51
|
Dzialo MC, Travaglini KJ, Shen S, Loo JA, Clarke SG. A new type of protein lysine methyltransferase trimethylates Lys-79 of elongation factor 1A. Biochem Biophys Res Commun 2014; 455:382-9. [PMID: 25446118 DOI: 10.1016/j.bbrc.2014.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022]
Abstract
The elongation factors of Saccharomyces cerevisiae are extensively methylated, containing a total of ten methyllysine residues. Elongation factor methyltransferases (Efm1, Efm2, Efm3, and Efm4) catalyze at least four of these modifications. Here we report the identification of a new type of protein lysine methyltransferase, Efm5 (Ygr001c), which was initially classified as N6-adenine DNA methyltransferase-like. Efm5 is required for trimethylation of Lys-79 on EF1A. We directly show the loss of this modification in efm5Δ strains by both mass spectrometry and amino acid analysis. Close homologs of Efm5 are found in vertebrates, invertebrates, and plants, although some fungal species apparently lack this enzyme. This suggests possible unique functions of this modification in S. cerevisiae and higher eukaryotes. The misannotation of Efm5 was due to the presence of a DPPF sequence in post-Motif II, typically associated with DNA methylation. Further analysis of this motif and others like it demonstrates a potential consensus sequence for N-methyltransferases.
Collapse
Affiliation(s)
- Maria C Dzialo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Kyle J Travaglini
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Sean Shen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; Department of Biological Chemistry and UCLA/DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
52
|
Kebede AF, Schneider R, Daujat S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J 2014; 282:1658-74. [DOI: 10.1111/febs.13047] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Adam F. Kebede
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| | - Sylvain Daujat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR 7104 - Inserm U964; Université de Strasbourg; Illkirch France
| |
Collapse
|
53
|
Dzialo MC, Travaglini KJ, Shen S, Roy K, Chanfreau GF, Loo JA, Clarke SG. Translational roles of elongation factor 2 protein lysine methylation. J Biol Chem 2014; 289:30511-30524. [PMID: 25231983 DOI: 10.1074/jbc.m114.605527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methylation of various components of the translational machinery has been shown to globally affect protein synthesis. Little is currently known about the role of lysine methylation on elongation factors. Here we show that in Saccharomyces cerevisiae, the product of the EFM3/YJR129C gene is responsible for the trimethylation of lysine 509 on elongation factor 2. Deletion of EFM3 or of the previously described EFM2 increases sensitivity to antibiotics that target translation and decreases translational fidelity. Furthermore, the amino acid sequences of Efm3 and Efm2, as well as their respective methylation sites on EF2, are conserved in other eukaryotes. These results suggest the importance of lysine methylation modification of EF2 in fine tuning the translational apparatus.
Collapse
Affiliation(s)
- Maria C Dzialo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Kyle J Travaglini
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Sean Shen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Kevin Roy
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095
| | - Joseph A Loo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095; Department of Biological Chemistry and UCLA/Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute and UCLA, Los Angeles, California 90095.
| |
Collapse
|
54
|
Davydova E, Ho AYY, Malecki J, Moen A, Enserink JM, Jakobsson ME, Loenarz C, Falnes PØ. Identification and characterization of a novel evolutionarily conserved lysine-specific methyltransferase targeting eukaryotic translation elongation factor 2 (eEF2). J Biol Chem 2014; 289:30499-30510. [PMID: 25231979 DOI: 10.1074/jbc.m114.601658] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.
Collapse
Affiliation(s)
- Erna Davydova
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Angela Y Y Ho
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jedrzej Malecki
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Anders Moen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Jorrit M Enserink
- Department of Microbiology, Oslo University Hospital and University of Oslo, 0027 Oslo, Norway, and
| | - Magnus E Jakobsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Christoph Loenarz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Pål Ø Falnes
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway,.
| |
Collapse
|
55
|
Colón-Bolea P, Crespo P. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Bioessays 2014; 36:1162-9. [PMID: 25382779 DOI: 10.1002/bies.201400120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysine methylation has been traditionally associated with histones and epigenetics. Recently, lysine methyltransferases and demethylases - which are involved in methylation of non-histone substrates - have been frequently found deregulated in human tumours. In this realm, a new discovery has unveiled the methyltransferase SMYD3 as an enhancer of Ras-driven cancer. SMYD3 is up-regulated in different types of tumours. SMYD3-mediated methylation of MAP3K2 increases mutant K-Ras-induced activation of ERK1/2. Methylation of MAP3K2 prevents it from binding to the phosphatase PP2A, thereby impeding the impact of this negative regulator on Ras-ERK1/2 signals, leading to the formation of lung and pancreatic adenocarcinomas. Furthermore, depletion of SMYD3 synergises with a MEK inhibitor, currently in clinical trials, to block Ras-driven pancreatic neoplasia. These results underscore the importance of lysine methylation in the regulation of signalling pathways relevant for tumourigenesis and endorse the development of drugs targeting unregulated lysine methylation as therapeutic agents in the struggle against cancer.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
56
|
Zhang L, Hamey JJ, Hart-Smith G, Erce MA, Wilkins MR. Elongation factor methyltransferase 3--a novel eukaryotic lysine methyltransferase. Biochem Biophys Res Commun 2014; 451:229-34. [PMID: 25086354 DOI: 10.1016/j.bbrc.2014.07.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
Here we describe the discovery of Saccharomycescerevisiae protein YJR129Cp as a new eukaryotic seven-beta-strand lysine methyltransferase. An immunoblotting screen of 21 putative methyltransferases showed a loss in the methylation of elongation factor 2 (EF2) on knockout of YJR129C. Mass spectrometric analysis of EF2 tryptic peptides localised this loss of methylation to lysine 509, in peptide LVEGLKR. In vitro methylation, using recombinant methyltransferases and purified EF2, validated YJR129Cp as responsible for methylation of lysine 509 and Efm2p as responsible for methylation at lysine 613. Contextualised on previously described protein structures, both sites of methylation were found at the interaction interface between EF2 and the 40S ribosomal subunit. In line with the recently discovered Efm1 and Efm2 we propose that YJR129C be named elongation factor methyltransferase 3 (Efm3). The human homolog of Efm3 is likely to be the putative methyltransferase FAM86A, according to sequence homology and multiple lines of literature evidence.
Collapse
Affiliation(s)
- Lelin Zhang
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Gene Hart-Smith
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Melissa A Erce
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
57
|
Histidine methylation of yeast ribosomal protein Rpl3p is required for proper 60S subunit assembly. Mol Cell Biol 2014; 34:2903-16. [PMID: 24865971 DOI: 10.1128/mcb.01634-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histidine protein methylation is an unusual posttranslational modification. In the yeast Saccharomyces cerevisiae, the large ribosomal subunit protein Rpl3p is methylated at histidine 243, a residue that contacts the 25S rRNA near the P site. Rpl3p methylation is dependent upon the presence of Hpm1p, a candidate seven-beta-strand methyltransferase. In this study, we elucidated the biological activities of Hpm1p in vitro and in vivo. Amino acid analyses reveal that Hpm1p is responsible for all of the detectable protein histidine methylation in yeast. The modification is found on a polypeptide corresponding to the size of Rpl3p in ribosomes and in a nucleus-containing organelle fraction but was not detected in proteins of the ribosome-free cytosol fraction. In vitro assays demonstrate that Hpm1p has methyltransferase activity on ribosome-associated but not free Rpl3p, suggesting that its activity depends on interactions with ribosomal components. hpm1 null cells are defective in early rRNA processing, resulting in a deficiency of 60S subunits and translation initiation defects that are exacerbated in minimal medium. Cells lacking Hpm1p are resistant to cycloheximide and verrucarin A and have decreased translational fidelity. We propose that Hpm1p plays a role in the orchestration of the early assembly of the large ribosomal subunit and in faithful protein production.
Collapse
|
58
|
Hart-Smith G, Chia SZ, Low JKK, McKay MJ, Molloy MP, Wilkins MR. Stoichiometry of Saccharomyces cerevisiae Lysine Methylation: Insights into Non-histone Protein Lysine Methyltransferase Activity. J Proteome Res 2014; 13:1744-56. [DOI: 10.1021/pr401251k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gene Hart-Smith
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Samantha Z. Chia
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jason K. K. Low
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Matthew J. McKay
- Australian
Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mark P. Molloy
- Australian
Proteome Analysis Facility, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Marc R. Wilkins
- NSW
Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
59
|
Moore KE, Gozani O. An unexpected journey: lysine methylation across the proteome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1395-403. [PMID: 24561874 DOI: 10.1016/j.bbagrm.2014.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022]
Abstract
The dynamic modification of histone proteins by lysine methylation has emerged over the last decade as a key regulator of chromatin functions. In contrast, our understanding of the biological roles for lysine methylation of non-histone proteins has progressed more slowly. Though recently it has attracted less attention, ε-methyl-lysine in non-histone proteins was first observed over 50 years ago. In that time, it has become clear that, like the case for histones, non-histone methylation represents a key and common signaling process within the cell. Recent work suggests that non-histone methylation occurs on hundreds of proteins found in both the nucleus and the cytoplasm, and with important biomedical implications. Technological advances that allow us to identify lysine methylation on a proteomic scale are opening new avenues in the non-histone methylation field, which is poised for dramatic growth. Here, we review historical and recent findings in non-histone lysine methylation signaling, highlight new methods that are expanding opportunities in the field, and discuss outstanding questions and future challenges about the role of this fundamental post-translational modification (PTM).
Collapse
Affiliation(s)
- Kaitlyn E Moore
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
60
|
Abstract
Chemical modifications of histone proteins directly and indirectly affect chromatin structure and thereby contribute to the multilayered control of diverse DNA-based processes. A recent study in Nature enriches this list of enzyme-dependent posttranslational histone marks by H2A glutamine methylation that appears to be dedicated to only one specific cellular process, the regulation of nucleolar rDNA transcription.
Collapse
|
61
|
Tessarz P, Santos-Rosa H, Robson SC, Sylvestersen KB, Nelson CJ, Nielsen ML, Kouzarides T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 2014; 505:564-8. [PMID: 24352239 PMCID: PMC3901671 DOI: 10.1038/nature12819] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 10/29/2013] [Indexed: 12/03/2022]
Abstract
Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.
Collapse
Affiliation(s)
- Peter Tessarz
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Helena Santos-Rosa
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sam C. Robson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Kathrine B. Sylvestersen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Christopher J Nelson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Michael L. Nielsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
62
|
Vermillion KL, Lidberg KA, Gammill LS. Cytoplasmic protein methylation is essential for neural crest migration. ACTA ACUST UNITED AC 2013; 204:95-109. [PMID: 24379414 PMCID: PMC3882789 DOI: 10.1083/jcb.201306071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Post-translational methylation of the non-histone, actin-binding protein EF1α1 is essential for neural crest migration. As they initiate migration in vertebrate embryos, neural crest cells are enriched for methylation cycle enzymes, including S-adenosylhomocysteine hydrolase (SAHH), the only known enzyme to hydrolyze the feedback inhibitor of trans-methylation reactions. The importance of methylation in neural crest migration is unknown. Here, we show that SAHH is required for emigration of polarized neural crest cells, indicating that methylation is essential for neural crest migration. Although nuclear histone methylation regulates neural crest gene expression, SAHH and lysine-methylated proteins are abundant in the cytoplasm of migratory neural crest cells. Proteomic profiling of cytoplasmic, lysine-methylated proteins from migratory neural crest cells identified 182 proteins, several of which are cytoskeleton related. A methylation-resistant form of one of these proteins, the actin-binding protein elongation factor 1 alpha 1 (EF1α1), blocks neural crest migration. Altogether, these data reveal a novel and essential role for post-translational nonhistone protein methylation during neural crest migration and define a previously unknown requirement for EF1α1 methylation in migration.
Collapse
Affiliation(s)
- Katie L Vermillion
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | | | | |
Collapse
|
63
|
Zhang Y, Pan Y, Yang W, Liu W, Zou H, Zhao ZK. Protein Arginine Allylation and Subsequent Fluorophore Targeting. Chembiochem 2013; 14:1438-43. [DOI: 10.1002/cbic.201300176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 01/18/2023]
|
64
|
Identification of a novel lipin homologue from the parasitic protozoan Trypanosoma brucei. BMC Microbiol 2013; 13:101. [PMID: 23656927 PMCID: PMC3654991 DOI: 10.1186/1471-2180-13-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background Arginine methylation is a post-translational modification that expands the functional diversity of proteins. Kinetoplastid parasites contain a relatively large group of protein arginine methyltransferases (PRMTs) compared to other single celled eukaryotes. Several T. brucei proteins have been shown to serve as TbPRMT substrates in vitro, and a great number of proteins likely to undergo methylation are predicted by the T. brucei genome. This indicates that a large number of proteins whose functions are modulated by arginine methylation await discovery in trypanosomes. Here, we employed a yeast two-hybrid screen using as bait the major T. brucei type I PRMT, TbPRMT1, to identify potential substrates of this enzyme. Results We identified a protein containing N-LIP and C-LIP domains that we term TbLpn. These domains are usually present in a family of proteins known as lipins, and involved in phospholipid biosynthesis and gene regulation. Far western and co-immunoprecipitation assays confirmed the TbPRMT1-TbLpn interaction. We also demonstrated that TbLpn is localized mainly to the cytosol, and is methylated in vivo. In addition, we showed that, similar to mammalian and yeast proteins with N-LIP and C-LIP domains, recombinant TbLpn exhibits phosphatidic acid phosphatase activity, and that two conserved aspartic acid residues present in the C-LIP domain are critical for its enzymatic activity. Conclusions This study reports the characterization of a novel trypanosome protein and provides insight into its enzymatic activity and function in phospholipid biosynthesis. It also indicates that TbLpn functions may be modulated by arginine methylation.
Collapse
|
65
|
Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 2013; 38:243-52. [PMID: 23490039 DOI: 10.1016/j.tibs.2013.02.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/08/2023]
Abstract
Methylated lysine and arginine residues in histones represent a crucial part of the histone code, and recognition of these methylated residues by protein interaction domains modulates transcription. Although some methylating enzymes appear to be histone specific, many can modify histone and non-histone substrates and an increasing number are specific for non-histone substrates. Some of the non-histone substrates can also be involved in transcription, but a distinct subset of protein methylation reactions occurs at residues buried deeply in ribosomal proteins that may function in protein-RNA interactions rather than protein-protein interactions. Additionally, recent work has identified enzymes that catalyze protein methylation reactions at new sites in ribosomal and other proteins. These reactions include modifications of histidine and cysteine residues as well as the N terminus.
Collapse
|
66
|
Lipase from Pseudomonas stutzeri: Purification, homology modelling and rational explanation of the substrate binding mode. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Coléno-Costes A, Jang SM, de Vanssay A, Rougeot J, Bouceba T, Randsholt NB, Gibert JM, Le Crom S, Mouchel-Vielh E, Bloyer S, Peronnet F. New partners in regulation of gene expression: the enhancer of Trithorax and Polycomb Corto interacts with methylated ribosomal protein l12 via its chromodomain. PLoS Genet 2012; 8:e1003006. [PMID: 23071455 PMCID: PMC3469418 DOI: 10.1371/journal.pgen.1003006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 08/16/2012] [Indexed: 01/24/2023] Open
Abstract
Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.
Collapse
Affiliation(s)
- Anne Coléno-Costes
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Suk Min Jang
- Institut Pasteur, Département de Biologie du Développement, Unité de Régulation Epigénétique, Paris, France
- Centre National de la Recherche Scientifique, URA2578, Paris, France
- INSERM Avenir, Paris, France
| | - Augustin de Vanssay
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Répression Épigénétique et Éléments Transposables, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Répression Épigénétique et Éléments Transposables, Paris, France
| | - Julien Rougeot
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Tahar Bouceba
- Plateforme d'Ingénierie des Protéines, Service d'Interaction des Biomolécules, IFR83, Université Pierre et Marie Curie-Paris 6, UMR7622, Paris, France
| | - Neel B. Randsholt
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Jean-Michel Gibert
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Stéphane Le Crom
- École Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Plateforme Génomique, Paris, France
- INSERM, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Analyse des Données à Haut Débit en Génomique Fonctionnelle, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Analyse des Données à Haut Débit en Génomique Fonctionnelle, Paris, France
| | - Emmanuèle Mouchel-Vielh
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Sébastien Bloyer
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| | - Frédérique Peronnet
- Université Pierre et Marie Curie-Paris 6, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
- Centre National de la Recherche Scientifique, UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, Paris, France
| |
Collapse
|
68
|
Couttas TA, Raftery MJ, Padula MP, Herbert BR, Wilkins MR. Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics 2012; 12:960-72. [PMID: 22522802 DOI: 10.1002/pmic.201100570] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study aimed to identify sites of lysine methylation in Saccharomyces cerevisiae and the associated methyltransferases. Hexapeptide ligand affinity chromatography was used to normalize the abundance levels of proteins in whole cell lysate. MS/MS, in association with antibody-based detection, was then used to identify lysine methylated proteins and the precise sites of modification. Lysine methylation was found on the proteins elongation factor (EF) 1-α, 2, and 3A, as well as ribosomal proteins 40S S18-A/B, 60S L11-A/B, L18-A/B, and L42-A/B. Precise sites were mapped in all cases. Single-gene knockouts of known and putative methyltransferase(s), in association with MS/MS, showed that EF1-α is monomethylated by Efm1 at lysin 30 and dimethylated by See1 at lysine 316. Methyltransferase Rkm1 was found to monomethylate 40S ribosomal protein S18-A/B at lysine 48. Knockout analysis also revealed that putative methyltransferase YBR271W affects the methylation of proteins EF2 and 3A; this was detected by Western blotting and immunodetection. This methyltransferase shows strong interspecies conservation and a tryptophan-containing motif associated with its active site. We suggest that enzyme YBR271W is named EF methyltransferase 2 (Efm2), in line with the recent naming of YHL039W as Efm1.
Collapse
Affiliation(s)
- Timothy A Couttas
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia
| | | | | | | | | |
Collapse
|
69
|
Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY, Liang RP. A method to distinguish between lysine acetylation and lysine methylation from protein sequences. J Theor Biol 2012; 310:223-30. [DOI: 10.1016/j.jtbi.2012.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 01/21/2023]
|
70
|
Tehlivets O, Malanovic N, Visram M, Pavkov-Keller T, Keller W. S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta Mol Basis Dis 2012; 1832:204-15. [PMID: 23017368 PMCID: PMC3787734 DOI: 10.1016/j.bbadis.2012.09.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
S-adenosyl-L-methionine (AdoMet)-dependent methylation is central to the regulation of many biological processes: more than 50 AdoMet-dependent methyltransferases methylate a broad spectrum of cellular compounds including nucleic acids, proteins and lipids. Common to all AdoMet-dependent methyltransferase reactions is the release of the strong product inhibitor S-adenosyl-L-homocysteine (AdoHcy), as a by-product of the reaction. S-adenosyl-L-homocysteine hydrolase is the only eukaryotic enzyme capable of reversible AdoHcy hydrolysis to adenosine and homocysteine and, thus, relief from AdoHcy inhibition. Impaired S-adenosyl-L-homocysteine hydrolase activity in humans results in AdoHcy accumulation and severe pathological consequences. Hyperhomocysteinemia, which is characterized by elevated levels of homocysteine in blood, also exhibits a similar phenotype of AdoHcy accumulation due to the reversal of the direction of the S-adenosyl-L-homocysteine hydrolase reaction. Inhibition of S-adenosyl-L-homocysteine hydrolase is also linked to antiviral effects. In this review the advantages of yeast as an experimental system to understand pathologies associated with AdoHcy accumulation will be discussed.
Collapse
Affiliation(s)
- Oksana Tehlivets
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| | | | | | | | | |
Collapse
|
71
|
Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE. Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. Biochemistry 2012; 51:5091-104. [PMID: 22650761 DOI: 10.1021/bi300186g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have characterized the posttranslational methylation of Rps2, Rps3, and Rps27a, three small ribosomal subunit proteins in the yeast Saccharomyces cerevisiae, using mass spectrometry and amino acid analysis. We found that Rps2 is substoichiometrically modified at arginine-10 by the Rmt1 methyltransferase. We demonstrated that Rps3 is stoichiometrically modified by ω-monomethylation at arginine-146 by mass spectrometric and site-directed mutagenic analyses. Substitution of alanine for arginine at position 146 is associated with slow cell growth, suggesting that the amino acid identity at this site may influence ribosomal function and/or biogenesis. Analysis of the three-dimensional structure of Rps3 in S. cerevisiae shows that arginine-146 makes contacts with the small subunit rRNA. Screening of deletion mutants encoding potential yeast methyltransferases revealed that the loss of the YOR021C gene results in the absence of methylation of Rps3. We demonstrated that recombinant Yor021c catalyzes ω-monomethylarginine formation when incubated with S-adenosylmethionine and hypomethylated ribosomes prepared from a YOR021C deletion strain. Interestingly, Yor021c belongs to the family of SPOUT methyltransferases that, to date, have only been shown to modify RNA substrates. Our findings suggest a wider role for SPOUT methyltransferases in nature. Finally, we have demonstrated the presence of a stoichiometrically methylated cysteine residue at position 39 of Rps27a in a zinc-cysteine cluster. The discovery of these three novel sites of protein modification within the small ribosomal subunit will now allow for an analysis of their functional roles in translation and possibly other cellular processes.
Collapse
Affiliation(s)
- Brian D Young
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
72
|
Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol Cell Biol 2012; 32:2254-67. [PMID: 22493060 DOI: 10.1128/mcb.06623-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional and posttranslational modification of macromolecules is known to fine-tune their functions. Trm112 is unique, acting as an activator of both tRNA and protein methyltransferases. Here we report that in Saccharomyces cerevisiae, Trm112 is required for efficient ribosome synthesis and progression through mitosis. Trm112 copurifies with pre-rRNAs and with multiple ribosome synthesis trans-acting factors, including the 18S rRNA methyltransferase Bud23. Consistent with the known mechanisms of activation of methyltransferases by Trm112, we found that Trm112 interacts directly with Bud23 in vitro and that it is required for its stability in vivo. Consequently, trm112Δ cells are deficient for Bud23-mediated 18S rRNA methylation at position G1575 and for small ribosome subunit formation. Bud23 failure to bind nascent preribosomes activates a nucleolar surveillance pathway involving the TRAMP complexes, leading to preribosome degradation. Trm112 is thus active in rRNA, tRNA, and translation factor modification, ideally placing it at the interface between ribosome synthesis and function.
Collapse
|
73
|
Koc EC, Koc H. Regulation of mammalian mitochondrial translation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1055-66. [PMID: 22480953 DOI: 10.1016/j.bbagrm.2012.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/24/2012] [Accepted: 03/16/2012] [Indexed: 11/29/2022]
Abstract
Mitochondria are responsible for the production of over 90% of the energy in eukaryotes through oxidative phosphorylation performed by electron transfer and ATP synthase complexes. Mitochondrial translation machinery is responsible for the synthesis of 13 essential proteins of these complexes encoded by the mitochondrial genome. Emerging data suggest that acetyl-CoA, NAD(+), and ATP are involved in regulation of this machinery through post-translational modifications of its protein components. Recent high-throughput proteomics analyses and mapping studies have provided further evidence for phosphorylation and acetylation of ribosomal proteins and translation factors. Here, we will review our current knowledge related to these modifications and their possible role(s) in the regulation of mitochondrial protein synthesis using the homology between mitochondrial and bacterial translation machineries. However, we have yet to determine the effects of phosphorylation and acetylation of translation components in mammalian mitochondrial biogenesis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV 25755, USA.
| | | |
Collapse
|
74
|
Erce MA, Pang CNI, Hart-Smith G, Wilkins MR. The methylproteome and the intracellular methylation network. Proteomics 2012; 12:564-86. [DOI: 10.1002/pmic.201100397] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
|
75
|
Graille M, Figaro S, Kervestin S, Buckingham RH, Liger D, Heurgué-Hamard V. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012; 94:1533-43. [PMID: 22266024 DOI: 10.1016/j.biochi.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/23/2022]
Abstract
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.
Collapse
Affiliation(s)
- Marc Graille
- IBBMC, Université Paris-Sud 11, CNRS UMR8619, Orsay Cedex, F-91405, France.
| | | | | | | | | | | |
Collapse
|
76
|
Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. EUKARYOTIC CELL 2011; 11:98-108. [PMID: 22158711 DOI: 10.1128/ec.05238-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Posttranslational modifications of proteins drive a wide variety of cellular processes in eukaryotes, regulating cell growth and division as well as adaptive and developmental processes. With regard to the fungal kingdom, most information about posttranslational modifications has been generated through studies of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, where, for example, the roles of protein phosphorylation, glycosylation, acetylation, ubiquitination, sumoylation, and neddylation have been dissected. More recently, information has begun to emerge for the medically important fungal pathogens Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, highlighting the relevance of posttranslational modifications for virulence. We review the available literature on protein modifications in fungal pathogens, focusing in particular upon the reversible peptide modifications sumoylation, ubiquitination, and neddylation.
Collapse
|
77
|
Ansong C, Tolić N, Purvine SO, Porwollik S, Jones M, Yoon H, Payne SH, Martin JL, Burnet MC, Monroe ME, Venepally P, Smith RD, Peterson SN, Heffron F, McClelland M, Adkins JN. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium. BMC Genomics 2011; 12:433. [PMID: 21867535 PMCID: PMC3174948 DOI: 10.1186/1471-2164-12-433] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022] Open
Abstract
Background Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. Results We experimentally annotated the bacterial pathogen Salmonella Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in Salmonella and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in Salmonella pathogenesis. We also characterized post-translational features in the Salmonella genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our in vivo proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function. Conclusion This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of Salmonella as a resource for systems analysis.
Collapse
Affiliation(s)
- Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough. PLoS One 2011; 6:e21470. [PMID: 21738675 PMCID: PMC3125180 DOI: 10.1371/journal.pone.0021470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/01/2011] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.
Collapse
|
79
|
Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgué-Hamard V, Graille M. Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Nucleic Acids Res 2011; 39:6249-59. [PMID: 21478168 PMCID: PMC3152332 DOI: 10.1093/nar/gkr176] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.
Collapse
Affiliation(s)
- Dominique Liger
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, IFR115, CNRS UMR 8619, Orsay Cedex F-91405, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Webb KJ, Al-Hadid Q, Zurita-Lopez CI, Young BD, Lipson RS, Clarke SG. The ribosomal l1 protuberance in yeast is methylated on a lysine residue catalyzed by a seven-beta-strand methyltransferase. J Biol Chem 2011; 286:18405-13. [PMID: 21460220 DOI: 10.1074/jbc.m110.200410] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins of the translational apparatus is common in many organisms. In the yeast Saccharomyces cerevisiae, we provide evidence for the methylation of Rpl1ab, a well conserved protein forming the ribosomal L1 protuberance of the large subunit that functions in the release of tRNA from the exit site. We show that the intact mass of Rpl1ab is 14 Da larger than its calculated mass with the previously described loss of the initiator methionine residue and N-terminal acetylation. We determined that the increase in mass of yeast Rpl1ab is consistent with the addition of a methyl group to lysine 46 using top-down mass spectrometry. Lysine modification was confirmed by detecting (3)H-N-ε-monomethyllysine in hydrolysates of Rpl1ab purified from yeast cells radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. Mass spectrometric analysis of intact Rpl1ab purified from 37 deletion strains of known and putative yeast methyltransferases revealed that only the deletion of the YLR137W gene, encoding a seven-β-strand methyltransferase, results in the loss of the +14-Da modification. We expressed the YLR137W gene as a His-tagged protein in Escherichia coli and showed that it catalyzes N-ε-monomethyllysine formation within Rpl1ab on ribosomes from the ΔYLR137W mutant strain lacking the methyltransferase activity but not from wild-type ribosomes. We also showed that the His-tagged protein could catalyze monomethyllysine formation on a 16-residue peptide corresponding to residues 38-53 of Rpl1ab. We propose that the YLR137W gene be given the standard name RKM5 (ribosomal lysine (K) methyltransferase 5). Orthologs of RKM5 are found only in fungal species, suggesting a role unique to their survival.
Collapse
Affiliation(s)
- Kristofor J Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
81
|
Strader MB, Costantino N, Elkins CA, Chen CY, Patel I, Makusky AJ, Choy JS, Court DL, Markey SP, Kowalak JA. A proteomic and transcriptomic approach reveals new insight into beta-methylthiolation of Escherichia coli ribosomal protein S12. Mol Cell Proteomics 2010; 10:M110.005199. [PMID: 21169565 DOI: 10.1074/mcp.m110.005199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-methylthiolation is a novel post-translational modification mapping to a universally conserved Asp 88 of the bacterial ribosomal protein S12. This S12 specific modification has been identified on orthologs from multiple bacterial species. The origin and functional significance was investigated with both a proteomic strategy to identify candidate S12 interactors and expression microarrays to search for phenotypes that result from targeted gene knockouts of select candidates. Utilizing an endogenous recombinant E. coli S12 protein with an affinity tag as bait, mass spectrometric analysis identified candidate S12 binding partners including RimO (previously shown to be required for this post-translational modification) and YcaO, a conserved protein of unknown function. Transcriptomic analysis of bacterial strains with deleted genes for RimO and YcaO identified an overlapping transcriptional phenotype suggesting that YcaO and RimO likely share a common function. As a follow up, quantitative mass spectrometry additionally indicated that both proteins dramatically impacted the modification status of S12. Collectively, these results indicate that the YcaO protein is involved in β-methylthiolation of S12 and its absence impairs the ability of RimO to modify S12. Additionally, the proteomic data from this study provides direct evidence that the E. coli specific β-methylthiolation likely occurs when S12 is assembled as part of a ribosomal subunit.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Sahr T, Adam T, Fizames C, Maurel C, Santoni V. O-carboxyl- and N-methyltransferases active on plant aquaporins. PLANT & CELL PHYSIOLOGY 2010; 51:2092-2104. [PMID: 21062871 DOI: 10.1093/pcp/pcq171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Methylation of biologically active molecules is achieved by methyltransferases (MTases). MTases can act on proteins through N- or O-carboxylmethylation reactions. Methylation of lysine and glutamic acid residues was recently described on the N-terminal tail of AtPIP2;1, a plasma membrane aquaporin of plants. In this study, we combine a bioinformatic and a biochemical screen and identify two MTases of Arabidopsis thaliana, SDG7 (At2g44150) and OMTF3 (At3g61990), as acting on the N-terminal tail of AtPIP2;1, at Lys3 and Glu6, respectively. Confocal microscopy imaging showed the two enzymes to be associated with the endoplasmic reticulum. An in vitro assay using various AtPIP2;1 N-terminal peptides as a bait allowed characterization of the enzymatic properties of recombinant SDG7 and OMTF3. The two enzymes showed minimal apparent K(m) values for their substrates, S-adenosylmethionine and peptide, in the range of 5-8 and 2-9 μM, respectively. SDG7 was shown to almost exclusively mono- or di-methylate Lys3. In contrast, OMTF3 specifically methylated Glu6, this methylation being dependent on the methylation profile of the neighboring Lys3 residue. In conclusion, this study allows the characterization of the first MTases able to methylate plant transmembrane proteins and provides the first identification of a glutamate-MTase in eukaryotes.
Collapse
Affiliation(s)
- Tobias Sahr
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | | | | | | | | |
Collapse
|
83
|
Egorova KS, Olenkina OM, Olenina LV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. BIOCHEMISTRY (MOSCOW) 2010; 75:535-48. [PMID: 20632931 DOI: 10.1134/s0006297910050019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to the dramatically expanding investigations of lysine methylation on nonhistone proteins and its functional importance. Posttranslational covalent modifications of proteins provide living organisms with ability to rapidly change protein activity and function in response to various stimuli. Enzymatic protein methylation at different lysine residues was evaluated in histones as a part of the "histone code". Histone methyltransferases methylate not only histones, but also many nuclear and cytoplasmic proteins. Recent data show that the regulatory role of lysine methylation on proteins is not restricted to the "histone code". This modification modulates activation, stabilization, and degradation of nonhistone proteins, thus influencing numerous cell processes. In this review we particularly focused on methylation of transcription factors and other nuclear nonhistone proteins. The methylated lysine residues serve as markers attracting nuclear "reader" proteins that possess different chromatin-modifying activities.
Collapse
Affiliation(s)
- K S Egorova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | |
Collapse
|
84
|
Webb KJ, Zurita-Lopez CI, Al-Hadid Q, Laganowsky A, Young BD, Lipson RS, Souda P, Faull KF, Whitelegge JP, Clarke SG. A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J Biol Chem 2010; 285:37598-606. [PMID: 20864530 DOI: 10.1074/jbc.m110.170787] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that Rpl3, a protein of the large ribosomal subunit from baker's yeast (Saccharomyces cerevisiae), is stoichiometrically monomethylated at position 243, producing a 3-methylhistidine residue. This conclusion is supported by top-down and bottom-up mass spectrometry of Rpl3, as well as by biochemical analysis of Rpl3 radiolabeled in vivo with S-adenosyl-l-[methyl-(3)H]methionine. The results show that a +14-Da modification occurs within the GTKKLPRKTHRGLRKVAC sequence of Rpl3. Using high-resolution cation-exchange chromatography and thin layer chromatography, we demonstrate that neither lysine nor arginine residues are methylated and that a 3-methylhistidine residue is present. Analysis of 37 deletion strains of known and putative methyltransferases revealed that only the deletion of the YIL110W gene, encoding a seven β-strand methyltransferase, results in the loss of the +14-Da modification of Rpl3. We suggest that YIL110W encodes a protein histidine methyltransferase responsible for the modification of Rpl3 and potentially other yeast proteins, and now designate it Hpm1 (Histidine protein methyltransferase 1). Deletion of the YIL110W/HPM1 gene results in numerous phenotypes including some that may result from abnormal interactions between Rpl3 and the 25 S ribosomal RNA. This is the first report of a methylated histidine residue in yeast cells, and the first example of a gene required for protein histidine methylation in nature.
Collapse
Affiliation(s)
- Kristofor J Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Lipson RS, Webb KJ, Clarke SG. Two novel methyltransferases acting upon eukaryotic elongation factor 1A in Saccharomyces cerevisiae. Arch Biochem Biophys 2010; 500:137-43. [PMID: 20510667 PMCID: PMC2904425 DOI: 10.1016/j.abb.2010.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 11/17/2022]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is an abundant cytosolic protein in Saccharomyces cerevisiae and is well conserved amongst species. This protein undergoes multiple posttranslational modifications, including the N-methylation of four side chain lysine residues. However, the enzyme(s) responsible for catalyzing these modifications have remained elusive. Here we show by intact protein mass spectrometry that deletion of either of two genes coding for putative methyltransferases results in a loss in mass of eEF1A. Deletion of the YHL039W gene, a member of the SET domain subfamily including cytochrome c and ribosomal protein lysine methyltransferases, results in an eEF1A mass loss corresponding to a single methyl group. Deletion in the YIL064W/SEE1 gene, encoding a well conserved seven beta strand methyltransferase sequence, has been shown previously to affect vesicle transport; in this work we show that deletion results in the loss of two methyl group equivalents from eEF1A. We find that deletion of thirty-five other putative and established SET domain and seven beta strand methyltransferases has no effect on the mass of eEF1A. Finally, we show that wild type extracts, but not YIL064W/SEE1 mutant extracts, can catalyze the S-adenosylmethionine-dependent in vitro methylation of hypomethylated eEF1A. We suggest that YHL039W (now designated EFM1 for elongation factor methyltransferase 1) and YIL064W/SEE1 encode distinct eEF1A methyltransferases that respectively monomethylate and dimethylate this protein at lysine residues.
Collapse
Affiliation(s)
- Rebecca S. Lipson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Kristofor J. Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
86
|
Abstract
rRNA Methyltransferases and their Role in Resistance to AntibioticsMethyltransferases (MTases), a large protein superfamily, commonly use S-adenosyl-L-methionine (SAM) as the methyl group donor. SAM-dependant MTases methylate both nucleic acids (DNA, RNA) and proteins, and thus modulate their activity, function and folding. Methylation of G1405 or A1408 nucleotides of 16S rRNA in aminoglycoside-producing microorganisms confers the resistance to their own toxic product(s). This mechanism of resistance has been considered as unique to antibiotics producers until recently. Since 2003, methylation of 16S rRNA as a mechanism of resistance is increasingly emerging in pathogenic bacteria. This represents a major threat towards the usefulness of aminoglycosides in the clinical practice. A potential solution to the problem involves the design of novel compounds that would act against new ribosomal targets. The second approach to the issue includes the development of resistance MTases' inhibitors, with the idea to prevent them from modifying the bacterial rRNA, and thus reinstate the therapeutic power of existing aminoglycosides. As the latter approach has considerable potential, it is obvious that fundamental research related to protein expression, in-depth understanding of the mechanism of action and resolving a tertiary structure of 16S rRNAs MTases are prerequisites for application in medicine.
Collapse
|
87
|
Webb KJ, Lipson RS, Al-Hadid Q, Whitelegge JP, Clarke SG. Identification of protein N-terminal methyltransferases in yeast and humans. Biochemistry 2010; 49:5225-35. [PMID: 20481588 PMCID: PMC2890028 DOI: 10.1021/bi100428x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein modification by methylation is important in cellular function. We show here that the Saccharomyces cerevisiae YBR261C/TAE1 gene encodes an N-terminal protein methyltransferase catalyzing the modification of two ribosomal protein substrates, Rpl12ab and Rps25a/Rps25b. The YBR261C/Tae1 protein is conserved across eukaryotes; all of these proteins share sequence similarity with known seven beta-strand class I methyltransferases. Wild-type yeast cytosol and mouse heart cytosol catalyze the methylation of a synthetic peptide (PPKQQLSKY) that contains the first eight amino acids of the processed N-terminus of Rps25a/Rps25b. However, no methylation of this peptide is seen in yeast cytosol from a DeltaYBR261C/tae1 deletion strain. Yeast YBR261C/TAE1 and the human orthologue METTL11A genes were expressed as fusion proteins in Escherichia coli and were shown to be capable of stoichiometrically dimethylating the N-terminus of the synthetic peptide. Furthermore, the YBR261C/Tae1 and METTL11A recombinant proteins methylate variants of the synthetic peptide containing N-terminal alanine and serine residues. However, methyltransferase activity is largely abolished when the proline residue in position 2 or the lysine residue in position 3 is substituted. Thus, the methyltransferases described here specifically recognize the N-terminal X-Pro-Lys sequence motif, and we suggest designating the yeast enzyme Ntm1 and the human enzyme NTMT1. These enzymes may account for nearly all previously described eukaryotic protein N-terminal methylation reactions. A number of other yeast and human proteins also share the recognition motif and may be similarly modified. We conclude that protein X-Pro-Lys N-terminal methylation reactions catalyzed by the enzymes described here may be widespread in nature.
Collapse
Affiliation(s)
- Kristofor J. Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Rebecca S. Lipson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Qais Al-Hadid
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Julian P. Whitelegge
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90024
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| |
Collapse
|
88
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
- corresponding author: Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023 phone: (203) 785-2475 FAX: (203) 785-2628
| |
Collapse
|
89
|
Shirai A, Sadaie M, Shinmyozu K, Nakayama JI. Methylation of ribosomal protein L42 regulates ribosomal function and stress-adapted cell growth. J Biol Chem 2010; 285:22448-60. [PMID: 20444689 DOI: 10.1074/jbc.m110.132274] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine methylation is one of the most common protein modifications. Although lysine methylation of histones has been extensively studied and linked to gene regulation, that of non-histone proteins remains incompletely understood. Here, we show a novel regulatory role of ribosomal protein methylation. Using an in vitro methyltransferase assay, we found that Schizosaccharomyces pombe Set13, a SET domain protein encoded by SPAC688.14, specifically methylates lysine 55 of ribosomal protein L42 (Rpl42). Mass spectrometric analysis revealed that endogenous Rpl42 is monomethylated at lysine 55 in wild-type S. pombe cells and that the methylation is lost in Delta set13 mutant cells. Delta set13 and Rpl42 methylation-deficient mutant S. pombe cells showed higher cycloheximide sensitivity and defects in stress-responsive growth control compared with wild type. Genetic analyses suggested that the abnormal growth phenotype was distinct from the conserved stress-responsive pathway that modulates translation initiation. Furthermore, the Rpl42 methylation-deficient mutant cells showed a reduced ability to survive after entering stationary phase. These results suggest that Rpl42 methylation plays direct roles in ribosomal function and cell proliferation control independently of the general stress-response pathway.
Collapse
Affiliation(s)
- Atsuko Shirai
- Laboratory for Chromatin Dynamics, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
90
|
Bechah Y, El Karkouri K, Mediannikov O, Leroy Q, Pelletier N, Robert C, Médigue C, Mege JL, Raoult D. Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res 2010; 20:655-63. [PMID: 20368341 PMCID: PMC2860167 DOI: 10.1101/gr.103564.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
Rickettsia prowazekii, the agent of epidemic typhus, is an obligate intracellular bacterium that is transmitted to human beings by the body louse. Several strains that differ considerably in virulence are recognized, but the genetic basis for these variations has remained unknown since the initial description of the avirulent vaccine strain nearly 70 yr ago. We use a recently developed murine model of epidemic typhus and transcriptomic, proteomic, and genetic techniques to identify the factors associated with virulence. We identified four phenotypes of R. prowazekii that differed in virulence, associated with the up-regulation of antiapoptotic genes or the interferon I pathway in the host cells. Transcriptional and proteomic analyses of R. prowazekii surface protein expression and protein methylation varied with virulence. By sequencing a virulent strain and using comparative genomics, we found hotspots of mutations in homopolymeric tracts of poly(A) and poly(T) in eight genes in an avirulent strain that split and inactivated these genes. These included recO, putative methyltransferase, and exported protein. Passage of the avirulent Madrid E strain in cells or in experimental animals was associated with a cascade of gene reactivations, beginning with recO, that restored the virulent phenotype. An area of genomic plasticity appears to determine virulence in R. prowazekii and represents an example of adaptive mutation for this pathogen.
Collapse
Affiliation(s)
- Yassina Bechah
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Khalid El Karkouri
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Oleg Mediannikov
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Quentin Leroy
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Nicolas Pelletier
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Catherine Robert
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Claudine Médigue
- Genoscope, Centre National de Séquençage, Laboratoire de Génomique Comparative, 91057 Evry cedex, France
| | - Jean-Louis Mege
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| | - Didier Raoult
- Unit for Research on Emergent and Tropical Infectious Diseases (URMITE), Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement, Faculty of Medicine, University of the Mediterranean, 13005 Marseille, France
| |
Collapse
|
91
|
Romier C, Wurtz J, Renaud J, Cavarelli J. Structural Biology of Epigenetic Targets. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627073.ch2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
92
|
Ren J, Wang Y, Liang Y, Zhang Y, Bao S, Xu Z. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem 2010; 285:12695-705. [PMID: 20159986 DOI: 10.1074/jbc.m110.103911] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.
Collapse
Affiliation(s)
- Jinqi Ren
- Institute of Genetics and Developmental Biology, The Key Laboratory of Molecular and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
93
|
Pang CNI, Gasteiger E, Wilkins MR. Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genomics 2010; 11:92. [PMID: 20137074 PMCID: PMC2830191 DOI: 10.1186/1471-2164-11-92] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background The methylation of eukaryotic proteins has been proposed to be widespread, but this has not been conclusively shown to date. In this study, we examined 36,854 previously generated peptide mass spectra from 2,607 Saccharomyces cerevisiae proteins for the presence of arginine and lysine methylation. This was done using the FindMod tool and 5 filters that took advantage of the high number of replicate analysis per protein and the presence of overlapping peptides. Results A total of 83 high-confidence lysine and arginine methylation sites were found in 66 proteins. Motif analysis revealed many methylated sites were associated with MK, RGG/RXG/RGX or WXXXR motifs. Functionally, methylated proteins were significantly enriched for protein translation, ribosomal biogenesis and assembly and organellar organisation and were predominantly found in the cytoplasm and ribosome. Intriguingly, methylated proteins were seen to have significantly longer half-life than proteins for which no methylation was found. Some 43% of methylated lysine sites were predicted to be amenable to ubiquitination, suggesting methyl-lysine might block the action of ubiquitin ligase. Conclusions This study suggests protein methylation to be quite widespread, albeit associated with specific functions. Large-scale tandem mass spectroscopy analyses will help to further confirm the modifications reported here.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
94
|
Lauber MA, Running WE, Reilly JP. B. subtilis ribosomal proteins: structural homology and post-translational modifications. J Proteome Res 2009; 8:4193-206. [PMID: 19653700 DOI: 10.1021/pr801114k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomal proteins of the model gram-positive bacterium B. subtilis 168 were extensively characterized in a proteomic study. Mass spectra of the 52 proteins expected to be constitutive components of the 70S ribosome were recorded. Peptide MS/MS analysis with an average sequence coverage of 85% supported the identification of these proteins and facilitated the unambiguous assignment of post-translational modifications, including the methylation of S7, L11, and L16 and the N-terminal acetylation of S9. In addition, the high degree of structural homology between B. subtilis and other eubacterial ribosomal proteins was demonstrated through chemical labeling with S-methylthioacetimidate. One striking difference from previous characterizations of bacterial ribosomal proteins is that dozens of protein masses were found to be in error and not easily accounted for by post-translational modifications. This, in turn, led us to discover an inordinate number of sequencing errors in the reference genome of B. subtilis 168. We have found that these errors have been corrected in a recently revised version of the genome.
Collapse
Affiliation(s)
- Matthew A Lauber
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
95
|
Lipson RS, Webb KJ, Clarke SG. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2009; 391:1658-62. [PMID: 20035717 DOI: 10.1016/j.bbrc.2009.12.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.
Collapse
Affiliation(s)
- Rebecca S Lipson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
96
|
Arragain S, Garcia-Serres R, Blondin G, Douki T, Clemancey M, Latour JM, Forouhar F, Neely H, Montelione GT, Hunt JF, Mulliez E, Fontecave M, Atta M. Post-translational modification of ribosomal proteins: structural and functional characterization of RimO from Thermotoga maritima, a radical S-adenosylmethionine methylthiotransferase. J Biol Chem 2009; 285:5792-801. [PMID: 20007320 DOI: 10.1074/jbc.m109.065516] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of ribosomal proteins are important for the accuracy of the decoding machinery. A recent in vivo study has shown that the rimO gene is involved in generation of the 3-methylthio derivative of residue Asp-89 in ribosomal protein S12 (Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 1826-1831). This reaction is formally identical to that catalyzed by MiaB on the C2 of adenosine 37 near the anticodon of several tRNAs. We present spectroscopic evidence that Thermotoga maritima RimO, like MiaB, contains two [4Fe-4S] centers, one presumably bound to three invariant cysteines in the central radical S-adenosylmethionine (AdoMet) domain and the other to three invariant cysteines in the N-terminal UPF0004 domain. We demonstrate that holo-RimO can specifically methylthiolate the aspartate residue of a 20-mer peptide derived from S12, yielding a mixture of mono- and bismethylthio derivatives. Finally, we present the 2.0 A crystal structure of the central radical AdoMet and the C-terminal TRAM (tRNA methyltransferase 2 and MiaB) domains in apo-RimO. Although the core of the open triose-phosphate isomerase (TIM) barrel of the radical AdoMet domain was conserved, RimO showed differences in domain organization compared with other radical AdoMet enzymes. The unusually acidic TRAM domain, likely to bind the basic S12 protein, is located at the distal edge of the radical AdoMet domain. The basic S12 protein substrate is likely to bind RimO through interactions with both the TRAM domain and the concave surface of the incomplete TIM barrel. These biophysical results provide a foundation for understanding the mechanism of methylthioation by radical AdoMet enzymes in the MiaB/RimO family.
Collapse
Affiliation(s)
- Simon Arragain
- Institut de Recherches en Technologie et Sciences pour le Vivant-Laboratoire de Chimie et Biologie des Métaux (iRTSV-LCBM), UMR 5249, CEA-CNRS-UJF, Commissariat à l'Energie Atomique Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Cao XJ, Dai J, Xu H, Nie S, Chang X, Hu BY, Sheng QH, Wang LS, Ning ZB, Li YX, Guo XK, Zhao GP, Zeng R. High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans. Cell Res 2009; 20:197-210. [PMID: 19918266 DOI: 10.1038/cr.2009.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira that infects humans and a wide range of animals. By combining computational prediction and high-accuracy tandem mass spectra, we revised the genome annotation of Leptospira interrogans serovar Lai, a free-living pathogenic spirochete responsible for leptospirosis, providing substantial peptide evidence for novel genes and new gene boundaries. Subsequently, we presented a high-coverage proteome analysis of protein expression and multiple posttranslational modifications (PTMs). Approximately 64.3% of the predicted L. interrogans proteins were cataloged by detecting 2 540 proteins. Meanwhile, a profile of multiple PTMs was concurrently established, containing in total 32 phosphorylated, 46 acetylated and 155 methylated proteins. The PTM systems in the serovar Lai show unique features. Unique eukaryotic-like features of L. interrogans protein modifications were demonstrated in both phosphorylation and arginine methylation. This systematic analysis provides not only comprehensive information of high-coverage protein expression and multiple modifications in prokaryotes but also a view suggesting that the evolutionarily primitive L. interrogans shares significant similarities in protein modification systems with eukaryotes.
Collapse
Affiliation(s)
- Xing-Jun Cao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci 2009; 10:736-46. [PMID: 19738625 DOI: 10.1038/nrn2703] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate brain is highly complex with millions to billions of neurons. During development, the neural plate border region gives rise to the neural crest, cranial placodes and, in anamniotes, to Rohon-Beard sensory neurons, whereas the boundary region of the midbrain and hindbrain develops organizer properties. Comparisons of developmental gene expression and neuroanatomy between vertebrates and the basal chordate amphioxus, which has only thousands of neurons and lacks a neural crest, most placodes and a midbrain-hindbrain organizer, indicate that these vertebrate features were built on a foundation already present in the ancestral chordate. Recent advances in genomics have provided insights into the elaboration of the molecular toolkit at the invertebrate-vertebrate transition that may have facilitated the evolution of these vertebrate characteristics.
Collapse
|
99
|
Abstract
The ribosome is a complex macromolecular machine responsible for protein synthesis in the cell. It consists of two subunits, each of which contains both RNA and protein components. Ribosome assembly is subject to intricate regulatory control and is aided by a multitude of assembly factors in vivo, but can also be carried out in vitro. The details of the assembly process remain unknown even in the face of atomic structures of the entire ribosome and after more than three decades of research. Some of the earliest research on ribosome assembly produced the Nomura assembly map of the small subunit, revealing a hierarchy of protein binding dependencies for the 20 proteins involved and suggesting the possibility of a single intermediate. Recent work using a combination of RNA footprinting and pulse-chase quantitative mass spectrometry paints a picture of small subunit assembly as a dynamic and varied landscape, with sequential and hierarchical RNA folding and protein binding events finally converging on complete subunits. Proteins generally lock tightly into place in a 5' to 3' direction along the ribosomal RNA, stabilizing transient RNA conformations, while RNA folding and the early stages of protein binding are initiated from multiple locations along the length of the RNA.
Collapse
Affiliation(s)
- Michael T Sykes
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
100
|
Martyniuk CJ, Alvarez S, McClung S, Villeneuve DL, Ankley GT, Denslow ND. Quantitative proteomic profiles of androgen receptor signaling in the liver of fathead minnows (Pimephales promelas). J Proteome Res 2009; 8:2186-200. [PMID: 19267455 DOI: 10.1021/pr800627n] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Androgenic chemicals are present in the environment at concentrations that impair reproductive processes in fish. The objective of this experiment was to identify proteins and cell processes mediated through androgen receptor signaling using an androgen receptor agonist (17beta-trenbolone) and antagonist (flutamide) in the liver. Female fathead minnows were exposed to nominal concentrations of either 17beta-trenbolone (0.05, 0.5, or 5 microg/L), flutamide (50, 150, or 500 microg/L), or a mixture (500 microg flutamide/L and 0.5 microg 17beta-trenbolone/L) for 48 h. The iTRAQ method was used to label peptides after protein extraction and trypsin-digestion from livers of untreated controls or from fish treated with 17beta-trenbolone (5 microg/L), flutamide (500 microg/L), or a mixture of both compounds. Forty-five proteins were differentially altered by one or more treatments (p<0.05). Many altered proteins were involved in cellular metabolism (e.g., glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate mutase), general and oxidative stress response (e.g., superoxide dismutase and heat shock proteins), and the regulation of translation (e.g., ribosomal proteins). Cellular pathway analysis identified additional signaling cascades activated or inhibited by flutamide that may not be androgen receptor mediated. We also compared changes in select proteins to changes in their mRNA levels and observed, in general, that proteins and mRNA changes did not correlate, suggesting complex regulation at the level of both the transcriptome and proteome. It is concluded that both transcriptomic and proteomic approaches offer unique and complementary insights into mechanisms of regulation. We demonstrate the utility of proteomic profiling for use on a model species with value to ecotoxicology but having limited genomic information.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|