51
|
Zhu P, Kou M, Liu C, Zhang S, Lü R, Xia Z, Yu M, Zhao A. Genome Sequencing of Ciboria shiraiana Provides Insights into the Pathogenic Mechanisms of Hypertrophy Sorosis Scleroteniosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:62-74. [PMID: 33021883 DOI: 10.1094/mpmi-07-20-0201-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ciboria shiraiana causes hypertrophy sorosis scleroteniosis in mulberry trees, resulting in huge economic losses, and exploring its pathogenic mechanism at a genomic level is important for developing new control methods. Here, genome sequencing of C. shiraiana based on PacBio RSII and Illumina HiSeq 2500 platform as well as manual gap filling was performed. Synteny analysis with Sclerotinia sclerotiorum revealed 16 putative chromosomes corresponding to 16 chromosomes of C. shiraiana. Screening of rapid-evolution genes revealed that 97 and 2.4% of genes had undergone purifying selection and positive selection, respectively. When compared with S. sclerotiorum, fewer secreted effector proteins were found in C. shiraiana. The number of genes involved in pathogenicity, including secondary metabolites, carbohydrate active enzymes, and P450s, in the C. shiraiana genome was comparable with that of other necrotrophs but higher than that of biotrophs and saprotrophs. The growth-related genes and plant cell-wall-degradation-related genes in C. shiraiana were expressed in different developmental and infection stages, and may be potential targets for prevention and control of this pathogen. These results provide new insights into C. shiraiana pathogenic mechanisms, especially host range and necrotrophy features, and lay the foundation for further study of the underlying molecular mechanisms.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
Collapse
Affiliation(s)
- Panpan Zhu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Min Kou
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Changying Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Shuai Zhang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Ruihua Lü
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- College of Medical Technology, Shanxi University of Chinese Medicine, Xianyang, Shanxi Province, China
| | - Zhongqiang Xia
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Maode Yu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| | - Aichun Zhao
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
52
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
53
|
Zhang C, Du P, Yan H, Zhu Z, Wang X, Li W. A Sec-Dependent Secretory Protein of the Huanglongbing-Associated Pathogen Suppresses Hypersensitive Cell Death in Nicotiana benthamiana. Front Microbiol 2020; 11:594669. [PMID: 33329478 PMCID: PMC7734103 DOI: 10.3389/fmicb.2020.594669] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is a phloem-restricted Gram-negative bacterium that is the causal agent of citrus huanglongbing (HLB). In this study, we identified a CLas-encoded Sec-dependent secretory protein CLIBASIA_04405 that could contribute to the pathogenicity of this bacterium. The gene expression level of CLIBASIA_04405 was significantly higher in citrus than in psyllids. Transient overexpression of the mature CLIBASIA_04405 protein (m4405) in Nicotiana benthamiana leaves could suppress hypersensitive response (HR)-based cell death and H2O2 accumulation triggered by the mouse BAX and the Phytophthora infestans INF1. An alanine-substitution mutagenesis assay revealed the essential of amino acid clusters EKR45-47 and DE64-65 in cell death suppression. Challenge inoculation of the transgenic N. benthamiana-expressing m4405 with Pseudomonas syringae DC3000ΔhopQ1-1 demonstrated the greatly reduced bacterial proliferation. Remarkably, transcriptome profiling and RT-qPCR analysis disclosed that the gene expression of six small heat shock proteins (sHSPs), a set of plant defense regulators, were significantly elevated in the transgenic m4405 lines compared with those in wild-type N. benthamiana. In addition, the transgenic m4405 lines displayed phenotypes of dwarfism and leaf deformation. Altogether, these data indicated that m4405 was a virulence factor of CLas.
Collapse
Affiliation(s)
- Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peixiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hailin Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science, Tarim University, Alar, China
| | - Zongcai Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Science, Tarim University, Alar, China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
54
|
Lin X, Song T, Fairhead S, Witek K, Jouet A, Jupe F, Witek AI, Karki HS, Vleeshouwers VGAA, Hein I, Jones JDG. Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq). MOLECULAR PLANT PATHOLOGY 2020; 21:1502-1512. [PMID: 32935441 DOI: 10.1101/2020.05.14.095158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 05/23/2023]
Abstract
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | | | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Agathe Jouet
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Florian Jupe
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | | | - Hari S Karki
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | | | - Ingo Hein
- School of Life Sciences, Division of Plant Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | | |
Collapse
|
55
|
Lin X, Song T, Fairhead S, Witek K, Jouet A, Jupe F, Witek AI, Karki HS, Vleeshouwers VGAA, Hein I, Jones JDG. Identification of Avramr1 from Phytophthora infestans using long read and cDNA pathogen-enrichment sequencing (PenSeq). MOLECULAR PLANT PATHOLOGY 2020; 21:1502-1512. [PMID: 32935441 PMCID: PMC7548994 DOI: 10.1111/mpp.12987] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 05/22/2023]
Abstract
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East AngliaNorwichUK
| | - Tianqiao Song
- The Sainsbury Laboratory, University of East AngliaNorwichUK
- Present address:
Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | | | - Kamil Witek
- The Sainsbury Laboratory, University of East AngliaNorwichUK
| | - Agathe Jouet
- The Sainsbury Laboratory, University of East AngliaNorwichUK
| | - Florian Jupe
- The Sainsbury Laboratory, University of East AngliaNorwichUK
- Present address:
Bayer Crop ScienceChesterfieldMissouriUSA
| | | | - Hari S. Karki
- The Sainsbury Laboratory, University of East AngliaNorwichUK
- Present address:
U.S. Department of Agriculture–Agricultural Research ServiceMadisonWisconsinUSA
| | | | - Ingo Hein
- School of Life SciencesDivision of Plant SciencesUniversity of DundeeDundeeUK
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeUK
| | | |
Collapse
|
56
|
Montenegro Alonso AP, Ali S, Song X, Linning R, Bakkeren G. UhAVR1, an HR-Triggering Avirulence Effector of Ustilago hordei, Is Secreted via the ER-Golgi Pathway, Localizes to the Cytosol of Barley Cells during in Planta-Expression, and Contributes to Virulence Early in Infection. J Fungi (Basel) 2020; 6:E178. [PMID: 32961976 PMCID: PMC7559581 DOI: 10.3390/jof6030178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
The basidiomycete Ustilago hordei causes covered smut disease of barley and oats. Virulence effectors promoting infection and supporting pathogen lifestyle have been described for this fungus. Genetically, six avirulence genes are known and one codes for UhAVR1, the only proven avirulence effector identified in smuts to date that triggers complete immunity in barley cultivars carrying resistance gene Ruh1. A prerequisite for resistance breeding is understanding the host targets and molecular function of UhAVR1. Analysis of this effector upon natural infection of barley coleoptiles using teliospores showed that UhAVR1 is expressed during the early stages of fungal infection where it leads to HR triggering in resistant cultivars or performs its virulence function in susceptible cultivars. Fungal secretion of UhAVR1 is directed by its signal peptide and occurs via the BrefeldinA-sensitive ER-Golgi pathway in cell culture away from its host. Transient in planta expression of UhAVR1 in barley and a nonhost, Nicotiana benthamiana, supports a cytosolic localization. Delivery of UhAVR1 via foxtail mosaic virus or Pseudomonas species in both barley and N. benthamiana reveals a role in suppressing components common to both plant systems of Effector- and Pattern-Triggered Immunity, including necrosis triggered by Agrobacterium-delivered cell death inducers.
Collapse
Affiliation(s)
- Ana Priscilla Montenegro Alonso
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada;
| | - Xiao Song
- Sandstone Pharmacies Glenmore Landing Calgary-Compounding, 167D, 1600–90 Ave SW Calgary, AB T2V 5A8, Canada;
| | - Rob Linning
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada;
| |
Collapse
|
57
|
Guo Y, Dupont P, Mesarich CH, Yang B, McDougal RL, Panda P, Dijkwel P, Studholme DJ, Sambles C, Win J, Wang Y, Williams NM, Bradshaw RE. Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen Phytophthora agathidicida. MOLECULAR PLANT PATHOLOGY 2020; 21:1131-1148. [PMID: 32638523 PMCID: PMC7411639 DOI: 10.1111/mpp.12967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing-based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant-pathogen interactions in gymnosperm forest trees, including kauri.
Collapse
Affiliation(s)
- Yanan Guo
- Bio‐Protection Research CentreSchool of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - Carl H. Mesarich
- Bio‐Protection Research CentreSchool of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Bo Yang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | | | - Preeti Panda
- Scion (New Zealand Forest Research Institute Ltd.)RotoruaNew Zealand
- The New Zealand Institute for Plant and Food ResearchAucklandNew Zealand
| | - Paul Dijkwel
- Bio‐Protection Research CentreSchool of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | | | - Joe Win
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Nari M. Williams
- Scion (New Zealand Forest Research Institute Ltd.)RotoruaNew Zealand
- The New Zealand Institute for Plant and Food ResearchAucklandNew Zealand
| | - Rosie E. Bradshaw
- Bio‐Protection Research CentreSchool of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
58
|
Zuluaga AP, Bidzinski P, Chanclud E, Ducasse A, Cayrol B, Gomez Selvaraj M, Ishitani M, Jauneau A, Deslandes L, Kroj T, Michel C, Szurek B, Koebnik R, Morel JB. The Rice DNA-Binding Protein ZBED Controls Stress Regulators and Maintains Disease Resistance After a Mild Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:1265. [PMID: 33013945 PMCID: PMC7461821 DOI: 10.3389/fpls.2020.01265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.
Collapse
Affiliation(s)
- A. Paola Zuluaga
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Emilie Chanclud
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Aurelie Ducasse
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Bastien Cayrol
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | | | | | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Université de Toulouse, CNRS, UPS, Plateforme Imagerie TRI-Genotoul, Castanet-Tolosan, France
| | | | - Thomas Kroj
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Corinne Michel
- BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Ralf Koebnik
- UMR Interactions Plantes-Microorganismes-Environnement (IPME), IRD-Cirad-Université Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | | |
Collapse
|
59
|
Efficient silencing gene construct for resistance to multiple common bean ( Phaseolus vulgaris L.) viruses. 3 Biotech 2020; 10:278. [PMID: 32537378 DOI: 10.1007/s13205-020-02276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
One promising strategy to engineer plants that are resistant to plant pathogens involves transforming plants with RNA silencing constructs for resistance to multiple pathogens. Garden bean is significantly damaged by bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV) and cucumber mosaic virus (CMV). In this study, we prepared constructs producing sense, antisense and hairpin RNA (hpRNA) structures to target single as well as multiple viruses. Silencing efficiency of these constructions was analyzed using Agrobacterium (GV3101) transient expression in Nicothinia bethamiana and Phaseolus vulgaris plants. The results showed significantly reduced disease symptoms and virus accumulation in N. bethamiana plants. Generally, the efficiency of the prepared constructs was hairpin, antisense and sense, respectively, and also, there was a significant difference between mono-gene and multiple-gene constructs for reducng virus accumulation and the multiple-gene constructs showed higher effectiveness. Experiments in this study showed that using Agrobacterium harboring binary constructs containing a Caenorhabditis elegans gene, Ced-9, or a plant gene, AtBag-4, anti-apoptosis gene as a mix suspension with an Agrobacterium containing pFGC-BNC.h, a plasmid containing multiple gene fragments consisting of BCMV-CP, BCMNV-HC-Pro and CMV-2b, improved the efficiency of pFGC-BNC.h transformation. We showed reduced virus accumulation in these transgenic bean plans.
Collapse
|
60
|
Wei S, Wang Y, Zhou J, Xiang S, Sun W, Peng X, Li J, Hai Y, Wang Y, Li S. The Conserved Effector UvHrip1 interacts with OsHGW, and Infection of Ustilaginoidea virens Regulates Defense- and Heading Date-Related Signaling Pathway. Int J Mol Sci 2020; 21:E3376. [PMID: 32397668 PMCID: PMC7246986 DOI: 10.3390/ijms21093376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Ustilaginoidea virens, which causes rice false smut (RFS), is one of the most detrimental rice fungal diseases and poses a severe threat to rice production and quality. Effectors in U. virens often act as a group of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of individual effectors in U. virens need to be further explored. Here, we demonstrated a small secreted hypersensitive response-inducing protein (hrip), named UvHrip1, which was highly conserved in U. virens isolates. UvHrip1 was also proven to suppress necrosis-like defense symptoms in N. benthamiana induced by the oomycete elicitor INF1. The localization of UvHrip1 was mainly in the nuclei and cytoplasm via monitoring the UvHrip1-GFP fusion protein in rice cells. Furthermore, Y2H and BiFC assay demonstrated that UvHrip1 interacted with OsHGW, which is a critical regulator in heading date and grain weight signaling pathways in rice. Expression patterns of defense- and heading date-related genes, OsPR1#051 and OsMYB21, were down-regulated over U. virens infection in rice. Collectively, our data provide a theory for gaining an insight into the molecular mechanisms underlying the UvHrip1 virulence function.
Collapse
Affiliation(s)
- Songhong Wei
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Yingling Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Jianming Zhou
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Shibo Xiang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xunwen Peng
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Jing Li
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Yingfan Hai
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Yan Wang
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| | - Shuai Li
- College of Plant Protection, Department of Plant Pathology, Shenyang Agricultural University, Shenyang 110866, China; (S.W.); (Y.W.); (J.Z.); (S.X.); (X.P.); (J.L.); (Y.H.); (Y.W.)
| |
Collapse
|
61
|
Tamborski J, Krasileva KV. Evolution of Plant NLRs: From Natural History to Precise Modifications. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:355-378. [PMID: 32092278 DOI: 10.1146/annurev-arplant-081519-035901] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nucleotide-binding leucine-rich repeat receptors (NLRs) monitor the plant intracellular environment for signs of pathogen infection. Several mechanisms of NLR-mediated immunity arose independently across multiple species. These include the functional specialization of NLRs into sensors and helpers, the independent emergence of direct and indirect recognition within NLR subfamilies, the regulation of NLRs by small RNAs, and the formation of NLR networks. Understanding the evolutionary history of NLRs can shed light on both the origin of pathogen recognition and the common constraints on the plant immune system. Attempts to engineer disease resistance have been sparse and rarely informed by evolutionary knowledge. In this review, we discuss the evolution of NLRs, give an overview of previous engineering attempts, and propose how to use evolutionary knowledge to advance future research in the generation of novel disease-recognition capabilities.
Collapse
Affiliation(s)
- Janina Tamborski
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
62
|
Gao C, Xu H, Huang J, Sun B, Zhang F, Savage Z, Duggan C, Yan T, Wu CH, Wang Y, Vleeshouwers VGAA, Kamoun S, Bozkurt TO, Dong S. Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proc Natl Acad Sci U S A 2020; 117:9613-9620. [PMID: 32284406 PMCID: PMC7196767 DOI: 10.1073/pnas.2002759117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.
Collapse
Affiliation(s)
- Chuyun Gao
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Huawei Xu
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jie Huang
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Biying Sun
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zachary Savage
- Imperial College, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Cian Duggan
- Imperial College, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Tingxiu Yan
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| | - Vivianne G A A Vleeshouwers
- Wageningen University and Research Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
| | - Tolga O Bozkurt
- Imperial College, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, 210095 Nanjing, China;
- The Sainsbury Laboratory, University of East Anglia, NR4 7UH Norwich, United Kingdom
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
63
|
Martynov VV, Chizhik VK. Genetics of Pathogen–Host Interaction by the Example of Potato Late Blight Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
64
|
Dutra D, Agrawal N, Ghareeb H, Schirawski J. Screening of Secreted Proteins of Sporisorium reilianum f. sp. z eae for Cell Death Suppression in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2020; 11:95. [PMID: 32140166 PMCID: PMC7042202 DOI: 10.3389/fpls.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 05/17/2023]
Abstract
Sporisorium reilianum f. sp. zeae (SRZ) is a biotrophic fungus causing head smut in maize. Maize infection with SRZ leads to very little cell death suggesting the presence of cell-death suppressinpg effectors. Several hundred effector proteins have been predicted based on genome annotation, genome comparison, and bioinformatic analysis. For only very few of these effectors, an involvement in virulence has been shown. In this work, we started to test a considerable subset of these predicted effector proteins for a possible function in suppressing cell death. We generated an expression library of 62 proteins of SRZ under the control of a strong constitutive plant promoter for delivery into plant cells via Agrobacterium tumefaciens-mediated transient transformation. Potential apoplastic effectors with high cysteine content were cloned with signal peptide while potential intracellular effectors were also cloned without signal peptide to ensure proper localization after expression in plant cells. After infiltration of Nicotiana benthamiana leaves, infiltration sites were evaluated for apparent signs of hypersensitive cell death in absence or presence of the elicitin INF1 of Phytophthora infestans. None of the tested candidates was able to induce cell death, and most were unable to suppress INF1-induced cell death. However, the screen revealed one predicted cytoplasmic effector (sr16441) of SRZ that was able to reliably suppress INF1-induced cell death when transiently expressed in N. benthamiana lacking its predicted secretion signal peptide. This way, we discovered a putative function for one new effector of SRZ.
Collapse
Affiliation(s)
- Deiziane Dutra
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | - Nisha Agrawal
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
- Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hassan Ghareeb
- Plant Biotechnology, National Research Centre, Cairo, Egypt
- Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller Institute of Plant Sciences, Schwann-Schleiden Research Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Jan Schirawski
- Microbial Genetics, Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
- Genetics, Matthias-Schleiden-Institute, Friedrich-Schiller-University Jena, Jena, Germany
- Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller Institute of Plant Sciences, Schwann-Schleiden Research Center, Georg-August-University Göttingen, Göttingen, Germany
- *Correspondence: Jan Schirawski,
| |
Collapse
|
65
|
Yang Q, Huai B, Lu Y, Cai K, Guo J, Zhu X, Kang Z, Guo J. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease. THE NEW PHYTOLOGIST 2020; 225:880-895. [PMID: 31529497 DOI: 10.1111/nph.16199] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/09/2019] [Indexed: 05/27/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a tremendous threat to the production of wheat worldwide. The molecular mechanisms of Pst effectors that regulate wheat immunity are poorly understood. In this study, we identified an effector Pst18363 from Pst that suppresses plant cell death in Nicotiana benthamiana and in wheat. Knocking down Pst18363 expression by virus-mediated host-induced gene silencing significantly decreased the number of rust pustules, indicating that Pst18363 functions as an important pathogenicity factor in Pst. Pst18363 was proven to interact with wheat Nudix hydrolase 23 TaNUDX23. In wheat, silencing of TaNUDX23 by virus-induced gene silencing increased reactive oxygen species (ROS) accumulation induced by the avirulent Pst race CYR23, whereas overexpression of TaNUDX23 suppressed ROS accumulation induced by flg22 in Arabidopsis. In addition, TaNUDX23 suppressed Pst candidate effector Pst322-trigged cell death by decreasing ROS accumulation in N. benthamiana. Knocking down of TaNUDX23 expression attenuated Pst infection, indicating that TaNUDX23 is a negative regulator of defence. In N. benthamiana, Pst18363 stabilises TaNUDX23. Overall, our data suggest that Pst18363 stabilises TaNUDX23, which suppresses ROS accumulation to facilitate Pst infection.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuxi Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kunyan Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
66
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
67
|
Elnahal ASM, Li J, Wang X, Zhou C, Wen G, Wang J, Lindqvist-Kreuze H, Meng Y, Shan W. Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato. FRONTIERS IN PLANT SCIENCE 2020; 11:919. [PMID: 32636869 PMCID: PMC7318898 DOI: 10.3389/fpls.2020.00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.
Collapse
Affiliation(s)
- Ahmed S. M. Elnahal
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenyao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guohong Wen
- Institute of Potato Research, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Wang
- Institute of Biotechnology, Qinghai Academy of Agricultural Sciences, Xining, China
| | | | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Weixing Shan,
| |
Collapse
|
68
|
Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, Duggan C, Moratto E, Bozkurt TO, Maqbool A, Win J, Kamoun S. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 2019; 8:e49956. [PMID: 31774397 PMCID: PMC6944444 DOI: 10.7554/elife.49956] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.
Collapse
Affiliation(s)
- Hiroaki Adachi
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Mauricio P Contreras
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Adeline Harant
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Chih-hang Wu
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Lida Derevnina
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Toshiyuki Sakai
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Cian Duggan
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Eleonora Moratto
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Tolga O Bozkurt
- Department of Life SciencesImperial College LondonLondonUnited Kingdom
| | - Abbas Maqbool
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Joe Win
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
69
|
Zhang C, Wang X, Liu X, Fan Y, Zhang Y, Zhou X, Li W. A Novel ' Candidatus Liberibacter asiaticus'-Encoded Sec-Dependent Secretory Protein Suppresses Programmed Cell Death in Nicotiana benthamiana. Int J Mol Sci 2019; 20:E5802. [PMID: 31752214 PMCID: PMC6888338 DOI: 10.3390/ijms20225802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/28/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is one of the causal agents of citrus Huanglongbing (HLB), a bacterial disease of citrus trees that greatly reduces fruit yield and quality. CLas strains produce an array of currently uncharacterized Sec-dependent secretory proteins. In this study, the conserved chromosomally encoded protein CLIBASIA_03875 was identified as a novel Sec-dependent secreted protein. We show that CLIBASIA_03875 contains a putative Sec- secretion signal peptide (SP), a 29 amino acid residue located at the N-terminus, with a mature protein (m3875) of 22 amino acids found to localize in multiple subcellular components of the leaf epidermal cells of Nicotiana benthamiana. When overexpressed via a Potato virus X (PVX)-based expression vector in N. benthamiana, m3875 suppressed programmed cell death (PCD) and the H2O2 accumulation triggered by the pro-apoptotic mouse protein BAX and the Phytophthora infestans elicitin INF1. Overexpression also resulted in a phenotype of dwarfing, leaf deformation and mosaics, suggesting that m3875 has roles in plant immune response, growth, and development. Substitution mutagenesis of the charged amino acid (D7, R9, R11, and K22) with alanine within m3875 did not recover the phenotypes for PCD and normal growth. In addition, the transiently overexpressed m3875 regulated the transcriptional levels of N. benthamiana orthologs of CNGCs (cyclic nucleotide-gated channels), BI-1 (Bax-inhibitor 1), and WRKY33 that are involved in plant defense mechanisms. To our knowledge, m3875 is the first PCD suppressor identified from CLas. Studying the function of this protein provides insight as to how CLas attenuates the host immune responses to proliferate and cause Huanglongbing disease in citrus plants.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (Y.F.); (Y.Z.)
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing 400712, China;
| | - Xuelu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (Y.F.); (Y.Z.)
- Citrus Research Institute, Southwest University, Chongqing 400712, China;
| | - Yanyan Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (Y.F.); (Y.Z.)
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (Y.F.); (Y.Z.)
| | - Xueping Zhou
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China;
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (Y.F.); (Y.Z.)
| |
Collapse
|
70
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
71
|
Li T, Wang Q, Feng R, Li L, Ding L, Fan G, Li W, Du Y, Zhang M, Huang G, Schäfer P, Meng Y, Tyler BM, Shan W. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. THE NEW PHYTOLOGIST 2019. [PMID: 31436314 DOI: 10.1111/nph.16139] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruirui Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Licai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meixiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
72
|
Chen XR, Zhang Y, Li HY, Zhang ZH, Sheng GL, Li YP, Xing YP, Huang SX, Tao H, Kuan T, Zhai Y, Ma W. The RXLR Effector PcAvh1 Is Required for Full Virulence of Phytophthora capsici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:986-1000. [PMID: 30811314 DOI: 10.1094/mpmi-09-18-0251-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Ye Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hai-Yang Li
- 3College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zi-Hui Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Gui-Lin Sheng
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yan-Peng Li
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yu-Ping Xing
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Shen-Xin Huang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hang Tao
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tung Kuan
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Yi Zhai
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
73
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
74
|
Combier M, Evangelisti E, Piron MC, Rengel D, Legrand L, Shenhav L, Bouchez O, Schornack S, Mestre P. A secreted WY-domain-containing protein present in European isolates of the oomycete Plasmopara viticola induces cell death in grapevine and tobacco species. PLoS One 2019; 14:e0220184. [PMID: 31356604 PMCID: PMC6663016 DOI: 10.1371/journal.pone.0220184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Plasmopara viticola is a biotrophic oomycete pathogen causing grapevine downy mildew. We characterized the repertoire of P. viticola effector proteins which may be translocated into plants to support the disease. We found several secreted proteins that contain canonical dEER motifs and conserved WY-domains but lack the characteristic RXLR motif reported previously from oomycete effectors. We cloned four candidates and showed that one of them, Pv33, induces plant cell death in grapevine and Nicotiana species. This activity is dependent on the nuclear localization of the protein. Sequence similar effectors were present in seven European, but in none of the tested American isolates. Together our work contributes a new type of conserved P. viticola effector candidates.
Collapse
Affiliation(s)
- Maud Combier
- SVQV, Université de Strasbourg, INRA, Colmar, France
| | - Edouard Evangelisti
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - David Rengel
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Liron Shenhav
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | | | - Sebastian Schornack
- University of Cambridge, Sainsbury Laboratory (SLCU), Cambridge, United Kingdom
| | - Pere Mestre
- SVQV, Université de Strasbourg, INRA, Colmar, France
| |
Collapse
|
75
|
He Y, Karre S, Johal GS, Christensen SA, Balint-Kurti P. A maize polygalacturonase functions as a suppressor of programmed cell death in plants. BMC PLANT BIOLOGY 2019; 19:310. [PMID: 31307401 PMCID: PMC6628502 DOI: 10.1186/s12870-019-1897-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/19/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The hypersensitive defense response (HR) in plants is a fast, localized necrotic response around the point of pathogen ingress. HR is usually triggered by a pathogen recognition event mediated by a nucleotide-binding site, leucine-rich repeat (NLR) protein. The autoactive maize NLR gene Rp1-D21 confers a spontaneous HR response in the absence of pathogen recognition. Previous work identified a set of loci associated with variation in the strength of Rp1-D21-induced HR. A polygalacturonase gene homolog, here termed ZmPGH1, was identified as a possible causal gene at one of these loci on chromosome 7. RESULTS Expression of ZmPGH1 inhibited the HR-inducing activity of both Rp1-D21 and that of another autoactive NLR, RPM1(D505V), in a Nicotiana benthamiana transient expression assay system. Overexpression of ZmPGH1 in a transposon insertion line of maize was associated with suppression of chemically-induced programmed cell death and with suppression of HR induced by Rp1-D21 in maize plants grown in the field. CONCLUSIONS ZmPGH1 functions as a suppressor of programmed cell death induced by at least two autoactive NLR proteins and by two chemical inducers. These findings deepen our understanding of the control of the HR in plants.
Collapse
Affiliation(s)
- Yijian He
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
| | - Shailesh Karre
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
| | - Gurmukh S. Johal
- Botany and Plant Pathology, Purdue University, West Lafayette, USA
| | - Shawn A. Christensen
- Chemistry Research Unit, Center for Medical, Agricultural, and Veterinary Entomology, Department of Agriculture–Agricultural Research Service (USDA–ARS), Gainesville, FL 32608 USA
| | - Peter Balint-Kurti
- Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7616 USA
- Plant Science Research Unit, USDA-ARS, NC State University, Raleigh, NC 27695-7616 USA
| |
Collapse
|
76
|
Yin X, Shang B, Dou M, Liu R, Chen T, Xiang G, Li Y, Liu G, Xu Y. The Nuclear-Localized RxLR Effector PvAvh74 From Plasmopara viticola Induces Cell Death and Immunity Responses in Nicotiana benthamiana. Front Microbiol 2019; 10:1531. [PMID: 31354650 PMCID: PMC6636413 DOI: 10.3389/fmicb.2019.01531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Downy mildew is one of the most serious diseases of grapevine (Vitis spp). The causal agent of grapevine downy mildew, Plasmopara viticola, is an obligate biotrophic oomycete. Although oomycete pathogens such as P. viticola are known to secrete RxLR effectors to manipulate host immunity, there have been few studies of the associated mechanisms by which these may act. Here, we show that a candidate P. viticola RxLR effector, PvAvh74, induces cell death in Nicotiana benthamiana leaves. Using agroinfiltration, we found that nuclear localization, two putative N-glycosylation sites, and 427 amino acids of the PvAvh74 carboxyl terminus were necessary for cell-death-inducing activity. Using virus-induced gene silencing (VIGS), we found that PvAvh74-induced cell death in N. benthamiana requires EDS1, NDR1, SGT1, RAR1, and HSP90, but not BAK1. The MAPK cascade components MEK2, WIPK, and SIPK were also involved in PvAvh74-induced cell death in N. benthamiana. Transient expression of PvAvh74 could suppress Phytophthora capsici colonization of N. benthamiana, which suggests that PvAvh74 elicits plant immune responses. Suppression of P. capsici colonization also was dependent on nuclear localization of PvAvh74. Additionally, PvAvh74-triggered cell death could be suppressed by another effector, PvAvh8, from the same isolate. This work provides a framework to further investigate the interactions of PvAvh74 and other RxLR effectors with host immunity.
Collapse
Affiliation(s)
- Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yanzhuo Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
77
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
78
|
He Y, Kim SB, Balint-Kurti P. A maize cytochrome b-c1 complex subunit protein ZmQCR7 controls variation in the hypersensitive response. PLANTA 2019; 249:1477-1485. [PMID: 30694389 DOI: 10.1007/s00425-019-03092-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
The gene GRMZM2G318346 which encodes a cytochrome b-c1 complex subunit 7 is associated with variation in strength of the hypersensitive response in maize. We previously identified a QTL at 3,545,354 bp (B73 reference genome V2) on maize chromosome 5 associated with variation in the hypersensitive response (HR) conferred by the autoactive R-gene Rp1-D21 (Olukolu et al. in PLoS Genet 10:e1004562 2014). In this study, we show that a gene at this locus, GRMZM2G318346 which encodes a cytochrome b-c1 complex subunit seven (ZmQCR7), an important part of the mitochondrial electron transport chain, can suppress HR mediated by Rp1-D21 in a transient expression assay. ZmQCR7 alleles from two maize lines, W22 and B73 differ for the encoded proteins at just two sites, amino acid 27 (threonine and alanine in B73 and W22, respectively) and amino acid 109 (asparagine and serine), however, the B73 allele is much more effective at suppressing HR. We show that variation at amino acid 27 controlled this variation in HR-suppressing effects. We furthermore demonstrate that the B73 allele of ZmQCR7 can suppress HR induced by RPM1(D505 V), another autoactive R-gene, and that Arabidopsis homologs of ZmQCR7 can also suppress NLR-induced HR. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Yijian He
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
| | - Saet-Byul Kim
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, 27695-7616, USA.
- Plant Science Research Unit, USDA-ARS, NC State University, Raleigh, NC, 27695-7616, USA.
| |
Collapse
|
79
|
Fang A, Gao H, Zhang N, Zheng X, Qiu S, Li Y, Zhou S, Cui F, Sun W. A Novel Effector Gene SCRE2 Contributes to Full Virulence of Ustilaginoidea virens to Rice. Front Microbiol 2019; 10:845. [PMID: 31105658 PMCID: PMC6492501 DOI: 10.3389/fmicb.2019.00845] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Ustilaginoidea virens, the causal agent of rice false smut (RFS), has become one of the most devastating rice pathogens worldwide. As a group of essential virulence factors, the effectors in the filamentous fungus might play central roles in the interaction between plants and pathogens. However, little is known about the roles of individual effectors in U. virens virulence. In this study, we identified and characterized a small secreted cysteine-rich effector, SCRE2, in U. virens. SCRE2 was first confirmed as an effector through yeast secretion, protein localization and translocation assays, as well as its expression pattern during U. virens infection. Transient expression of SCRE2 in Nicotiana benthamiana suppressed necrosis-like defense symptoms triggered by the mammalian BAX and oomycete elicitin INF1 proteins. The ability of SCRE2 to inhibit immunity-associated responses in N. benthamiana, including elicitor-triggered cell death and oxidative burst, is further defined to a small peptide region SCRE268-85 through expressing a series of truncated proteins. Convincingly, ectopic expression of SCRE2 in the transgenic rice cells significantly inhibited pathogen-associated molecular pattern-triggered immunity including flg22- and chitin-induced defense gene expression and oxidative burst. Furthermore, the scre2 knockout mutant generated by the CRISPR/Cas9 system greatly attenuated in U. virens virulence to rice. Collectively, this study indicates that the effector SCRE2 is able to inhibit plant immunity and is required for full virulence of U. virens.
Collapse
Affiliation(s)
- Anfei Fang
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China.,College of Plant Protection, Southwest University, Chongqing, China
| | - Han Gao
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Nan Zhang
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinhang Zheng
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shanshan Qiu
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuejiao Li
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuang Zhou
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fuhao Cui
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wenxian Sun
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Plant Protection, China Agricultural University, Beijing, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
80
|
Huang G, Liu Z, Gu B, Zhao H, Jia J, Fan G, Meng Y, Du Y, Shan W. An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. MOLECULAR PLANT PATHOLOGY 2019; 20:356-371. [PMID: 30320960 PMCID: PMC6637884 DOI: 10.1111/mpp.12760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RXLR effectors encoded by Phytophthora species play a central role in pathogen-plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.
Collapse
Affiliation(s)
- Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Zhirou Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Biao Gu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Institute of Plant and Food Science, Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- College of AgronomyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
81
|
Hassing B, Winter D, Becker Y, Mesarich CH, Eaton CJ, Scott B. Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne. PLoS One 2019; 14:e0209463. [PMID: 30759164 PMCID: PMC6374014 DOI: 10.1371/journal.pone.0209463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022] Open
Abstract
Epichloë festucae is an endophyte of the agriculturally important perennial ryegrass. This species systemically colonises the aerial tissues of this host where its growth is tightly regulated thereby maintaining a mutualistic symbiotic interaction. Recent studies have suggested that small secreted proteins, termed effectors, play a vital role in the suppression of host defence responses. To date only a few effectors with important roles in mutualistic interactions have been described. Here we make use of the fully assembled E. festucae genome and EffectorP to generate a suite of 141 effector candidates. These were analysed with respect to their genome location and expression profiles in planta and in several symbiosis-defective mutants. We found an association between effector candidates and a class of transposable elements known as MITEs, but no correlation with other dynamic features of the E. festucae genome, such as transposable element-rich regions. Three effector candidates and a small GPI-anchored protein were chosen for functional analysis based on their high expression in planta compared to in culture and their differential regulation in symbiosis defective E. festucae mutants. All three candidate effector proteins were shown to possess a functional signal peptide and two could be detected in the extracellular medium by western blotting. Localization of the effector candidates in planta suggests that they are not translocated into the plant cell, but rather, are localized in the apoplastic space or are attached to the cell wall. Deletion and overexpression of the effector candidates, as well as the putative GPI-anchored protein, did not affect the plant growth phenotype or restrict growth of E. festucae mutants in planta. These results indicate that these proteins are either not required for the interaction at the observed life stages or that there is redundancy between effectors expressed by E. festucae.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Küehn-Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Carl H. Mesarich
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Carla J. Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
82
|
Thilliez GJA, Armstrong MR, Lim T, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. THE NEW PHYTOLOGIST 2019; 221:1634-1648. [PMID: 30288743 PMCID: PMC6492278 DOI: 10.1111/nph.15441] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
The oomycete pathogens Phytophthora infestans and P. capsici cause significant crop losses world-wide, threatening food security. In each case, pathogenicity factors, called RXLR effectors, contribute to virulence. Some RXLRs are perceived by resistance proteins to trigger host immunity, but our understanding of the demographic processes and adaptive evolution of pathogen virulence remains poor. Here, we describe PenSeq, a highly efficient enrichment sequencing approach for genes encoding pathogenicity determinants which, as shown for the infamous potato blight pathogen Phytophthora infestans, make up < 1% of the entire genome. PenSeq facilitates the characterization of allelic diversity in pathogen effectors, enabling evolutionary and population genomic analyses of Phytophthora species. Furthermore, PenSeq enables the massively parallel identification of presence/absence variations and sequence polymorphisms in key pathogen genes, which is a prerequisite for the efficient deployment of host resistance genes. PenSeq represents a cost-effective alternative to whole-genome sequencing and addresses crucial limitations of current plant pathogen population studies, which are often based on selectively neutral markers and consequently have limited utility in the analysis of adaptive evolution. The approach can be adapted to diverse microbes and pathogens.
Collapse
Affiliation(s)
- Gaetan J. A. Thilliez
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Miles R. Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Tze‐Yin Lim
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Agathe Jouet
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7GJUK
| | - Ben Ward
- The Earlham InstituteNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - Edgar Huitema
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|
83
|
Pecrix Y, Buendia L, Penouilh‐Suzette C, Maréchaux M, Legrand L, Bouchez O, Rengel D, Gouzy J, Cottret L, Vear F, Godiard L. Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved effectors of the oomycete Plasmopara halstedii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:730-748. [PMID: 30422341 PMCID: PMC6849628 DOI: 10.1111/tpj.14157] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/20/2023]
Abstract
Over the last 40 years, new sunflower downy mildew isolates (Plasmopara halstedii) have overcome major gene resistances in sunflower, requiring the identification of additional and possibly more durable broad-spectrum resistances. Here, 354 RXLR effectors defined in silico from our new genomic data were classified in a network of 40 connected components sharing conserved protein domains. Among 205 RXLR effector genes encoding conserved proteins in 17 P. halstedii pathotypes of varying virulence, we selected 30 effectors that were expressed during plant infection as potentially essential genes to target broad-spectrum resistance in sunflower. The transient expression of the 30 core effectors in sunflower and in Nicotiana benthamiana leaves revealed a wide diversity of targeted subcellular compartments, including organelles not so far shown to be targeted by oomycete effectors such as chloroplasts and processing bodies. More than half of the 30 core effectors were able to suppress pattern-triggered immunity in N. benthamiana, and five of these induced hypersensitive responses (HR) in sunflower broad-spectrum resistant lines. HR triggered by PhRXLRC01 co-segregated with Pl22 resistance in F3 populations and both traits localized in 1.7 Mb on chromosome 13 of the sunflower genome. Pl22 resistance was physically mapped on the sunflower genome recently sequenced, unlike all the other downy mildew resistances published so far. PhRXLRC01 and Pl22 are proposed as an avirulence/resistance gene couple not previously described in sunflower. Core effector recognition is a successful strategy to accelerate broad-spectrum resistance gene identification in complex crop genomes such as sunflower.
Collapse
Affiliation(s)
- Yann Pecrix
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Luis Buendia
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Charlotte Penouilh‐Suzette
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Maude Maréchaux
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Ludovic Legrand
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Olivier Bouchez
- GeT‐PlaGeUS INRA 1426INRA AuzevilleF‐31326Castanet‐Tolosan CedexFrance
| | - David Rengel
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Jérôme Gouzy
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | - Ludovic Cottret
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| | | | - Laurence Godiard
- LIPM Laboratoire des Interactions Plantes‐MicroorganismesUniversité de ToulouseINRACNRSF‐31326Castanet‐TolosanFrance
| |
Collapse
|
84
|
Irieda H, Inoue Y, Mori M, Yamada K, Oshikawa Y, Saitoh H, Uemura A, Terauchi R, Kitakura S, Kosaka A, Singkaravanit-Ogawa S, Takano Y. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc Natl Acad Sci U S A 2019; 116:496-505. [PMID: 30584105 PMCID: PMC6329965 DOI: 10.1073/pnas.1807297116] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plant pathogens have optimized their own effector sets to adapt to their hosts. However, certain effectors, regarded as core effectors, are conserved among various pathogens, and may therefore play an important and common role in pathogen virulence. We report here that the widely distributed fungal effector NIS1 targets host immune components that transmit signaling from pattern recognition receptors (PRRs) in plants. NIS1 from two Colletotrichum spp. suppressed the hypersensitive response and oxidative burst, both of which are induced by pathogen-derived molecules, in Nicotiana benthamianaMagnaporthe oryzae NIS1 also suppressed the two defense responses, although this pathogen likely acquired the NIS1 gene via horizontal transfer from Basidiomycota. Interestingly, the root endophyte Colletotrichum tofieldiae also possesses a NIS1 homolog that can suppress the oxidative burst in N. benthamiana We show that NIS1 of multiple pathogens commonly interacts with the PRR-associated kinases BAK1 and BIK1, thereby inhibiting their kinase activities and the BIK1-NADPH oxidase interaction. Furthermore, mutations in the NIS1-targeting proteins, i.e., BAK1 and BIK1, in Arabidopsis thaliana also resulted in reduced immunity to Colletotrichum fungi. Finally, M. oryzae lacking NIS1 displayed significantly reduced virulence on rice and barley, its hosts. Our study therefore reveals that a broad range of filamentous fungi maintain and utilize the core effector NIS1 to establish infection in their host plants and perhaps also beneficial interactions, by targeting conserved and central PRR-associated kinases that are also known to be targeted by bacterial effectors.
Collapse
Affiliation(s)
- Hiroki Irieda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano 399-4598, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Kohji Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Yuu Oshikawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan
| | - Hiromasa Saitoh
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Iwate Biotechnology Research Center, Iwate 024-0003, Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center, Iwate 024-0003, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Iwate Biotechnology Research Center, Iwate 024-0003, Japan
| | - Saeko Kitakura
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ayumi Kosaka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
85
|
Huang J, Chen L, Lu X, Peng Q, Zhang Y, Yang J, Zhang BY, Yang B, Waletich JR, Yin W, Zheng X, Wang Y, Dong S. Natural allelic variations provide insights into host adaptation of Phytophthora avirulence effector PsAvr3c. THE NEW PHYTOLOGIST 2019; 221:1010-1022. [PMID: 30169906 DOI: 10.1111/nph.15414] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Filamentous pathogens, such as fungi and oomycetes, secrete avirulence (AVR) effectors that trigger plant immune responses and provide striking examples of host adaptations. Avr effector genes display different types of allelic variations, including deletions, epigenetic silencing and sequence polymorphisms, to avoid detection. However, how effector sequence polymorphisms enable pathogens to dodge host immune surveillance remains largely unknown. PsAvr3c is a Phytophthora AVR gene that is recognized by soybean carrying Rps3c. PsAvr3c natural alleles display a rich diversity of single nucleotide polymorphisms in field isolates. We combined both site-directed mutagenesis and population sequence surveys to identify a serine substitution of glycine at position 174 in PsAvr3c that resulted in evasion of Rps3c-mediated soybean immunity. The S174G substitution did not affect the nuclear localization of PsAvr3c in planta, which is required to activate Rps3c, but it significantly impaired the binding affinity of PsAvr3c with a previously identified spliceosome-associated protein GmSKRPs. Silencing GmSKRPs specifically impaired PsAvr3c-triggered cell death in Rps3c soybean. This study uncovered a plant Phytophthora pathogen that adapted to a resistant plant through a key amino acid mutation and subsequently reduced the binding affinity with a plant immune regulator to evade host resistance.
Collapse
Affiliation(s)
- Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ling Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bai Yu Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Justin Reed Waletich
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixiao Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
86
|
Wang S, McLellan H, Bukharova T, He Q, Murphy F, Shi J, Sun S, van Weymers P, Ren Y, Thilliez G, Wang H, Chen X, Engelhardt S, Vleeshouwers V, Gilroy EM, Whisson SC, Hein I, Wang X, Tian Z, Birch PRJ, Boevink PC. Phytophthora infestans RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:343-356. [PMID: 30329083 PMCID: PMC6305197 DOI: 10.1093/jxb/ery360] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/10/2018] [Indexed: 05/23/2023]
Abstract
Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Hazel McLellan
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Tatyana Bukharova
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Qin He
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Fraser Murphy
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
| | - Jiayang Shi
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Shaohui Sun
- Heilongjiang Bayi Agricultural University, Daqing, China
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Pauline van Weymers
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Yajuan Ren
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaetan Thilliez
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Haixia Wang
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xinwei Chen
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stefan Engelhardt
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Eleanor M Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Stephen C Whisson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Ingo Hein
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Xiaodan Wang
- Virus-free Seedling Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Paul R J Birch
- Division of Plant Science, University of Dundee at James Hutton Institute, Invergowrie, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
87
|
Naveed ZA, Bibi S, Ali GS. The Phytophthora RXLR Effector Avrblb2 Modulates Plant Immunity by Interfering With Ca 2+ Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2019; 10:374. [PMID: 30984224 PMCID: PMC6447682 DOI: 10.3389/fpls.2019.00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 05/03/2023]
Abstract
In plants, subcellular fluctuations in Ca2+ ion concentration are among the earliest responses to biotic and abiotic stresses. Calmodulin, which is a ubiquitous Ca2+ ion sensor in eukaryotes, plays a major role in translating these Ca2+ signatures to cellular responses by interacting with numerous proteins located in plasma membranes, cytoplasm, organelles and nuclei. In this report, we show that one of the Phytophthora RXLR effector, Avrblb2, interacts with calmodulin at the plasma membrane of the plant cells. Using deletion and single amino acid mutagenesis, we found that calmodulin binds to the effector domain of Avrblb2. In addition, we show that most known homologs of Avrblb2 in three different Phytophthora species interact with different isoforms of calmodulin. Type of amino acids at position 69 in Avrblb2, which determines Rbi-blb2 resistance protein-mediated defense responses, is not involved in the Avrblb2-calmodulin interaction. Using in planta functional analyses, we show that calmodulin binding to Avrblb2 is required for its recognition by Rpi-blb2 to incite hypersensitive response. These findings suggest that Avrblb2 by interacting with calmodulin interfere with plant defense associated Ca2+ signaling in plants.
Collapse
|
88
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
89
|
Xurui T, Yaxu Y, Qiangqiang L, Yu M, Bin Z, Xueming B. Mechanisms of Creativity Differences Between Art and Non-art Majors: A Voxel-Based Morphometry Study. Front Psychol 2018; 9:2319. [PMID: 30618898 PMCID: PMC6301215 DOI: 10.3389/fpsyg.2018.02319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Creativity is considered the ability to generate new ideas or behaviors, an ability that have diverse expressions in different human groups, such as painters and non-painters. Art major students require more creative activities than non-art students do. In this study, we plan to explore the figural creativity abilities of art major students and whether these students exhibited higher figural creativity scores and why their brain structure of gray matter are lower which may benefit from their professional training relative to non-art majors. Therefore, in this study, we use voxel-based morphometry (VBM) to identify different behavioral and brain mechanisms between art major students and non-art major students by using the figural Torrance Test of Creative Thinking. Our results showed that the TTCT-figural (TTCT-F) scores of art majors were higher than those of non-art majors. The TTCT-F score of art major students and practicing and study time have positive correlations which means art major's figural creativity score benefit from there art professional training in some degree. Subsequently, the interaction analysis revealed that the TTCT-figural scores of art majors and non-majors exhibited significant correlations with the gray matter volumes (GMV) of the left anterior cingulate cortex (ACC) and the left medial frontal gyrus (MFG). While the simple slope analysis showed that art majors, compared with non-art majors, exhibited a marginal significantly positive association with the left ACC and MFG, non-art majors exhibited a significantly negative association with the left ACC and MFG. Overall, our study revealed that people who major in artistic work are more likely to possess enhanced figural creative skills relative to non-artistic people. These results indicated that professional artistic programs or training may increase creativity skills via reorganized intercortical connections.
Collapse
Affiliation(s)
- Tan Xurui
- School of Communication of East China Normal University, Shanghai, China
| | - Yu Yaxu
- Department of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Li Qiangqiang
- College Students Psychological Counseling and Health Center, Party Committee Student Work Department, East China University of Technology, Nanchang, China
| | - Mao Yu
- Department of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China
| | - Zhou Bin
- Institute of Cultural and Creative Industry of Shanghai Jiao Tong University, Shanghai, China
| | - Bao Xueming
- School of Sports and Health of East China Normal University, Shanghai, China
| |
Collapse
|
90
|
Zhao L, Zhang X, Zhang X, Song W, Li X, Feng R, Yang C, Huang Z, Zhu C. Crystal structure of the RxLR effector PcRxLR12 from Phytophthora capsici. Biochem Biophys Res Commun 2018; 503:1830-1835. [DOI: 10.1016/j.bbrc.2018.07.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
|
91
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
92
|
Kim SB, Lee HY, Choi EH, Park E, Kim JH, Moon KB, Kim HS, Choi D. The Coiled-Coil and Leucine-Rich Repeat Domain of the Potyvirus Resistance Protein Pvr4 Has a Distinct Role in Signaling and Pathogen Recognition. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:906-913. [PMID: 29663867 DOI: 10.1094/mpmi-12-17-0313-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The pepper Pvr4 protein encoding coiled-coil (CC) nucleotide-binding (NB) leucine-rich repeat (LRR) (NLR) confer hypersensitive response (HR) to potyviruses, including Pepper mottle virus (PepMoV), by recognizing the viral avirulence protein NIb. To figure out the Pvr4-mediated HR mechanism, we analyzed signaling component genes and structure-function relationships of Pvr4, using chimeras and deletion mutants in Nicotiana benthamiana. Molecular chaperone components including HSP90, SGT1, and RAR1 were required, while plant hormones and mitogen-activated protein kinase signaling components had little effect on Pvr4-NIb-mediated HR cell death. Domain swap analyses indicated that the LRR domain of Pvr4 determines recognition of PepMoV-NIb. Our deletion analysis further revealed that the CC domain or CC-NBARC domain alone can trigger autoactive cell death in N. benthamiana. However, the fragments having only an LRR domain could suppress CC-NBARC domain-induced cell death in trans. Further, C-terminal truncation analysis of Pvr4 revealed that a minimum three of five LRR exons showing high similarity was essential for Pvr4 function. The LRR domain may maintain Pvr4 in an inactive state in the absence of NIb. These results provide further insight into the structure and function of NLR protein signaling in plants.
Collapse
Affiliation(s)
- Saet-Byul Kim
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Hye-Young Lee
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Eun-Hye Choi
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Eunsook Park
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Ji-Hyun Kim
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| | - Ki-Beom Moon
- 2 Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Hyun-Soon Kim
- 2 Plant Systems Engineering Research Center, KRIBB, Yusung, Daejeon, 34141, Republic of Korea
| | - Doil Choi
- 1 Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and
| |
Collapse
|
93
|
Zheng X, Wagener N, McLellan H, Boevink PC, Hua C, Birch PRJ, Brunner F. Phytophthora infestans RXLR effector SFI5 requires association with calmodulin for PTI/MTI suppressing activity. THE NEW PHYTOLOGIST 2018; 219:1433-1446. [PMID: 29932222 PMCID: PMC6099356 DOI: 10.1111/nph.15250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/03/2018] [Indexed: 05/04/2023]
Abstract
Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
- Center for Molecular Cell and Systems BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Nadine Wagener
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Hazel McLellan
- Division of Plant SciencesUniversity of Dundee (at James Hutton Institute)Errol RdInvergowrie, DundeeDD2 5DAUK
| | - Petra C. Boevink
- Cell and Molecular SciencesThe James Hutton InstituteErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Chenlei Hua
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of Dundee (at James Hutton Institute)Errol RdInvergowrie, DundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Frédéric Brunner
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
- PlantResponse Biotech, S.L.Centre for Plant Biotechnology and Genomics (CBGP)Campus de Montegancedo28223Pozuelo de Alarcón, MadridSpain
| |
Collapse
|
94
|
He Q, Naqvi S, McLellan H, Boevink PC, Champouret N, Hein I, Birch PRJ. Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proc Natl Acad Sci U S A 2018; 115:E7834-E7843. [PMID: 30049706 PMCID: PMC6099861 DOI: 10.1073/pnas.1808585115] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant pathogens deliver effectors into plant cells to suppress immunity. Whereas many effectors inactivate positive immune regulators, other effectors associate with negative regulators of immunity: so-called susceptibility (S) factors. Little is known about how pathogens exploit S factors to suppress immunity. Phytophthora infestans RXLR effector Pi02860 interacts with host protein NRL1, which is an S factor whose activity suppresses INF1-triggered cell death (ICD) and is required for late blight disease. We show that NRL1 interacts in yeast and in planta with a guanine nucleotide exchange factor called SWAP70. SWAP70 associates with endosomes and is a positive regulator of immunity. Virus-induced gene silencing of SWAP70 in Nicotiana benthamiana enhances P. infestans colonization and compromises ICD. In contrast, transient overexpression of SWAP70 reduces P. infestans infection and accelerates ICD. Expression of Pi02860 and NRL1, singly or in combination, results in proteasome-mediated degradation of SWAP70. Degradation of SWAP70 is prevented by silencing NRL1, or by mutation of Pi02860 to abolish its interaction with NRL1. NRL1 is a BTB-domain protein predicted to form the substrate adaptor component of a CULLIN3 ubiquitin E3 ligase. A dimerization-deficient mutant, NRL1NQ, fails to interact with SWAP70 but maintains its interaction with Pi02860. NRL1NQ acts as a dominant-negative mutant, preventing SWAP70 degradation in the presence of effector Pi02860, and reducing P. infestans infection. Critically, Pi02860 enhances the association between NRL1 and SWAP70 to promote proteasome-mediated degradation of the latter and, thus, suppress immunity. Preventing degradation of SWAP70 represents a strategy to combat late blight disease.
Collapse
Affiliation(s)
- Qin He
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Shaista Naqvi
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Hazel McLellan
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA Dundee, United Kingdom
| | | | - Ingo Hein
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Paul R J Birch
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom;
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA Dundee, United Kingdom
| |
Collapse
|
95
|
Grosse‐Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RA. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1068-1084. [PMID: 29055088 PMCID: PMC5902771 DOI: 10.1111/pbi.12852] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 05/06/2023]
Abstract
Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Svenja Blaskowski
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | | |
Collapse
|
96
|
Amaro TMMM, Thilliez GJA, Mcleod RA, Huitema E. Random mutagenesis screen shows that Phytophthora capsici CRN83_152-mediated cell death is not required for its virulence function(s). MOLECULAR PLANT PATHOLOGY 2018; 19:1114-1126. [PMID: 28779542 PMCID: PMC5947615 DOI: 10.1111/mpp.12590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
With the increasing availability of plant pathogen genomes, secreted proteins that aid infection (effectors) have emerged as key factors that help to govern plant-microbe interactions. The conserved CRN (CRinkling and Necrosis) effector family was first described in oomycetes by their capacity to induce host cell death. Despite recent advances towards the elucidation of CRN virulence functions, the relevance of CRN-induced cell death remains unclear. In planta over-expression of PcCRN83_152, a CRN effector from Phytophthora capsici, causes host cell death and boosts P. capsici virulence. We used these features to ask whether PcCRN83_152-induced cell death is linked to its virulence function. By randomly mutating this effector, we generated PcCRN83_152 variants with no cell death (NCD) phenotypes, which were subsequently tested for activity towards enhanced virulence. We showed that a subset of PcCRN83_152 NCD variants retained their ability to boost P. capsici virulence. Moreover, NCD variants were shown to have a suppressive effect on PcCRN83_152-mediated cell death. Our work shows that PcCRN83_152-induced cell death and virulence function can be separated. Moreover, if these findings hold true for other cell death-inducing CRN effectors, this work, in turn, will provide a framework for studies aimed at unveiling the virulence functions of these effectors.
Collapse
Affiliation(s)
- Tiago M. M. M. Amaro
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI), InvergowrieDundee DD2 5DAUK
- Dundee Effector Consortium, JHI, InvergowrieDundee DD2 5DAUK
| | - Gaëtan J. A. Thilliez
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI), InvergowrieDundee DD2 5DAUK
- Dundee Effector Consortium, JHI, InvergowrieDundee DD2 5DAUK
- Cell and Molecular SciencesJHI, InvergowrieDundee DD2 5DAUK
| | - Rory A. Mcleod
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI), InvergowrieDundee DD2 5DAUK
- Dundee Effector Consortium, JHI, InvergowrieDundee DD2 5DAUK
| | - Edgar Huitema
- Division of Plant Sciences, School of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI), InvergowrieDundee DD2 5DAUK
- Dundee Effector Consortium, JHI, InvergowrieDundee DD2 5DAUK
| |
Collapse
|
97
|
Liu Y, Lan X, Song S, Yin L, Dry IB, Qu J, Xiang J, Lu J. In Planta Functional Analysis and Subcellular Localization of the Oomycete Pathogen Plasmopara viticola Candidate RXLR Effector Repertoire. FRONTIERS IN PLANT SCIENCE 2018; 9:286. [PMID: 29706971 PMCID: PMC5908963 DOI: 10.3389/fpls.2018.00286] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
Downy mildew is one of the most destructive diseases of grapevine, causing tremendous economic loss in the grape and wine industry. The disease agent Plasmopara viticola is an obligate biotrophic oomycete, from which over 100 candidate RXLR effectors have been identified. In this study, 83 candidate RXLR effector genes (PvRXLRs) were cloned from the P. viticola isolate "JL-7-2" genome. The results of the yeast signal sequence trap assay indicated that most of the candidate effectors are secretory proteins. The biological activities and subcellular localizations of all the 83 effectors were analyzed via a heterologous Agrobacterium-mediated Nicotiana benthamiana expression system. Results showed that 52 effectors could completely suppress cell death triggered by elicitin, 10 effectors could partially suppress cell death, 11 effectors were unable to suppress cell death, and 10 effectors themselves triggered cell death. Live-cell imaging showed that the majority of the effectors (76 of 83) could be observed with informative fluorescence signals in plant cells, among which 34 effectors were found to be targeted to both the nucleus and cytosol, 29 effectors were specifically localized in the nucleus, and 9 effectors were targeted to plant membrane system. Interestingly, three effectors PvRXLR61, 86 and 161 were targeted to chloroplasts, and one effector PvRXLR54 was dually targeted to chloroplasts and mitochondria. However, western blot analysis suggested that only PvRXLR86 carried a cleavable N-terminal transit peptide and underwent processing in planta. Many effectors have previously been predicted to target organelles, however, to the best of our knowledge, this is the first study to provide experimental evidence of oomycete effectors targeted to chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Yunxiao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Lan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yin
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ian B. Dry
- CSIRO Agriculture & Food, Urrbrae, SA, Australia
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jiang Xiang
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
98
|
Deb D, Anderson RG, How-Yew-Kin T, Tyler BM, McDowell JM. Conserved RxLR Effectors From Oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae Suppress PAMP- and Effector-Triggered Immunity in Diverse Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:374-385. [PMID: 29106332 DOI: 10.1094/mpmi-07-17-0169-fi] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Effector proteins are exported to the interior of host cells by diverse plant pathogens. Many oomycete pathogens maintain large families of candidate effector genes, encoding proteins with a secretory leader followed by an RxLR motif. Although most of these genes are very divergent between oomycete species, several genes are conserved between Phytophthora species and Hyaloperonospora arabidopsidis, suggesting that they play important roles in pathogenicity. We describe a pair of conserved effector candidates, HaRxL23 and PsAvh73, from H. arabidopsidis and P. sojae respectively. We show that HaRxL23 is expressed early during infection of Arabidopsis. HaRxL23 triggers an ecotype-specific defense response in Arabidopsis, suggesting that it is recognized by a host surveillance protein. HaRxL23 and PsAvh73 can suppress pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) in Nicotiana benthamiana and effector-triggered immunity (ETI) in soybean. Transgenic Arabidopsis constitutively expressing HaRxL23 or PsAvh73 exhibit suppression of PTI and enhancement of bacterial and oomycete virulence. Together, our experiments demonstrate that these conserved oomycete RxLR effectors suppress PTI and ETI across diverse plant species.
Collapse
Affiliation(s)
- Devdutta Deb
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Ryan G Anderson
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Theresa How-Yew-Kin
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| | - Brett M Tyler
- 2 Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, U.S.A
| | - John M McDowell
- 1 Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061-0329, U.S.A
| |
Collapse
|
99
|
Du Y, Weide R, Zhao Z, Msimuko P, Govers F, Bouwmeester K. RXLR effector diversity in Phytophthora infestans isolates determines recognition by potato resistance proteins; the case study AVR1 and R1. Stud Mycol 2018; 89:85-93. [PMID: 29910515 PMCID: PMC6002335 DOI: 10.1016/j.simyco.2018.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Late blight disease caused by the plant pathogenic oomycete pathogen Phytophthora infestans is one of the most limiting factors in potato production. P. infestans is able to overcome introgressed late blight resistance by adaptation of effector genes. AVR1 is an RXLR effector that triggers immune responses when recognized by the potato resistance protein R1. P. infestans isolates avirulent on R1 plants were found to have AVR1 variants that are recognized by R1. Virulent isolates though, lack AVR1 but do contain a close homologue of AVR1, named A-L, of which all variants escape recognition by R1. Co-expression of AVR1 and R1 in Nicotiana benthamiana results in a hypersensitive response (HR). In contrast, HR is not activated when A-L is co-expressed with R1. AVR1 and A-L are highly similar in structure. They share two W motifs and one Y motif in the C-terminal part but differ in the T-region, a 38 amino acid extension at the carboxyl-terminal tail of AVR1 lacking in A-L. To pinpoint what determines R1-mediated recognition of AVR1 we tested elicitor activity of AVR1 and A-L chimeric and deletion constructs by co-expression with R1. The T-region is important as it enables R1-mediated recognition of A-L, not only when fused to A-L but also via trans-complementation. Yet, AVR1 lacking the T-region is still active as an elicitor of HR, but this activity is lost when certain motifs are swapped with A-L. These data show that A-L circumvents R1 recognition not only because it lacks the T-region, but also because of differences in the conserved C-terminal effector motifs.
Collapse
Affiliation(s)
- Y. Du
- College of Horticulture, Northwest A&F University, Yangling, China
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - R. Weide
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Z. Zhao
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - P. Msimuko
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - F. Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Correspondence: F. Govers
| | - K. Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
100
|
Bournaud C, Gillet FX, Murad AM, Bresso E, Albuquerque EVS, Grossi-de-Sá MF. Meloidogyne incognita PASSE-MURAILLE (MiPM) Gene Encodes a Cell-Penetrating Protein That Interacts With the CSN5 Subunit of the COP9 Signalosome. FRONTIERS IN PLANT SCIENCE 2018; 9:904. [PMID: 29997646 PMCID: PMC6029430 DOI: 10.3389/fpls.2018.00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/07/2018] [Indexed: 05/11/2023]
Abstract
The pathogenicity of phytonematodes relies on secreted virulence factors to rewire host cellular pathways for the benefits of the nematode. In the root-knot nematode (RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been identified and are expected to interact with host proteins at different developmental stages of the parasite. Identifying the host targets will provide compelling evidence about the biological significance and molecular function of the predicted proteins. Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry (AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots. We identified the complete CSN complex and other known CSN5 interaction partners in addition to unknown plant and M. incognita proteins. Among these, we described M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with MS revealed some common protein partners between CSN5 and MiPM. We further showed by in silico and microscopic analyses that the recombinant purified MiPM protein enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in the M. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating properties of some M. incognita secreted proteins might be a non-negligible mechanism for cell uptake, especially during the steps preceding the sedentary parasitic phase.
Collapse
Affiliation(s)
- Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- *Correspondence: Caroline Bournaud
| | | | - André M. Murad
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Emmanuel Bresso
- Université de Lorraine, Centre National de la Recherche Scientifique, Inria, Laboratoire Lorrain de Recherche en Informatique et ses Applications, Nancy, France
| | | | - Maria F. Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Post-Graduation Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil
- Maria F. Grossi-de-Sá
| |
Collapse
|