51
|
Villamizar-Rodríguez G, Fernández J, Marín L, Muñiz J, González I, Lombó F. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium. Front Microbiol 2015; 6:1194. [PMID: 26579100 PMCID: PMC4630290 DOI: 10.3389/fmicb.2015.01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1–4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was carried out on five types of food matrices (meat, dairy products, prepared foods, canned fish, and pastry products), which were artificially contaminated with each one of the microorganisms, demonstrating the equivalence between both methods (coincidence percentages between both methods ranged from 78 to 92%).
Collapse
Affiliation(s)
- Germán Villamizar-Rodríguez
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Laura Marín
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Juan Muñiz
- Área de Microbiología, ALCE Calidad S.L. Llanera Llanera, Spain
| | - Isabel González
- Departamento I+D+i, Industrias Lácteas Asturianas, S.A. (Reny Picot) Navia, Spain
| | - Felipe Lombó
- Research Unit "Biotechnology and Experimental Therapy Based in Nutraceuticals-BITTEN," Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
52
|
Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, Huh D. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med 2015; 29:1046-54. [PMID: 26075842 DOI: 10.3109/14767058.2015.1038518] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Studying the biology of the human placenta represents a major experimental challenge. Although conventional cell culture techniques have been used to study different types of placenta-derived cells, current in vitro models have limitations in recapitulating organ-specific structure and key physiological functions of the placenta. Here we demonstrate that it is possible to leverage microfluidic and microfabrication technologies to develop a microengineered biomimetic model that replicates the architecture and function of the placenta. MATERIALS AND METHODS A "Placenta-on-a-Chip" microdevice was created by using a set of soft elastomer-based microfabrication techniques known as soft lithography. This microsystem consisted of two polydimethylsiloxane (PDMS) microfluidic channels separated by a thin extracellular matrix (ECM) membrane. To reproduce the placental barrier in this model, human trophoblasts (JEG-3) and human umbilical vein endothelial cells (HUVECs) were seeded onto the opposite sides of the ECM membrane and cultured under dynamic flow conditions to form confluent epithelial and endothelial layers in close apposition. We tested the physiological function of the microengineered placental barrier by measuring glucose transport across the trophoblast-endothelial interface over time. The permeability of the barrier study was analyzed and compared to that obtained from acellular devices and additional control groups that contained epithelial or endothelial layers alone. RESULTS Our microfluidic cell culture system provided a tightly controlled fluidic environment conducive to the proliferation and maintenance of JEG-3 trophoblasts and HUVECs on the ECM scaffold. Prolonged culture in this model produced confluent cellular monolayers on the intervening membrane that together formed the placental barrier. This in vivo-like microarchitecture was also critical for creating a physiologically relevant effective barrier to glucose transport. Quantitative investigation of barrier function was conducted by calculating permeability coefficients and metabolic rates in varying conditions of barrier structure. The rates of glucose transport and metabolism were consistent with previously reported in vivo observations. CONCLUSION The "Placenta-on-a-Chip" microdevice described herein provides new opportunities to simulate and analyze critical physiological responses of the placental barrier. This system may be used to address the major limitations of existing placenta model systems and serve to enable research platforms for reproductive biology and medicine.
Collapse
Affiliation(s)
- Ji Soo Lee
- a Interdisciplinary Program of Bioengineering, Seoul National University Graduate School , Seoul , Republic of Korea
| | - Roberto Romero
- b Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development , NIH, Bethesda, MD and Detroit, MI , USA .,c Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA .,d Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA .,e Department of Molecular Obstetrics and Genetics , Wayne State University , Detroit , MI , USA
| | - Yu Mi Han
- f Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Gyeonggi-do , Republic of Korea
| | - Hee Chan Kim
- g Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University , Seoul , Republic of Korea .,h Department of Biomedical Engineering , Seoul National University College of Medicine , Seoul , Republic of Korea .,i Department of Biomedical Engineering , Seoul National University Hospital , Seoul , Republic of Korea
| | - Chong Jai Kim
- j Department of Pathology , Asan Medical Center, University of Ulsan College of Medicine , Seoul , Republic of Korea , and
| | - Joon-Seok Hong
- f Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Gyeonggi-do , Republic of Korea
| | - Dongeun Huh
- k Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
53
|
Genotypic characterization, invasion index and antimicrobial resistance pattern in Listeria monocytogenes strains isolated from clinical samples. JOURNAL OF ACUTE DISEASE 2015. [DOI: 10.1016/s2221-6189(15)30024-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
54
|
McMullen PD, Freitag NE. Assessing bacterial invasion of cardiac cells in culture and heart colonization in infected mice using Listeria monocytogenes. J Vis Exp 2015:e52497. [PMID: 26065439 DOI: 10.3791/52497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is capable of causing serious invasive infections in immunocompromised patients, the elderly, and pregnant women. The most common manifestations of listeriosis in humans include meningitis, encephalitis, and fetal abortion. A significant but much less documented sequelae of invasive L. monocytogenes infection involves the heart. The death rate from cardiac illness can be up to 35% despite treatment, however very little is known regarding L. monocytogenes colonization of cardiac tissue and its resultant pathologies. In addition, it has recently become apparent that subpopulations of L. monocytogenes have an enhanced capacity to invade and grow within cardiac tissue. This protocol describes in detail in vitro and in vivo methods that can be used for assessing cardiotropism of L. monocytogenes isolates. Methods are presented for the infection of H9c2 rat cardiac myoblasts in tissue culture as well as for the determination of bacterial colonization of the hearts of infected mice. These methods are useful not only for identifying strains with the potential to colonize cardiac tissue in infected animals, but may also facilitate the identification of bacterial gene products that serve to enhance cardiac cell invasion and/or drive changes in heart pathology. These methods also provide for the direct comparison of cardiotropism between multiple L. monocytogenes strains.
Collapse
Affiliation(s)
- P David McMullen
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago
| | - Nancy E Freitag
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago;
| |
Collapse
|
55
|
Almeida MT, Mesquita FS, Cruz R, Osório H, Custódio R, Brito C, Vingadassalom D, Martins M, Leong JM, Holden DW, Cabanes D, Sousa S. Src-dependent tyrosine phosphorylation of non-muscle myosin heavy chain-IIA restricts Listeria monocytogenes cellular infection. J Biol Chem 2015; 290:8383-95. [PMID: 25635050 DOI: 10.1074/jbc.m114.591313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacterial pathogens often interfere with host tyrosine phosphorylation cascades to control host responses and cause infection. Given the role of tyrosine phosphorylation events in different human infections and our previous results showing the activation of the tyrosine kinase Src upon incubation of cells with Listeria monocytogenes, we searched for novel host proteins undergoing tyrosine phosphorylation upon L. monocytogenes infection. We identify the heavy chain of the non-muscle myosin IIA (NMHC-IIA) as being phosphorylated in a specific tyrosine residue in response to L. monocytogenes infection. We characterize this novel post-translational modification event and show that, upon L. monocytogenes infection, Src phosphorylates NMHC-IIA in a previously uncharacterized tyrosine residue (Tyr-158) located in its motor domain near the ATP-binding site. In addition, we found that other intracellular and extracellular bacterial pathogens trigger NMHC-IIA tyrosine phosphorylation. We demonstrate that NMHC-IIA limits intracellular levels of L. monocytogenes, and this is dependent on the phosphorylation of Tyr-158. Our data suggest a novel mechanism of regulation of NMHC-IIA activity relying on the phosphorylation of Tyr-158 by Src.
Collapse
Affiliation(s)
- Maria Teresa Almeida
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal, the Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Francisco S Mesquita
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal, the Medical Research Council, Centre for Molecular Bacteriology and Infection, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Rui Cruz
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal, the Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Hugo Osório
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal, and
| | - Rafael Custódio
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Cláudia Brito
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal, the Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Didier Vingadassalom
- the Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Mariana Martins
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - John M Leong
- the Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - David W Holden
- the Medical Research Council, Centre for Molecular Bacteriology and Infection, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Didier Cabanes
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal,
| | - Sandra Sousa
- From the Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200 Porto, Portugal, the Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal,
| |
Collapse
|
56
|
Pouillot R, Hoelzer K, Chen Y, Dennis SB. Listeria monocytogenes dose response revisited--incorporating adjustments for variability in strain virulence and host susceptibility. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:90-108. [PMID: 24975545 DOI: 10.1111/risa.12235] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Evaluations of Listeria monocytogenes dose-response relationships are crucially important for risk assessment and risk management, but are complicated by considerable variability across population subgroups and L. monocytogenes strains. Despite difficulties associated with the collection of adequate data from outbreak investigations or sporadic cases, the limitations of currently available animal models, and the inability to conduct human volunteer studies, some of the available data now allow refinements of the well-established exponential L. monocytogenes dose response to more adequately represent extremely susceptible population subgroups and highly virulent L. monocytogenes strains. Here, a model incorporating adjustments for variability in L. monocytogenes strain virulence and host susceptibility was derived for 11 population subgroups with similar underlying comorbidities using data from multiple sources, including human surveillance and food survey data. In light of the unique inherent properties of L. monocytogenes dose response, a lognormal-Poisson dose-response model was chosen, and proved able to reconcile dose-response relationships developed based on surveillance data with outbreak data. This model was compared to a classical beta-Poisson dose-response model, which was insufficiently flexible for modeling the specific case of L. monocytogenes dose-response relationships, especially in outbreak situations. Overall, the modeling results suggest that most listeriosis cases are linked to the ingestion of food contaminated with medium to high concentrations of L. monocytogenes. While additional data are needed to refine the derived model and to better characterize and quantify the variability in L. monocytogenes strain virulence and individual host susceptibility, the framework derived here represents a promising approach to more adequately characterize the risk of listeriosis in highly susceptible population subgroups.
Collapse
|
57
|
Grubmüller S, Schauer K, Goebel W, Fuchs TM, Eisenreich W. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front Cell Infect Microbiol 2014; 4:156. [PMID: 25405102 PMCID: PMC4217532 DOI: 10.3389/fcimb.2014.00156] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Intracellular bacterial pathogens (IBPs) are dependent on various nutrients provided by the host cells. Different strategies may therefore be necessary to adapt the intracellular metabolism of IBPs to the host cells. The specific carbon sources, the catabolic pathways participating in their degradation, and the biosynthetic performances of IBPs are still poorly understood. In this report, we have exploited the technique of (13)C-isotopologue profiling to further study the carbon metabolism of Listeria monocytogenes by using the EGDe wild-type strain and mutants (defective in the uptake and/or catabolism of various carbon compounds) replicating in J774A.1 macrophages. For this goal, the infected macrophages were cultivated in the presence of [1,2-(13)C2]glucose, [U-(13)C3]glycerol, [U-(13)C3]pyruvate, [U-(13)C3]lactate, or a mix of [U-(13)C]amino acids. GC/MS-based isotopologue profiling showed efficient utilization of amino acids, glucose 6-phosphate, glycerol, and (at a low extent) also of lactate but not of pyruvate by the IBPs. Most amino acids imported from the host cells were directly used for bacterial protein biosynthesis and hardly catabolized. However, Asp was de novo synthesized by the IBPs and not imported from the host cell. As expected, glycerol was catabolized via the ATP-generating lower part of the glycolytic pathway, but apparently not used for gluconeogenesis. The intermediates generated from glucose 6-phosphate in the upper part of the glycolytic pathway and the pentose phosphate shunt likely serve primarily for anabolic purposes (probably for the biosynthesis of cell wall components and nucleotides). This bipartite bacterial metabolism which involves at least two major carbon substrates-glycerol mainly for energy supply and glucose 6-phosphate mainly for indispensible anabolic performances-may put less nutritional stress on the infected host cells, thereby extending the lifespan of the host cells to the benefit of the IBPs.
Collapse
Affiliation(s)
| | - Kristina Schauer
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München Freising, Germany
| | - Werner Goebel
- Department for Bacteriology, Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Germany
| | - Thilo M Fuchs
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München Freising, Germany
| | | |
Collapse
|
58
|
Kaval KG, Rismondo J, Halbedel S. A function of DivIVA in Listeria monocytogenes division site selection. Mol Microbiol 2014; 94:637-54. [PMID: 25185533 DOI: 10.1111/mmi.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 11/29/2022]
Abstract
The cell division protein DivIVA influences protein transport via the accessory SecA2 secretion route in Listeria monocytogenes. In contrast, DivIVA from the closely related bacterium Bacillus subtilis contributes to division site selection via the MinCDJ system. However, no classical min phenotype, i.e. filamentation and minicell production was observed with a listerial ΔdivIVA mutant. This has prompted the speculation that division site selection is DivIVA-independent in L. monocytogenes. We addressed this question with genetic, cytological and bacterial two-hybrid experiments and the data obtained correct this view. DivIVA not only binds to MinJ but also directly interacts with MinD. Experiments with fluorescently tagged proteins showed that localization of MinC and MinD was clearly DivIVA-dependent, whereas localization of MinJ was not. An impact of DivIVA on cell division was confirmed by careful comparisons of cell size distributions of divIVA and secA2 mutants. Gene deletion studies and epistasis experiments consistently reinforced these findings, and also revealed that MinJ must have a DivIVA-independent function. The frequency of minicell formation is low in L. monocytogenes min mutants. However, since listerial minicells might be useful as carriers for the introduction of therapeutic compounds into eukaryotic cells, we present a strategy how minicell frequency can be increased.
Collapse
Affiliation(s)
- Karan Gautam Kaval
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | | | | |
Collapse
|
59
|
Dose response of Listeria monocytogenes invasion, fetal morbidity, and fetal mortality after oral challenge in pregnant and nonpregnant Mongolian gerbils. Infect Immun 2014; 82:4834-41. [PMID: 25156729 DOI: 10.1128/iai.01514-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen that can result in adverse pregnancy outcomes, such as stillbirth or premature delivery. The Mongolian gerbil was recently proposed as the most appropriate small-animal model of listeriosis due to its susceptibility to the same invasion pathways as humans. The objectives of this study were to investigate invasion and adverse pregnancy outcomes in gerbils orally exposed to L. monocytogenes, to compare the dose-response data to those of other animal models, and to investigate differences in the responses of pregnant versus nonpregnant gerbils. Gerbils were orally exposed to 0 (control), 10(3), 10(5), 10(7), or 10(9) CFU L. monocytogenes in whipping cream. L. monocytogenes was recovered in a dose-dependent manner from fecal samples, adult organs, and pregnancy-associated tissues. Dams exposed to 10(9) CFU had more invaded organs and higher concentrations of L. monocytogenes in almost all organs than nonpregnant animals, though no differences in fecal shedding were seen between the two groups. Adverse pregnancy outcomes occurred only in the dams treated with 10(9) CFU. A 50% infectivity dose (ID50) of 2.60 × 10(6) CFU for fetuses was calculated by fitting the data to a logistic model. Our results suggest that the 50% lethal dose (LD50) falls within the range of 5 × 10(6) to 5 × 10(8) CFU. This range includes the guinea pig and nonhuman primate LD50s, but the observation that L. monocytogenes-induced stillbirths can be seen in guinea pigs and primates exposed to lower doses than those at which stillbirths were seen in gerbils indicates that gerbils are not more sensitive to L. monocytogenes invasion.
Collapse
|
60
|
Randall LM, Hunter CA. Parasite dissemination and the pathogenesis of toxoplasmosis. Eur J Microbiol Immunol (Bp) 2014; 1:3-9. [PMID: 24466431 DOI: 10.1556/eujmi.1.2011.1.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- L M Randall
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Hill Pavilion, 380 South University Avenue, Philadelphia, PA 19146 USA
| | - C A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania Hill Pavilion, 380 South University Avenue, Philadelphia, PA 19146 USA
| |
Collapse
|
61
|
Haghroosta A, Shakh AF, Shooshtari MM. Investigation on the seroprevalence of Listeria monocytogenes in women with spontaneous abortion. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-013-1876-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
62
|
Kim HY, Kim CJ, Han SG, Lee S, Choi KH, Yoon Y. Gastric Fluid and Heat Stress Response of Listeria monocytogenes Inoculated on Frankfurters Formulated with 10%, 20%, and 30% Fat Content. Korean J Food Sci Anim Resour 2014; 34:20-5. [PMID: 26760741 PMCID: PMC4597825 DOI: 10.5851/kosfa.2014.34.1.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/03/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022] Open
Abstract
This study evaluated the effects of frankfurter fat content on Listeria monocytogenes resistance to heat stress and gastric fluid, and the Caco-2 cell invasion efficiency of the pathogen. A 10-strain mixture of L. monocytogenes was inoculated on frankfurters formulated with 10%, 20%, and 30% fat content (10%: F10, 20%: F20, 30%: F30) and stored at 10℃ for 30 d. The samples were analyzed for L. monocytogenes resistance to heat stress and a simulated gastric fluid challenge. The total bacteria and L. monocytogenes survival rates were measured on tryptic soy agar plus 0.6% yeast extract and Palcam agar, respectively. L. monocytogenes colonies inoculated on F10, F20, and F30 samples were used for a Caco-2 cell invasion assay. In general, no obvious differences were observed between the survival rates of total bacteria and L. monocytogenes grown on different fat contents under heat stress and gastric fluid challenge. However, L. monocytogenes obtained from the F30 samples had a significantly higher Caco-2 cell invasion efficiency than those in the F10 and F20 samples (p<0.05). These results indicate that although high fat content in food may not be related to L. monocytogenes resistance to heat stress and gastric fluid, it may increase the Caco-2 cell invasion efficiency of the pathogen.
Collapse
Affiliation(s)
- Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 340-702, Korea
| | - Cheon-Jei Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 143-701, Korea
| | - Sunah Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 140-742, Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 570-749, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 140-742, Korea
| |
Collapse
|
63
|
Romain G, Tremblay S, Arena ET, Antunes LCM, Covey S, Chow MT, Finlay BB, Menendez A. Enterohepatic bacterial infections dysregulate the FGF15-FGFR4 endocrine axis. BMC Microbiol 2013; 13:238. [PMID: 24165751 PMCID: PMC3818973 DOI: 10.1186/1471-2180-13-238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/26/2013] [Indexed: 11/17/2022] Open
Abstract
Background Enterohepatic bacterial infections have the potential to affect multiple physiological processes of the body. Fibroblast growth factor 15/19 (FGF15 in mice, FGF19 in humans) is a hormone that functions as a central regulator of glucose, lipid and bile acid metabolism. FGF15/19 is produced in the intestine and exert its actions on the liver by signaling through the FGFR4-βKlotho receptor complex. Here, we examined the in vivo effects of enterohepatic bacterial infection over the FGF15 endocrine axis. Results Infection triggered significant reductions in the intestinal expression of Fgf15 and its hepatic receptor components (Fgfr4 and Klb (βKlotho)). Infection also resulted in alterations of the expression pattern of genes involved in hepatobiliary function, marked reduction in gallbladder bile volumes and accumulation of hepatic cholesterol and triglycerides. The decrease in ileal Fgf15 expression was associated with liver bacterial colonization and hepatobiliary pathophysiology rather than with direct intestinal bacterial pathogenesis. Conclusions Bacterial pathogens of the enterohepatic system can disturb the homeostasis of the FGF15/19-FGFR4 endocrine axis. These results open up a possible link between FGF15/19-FGFR4 disruptions and the metabolic and nutritional disorders observed in infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Cancer Research Pavilion, Rm Z8-1072, 3201, rue Jean-Mignault, Sherbrooke, Québec J1E 4K8, Canada.
| |
Collapse
|
64
|
Hoelzer K, Chen Y, Dennis S, Evans P, Pouillot R, Silk BJ, Walls I. New data, strategies, and insights for Listeria monocytogenes dose-response models: summary of an interagency workshop, 2011. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:1568-1581. [PMID: 23311571 DOI: 10.1111/risa.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready-to-eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose-response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose-response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose-response models. To discuss strategies for modeling L. monocytogenes dose-response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose-response. This article also discusses new insights on dose-response modeling for L. monocytogenes and research opportunities to meet future needs.
Collapse
Affiliation(s)
- K Hoelzer
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Riboswitches are ligand-binding elements located in 5' untranslated regions of messenger RNAs, which regulate expression of downstream genes. In Listeria monocytogenes, a vitamin B12-binding (B12) riboswitch was identified, not upstream of a gene but downstream, and antisense to the adjacent gene, pocR, suggesting it might regulate pocR in a nonclassical manner. In Salmonella enterica, PocR is a transcription factor that is activated by 1,2-propanediol, and subsequently activates expression of the pdu genes. The pdu genes mediate propanediol catabolism and are implicated in pathogenesis. As enzymes involved in propanediol catabolism require B12 as a cofactor, we hypothesized that the Listeria B12 riboswitch might be involved in pocR regulation. Here we demonstrate that the B12 riboswitch is transcribed as part of a noncoding antisense RNA, herein named AspocR. In the presence of B12, the riboswitch induces transcriptional termination, causing aspocR to be transcribed as a short transcript. In contrast, in the absence of B12, aspocR is transcribed as a long antisense RNA, which inhibits pocR expression. Regulation by AspocR ensures that pocR, and consequently the pdu genes, are maximally expressed only when both propanediol and B12 are present. Strikingly, AspocR can inhibit pocR expression in trans, suggesting it acts through a direct interaction with pocR mRNA. Together, this study demonstrates how pocR and the pdu genes can be regulated by B12 in bacteria and extends the classical definition of riboswitches from elements governing solely the expression of mRNAs to a wider role in controlling transcription of noncoding RNAs.
Collapse
|
66
|
Bergmann S, Beard PM, Pasche B, Lienenklaus S, Weiss S, Gahan CGM, Schughart K, Lengeling A. Influence of internalin A murinisation on host resistance to orally acquired listeriosis in mice. BMC Microbiol 2013; 13:90. [PMID: 23617550 PMCID: PMC3640945 DOI: 10.1186/1471-2180-13-90] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/15/2013] [Indexed: 12/24/2022] Open
Abstract
Background The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.
Collapse
Affiliation(s)
- Silke Bergmann
- Department of Infection Genetics, Helmholtz Centre for Infection Research & University of Veterinary Medicine Hannover, Braunschweig D-38124, Germany
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Optimized Multilocus variable-number tandem-repeat analysis assay and its complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for Listeria monocytogenes clone identification and surveillance. J Clin Microbiol 2013; 51:1868-80. [PMID: 23576539 DOI: 10.1128/jcm.00606-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Populations of the food-borne pathogen Listeria monocytogenes are genetically structured into a small number of major clonal groups, some of which have been implicated in multiple outbreaks. The goal of this study was to develop and evaluate an optimized multilocus variable number of tandem repeat (VNTR) analysis (MLVA) subtyping scheme for strain discrimination and clonal group identification. We evaluated 18 VNTR loci and combined the 11 best ones into two multiplexed PCR assays (MLVA-11). A collection of 255 isolates representing the diversity of clonal groups within phylogenetic lineages I and II, including representatives of epidemic clones, were analyzed by MLVA-11, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). MLVA-11 had less discriminatory power than PFGE, except for some clones, and was unable to distinguish some epidemiologically unrelated isolates. Yet it distinguished all major MLST clones and therefore constitutes a rapid method to identify epidemiologically relevant clonal groups. Given its high reproducibility and high throughput, MLVA represents a very attractive first-line screening method to alleviate the PFGE workload in outbreak investigations and listeriosis surveillance.
Collapse
|
68
|
The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood–cerebrospinal fluid barrier. Microbes Infect 2013; 15:291-301. [DOI: 10.1016/j.micinf.2012.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022]
|
69
|
The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. mBio 2013; 4:e00617-12. [PMID: 23512964 PMCID: PMC3604766 DOI: 10.1128/mbio.00617-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Environmental pathogens survive and replicate within the outside environment while maintaining the capacity to infect mammalian hosts. For some microorganisms, mammalian infection may be a relatively rare event. Understanding how environmental pathogens retain their ability to cause disease may provide insight into environmental reservoirs of disease and emerging infections. Listeria monocytogenes survives as a saprophyte in soil but is capable of causing serious invasive disease in susceptible individuals. The bacterium secretes virulence factors that promote cell invasion, bacterial replication, and cell-to-cell spread. Recently, an L. monocytogenes chitinase (ChiA) was shown to enhance bacterial infection in mice. Given that mammals do not synthesize chitin, the function of ChiA within infected animals was not clear. Here we have demonstrated that ChiA enhances L. monocytogenes survival in vivo through the suppression of host innate immunity. L. monocytogenes ΔchiA mutants were fully capable of establishing bacterial replication within target organs during the first 48 h of infection. By 72 to 96 h postinfection, however, numbers of ΔchiA bacteria diminished, indicative of an effective immune response to contain infection. The ΔchiA-associated virulence defect could be complemented in trans by wild-type L. monocytogenes, suggesting that secreted ChiA altered a target that resulted in a more permissive host environment for bacterial replication. ChiA secretion resulted in a dramatic decrease in inducible nitric oxide synthase (iNOS) expression, and ΔchiA mutant virulence was restored in NOS2−/− mice lacking iNOS. This work is the first to demonstrate modulation of a specific host innate immune response by a bacterial chitinase. Bacterial chitinases have traditionally been viewed as enzymes that either hydrolyze chitin as a food source or serve as a defense mechanism against organisms containing structural chitin (such as fungi). Recent evidence indicates that bacterial chitinases and chitin-binding proteins contribute to pathogenesis, primarily via bacterial adherence to chitin-like molecules present on the surface of mammalian cells. In contrast, mammalian chitinases have been linked to immunity via inflammatory immune responses that occur outside the context of infection, and since mammals do not produce chitin, the targets of these mammalian chitinases have remained elusive. This work demonstrates that a Listeria monocytogenes-secreted chitinase has distinct functional roles that include chitin hydrolysis and suppression of host innate immunity. The established link between chitinase and the inhibition of host inducible nitric oxide synthase (iNOS) expression may help clarify the thus far elusive relationship observed between mammalian chitinase enzymes and host inflammatory responses occurring in the absence of infection.
Collapse
|
70
|
Remuzgo-Martínez S, Pilares-Ortega L, Icardo JM, Valdizán EM, Vargas VI, Pazos A, Ramos-Vivas J. Microglial activation and expression of immune-related genes in a rat ex vivo nervous system model after infection with Listeria monocytogenes. Glia 2013; 61:611-22. [PMID: 23322603 DOI: 10.1002/glia.22459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 12/05/2012] [Indexed: 02/02/2023]
Abstract
A wide variety of microorganisms has previously been identified as causes of brain infection. Among them, Listeria monocytogenes has a particular tropism for the central nervous system. To gain knowledge about the immune response elicited by L. monocytogenes in the brain, we used a rat ex vivo organotypic nervous system culture as a model for Listeria infection. Scanning electron microscopy (SEM) revealed that activated microglial cells showing a typical amoeboid morphology are quickly recruited to the surface of the explants after the infection. After bacterial engulfment, these cells appear to act as Trojan horses, releasing the engulfed bacteria inside the brain tissue. We describe cycles of microglial phagocytosis, necrotic cell death and the subsequent removal of cell debris for the first time. Furthermore, we used this ex vivo model to assess the expression profiles of immune relevant genes up to 24 h postinfection by means of q-PCR-arrays, finding that a number of inflammation-promoting genes are upregulated. Shortly after infection by L. monocytogenes, upregulated genes were those that encoded molecules involved in Th1 responses, being the Ccl2 chemokine and members of the interleukin1-β family the most abundant immunomodulatory signals expressed. After 5 h of infection, L. monocytogenes caused a substantial increase in the expression of TLR1 and TLR2 genes, as well as in several downstream genes of the TLR signaling pathways.
Collapse
Affiliation(s)
- Sara Remuzgo-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IFIMAV, Santander, Cantabria, Spain
| | | | | | | | | | | | | |
Collapse
|
71
|
Kochut A, Dersch P. Bacterial invasion factors: tools for crossing biological barriers and drug delivery? Eur J Pharm Biopharm 2012. [PMID: 23207324 DOI: 10.1016/j.ejpb.2012.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The oral route is the preferential route of drug delivery in humans. However, effective delivery through the gastrointestinal tract is often hampered by the low permeability of the intestinal epithelium. One possibility to overcome this problem is the encapsulation of drugs inside nanoparticulate systems, containing targeting moieties with cell invasive properties. The bioinvasive features of the delivery system could be provided by the attachment of bacterial invasion factors, which promote efficient uptake into host cells and mediate rapid transcytosis of the pathogen through the intestinal epithelium. This review gives an overview of bacterial invasion systems. The molecular structure and function of suitable bacterial invasins, their relative values as targeting agents and possible pitfalls of their use are described. The potential of bioinvasive drug delivery systems is mainly presented on the basis of the well-characterized Yersinia invasin protein, which enters M cells to gain access to subepithelial layers of the gastrointestinal tract, but alternative approaches and future prospects for oral drug delivery are also discussed.
Collapse
Affiliation(s)
- Annika Kochut
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
72
|
Galvão NN, Chiarini E, Destro MT, de Aguiar Ferreira M, Nero LA. PFGE characterisation and adhesion ability of Listeria monocytogenes isolates obtained from bovine carcasses and beef processing facilities. Meat Sci 2012; 92:635-43. [DOI: 10.1016/j.meatsci.2012.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 06/05/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
|
73
|
Pizarro-Cerdá J, Kühbacher A, Cossart P. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2012; 2:2/11/a010009. [PMID: 23125201 DOI: 10.1101/cshperspect.a010009] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Listeria monocytogenes is a bacterial pathogen that promotes its internalization into host epithelial cells. Interaction between the bacterial surface molecules InlA and InlB and their cellular receptors E-cadherin and Met, respectively, triggers the recruitment of endocytic effectors, the subversion of the phosphoinositide metabolism, and the remodeling of the actin cytoskeleton that lead to bacterial engulfment. Additional bacterial surface and secreted virulence factors also contribute to entry, albeit to a lesser extent. Here we review the increasing number of signaling effectors that are reported as being subverted by L. monocytogenes during invasion of cultured cell lines. We also update the current knowledge of the early steps of in vivo cellular infection, which, as shown recently, challenges previous concepts generated from in vitro data.
Collapse
|
74
|
Lee JH, Yoon HJ, Lee SA, Yoon YH. Effect of NaCl on Thermal Resistance, Antibiotic Resistance, and Human Epithelial Cell Invasion of Listeria monocytogenes. Korean J Food Sci Anim Resour 2012. [DOI: 10.5851/kosfa.2012.32.5.545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
75
|
Abstract
In order to metastasize, cancer cells must first detach from the primary tumor, migrate, invade through tissues, and attach to a second site. Hakai was discovered as an E3 ubiquitin-ligase that mediates the posttranslational downregulation of E-cadherin, a major component of adherens junctions in epithelial cells that is characterized as a potent tumor suppressor and is modulated during various processes including epithelial–mesenchymal transition. Recent data have provided evidences for novel biological functional role of Hakai during tumor progression and other diseases. Here, we will review the knowledge that has been accumulated since Hakai discovery 10 years ago and its implication in human cancer disease. We will highlight the different signaling pathways leading to the influence on Hakai and suggest its potential usefulness as therapeutic target for cancer.
Collapse
|
76
|
Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One 2012; 7:e39080. [PMID: 22720036 PMCID: PMC3375250 DOI: 10.1371/journal.pone.0039080] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/16/2012] [Indexed: 01/01/2023] Open
Abstract
Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ) genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.
Collapse
|
77
|
Hoelzer K, Pouillot R, Dennis S. Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Vet Res 2012; 43:18. [PMID: 22417207 PMCID: PMC3384455 DOI: 10.1186/1297-9716-43-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/14/2012] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a leading cause of hospitalization and death due to foodborne illness in the industrialized world. Animal models have played fundamental roles in elucidating the pathophysiology and immunology of listeriosis, and will almost certainly continue to be integral components of the research on listeriosis. Data derived from animal studies helped for example characterize the importance of cell-mediated immunity in controlling infection, allowed evaluation of chemotherapeutic treatments for listeriosis, and contributed to quantitative assessments of the public health risk associated with L. monocytogenes contaminated food commodities. Nonetheless, a number of pivotal questions remain unresolved, including dose-response relationships, which represent essential components of risk assessments. Newly emerging data about species-specific differences have recently raised concern about the validity of most traditional animal models of listeriosis. However, considerable uncertainty about the best choice of animal model remains. Here we review the available data on traditional and potential new animal models to summarize currently recognized strengths and limitations of each model. This knowledge is instrumental for devising future studies and for interpreting current data. We deliberately chose a historical, comparative and cross-disciplinary approach, striving to reveal clues that may help predict the ultimate value of each animal model in spite of incomplete data.
Collapse
Affiliation(s)
- Karin Hoelzer
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20707, USA
| | - Régis Pouillot
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20707, USA
| | - Sherri Dennis
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20707, USA
| |
Collapse
|
78
|
Madarame H, Seuberlich T, Abril C, Zurbriggen A, Vandevelde M, Oevermann A. The distribution of E-cadherin expression in listeric rhombencephalitis of ruminants indicates its involvement in Listeria monocytogenes neuroinvasion. Neuropathol Appl Neurobiol 2012; 37:753-67. [PMID: 21486315 DOI: 10.1111/j.1365-2990.2011.01183.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the expression of E-cadherin, a major host cell receptor for Listeria monocytogenes (LM) internalin A, in the ruminant nervous system and its putative role in brainstem invasion and intracerebral spread of LM in the natural disease. METHODS Immunohistochemistry and double immunofluorescence was performed on brains, cranial nerves and ganglia of ruminants with and without natural LM rhombencephalitis using antibodies against E-cadherin, protein gene product 9.5, myelin-associated glycoprotein and LM. RESULTS In the ruminant brain, E-cadherin is expressed in choroid plexus epithelium, meningothelium and restricted neuropil areas of the medulla, but not in the endothelium. In cranial nerves and ganglia, E-cadherin is expressed in satellite cells and myelinating Schwann cells. Expression does not differ between ruminants with or without listeriosis and does not overlap with the presence of microabscesses in the medulla. LM is observed in phagocytes, axons, Schwann cells, satellite cells and ganglionic neurones. CONCLUSION Our results support the view that the specific ligand-receptor interaction between LM and host E-cadherin is involved in the neuropathogenesis of ruminant listeriosis. They suggest that oral epithelium and Schwann cells expressing E-cadherin provide a port of entry for free bacteria offering a site of primary intracellular replication, from where the bacterium may invade the axonal compartment by cell-to-cell spread. As E-cadherin expression in the ruminant central nervous system is weak, only very locally restricted and not related to the presence of microabscesses, it is likely that further intracerebral spread is independent of E-cadherin and relies primarily on axonal spread.
Collapse
Affiliation(s)
- H Madarame
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Asakura H, Kawamoto K, Okada Y, Kasuga F, Makino SI, Yamamoto S, Igimi S. Intrahost passage alters SigB-dependent acid resistance and host cell-associated kinetics of Listeria monocytogenes. INFECTION GENETICS AND EVOLUTION 2012; 12:94-101. [DOI: 10.1016/j.meegid.2011.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 10/15/2022]
|
80
|
Fairley RA, Pesavento PA, Clark RG. Listeria monocytogenes infection of the alimentary tract (enteric listeriosis) of sheep in New Zealand. J Comp Pathol 2011; 146:308-13. [PMID: 21925677 DOI: 10.1016/j.jcpa.2011.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/17/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
A retrospective study of the microscopical lesions of nine cases of enteric listeriosis of sheep was conducted. Lesions were present variably in the abomasum and the small and large intestines. The inflammation was multifocal to extensive, mainly neutrophilic and involved the lamina propria, muscularis mucosa and superficial submucosa, with intense focus on the muscularis mucosa. The mesenteric lymph nodes were also affected and, in some sheep, the liver. Large numbers of gram-positive rods were demonstrated within areas of inflammation in the gastrointestinal tract and mesenteric lymph nodes and Listeria spp. were identified immunohistochemically in these lesions. Ultrastructurally, bacteria were found free within the cytoplasm of myofibres of the muscularis mucosa.
Collapse
Affiliation(s)
- R A Fairley
- Gribbles Veterinary Pathology, Christchurch, New Zealand.
| | | | | |
Collapse
|
81
|
Velge P, Roche SM. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 2011; 5:1799-821. [PMID: 21155663 DOI: 10.2217/fmb.10.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
Collapse
Affiliation(s)
- Philippe Velge
- INRA de tours, UR1282, Infectiologie Animale et Santé Publique, 37380 Nouzilly, France.
| | | |
Collapse
|
82
|
Stavru F, Archambaud C, Cossart P. Cell biology and immunology of Listeria monocytogenes infections: novel insights. Immunol Rev 2011; 240:160-84. [DOI: 10.1111/j.1600-065x.2010.00993.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
83
|
Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Matteï PJ, Regnault B, Nahori MA, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 2011; 331:1319-21. [PMID: 21252314 DOI: 10.1126/science.1200120] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular pathogens such as Listeria monocytogenes subvert cellular functions through the interaction of bacterial effectors with host components. Here we found that a secreted listerial virulence factor, LntA, could target the chromatin repressor BAHD1 in the host cell nucleus to activate interferon (IFN)-stimulated genes (ISGs). IFN-λ expression was induced in response to infection of epithelial cells with bacteria lacking LntA; however, the BAHD1-chromatin associated complex repressed downstream ISGs. In contrast, in cells infected with lntA-expressing bacteria, LntA prevented BAHD1 recruitment to ISGs and stimulated their expression. Murine listeriosis decreased in BAHD1(+/-) mice or when lntA was constitutively expressed. Thus, the LntA-BAHD1 interplay may modulate IFN-λ-mediated immune response to control bacterial colonization of the host.
Collapse
Affiliation(s)
- Alice Lebreton
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Sciaranghella G, Lakhashe SK, Ayash-Rashkovsky M, Mirshahidi S, Siddappa NB, Novembre FJ, Velu V, Amara RR, Zhou C, Li S, Li Z, Frankel FR, Ruprecht RM. A live attenuated Listeria monocytogenes vaccine vector expressing SIV Gag is safe and immunogenic in macaques and can be administered repeatedly. Vaccine 2010; 29:476-86. [PMID: 21070847 DOI: 10.1016/j.vaccine.2010.10.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/23/2010] [Accepted: 10/25/2010] [Indexed: 02/05/2023]
Abstract
Listeria monocytogenes (Lm) is known to induce strong cellular immune responses. We constructed a live-attenuated Lm vector, Lmdd-BdopSIVgag, which encodes SIVmac239 gag. Intragastric (i.g.) administration of 3 × 10(12) bacteria to rhesus macaques was safe and induced anti-Gag cellular but no humoral immune responses. Boosting of Gag-specific cellular responses was observed after i.g. administration of Lmdd-BdopSIVgag to previously vaccinated RM despite preexisting anti-Lm immunity shown by lymphoproliferative responses. Surprisingly, anti-Lm cellular responses were also detected in non-vaccinated controls, which may reflect the fact that Lm is a ubiquitous bacterium. The novel, live-attenuated Lmdd-BdopSIVgag may be an attractive platform for oral vaccine delivery.
Collapse
Affiliation(s)
- Gaia Sciaranghella
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Schuppler M, Loessner MJ. The Opportunistic Pathogen Listeria monocytogenes: Pathogenicity and Interaction with the Mucosal Immune System. Int J Inflam 2010; 2010:704321. [PMID: 21188219 PMCID: PMC3003996 DOI: 10.4061/2010/704321] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen causing listeriosis, an often fatal infection leading to meningitis, sepsis, or infection of the fetus and abortion in susceptible individuals. It was recently found that the bacterium can also cause acute, self-limiting febrile gastroenteritis in healthy individuals. In the intestinal tract, L. monocytogenes penetrates the mucosa directly via enterocytes, or indirectly via invasion of Peyer's patches. Animal models for L. monocytogenes infection have provided many insights into the mechanisms of pathogenesis, and the development of new model systems has allowed the investigation of factors that influence adaptation to the gastrointestinal environment as well as adhesion to and invasion of the intestinal mucosa. The mucosal surfaces of the gastrointestinal tract are permanently exposed to an enormous antigenic load derived from the gastrointestinal microbiota present in the human bowel. The integrity of the important epithelial barrier is maintained by the mucosal immune system and its interaction with the commensal flora via pattern recognition receptors (PRRs). Here, we discuss recent advances in our understanding of the interaction of L. monocytogenes with the host immune system that triggers the antibacterial immune responses on the mucosal surfaces of the human gastrointestinal tract.
Collapse
Affiliation(s)
- Markus Schuppler
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstraße 7, 8092 Zurich, Switzerland
| | | |
Collapse
|
86
|
High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
87
|
Jiang L, Olesen I, Andersen T, Fang W, Jespersen L. Survival of Listeria monocytogenes in simulated gastrointestinal system and transcriptional profiling of stress- and adhesion-related genes. Foodborne Pathog Dis 2010; 7:267-74. [PMID: 19899961 DOI: 10.1089/fpd.2009.0361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Food ingestion is the major route of exposure to the important human pathogen Listeria monocytogenes. An in vitro gastrointestinal model was used to (1) compare the survival rates of L. monocytogenes strains of serotypes 1/2a, 1/2c, and 4b; and (2) examine the transcription of stress- and adhesion-related genes after exposure to the conditions similar to those encountered in the mouth, stomach, and small intestine. None of the L. monocytogenes strains investigated could survive in the gastric juice at pH 2.5 or 3.0. Their survival increased at higher pH (3.5 and 4.0) in the gastric stress. Relative survival of L. monocytogenes serotypes 4b and 1/2a strains were higher than that of serotype 1/2c, suggesting that pathogenicity might be related to the viability in the gastrointestinal tract. The transcription levels of prfA and the general stress-related genes clpC, clpE, and clpP were upregulated after passing through the simulated gastrointestinal tract, whereas that of the adhesion-related gene ami was downregulated. Taken together, this study revealed that L. monocytogenes strains enhanced the expression of stress-related genes and decreased the transcription of adhesion-related gene in order to survive in the diverse microenvironments.
Collapse
Affiliation(s)
- Lingli Jiang
- Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory for Preventive Veterinary Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | |
Collapse
|
88
|
Oevermann A, Zurbriggen A, Vandevelde M. Rhombencephalitis Caused by Listeria monocytogenes in Humans and Ruminants: A Zoonosis on the Rise? Interdiscip Perspect Infect Dis 2010; 2010:632513. [PMID: 20204066 PMCID: PMC2829626 DOI: 10.1155/2010/632513] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/25/2009] [Indexed: 02/05/2023] Open
Abstract
Listeriosis is an emerging zoonotic infection of humans and ruminants worldwide caused by Listeria monocytogenes (LM). In both host species, CNS disease accounts for the high mortality associated with listeriosis and includes rhombencephalitis, whose neuropathology is strikingly similar in humans and ruminants. This review discusses the current knowledge about listeric encephalitis, and involved host and bacterial factors. There is an urgent need to study the molecular mechanisms of neuropathogenesis, which are poorly understood. Such studies will provide a basis for the development of new therapeutic strategies that aim to prevent LM from invading the brain and spread within the CNS.
Collapse
Affiliation(s)
- Anna Oevermann
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Andreas Zurbriggen
- Neurocenter, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Marc Vandevelde
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
89
|
Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes. J Bacteriol 2010; 192:1774-84. [PMID: 20097852 DOI: 10.1128/jb.01132-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen L. monocytogenes is a facultatively intracellular bacterium that survives and replicates in the cytosol of many mammalian cells. The listerial metabolism, especially under intracellular conditions, is still poorly understood. Recent studies analyzed the carbon metabolism of L. monocytogenes by the (13)C isotopologue perturbation method in a defined minimal medium containing [U-(13)C(6)]glucose. It was shown that these bacteria produce oxaloacetate mainly by carboxylation of pyruvate due to an incomplete tricarboxylic acid cycle. Here, we report that a pycA insertion mutant defective in pyruvate carboxylase (PYC) still grows, albeit at a reduced rate, in brain heart infusion (BHI) medium but is unable to multiply in a defined minimal medium with glucose or glycerol as a carbon source. Aspartate and glutamate of the pycA mutant, in contrast to the wild-type strain, remain unlabeled when [U-(13)C(6)]glucose is added to BHI, indicating that the PYC-catalyzed carboxylation of pyruvate is the predominant reaction leading to oxaloacetate in L. monocytogenes. The pycA mutant is also unable to replicate in mammalian cells and exhibits high virulence attenuation in the mouse sepsis model.
Collapse
|
90
|
Culligan EP, Hill C, Sleator RD. Probiotics and gastrointestinal disease: successes, problems and future prospects. Gut Pathog 2009; 1:19. [PMID: 19930635 PMCID: PMC2789095 DOI: 10.1186/1757-4749-1-19] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/23/2009] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal disease is a major cause of morbidity and mortality worldwide each year. Treatment of chronic inflammatory gastrointestinal conditions such as ulcerative colitis and Crohn's disease is difficult due to the ambiguity surrounding their precise aetiology. Infectious gastrointestinal diseases, such as various types of diarrheal disease are also becoming increasingly difficult to treat due to the increasing dissemination of antibiotic resistance among microorganisms and the emergence of the so-called 'superbugs'. Taking into consideration these problems, the need for novel therapeutics is essential. Although described for over a century probiotics have only been extensively researched in recent years. Their use in the treatment and prevention of disease, particularly gastrointestinal disease, has yielded many successful results, some of which we outline in this review. Although promising, many probiotics are hindered by inherent physiological and technological weaknesses and often the most clinically promising strains are unusable. Consequently we discuss various strategies whereby probiotics may be engineered to create designer probiotics. Such innovative approaches include; a receptor mimicry strategy to create probiotics that target specific pathogens and toxins, a patho-biotechnology approach using pathogen-derived genes to create more robust probiotic stains with increased host and processing-associated stress tolerance profiles and meta-biotechnology, whereby, functional metagenomics may be used to identify novel genes from diverse and vastly unexplored environments, such as the human gut, for use in biotechnology and medicine.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
91
|
Disson O, Nikitas G, Grayo S, Dussurget O, Cossart P, Lecuit M. Modeling human listeriosis in natural and genetically engineered animals. Nat Protoc 2009; 4:799-810. [PMID: 19444238 DOI: 10.1038/nprot.2009.66] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Listeria monocytogenes causes listeriosis, a human foodborne infection leading to gastroenteritis, meningoencephalitis and maternofetal infections. InlA and InlB, two L. monocytogenes surface proteins, interact with their respective receptors E-cadherin and Met and mediate bacterial entry into human cultured cells. Here, we present protocols for studying listeriosis in three complementary animal models: (i) the human E-cadherin (hEcad) transgenic mouse line; (ii) the knock-in E16P mouse line; and (iii) the gerbil, in which both InlA-E-cadherin and InlB-Met species-specific interactions occur as in humans. Two routes of infection are described: oral inoculation, the natural route for infection; and intravenous inoculation that bypasses the intestinal barrier. We describe how to monitor L. monocytogenes infection, both qualitatively by imaging techniques and quantitatively by bacterial enumeration. The advantage of these methods over the classical intravenous inoculation of L. monocytogenes in wild-type mice (in which the InlA-E-cadherin interaction does not occur) is that it allows the pathophysiology of listeriosis to be studied in animal models relevant to humans, as they are permissive to the interactions that are thought to mediate L. monocytogenes crossing of human host barriers. The whole procedure (inoculation, in vivo imaging, bacterial enumeration, histopathology) takes one full week to complete, including 3 d of actual experiments.
Collapse
Affiliation(s)
- Olivier Disson
- Institut Pasteur, Microbes and Host Barriers, Paris, France
| | | | | | | | | | | |
Collapse
|
92
|
Impact of preexisting vector-specific immunity on vaccine potency: characterization of listeria monocytogenes-specific humoral and cellular immunity in humans and modeling studies using recombinant vaccines in mice. Infect Immun 2009; 77:3958-68. [PMID: 19528221 DOI: 10.1128/iai.01274-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant live-attenuated Listeria monocytogenes is currently being developed as a vaccine platform for treatment or prevention of malignant and infectious diseases. The effectiveness of complex biologic vaccines, such as recombinant viral and bacterial vectors, can be limited by either preexisting or vaccine-induced vector-specific immunity. We characterized the level of L. monocytogenes-specific cellular and humoral immunity present in more than 70 healthy adult subjects as a first step to understanding its possible impact on the efficacy of L. monocytogenes-based vaccines being evaluated in early-phase clinical trials. Significant L. monocytogenes-specific humoral immunity was not measured in humans, consistent with a lack of antibodies in mice immunized with wild-type L. monocytogenes. Cellular immune responses specific for listeriolysin O, a secreted bacterial protein required for potency of L. monocytogenes-derived vaccines, were detected in approximately 60% of human donors tested. In mice, while wild-type L. monocytogenes did not induce significant humoral immunity, attenuated L. monocytogenes vaccine strains induced high-titer L. monocytogenes-specific antibodies when given at high doses used for immunization. Passive transfer of L. monocytogenes-specific antiserum to naïve mice had no impact on priming antigen-specific immunity in mice immunized with a recombinant L. monocytogenes vaccine. In mice with preexisting L. monocytogenes-specific immunity, priming of naïve T cells was not prevented, and antigen-specific responses could be boosted by additional vaccinations. For the first time, our findings establish the level of L. monocytogenes-specific cellular immunity in healthy adults, and, together with modeling studies performed with mice, they support the scientific rationale for repeated L. monocytogenes vaccine immunization regimens to elicit a desired therapeutic effect.
Collapse
|
93
|
Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori MA, Soubigou G, Régnault B, Coppée JY, Lecuit M, Johansson J, Cossart P. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009; 459:950-6. [PMID: 19448609 DOI: 10.1038/nature08080] [Citation(s) in RCA: 672] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 04/27/2009] [Indexed: 12/12/2022]
Abstract
The bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown. Here, using tiling arrays and RNAs from wild-type and mutant bacteria grown in vitro, ex vivo and in vivo, we have analysed the transcription of its entire genome. We provide the complete Listeria operon map and have uncovered far more diverse types of RNAs than expected: in addition to 50 small RNAs (<500 nucleotides), at least two of which are involved in virulence in mice, we have identified antisense RNAs covering several open-reading frames and long overlapping 5' and 3' untranslated regions. We discovered that riboswitches can act as terminators for upstream genes. When Listeria reaches the host intestinal lumen, an extensive transcriptional reshaping occurs with a SigB-mediated activation of virulence genes. In contrast, in the blood, PrfA controls transcription of virulence genes. Remarkably, several non-coding RNAs absent in the non-pathogenic species Listeria innocua exhibit the same expression patterns as the virulence genes. Together, our data unravel successive and coordinated global transcriptional changes during infection and point to previously unknown regulatory mechanisms in bacteria.
Collapse
|
94
|
Bonazzi M, Lecuit M, Cossart P. Listeria monocytogenesinternalin and E-cadherin: from structure to pathogenesis. Cell Microbiol 2009; 11:693-702. [DOI: 10.1111/j.1462-5822.2009.01293.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
95
|
Abstract
The bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Listeria spp. are isolated from a diversity of environmental sources, including soil, water, effluents, a large variety of foods, and the feces of humans and animals. Recent outbreaks demonstrated that L. monocytogenes can cause gastroenteritis in otherwise healthy individuals and more severe invasive disease in immunocompromised patients. Common symptoms include fever, watery diarrhea, nausea, headache, and pains in joints and muscles. The intestinal tract is the major portal of entry for L. monocytogenes, whereby strains penetrate the mucosal tissue either directly, via invasion of enterocytes, or indirectly, via active penetration of the Peyer's patches. Studies have revealed the strategy taken by the bacteria to overcome changes in oxygen tension, osmolarity, acidity, and the sterilizing effects of bile or antimicrobial peptides to adapt to conditions in the gut. In addition, L. monocytogenes has evolved species-specific strategies for intestinal entry by exploiting the interaction between the internalin protein and its receptor E-cadherin, or inducing diarrhea and an inflammatory response via the activity of its hemolytic toxin, listeriolysin. The ability of these bacteria to survive in bile-rich environments, and to induce depletion of sentinel cells such as Paneth cells that monitor the luminal burden of commensal bacteria, suggest strategies that have evolved to promote intestinal survival. Preexisting gastrointestinal disease may be a risk factor for infection of the gastrointestinal tract with L. monocytogenes. Currently, there is enough evidence to warrant consideration of L. monocytogenes as a possible etiology in outbreaks of febrile gastroenteritis, and for further studies to examine the genetic structure of Listeria strains that have a propensity to cause gastrointestinal versus systemic infections.
Collapse
|
96
|
Abstract
Listeria monocytogenes infection in mice is a highly prolific model of bacterial infection. Several in vivo imaging approaches have been used to study host cell dynamics in response to infection, including bioluminescence imaging, confocal microscopy and two-photon microscopy, The application of in vivo imaging to study transgenic mouse models is providing unprecedented opportunities to test specific molecular mechanistic theories about how the host immune response unfolds. In complementary studies, in vivo imaging can be performed using genetically engineered bacterial mutants to assess the impact of specific virulence factors in host cell invasion and pathogenesis. The purpose of this chapter is to provide a general rationale for why in vivo imaging is important, provide an overview of various techniques highlighting the strengths and weaknesses of each, and provide examples of how various imaging techniques have been used to study Listeria infection. Lastly, our goal is to make the reader aware of the tremendous potential these approaches hold for studying host-pathogen interactions.
Collapse
|
97
|
Bonazzi M, Veiga E, Pizarro-Cerdá J, Cossart P. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cell Microbiol 2008; 10:2208-22. [PMID: 18624796 DOI: 10.1111/j.1462-5822.2008.01200.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Listeria monocytogenes surface proteins internalin (Inl)A and InlB interact with the junctional protein E-cadherin and the hepatocyte growth factor (HGF) receptor Met, respectively, on the surface of epithelial cells to mediate bacterial entry. Here we show that InlA triggers two successive E-cadherin post-translational modifications, i.e. the Src-mediated tyrosine phosphorylation of E-cadherin followed by its ubiquitination by the ubiquitin-ligase Hakai. E-cadherin ubiquitination induces the recruitment of clathrin that is required for optimal bacterial internalization. We also show that the initial clustering of E-cadherin at the bacterial entry site requires caveolin, a protein normally involved in clathrin-independent endocytosis. Strikingly clathrin and caveolin are also recruited at the site of entry of E-cadherin-coated sepharose beads and functional experiments demonstrate that these two proteins are required for bead entry. Together these results not only document how the endocytosis machinery is recruited and involved in the internalization of a zippering bacterium, but also strongly suggest a functional link between E-cadherin endocytosis and the formation of adherens junctions in epithelial cells.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France
| | | | | | | |
Collapse
|
98
|
Barbuddhe S, Chakraborty T. Biotechnological applications of Listeria's sophisticated infection strategies. Microb Biotechnol 2008; 1:361-72. [PMID: 21261856 PMCID: PMC3815243 DOI: 10.1111/j.1751-7915.2008.00037.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is a Gram‐positive bacterium that is able to survive both in the environment and to invade and multiply within eukaryotic cells. Currently L. monocytogenes represents one of the most well‐studied and characterized microorganisms in bacterial pathogenesis. A hallmark of L. monocytogenes virulence is its ability to breach bodily barriers such as the intestinal epithelium, the blood–brain barrier as well as the placental barrier to cause severe systemic disease. Curiously, this theme is repeated at the level of the interaction between the individual cell and the bacterium where its virulence factors contribute to the ability of the bacteria to breach cellular barriers. L. monocytogenes is a model to study metabolic requirements of bacteria growing in an intracellular environment, modulation of signalling pathways in the infected cell and interactions with cellular defences involving innate and adaptive immunity. Technical advances such as the creation of LISTERIA‐susceptible mouse strains, had added interest in the study of the natural pathogenesis of the disease via oral infection. The use of attenuated strains of L. monocytogenes as vaccines has gained considerable interest because they can be used to express heterologous antigens as well as to somatically deliver recombinant DNA to eukaryotic cells. A novel vaccine concept, the use of non‐viable but metabolically active bacteria to induced immunoprotective responses, has been developed with L. monocytogenes. In this mini‐review, we review the strategies used by L. monocytogenes to subvert the cellular functions at different stages of the infection cycle in the host and examine how these properties are being exploited in biotechnological and clinical applications.
Collapse
Affiliation(s)
- Sukhadeo Barbuddhe
- Institute for Medical Microbiology, Justus-Liebig University, Frankfurter strasse 107, D-35392 Giessen, Germany
| | | |
Collapse
|
99
|
Dussurget O. Chapter 1 New Insights into Determinants of Listeria Monocytogenes Virulence. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:1-38. [DOI: 10.1016/s1937-6448(08)01401-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
100
|
Liu D, Lawrence ML, Ainsworth AJ, Austin FW. Toward an improved laboratory definition of Listeria monocytogenes virulence. Int J Food Microbiol 2007; 118:101-15. [PMID: 17727992 DOI: 10.1016/j.ijfoodmicro.2007.07.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/07/2007] [Accepted: 07/28/2007] [Indexed: 11/23/2022]
Abstract
Listeria monocytogenes is an opportunistic foodborne pathogen that encompasses a diversity of strains with varied virulence. The ability to rapidly determine the pathogenic potential of L. monocytogenes strains is integral to the control and prevention campaign against listeriosis. Early methods for assessing L. monocytogenes virulence include in vivo bioassays and in vitro cell assays. While in vivo bioassays provide a measurement of all virulence determinants of L. monocytogenes, they are not applied routinely due to their reliance on experimental animals whose costs have become increasingly prohibitive. As a low cost alternative, in vitro cell assays are useful for estimating the virulence of L. monocytogenes strains. However, these assays are often slow, and at times variable. Prior attempts to ascertain L. monocytogenes virulence by targeting virulence-associated proteins and genes have been largely unsuccessful, since many of the assay targets are present in both virulent and avirulent strains. Recent identification of novel virulence-specific genes (particularly internalin gene inlJ) has opened a new avenue for rapid, sensitive, and precise differentiation of virulent L. monocytogenes strains from avirulent strains. The application of DNA sequencing technique also offers an additional tool for assessing L. monocytogenes virulence potential. By providing an update on the laboratory methods that have been reported for the determination of L. monocytogenes pathogenicity, this review discusses future research needs that may help achieve an improved laboratory definition of L. monocytogenes virulence.
Collapse
Affiliation(s)
- Dongyou Liu
- College of Veterinary Medicine, Mississippi State University, PO Box 6100, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|