 25000 Besançon, France.
| | - Arnaud Bolard
- Laboratoire de bactériologie, Centre national de référence (CNR) de la résistance aux antibiotiques, Centre hospitalier universitaire (CHRU) de Besançon, boulevard Fleming, 25000 Besançon, France
| | - Patrick Plésiat
- Laboratoire de bactériologie, Centre national de référence (CNR) de la résistance aux antibiotiques, Centre hospitalier universitaire (CHRU) de Besançon, boulevard Fleming, 25000 Besançon, France
| |
Collapse
|
62
|
Guckes KR, Breland EJ, Zhang EW, Hanks SC, Gill NK, Algood HMS, Schmitz JE, Stratton CW, Hadjifrangiskou M. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci Signal 2017; 10:10/461/eaag1775. [PMID: 28074004 PMCID: PMC5677524 DOI: 10.1126/scisignal.aag1775] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria use two-component systems (TCSs) to react appropriately to environmental stimuli. Typical TCSs comprise a sensor histidine kinase that acts as a receptor coupled to a partner response regulator that coordinates changes in bacterial behavior, often through its activity as a transcriptional regulator. TCS interactions are typically confined to cognate pairs of histidine kinases and response regulators. We describe two distinct TCSs in uropathogenic Escherichia coli (UPEC) that interact to mediate a response to ferric iron. The PmrAB and QseBC TCSs were both required for proper transcriptional response to ferric iron. Ferric iron induced the histidine kinase PmrB to phosphotransfer to both its cognate response regulator PmrA and the noncognate response regulator QseB, leading to transcriptional responses coordinated by both regulators. Pretreatment of the UPEC strain UTI89 with ferric iron led to increased resistance to polymyxin B that required both PmrA and QseB. Similarly, pretreatment of several UPEC isolates with ferric iron increased tolerance to polymyxin B. This study defines physiologically relevant cross talk between TCSs in a bacterial pathogen and provides a potential mechanism for antibiotic resistance of some strains of UPEC.
Collapse
Affiliation(s)
- Kirsten R Guckes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin J Breland
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ellisa W Zhang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Holly M S Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212, USA
| | - Jonathan E Schmitz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. .,Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
63
|
Wang L, Pan Y, Yuan ZH, Zhang H, Peng BY, Wang FF, Qian W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. PLoS Pathog 2016; 12:e1006133. [PMID: 28036380 PMCID: PMC5231390 DOI: 10.1371/journal.ppat.1006133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Both iron starvation and excess are detrimental to cellular life, especially for animal and plant pathogens since they always live in iron-limited environments produced by host immune responses. However, how organisms sense and respond to iron is incompletely understood. Herein, we reveal that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, VgrS (also named ColS) is a membrane-bound receptor histidine kinase that senses extracytoplasmic iron limitation in the periplasm, while its cognate response regulator, VgrR (ColR), detects intracellular iron excess. Under iron-depleted conditions, dissociation of Fe3+ from the periplasmic sensor region of VgrS activates the VgrS autophosphorylation and subsequent phosphotransfer to VgrR, an OmpR-family transcription factor that regulates bacterial responses to take up iron. VgrR-VgrS regulon and the consensus DNA binding motif of the transcription factor VgrR were dissected by comparative proteomic and ChIP-seq analyses, which revealed that in reacting to iron-depleted environments, VgrR directly or indirectly controls the expressions of hundreds of genes that are involved in various physiological cascades, especially those associated with iron-uptake. Among them, we demonstrated that the phosphorylated VgrR tightly represses the transcription of a special TonB-dependent receptor gene, tdvA. This regulation is a critical prerequisite for efficient iron uptake and bacterial virulence since activation of tdvA transcription is detrimental to these processes. When the intracellular iron accumulates, the VgrR-Fe2+ interaction dissociates not only the binding between VgrR and the tdvA promoter, but also the interaction between VgrR and VgrS. This relieves the repression in tdvA transcription to impede continuous iron uptake and avoids possible toxic effects of excessive iron accumulation. Our results revealed a signaling system that directly senses both extracytoplasmic and intracellular iron to modulate bacterial iron homeostasis. The biological function of iron is like a “double-edge sword” to all cellular life since iron starvation or iron excess leads to cell death. For animal and plant pathogens, they have to compete for iron with their hosts since iron-limitation generally is an immune response against microbial infection. However, how pathogens detect extracellular and intracellular iron concentrations remains unclear. Here we show that a plant bacterial pathogen employs a membrane-bound sensor histidine kinase, VgrS, to directly detect extracytoplasmic iron starvation and activate iron uptake accordingly. As a prerequisite, VgrS phosphorylates cognate VgrR to shut down the transcription of a downstream gene, tdvA, whose expression is harmful to absorb iron and bacterial virulence. However, as intracellular iron concentration increases, the ferrous iron binds to VgrR to release its repression on the tdvA transcription, which results in the block of continuous iron uptake to avoid toxic effect of the metal. Therefore, VgrS and VgrR detect extracytoplasmic and intracellular iron, respectively, and systematically modulate cellular homeostasis to promote bacterial survival in iron-depleted environments, such as in host plant.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Pan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Hui Yuan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Yu Peng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
64
|
Choi J, Groisman EA. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence. Mol Microbiol 2016; 101:1024-38. [PMID: 27282333 PMCID: PMC5015592 DOI: 10.1111/mmi.13439] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06536, USA.
- Yale Microbial Sciences Institute, West Haven, CT, 06516, USA.
| |
Collapse
|
65
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
66
|
Abstract
Polymyxins have emerged as an important last-line of defense against Gram-negative ‘superbugs’. Unfortunately, the effective use of polymyxins in the clinic has been hampered by their nephrotoxic side effects. Over the last 10 years various industry and academic groups across the globe have been trying to develop new polymyxins that are safer and more efficacious than the currently approved polymyxin B and colistin. However these drug discovery programs are yet to deliver a new and improved polymyxin drug into the clinic. In this piece we provide an overview of the current state of these polymyxin drug discovery programs from a medicinal chemistry perspective as well as some thoughts on how future drug discovery efforts may ultimately find success.
Collapse
|
67
|
Yilmaz GR, Dizbay M, Guven T, Pullukcu H, Tasbakan M, Guzel OT, Tekce YT, Ozden M, Turhan O, Guner R, Cag Y, Bozkurt F, Karadag FY, Kartal ED, Gozel G, Bulut C, Erdinc S, Keske S, Acikgoz ZC, Tasyaran MA. Risk factors for infection with colistin-resistant gram-negative microorganisms: a multicenter study. Ann Saudi Med 2016; 36:216-22. [PMID: 27236394 PMCID: PMC6074546 DOI: 10.5144/0256-4947.2016.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Knowing risk factors for colistin resistance is important since colistin is the only remaining choice for the treatment of infections caused by multi-drug resistant microorganisms. OBJECTIVE Evaluate risk factors associated with infection by colistin-resistant microorganisms. DESIGN Retrospective study. SETTING Tertiary healthcare centers. PATIENTS AND METHODS An e-mail including the title and purpose of the study was sent to 1500 infec.tious disease specialists via a scientific and social web portal named "infeksiyon dunyasi (infection world)". Demographic and clinical data was requested from respondents. MAIN OUTCOME MEASURE(S) Colistin-resistance. RESULTS Eighteen infectious disease specialists from twelve tertiary care centers responded to the invitation data was collected on 165 patients, 56 cases (39.9%) and 109 (66.0%) age- and sex-matched controls. The colistin-resistant microorganisms isolated from cases were 29 Acinetobacter baumannii (51.8%), 18 Pseudomonas aeruginosa (32.1%) and 9 Klebsiella spp. Colistin, carbapenem, and quinolone use in the last three months were risk factors for colistin resistance in the univariate analysis. Previous quinolone use in the last three months (P=.003; RR:3.2; 95% Ci:1.5-6,7) and previous colistin use in the last three months (P=.001; RR: 3.6; 95% CI: 1.63-7.99) were significant risk factors in the multivariate analysis. CONCLUSION Clinicians should limit the use of quinolones and remain aware of the possibility of resistance developing during colistin use. LIMITATIONS The lack of a heteroresistance analysis on the isolates. no data on use of a loading dose or the use of colistin in combination.
Collapse
Affiliation(s)
- Gul R Yilmaz
- Associate Prof. Gul R. Yilmaz, TR Ministry of Health,, Ankara Ataturk Training and Research Hospital, Infectious Diseases and Clinical Microbiology,, Bilkent Cad. no. 3 Ankara 06800, Turkey, T: 00903122912525,, F: 00903124269393, , ORCID ID: orcid.org/0000-0001-5878-4301
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Isaka M, Tatsuno I, Maeyama JI, Matsui H, Zhang Y, Hasegawa T. The YvqE two-component system controls biofilm formation and acid production in Streptococcus pyogenes. APMIS 2016; 124:574-85. [PMID: 27061781 DOI: 10.1111/apm.12538] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
Abstract
In Streptococcus pyogenes, proteins involved in determining virulence are controlled by stand-alone response regulators and by two-component regulatory systems. Previous studies reported that, compared to the parental strain, the yvqE sensor knockout strain showed significantly reduced growth and lower virulence. To determine the function of YvqE, we performed biofilm analysis and pH assays on yvqE mutants, and site-directed mutagenesis of YvqE. The yvqE deletion mutant showed a slower acid production rate, indicating that YvqE regulates acid production from sugar fermentation. The mutant strain, in which the Asp(26) residue in YvqE was replaced with Asn, affected biofilm formation, suggesting that this amino acid senses hydrogen ions produced by fermentative sugar metabolism. Signals received by YvqE were directly or indirectly responsible for inducing pilus expression. This study shows that at low environmental pH, biofilm formation in S. pyogenes is mediated by YvqE and suggests that regulation of pilus expression by environmental acidification could be directly under the control of YvqE.
Collapse
Affiliation(s)
- Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Jun-Ichi Maeyama
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Hideyuki Matsui
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Yan Zhang
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Aichi, Japan
| |
Collapse
|
69
|
Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 60:544-53. [PMID: 26552982 DOI: 10.1128/aac.01650-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.
Collapse
|
70
|
Avraham R, Haseley N, Brown D, Penaranda C, Jijon HB, Trombetta JJ, Satija R, Shalek AK, Xavier RJ, Regev A, Hung DT. Pathogen Cell-to-Cell Variability Drives Heterogeneity in Host Immune Responses. Cell 2015; 162:1309-21. [PMID: 26343579 PMCID: PMC4578813 DOI: 10.1016/j.cell.2015.08.027] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/08/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023]
Abstract
Encounters between immune cells and invading bacteria ultimately determine the course of infection. These interactions are usually measured in populations of cells, masking cell-to-cell variation that may be important for infection outcome. To characterize the gene expression variation that underlies distinct infection outcomes and monitor infection phenotypes, we developed an experimental system that combines single-cell RNA-seq with fluorescent markers. Probing the responses of individual macrophages to invading Salmonella, we find that variation between individual infected host cells is determined by the heterogeneous activity of bacterial factors in individual infecting bacteria. We illustrate how variable PhoPQ activity in the population of invading bacteria drives variable host type I IFN responses by modifying LPS in a subset of bacteria. This work demonstrates a causative link between host and bacterial variability, with cell-to-cell variation between different bacteria being sufficient to drive radically different host immune responses. This co-variation has implications for host-pathogen dynamics in vivo.
Collapse
Affiliation(s)
- Roi Avraham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nathan Haseley
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Health, Sciences, and Technology, Massachusetts Institute of Technology, Boston, MA 02139, USA
| | - Douglas Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cristina Penaranda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Humberto B Jijon
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
71
|
Nowicki EM, O'Brien JP, Brodbelt JS, Trent MS. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system. Mol Microbiol 2015; 97:166-78. [PMID: 25846400 DOI: 10.1111/mmi.13018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
Abstract
Gram-negative bacteria survive harmful environmental stressors by modifying their outer membrane. Much of this protection is afforded upon remodeling of the lipid A region of the major surface molecule lipopolysaccharide (LPS). For example, the addition of cationic substituents, such as 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosphoehthanolamine (pEtN) at the lipid A phosphate groups, is often induced in response to specific environmental flux stabilizing the outer membrane. The work herein represents the first report of pEtN addition to Pseudomonas aeruginosa lipid A. We have identified the key pEtN transferase which we named EptAPa and characterized its strict activity on only one position of lipid A, contrasting from previously studied EptA enzymes. We further show that transcription of eptAP a is regulated by zinc via the ColRS two-component system instead of the PmrAB system responsible for eptA regulation in E. coli and Salmonella enterica. Further, although L-Ara4N is readily added to the same position of lipid A as pEtN under certain environmental conditions, ColR specifically induces pEtN addition to lipid A in lieu of L-Ara4N when Zn2+ is present. The unique, specific regulation of eptAP a transcription and enzymatic activity described in this work demonstrates the tight yet inducible control over LPS modification in P. aeruginosa.
Collapse
Affiliation(s)
- Emily M Nowicki
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - John P O'Brien
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
72
|
Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1851-63. [PMID: 25609827 PMCID: PMC4378623 DOI: 10.1093/jxb/eru522] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
Cytokinin receptors play a key role in cytokinin-dependent processes regulating plant growth, development, and adaptation; therefore, the functional properties of these receptors are of great importance. Previously the properties of cytokinin receptors were investigated in heterologous assay systems using unicellular microorganisms, mainly bacteria, expressing receptor proteins. However, within microorganisms receptors reside in an alien environment that might distort the receptor properties. Therefore, a new assay system has been developed allowing studies of individual receptors within plant membranes (i.e. closer to their natural environment). The main ligand-binding characteristics of receptors from Arabidopsis [AHK2, AHK3, and AHK4] and maize (ZmHK1) were refined in this new system, and the properties of full-length Arabidopsis receptor AHK2 were characterized for the first time. Ligand specificity profiles of receptors towards cytokinin bases were comparable with the profiles retrieved in bacterial assay systems. In contrast, cytokinin-9-ribosides displayed a strongly reduced affinity for receptors in the plant assay system, indicating that ribosides as the common transport form of cytokinins have no or very weak cytokinin activity. This underpins the central role of free bases as the sole biologically active cytokinin compounds. According to molecular modelling and docking studies, N (9)-ribosylation alters the bonding pattern in cytokinin-receptor interaction and prevents β6-β7 loop movement important for tight hormone binding. A common feature of all receptors was a greatly reduced ligand binding at low (5.0-5.5) pH. The particularly high sensitivity of ZmHK1 to pH changes leads to the suggestion that some cytokinin receptors may play an additional role as pH sensors in the lumen of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sergey N Lomin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry M Krivosheev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Mikhail Yu Steklov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry I Osolodkin
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany
| | - Georgy A Romanov
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119992 Moscow, Russia
| |
Collapse
|
73
|
PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob Agents Chemother 2015; 59:2051-61. [PMID: 25605366 DOI: 10.1128/aac.05052-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg(2+), a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444-1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg(2+) growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood.
Collapse
|
74
|
Mulder DT, McPhee JB, Reid-Yu SA, Stogios PJ, Savchenko A, Coombes BK. Multiple histidines in the periplasmic domain of the Salmonella enterica sensor kinase SsrA enhance signaling in response to extracellular acidification. Mol Microbiol 2015; 95:678-91. [PMID: 25442048 DOI: 10.1111/mmi.12895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The two-component regulatory system SsrA-SsrB in Salmonella enterica controls expression of a virulence gene program required for intracellular survival in host cells. SsrA signaling is induced within the acidic host vacuole in which the bacteria reside; however, the mechanism by which SsrA senses this intracellular environment is unknown. Here, we show that the periplasmic sensor domain of SsrA is enriched in histidine residues that increase SsrA signaling below external pH of 6. While no single histidine accounted for the full acid-responsiveness of SsrA, we localized the acid-responsiveness principally to five histidines in the C-terminal end of the periplasmic sensor domain, with input from additional histidines in the N-terminal end of the senor. A sensor mutant lacking critical pH-responsive histidines was defective for acid-promoted activity, yet retained basal activity similar to wild type at neutral pH, indicating that the role of these histidines is to enhance signaling in response to acidification. In support of this, a pH-blind mutant was insensitive to the vacuole acidification blocking activity of bafilomycin, and was attenuated for competitive fitness during infection of mice. Our data demonstrate that SsrA contains a histidine-rich periplasmic sensor that enhances signaling in response to the innate host defense of vacuolar acidification.
Collapse
Affiliation(s)
- David T Mulder
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
75
|
Antibacterial mechanisms of polymyxin and bacterial resistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:679109. [PMID: 25664322 PMCID: PMC4312571 DOI: 10.1155/2015/679109] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022]
Abstract
Multidrug resistance in pathogens is an increasingly significant threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial clinical therapy. In many such cases, polymyxins are the last option available, although their use increases the risk of developing resistant strains. This review mainly aims to discuss advances in unraveling the mechanisms of antibacterial activity of polymyxins and bacterial tolerance together with the description of polymyxin structure, synthesis, and structural modification. These are expected to help researchers not only develop a series of new polymyxin derivatives necessary for future medical care, but also optimize the clinical use of polymyxins with minimal resistance development.
Collapse
|
76
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
77
|
Lee K, Lam KH, Kruel AM, Perry K, Rummel A, Jin R. High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex. Biochem Biophys Res Commun 2014; 446:568-73. [PMID: 24631690 DOI: 10.1016/j.bbrc.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46Å resolution. The structural comparisons among HA33 of serotypes A-D reveal two different HA33-glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B-lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety.
Collapse
Affiliation(s)
- Kwangkook Lee
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
78
|
Essential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells. J Bacteriol 2014; 196:1925-40. [PMID: 24610709 DOI: 10.1128/jb.01532-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Successful host cell colonization by the Q fever pathogen, Coxiella burnetii, requires translocation of effector proteins into the host cytosol by a Dot/Icm type 4B secretion system (T4BSS). In Legionella pneumophila, the two-component system (TCS) PmrAB regulates the Dot/Icm T4BSS and several additional physiological processes associated with pathogenesis. Because PmrA consensus regulatory elements are associated with some dot/icm and substrate genes, a similar role for PmrA in regulation of the C. burnetii T4BSS has been proposed. Here, we constructed a C. burnetii pmrA deletion mutant to directly probe PmrA-mediated gene regulation. Compared to wild-type bacteria, C. burnetii ΔpmrA exhibited severe intracellular growth defects that coincided with failed secretion of effector proteins. Luciferase gene reporter assays demonstrated PmrA-dependent expression of 5 of 7 dot/icm operons and 9 of 11 effector-encoding genes with a predicted upstream PmrA regulatory element. Mutational analysis verified consensus sequence nucleotides required for PmrA-directed transcription. RNA sequencing and whole bacterial cell mass spectrometry of wild-type C. burnetii and the ΔpmrA mutant uncovered new components of the PmrA regulon, including several genes lacking PmrA motifs that encoded Dot/Icm substrates. Collectively, our results indicate that the PmrAB TCS is a critical virulence factor that regulates C. burnetii Dot/Icm secretion. The presence of PmrA-responsive genes lacking PmrA regulatory elements also suggests that the PmrAB TCS controls expression of regulatory systems associated with the production of additional C. burnetii proteins involved in host cell parasitism.
Collapse
|
79
|
Lou YC, Wang I, Rajasekaran M, Kao YF, Ho MR, Hsu STD, Chou SH, Wu SH, Chen C. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res 2013; 42:4080-93. [PMID: 24371275 PMCID: PMC3973317 DOI: 10.1093/nar/gkt1345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Klebsiella pneumoniae PmrA is a polymyxin-resistance-associated response regulator. The C-terminal effector/DNA-binding domain of PmrA (PmrAC) recognizes tandem imperfect repeat sequences on the promoters of genes to induce antimicrobial peptide resistance after phosphorylation and dimerization of its N-terminal receiver domain (PmrAN). However, structural information concerning how phosphorylation of the response regulator enhances DNA recognition remains elusive. To gain insights, we determined the nuclear magnetic resonance solution structure of PmrAC and characterized the interactions between PmrAC or BeF3(-)-activated full-length PmrA (PmrAF) and two DNA sequences from the pbgP promoter of K. pneumoniae. We showed that PmrAC binds to the PmrA box, which was verified to contain two half-sites, 5'-CTTAAT-3' and 5'-CCTAAG-3', in a head-to-tail fashion with much stronger affinity to the first than the second site without cooperativity. The structural basis for the PmrAC-DNA complex was investigated using HADDOCK docking and confirmed by paramagnetic relaxation enhancement. Unlike PmrAC, PmrAF recognizes the two sites simultaneously and specifically. In the PmrAF-DNA complex, PmrAN may maintain an activated homodimeric conformation analogous to that in the free form and the interactions between two PmrAC molecules aid in bending and binding of the DNA duplex for transcription activation.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Institute of Biological Chemistry, Academia Sinica, Taipei 115, Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Park SY, Groisman EA. Signal-specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Mol Microbiol 2013; 91:135-44. [PMID: 24256574 DOI: 10.1111/mmi.12449] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 01/02/2023]
Abstract
The two-component system PhoP/PhoQ controls a large number of genes responsible for a variety of physiological and virulence functions in Salmonella enterica serovar Typhimurium. Here we describe a mechanism whereby the transcriptional activator PhoP elicits expression of dissimilar gene sets when its cognate sensor PhoQ is activated by different signals in the periplasm. We determine that full transcription of over half of the genes directly activated by PhoP requires the Mg(2+) transporter MgtA when the PhoQ inducing signal is low Mg(2+) , but not when PhoQ is activated by mildly acidic pH or the antimicrobial peptide C18G. MgtA promotes the active (i.e. phosphorylated) form of PhoP by removing Mg(2+) from the periplasm, where it functions as a repressing signal for PhoQ. MgtA-dependent expression enhances resistance to the cationic antibiotic polymyxin B. Production of the MgtA protein requires cytoplasmic Mg(2+) levels to drop below a certain threshold, thereby creating a two-tiered temporal response among PhoP-dependent genes.
Collapse
Affiliation(s)
- Sun-Yang Park
- Department of Microbial Pathogenesis, Yale School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT, 06536-0812, USA; Howard Hughes Medical Institute, New Haven, CT, USA; Yale Microbial Diversity Institute, PO Box 27389, West Haven, CT, 06516, USA
| | | |
Collapse
|
81
|
Gao R, Stock AM. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system. PLoS Genet 2013; 9:e1003927. [PMID: 24204322 PMCID: PMC3812086 DOI: 10.1371/journal.pgen.1003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS). In response to phosphate (Pi)-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural protein expression levels and feedback regulatory schemes of TCSs are evolved to match the phosphorylation output of the system, which is determined by intrinsic activities of TCS proteins.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | | |
Collapse
|
82
|
Luo SC, Lou YC, Rajasekaran M, Chang YW, Hsiao CD, Chen C. Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem 2013; 288:25551-25561. [PMID: 23861396 PMCID: PMC3757216 DOI: 10.1074/jbc.m113.481978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In bacteria, the two-component system is the most prevalent for sensing and transducing environmental signals into the cell. The PmrA-PmrB two-component system, responsible for sensing external stimuli of high Fe(3+) and mild acidic conditions, can control the genes involved in lipopolysaccharide modification and polymyxin resistance in pathogens. In Klebsiella pneumoniae, the small basic connector protein PmrD protects phospho-PmrA and prolongs the expression of PmrA-activated genes. We previously determined the phospho-PmrA recognition mode of PmrD. However, how PmrA interacts with PmrD and prevents its dephosphorylation remains unknown. To address this question, we solved the x-ray crystal structure of the N-terminal receiver domain of BeF3(-)-activated PmrA (PmrA(N)) at 1.70 Å. With this structure, we applied the data-driven docking method based on NMR chemical shift perturbation to generate the complex model of PmrD-PmrA(N), which was further validated by site-directed spin labeling experiments. In the complex model, PmrD may act as a blockade to prevent phosphatase from contacting with the phosphorylation site on PmrA.
Collapse
Affiliation(s)
| | | | | | - Yi-Wei Chang
- Molecular Biology, Academia Sinica, Taipei 115, Taiwan and
| | | | - Chinpan Chen
- From the Institutes of Biomedical Sciences and ,Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, To whom correspondence should be addressed: Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Section 2, Taipei 115, Taiwan. Tel.: 886-2-2652-3035; Fax: 886-2-2788-7641; E-mail:
| |
Collapse
|
83
|
Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013; 67:83-112. [PMID: 23799815 DOI: 10.1146/annurev-micro-092412-155751] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of gram-negative bacteria to resist killing by antimicrobial agents and to avoid detection by host immune systems often entails modification to the lipopolysaccharide (LPS) in their outer membrane. In this review, we examine the biology of the PmrA/PmrB two-component system, the major regulator of LPS modifications in the enteric pathogen Salmonella enterica. We examine the signals that activate the sensor PmrB and the targets controlled by the transcriptional regulator PmrA. We discuss the PmrA/PmrB-dependent chemical decorations of the LPS and their role in resistance to antibacterial agents. We analyze the feedback mechanisms that modulate the activity and thus output of the PmrA/PmrB system, dictating when, where, and to what extent bacteria modify their LPS. Finally, we explore the qualitative and quantitative differences in gene expression outputs resulting from the distinct PmrA/PmrB circuit architectures in closely related bacteria, which may account for their differential survival in various ecological niches.
Collapse
|
84
|
The lipopolysaccharide modification regulator PmrA limits Salmonella virulence by repressing the type three-secretion system Spi/Ssa. Proc Natl Acad Sci U S A 2013; 110:9499-504. [PMID: 23690578 DOI: 10.1073/pnas.1303420110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The regulatory protein PmrA controls expression of lipopolysaccharide (LPS) modification genes in Salmonella enterica serovar Typhimurium, the etiologic agent of human gastroenteritis and murine typhoid fever. PmrA-dependent LPS modifications confer resistance to serum, Fe(3+), and several antimicrobial peptides, suggesting that the pmrA gene is required for Salmonella virulence. We now report that, surprisingly, a pmrA null mutant is actually hypervirulent when inoculated i.p. into C3H/HeN mice. We establish that the PmrA protein binds to the promoter and represses transcription of ssrB, a virulence regulatory gene required for expression of the Spi/Ssa type three-secretion system inside macrophages. The pmrA mutant displayed heightened expression of SsrB-dependent genes and faster Spi/Ssa-dependent macrophage killing than wild-type Salmonella. A mutation in the ssrB promoter that abolished repression by the PmrA protein rendered Salmonella as hypervirulent as the pmrA null mutant. The antivirulence function of the PmrA protein may limit the acute phase of Salmonella infection, thereby enhancing pathogen persistence in host tissues.
Collapse
|
85
|
May JF, Groisman EA. Conflicting roles for a cell surface modification in Salmonella. Mol Microbiol 2013; 88:970-83. [PMID: 23646936 DOI: 10.1111/mmi.12236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O-antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram-negative bacteria. We determined that activation of the PmrA/PmrB two-component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA-activated gene wzz(st), which encodes the protein that determines long O-antigen chain length and confers resistance to complement-mediated killing. By contrast, this growth defect did not require the wzz(fepE) gene, which controls production of very long O-antigen, or other PmrA-activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O-antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer-membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O-antigen in its LPS to respond to the different conditions it faces during infection.
Collapse
Affiliation(s)
- John F May
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
86
|
Gu S, Jin R. Assembly and function of the botulinum neurotoxin progenitor complex. Curr Top Microbiol Immunol 2013; 364:21-44. [PMID: 23239347 DOI: 10.1007/978-3-642-33570-9_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Botulinum neurotoxins (BoNTs) are among the most poisonous substances known to man, but paradoxically, BoNT-containing medicines and cosmetics have been used with great success in the clinic. Accidental BoNT poisoning mainly occurs through oral ingestion of food contaminated with Clostridium botulinum. BoNTs are naturally produced in the form of progenitor toxin complexes (PTCs), which are high molecular weight (up to ~900 kDa) multiprotein complexes composed of BoNT and several non-toxic neurotoxin-associated proteins (NAPs). NAPs protect the inherently fragile BoNTs against the hostile environment of the gastrointestinal (GI) tract and help BoNTs pass through the intestinal epithelial barrier before they are released into the general circulation. These events are essential for ingested BoNTs to gain access to motoneurons, where they inhibit neurotransmitter release and cause muscle paralysis. In this review, we discuss the structural basis for assembly of NAPs and BoNT into the PTC that protects BoNT and facilitate its delivery into the bloodstream.
Collapse
Affiliation(s)
- Shenyan Gu
- Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
87
|
Segal G. The Legionella pneumophila two-component regulatory systems that participate in the regulation of Icm/Dot effectors. Curr Top Microbiol Immunol 2013; 376:35-52. [PMID: 23918177 DOI: 10.1007/82_2013_346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, actively manipulates intracellular processes to establish a replication niche inside their host cells. The establishment of its replication niche requires a functional Icm/Dot type IV secretion system which translocates about 300 effector proteins into the host cells during infection. This enormous number of effectors should be coordinated at the level of gene expression, in order to be expressed and translocated at the correct time and appropriate amounts. One of the predominant ways in bacteria to regulate virulence gene expression is by the use of two-component systems (TCSs). To date, four TCSs have been shown to be involved in the regulation of Icm/Dot effector-encoding genes: The PmrAB and CpxRA TCSs that directly control, and the LetAS and LqsRS TCSs that indirectly control the level of expression of effector-encoding genes. According to our current knowledge, these four TCSs control the expression of about 70 effector-encoding genes. The regulation by different TCSs divides the effectors into groups of co-regulated effector-encoding genes that are probably co-expressed at a similar time during infection and might perform related functions. In addition, examples of interplay between these TCSs were already reported indicating that they form part of a regulatory network that orchestrates the expression of L. pneumophila effector-encoding genes during infection.
Collapse
Affiliation(s)
- Gil Segal
- The George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel,
| |
Collapse
|
88
|
Chen HD, Jewett MW, Groisman EA. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product. PLoS Genet 2012; 8:e1003060. [PMID: 23300460 PMCID: PMC3531487 DOI: 10.1371/journal.pgen.1003060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022] Open
Abstract
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Collapse
Affiliation(s)
- H. Deborah Chen
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mollie W. Jewett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
89
|
Williams ZT, Blake JP, Macklin KS. The effect of sodium bisulfate on Salmonella viability in broiler litter. Poult Sci 2012; 91:2083-8. [PMID: 22912440 DOI: 10.3382/ps.2011-01976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Controlling Salmonella populations on commercial broiler grow out farms is a crucial step in reducing Salmonella contamination in processing plants. Broiler litter harbors many species of pathogenic bacteria including Salmonella. Sodium bisulfate has been shown to reduce concentration of bacteria in broiler litter. In experiments 1 and 2, sodium bisulfate was applied to broiler litter at rates that are comparable to what is commonly used by the poultry industry: 22.7, 45.4, and 68.0 kg/92.9 m(2). After application, sodium bisulfate was mixed into the litter. In experiments 3 and 4, sodium bisulfate was applied at 45.4 kg/92.9 m(2) to the surface of the litter. For all experiments, a cocktail of 5 Salmonella serovars was applied to the litter. Ammonia, pH, moisture, and water activity measurements were taken; additionally, total aerobic, anaerobic, enteric, and Salmonella concentrations were determined at 0, 24, and 96 h. In experiments 1 and 2, Salmonella concentrations were higher for treated litter than the control at 24 and 96 h (P < 0.001). In experiments 1 and 2, litter pH was lower for treated litter at 24 and 96 h; lowest pH was observed with the 68.0 kg/92.9 m(2), with a pH of 5.95 (P < 0.001). In experiments 3 and 4, litter pH was lowered for treated litter to 2.1 (P < 0.001). Even this lower pH did not reduce Salmonella concentrations compared with the control (P = 0.05). The decreased litter pH appeared to be responsible for increased viability of Salmonella. This research shows that the lowering of litter pH, which decreases litter ammonia production, could actually lead to an increased survivability of certain bacteria, such as Salmonella.
Collapse
Affiliation(s)
- Z T Williams
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
90
|
Characterization of a ferrous iron-responsive two-component system in nontypeable Haemophilus influenzae. J Bacteriol 2012; 194:6162-73. [PMID: 22961857 DOI: 10.1128/jb.01465-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI), an opportunistic pathogen that is commonly found in the human upper respiratory tract, has only four identified two-component signal transduction systems. One of these, an ortholog to the QseBC (quorum-sensing Escherichia coli) system, was characterized. This system, designated firRS, was found to be transcribed in an operon with a gene encoding a small, predicted periplasmic protein with an unknown function, ygiW. The ygiW-firRS operon exhibited a unique feature with an attenuator present between ygiW and firR that caused the ygiW transcript level to be 6-fold higher than the ygiW-firRS transcript level. FirRS induced expression of ygiW and firR, demonstrating that FirR is an autoactivator. Unlike the QseBC system of E. coli, FirRS does not respond to epinephrine or norepinephrine. FirRS signal transduction was stimulated when NTHI cultures were exposed to ferrous iron or zinc but was unresponsive to ferric iron. Notably, the ferrous iron-responsive activation only occurred when a putative iron-binding site in FirS and the key phosphorylation aspartate in FirR were intact. FirRS was also activated when cultures were exposed to cold shock. Mutants in ygiW, firR, and firS were attenuated during pulmonary infection, but not otitis media. These data demonstrate that the H. influenzae strain 2019 FirRS is a two-component regulatory system that senses ferrous iron and autoregulates its own operon.
Collapse
|
91
|
Bergen PJ, Landersdorfer CB, Zhang J, Zhao M, Lee HJ, Nation RL, Li J. Pharmacokinetics and pharmacodynamics of 'old' polymyxins: what is new? Diagn Microbiol Infect Dis 2012; 74:213-23. [PMID: 22959816 DOI: 10.1016/j.diagmicrobio.2012.07.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/12/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
'Old' colistin and polymyxin B are increasingly used as last-line therapy against multidrug-resistant Gram-negative bacteria Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. For intravenous administration, colistin is dosed as its inactive prodrug colistin methanesulfonate (sodium), while polymyxin B is used as its sulfate (active antibacterial). Over the last decade, significant progress has been made in understanding their chemistry, pharmacokinetics (PK), and pharmacodynamics (PD). The first scientifically based dosing suggestions are now available for colistin methanesulfonate to generate a desired target steady-state plasma concentration of formed colistin in various categories of critically ill patients. As simply increasing polymyxin dosage regimens is not an option for optimizing their PK/PD due to nephrotoxicity, combination therapy with other antibiotics has great potential to maximize the efficacy of polymyxins while minimizing emergence of resistance. We must pursue rational approaches to the use of polymyxins and other existing antibiotics through the application of PK/PD principles.
Collapse
Affiliation(s)
- Phillip J Bergen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
92
|
Kato A, Chen HD, Latifi T, Groisman EA. Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide. Mol Cell 2012; 47:897-908. [PMID: 22921935 DOI: 10.1016/j.molcel.2012.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 06/18/2012] [Accepted: 07/14/2012] [Indexed: 01/29/2023]
Abstract
Gram-negative bacteria often modify their lipopolysaccharide (LPS), thereby increasing resistance to antimicrobial agents and avoidance of the host immune system. However, it is unclear how bacteria adjust the levels and activities of LPS-modifying enzymes in response to the modification status of their LPS. We now address this question by investigating the major regulator of LPS modifications in Salmonella enterica. We report that the PmrA/PmrB system controls expression of a membrane peptide that inhibits the activity of LpxT, an enzyme responsible for increasing the LPS negative charge. LpxT's inhibition and the PmrA-dependent incorporation of positively charged L-4-aminoarabinose into the LPS decrease Fe(3+) binding to the bacterial cell. Because Fe(3+) is an activating ligand for the sensor PmrB, transcription of PmrA-dependent LPS-modifying genes is reduced. This mechanism enables bacteria to sense their cell surface by its effect on the availability of an inducing signal for the system regulating cell-surface modifications.
Collapse
Affiliation(s)
- Akinori Kato
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
93
|
Richards SM, Strandberg KL, Conroy M, Gunn JS. Cationic antimicrobial peptides serve as activation signals for the Salmonella Typhimurium PhoPQ and PmrAB regulons in vitro and in vivo. Front Cell Infect Microbiol 2012; 2:102. [PMID: 22919691 PMCID: PMC3417628 DOI: 10.3389/fcimb.2012.00102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/06/2012] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses two-component regulatory systems (TCRSs) to respond to environmental stimuli. Upon infection, the TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals detected in the lumen of the intestine and within host cells. TCRS-mediated gene expression leads to upregulation of genes involved in lipopolysaccharide (LPS) modification and cationic antimicrobial peptide (CAMP) resistance. This research expands on previous studies which have shown that CAMPs can activate Salmonella TCRSs in vitro. The focus of this work was to determine if CAMPs can act as environmental signals for PhoPQ- and PmrAB-mediated gene expression in vitro, during infection of macrophages and in a mouse model of infection. Monitoring of PhoPQ and PmrAB activation using recombinase-based in vivo expression technology (RIVET), alkaline phosphtase and β-galactosidase reporter fusion constructs demonstrated that S. Typhimurium PhoQ can sense CAMPs in vitro. In mouse macrophages, the cathelecidin CRAMP does not activate the PhoPQ regulon. Acidification of the Salmonella-containing vacuole activates PhoP- and PmrA-regulated loci but blocking acidification still does not reveal a role for CRAMP in TCRS activation in mouse macrophages. However, assays performed in susceptible wild type (WT), CRAMP knockout (KO), and matrilysin (a metalloproteinase necessary for activating murine α-defensins) KO mice suggest CRAMP, but not α-defensins, serve as a putative direct TCRS activation signal in the mouse intestine. These studies provide a better understanding of the in vivo environments that result in activation of these virulence-associated TCRSs.
Collapse
Affiliation(s)
- Susan M Richards
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus OH, USA
| | | | | | | |
Collapse
|
94
|
Abstract
Group B streptococcus (GBS) pili may enhance colonization and infection by mediating bacterial adhesion to host cells, invasion across endothelial and epithelial barriers, and resistance to bacterial ingestion and killing by host phagocytes. However, it remains unclear how pilus expression is regulated and how modulation of pilus production affects GBS interactions with the human host. We investigated the regulation and function of pilus island 1 (PI-1) pili in GBS strain 2603. We found that PI-1 gene expression was controlled by the CsrRS two-component system, by Ape1, an AraC-type regulator encoded by a divergently transcribed gene immediately upstream of PI-1, and by environmental pH. The response regulator CsrR repressed expression of Ape1, which is an activator of PI-1 gene expression. In addition, CsrR repressed PI-1 gene expression directly, independent of its regulation of Ape1. In vitro assays demonstrated specific binding of both CsrR and Ape1 to chromosomal DNA sequences upstream of PI-1. Pilus gene expression was activated by acidic pH, and this effect was independent of CsrRS and Ape1. Unexpectedly, characterization of PI-1 deletion mutants revealed that PI-1 pili do not mediate adhesion of strain 2603 to A549 respiratory epithelial cells, ME180 cervical cells, or VK2 vaginal cells in vitro. PI-1 pili reduced internalization and intracellular killing of GBS by human monocyte-derived macrophages, by approximately 50%, but did not influence complement-mediated opsonophagocytic killing by human neutrophils. These findings shed new light on the complex nature of pilus regulation and function in modulating GBS interactions with the human host.
Collapse
|
95
|
Kawasaki K. Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
96
|
Salvado B, Vilaprinyo E, Karathia H, Sorribas A, Alves R. Two component systems: physiological effect of a third component. PLoS One 2012; 7:e31095. [PMID: 22363555 PMCID: PMC3281920 DOI: 10.1371/journal.pone.0031095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/02/2012] [Indexed: 11/18/2022] Open
Abstract
Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS). These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK) and by a response regulator (RR) that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component") on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.
Collapse
Affiliation(s)
- Baldiri Salvado
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Ester Vilaprinyo
- Evaluation and Clinical Epidemiology Department, Parc de Salut Mar and CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Hiren Karathia
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Albert Sorribas
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida & IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
97
|
Xiong K, Chen Z, Xiang G, Wang J, Rao X, Hu F, Cong Y. Deletion of yncD gene in Salmonella enterica ssp. enterica serovar Typhi leads to attenuation in mouse model. FEMS Microbiol Lett 2012; 328:70-7. [PMID: 22150228 DOI: 10.1111/j.1574-6968.2011.02481.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that are usually involved in the uptake of certain key nutrients, for example iron. In the genome of Salmonella enterica ssp. enterica serovar Typhi, the yncD gene encodes a putative TBDT and was identified recently as an in vivo-induced antigen. In the present study, a yncD-deleted mutant was constructed to evaluate the role of the yncD gene in virulence. Our results showed that the mutant is attenuated in a mouse model by intraperitoneal injection and its virulence is restored by the transformation of a complement plasmid. The competition experiments showed that the survival ability of the yncD-deleted mutant decreases significantly in vivo. To evaluate its vaccine potential, the yncD-deleted mutant was inoculated intranasally in the mouse model. The findings demonstrated a significant immunoprotection against the lethal wild-type challenge. The regulation analysis showed that yncD gene promoter is upregulated under acidic condition. The present study demonstrates that the yncD gene plays an important role in bacterial survival inside the host and is suitable for the construction of attenuated vaccine strains as a candidate target gene.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
98
|
Gu S, Jin R. Assembly and Function of the Botulinum Neurotoxin Progenitor Complex. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
99
|
BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa. J Bacteriol 2011; 194:1195-204. [PMID: 22194456 DOI: 10.1128/jb.05634-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous gram-negative bacterium best known as the predominant opportunistic pathogen infecting the lungs of cystic fibrosis patients. In this context, it is thought to form biofilms, within which locally reducing and acidic conditions can develop that favor the stability of ferrous iron [Fe(II)]. Because iron is a signal that stimulates biofilm formation, we performed a microarray study to determine whether P. aeruginosa strain PA14 exhibits a specific transcriptional response to extracellular Fe(II). Among the genes that were most upregulated in response to Fe(II) were those encoding the two-component system BqsR/BqsS, previously identified for its role in P. aeruginosa strain PAO1 biofilm decay (13); here, we demonstrate its role in extracellular Fe(II) sensing. bqsS and bqsR form an operon together with two small upstream genes, bqsP and bqsQ, and one downstream gene, bqsT. BqsR/BqsS sense extracellular Fe(II) at physiologically relevant concentrations (>10 μM) and elicit a specific transcriptional response, including its autoregulation. The sensor distinguishes between Fe(II), Fe(III), and other dipositive cations [Ca(II), Cu(II), Mg(II), Mn(II), Zn(II)] under aerobic or anaerobic conditions. The gene that is most upregulated by BqsR/BqsS, as measured by quantitative reverse transcription-PCR (qRT-PCR), is PA14_04180, which is predicted to encode a periplasmic oligonucleotide/oligosaccharide-binding domain (OB-fold) protein. Coincident with phenazine production during batch culture growth, Fe(II) becomes the majority of the total iron pool and bqsS is upregulated. The existence of a two-component system that senses Fe(II) indicates that extracellular Fe(II) is an important environmental signal for P. aeruginosa.
Collapse
|
100
|
Contribution of the lipopolysaccharide to resistance of Shigella flexneri 2a to extreme acidity. PLoS One 2011; 6:e25557. [PMID: 21984920 PMCID: PMC3184986 DOI: 10.1371/journal.pone.0025557] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
Shigella flexneri is endemic in most underdeveloped countries, causing diarrheal disease and dysentery among young children. In order to reach its target site, the colon, Shigella must overcome the acid environment of the stomach. Shigella is able to persist in this stressful environment and, because of this ability it can initiate infection following the ingestion of very small inocula. Thus, acid resistance is considered an important virulence trait of this bacterium. It has been reported that moderate acid conditions regulate the expression of numerous components of the bacterial envelope. Because the lipopolysaccharide (LPS) is the major component of the bacterial surface, here we have addressed the role of LPS in acid resistance of S. flexneri 2a. Defined deletion mutants in genes encoding proteins involved in the synthesis, assembly and length regulation of the LPS O antigen were constructed and assayed for resistance to pH 2.5 after adaptation to pH 5.5. The results showed that a mutant lacking O antigen was significantly more sensitive to extreme acid conditions than the wild type. Not only the presence of polymerized O antigen, but also a particular polymer length (S-OAg) was required for acid resistance. Glucosylation of the O antigen also contributed to this property. In addition, a moderate acidic pH induced changes in the composition of the lipid A domain of LPS. The main modification was the addition of phosphoethanolamine to the 1' phosphate of lipid A. This modification increased resistance of S. flexneri to extreme acid conditions, provide that O antigen was produced. Overall, the results of this work point out to an important role of LPS in resistance of Shigella flexneri to acid stress.
Collapse
|