51
|
Oelze M, Kröller-Schön S, Steven S, Lubos E, Doppler C, Hausding M, Tobias S, Brochhausen C, Li H, Torzewski M, Wenzel P, Bachschmid M, Lackner KJ, Schulz E, Münzel T, Daiber A. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 2013; 63:390-6. [PMID: 24296279 DOI: 10.1161/hypertensionaha.113.01602] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, we demonstrated that gene ablation of mitochondrial manganese superoxide dismutase and aldehyde dehydrogenase-2 markedly contributed to age-related vascular dysfunction and mitochondrial oxidative stress. The present study has sought to investigate the extent of vascular dysfunction and oxidant formation in glutathione peroxidase-1-deficient (GPx-1(-/-)) mice during the aging process with special emphasis on dysregulation (uncoupling) of the endothelial NO synthase. GPx-1(-/-) mice on a C57 black 6 (C57BL/6) background at 2, 6, and 12 months of age were used. Vascular function was significantly impaired in 12-month-old GPx-1(-/-) -mice as compared with age-matched controls. Oxidant formation, detected by 3-nitrotyrosine staining and dihydroethidine-based fluorescence microtopography, was increased in the aged GPx-1(-/-) mice. Aging per se caused a substantial protein kinase C- and protein tyrosine kinase-dependent phosphorylation as well as S-glutathionylation of endothelial NO synthase associated with uncoupling, a phenomenon that was more pronounced in aged GPx-1(-/-) mice. GPx-1 ablation increased adhesion of leukocytes to cultured endothelial cells and CD68 and F4/80 staining in cardiac tissue. Aged GPx-1(-/-) mice displayed increased oxidant formation as compared with their wild-type littermates, triggering redox-signaling pathways associated with endothelial NO synthase dysfunction and uncoupling. Thus, our data demonstrate that aging leads to decreased NO bioavailability because of endothelial NO synthase dysfunction and uncoupling of the enzyme leading to endothelial dysfunction, vascular remodeling, and promotion of adhesion and infiltration of leukocytes into cardiovascular tissue, all of which was more prominent in aged GPx-1(-/-) mice.
Collapse
Affiliation(s)
- Matthias Oelze
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, II. Medizinische Klinik, Langenbeckstr. 1, 55131 Mainz, Germany. :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ergin V, Hariry RE, Karasu C. Carbonyl stress in aging process: role of vitamins and phytochemicals as redox regulators. Aging Dis 2013; 4:276-94. [PMID: 24124633 DOI: 10.14336/ad.2013.0400276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/15/2022] Open
Abstract
There is a growing scientific agreement that the cellular redox regulators such as antioxidants, particularly the natural polyphenolic forms, may help lower the incidence of some pathologies, including metabolic diseases like diabetes and diabesity, cardiovascular and neurodegenerative abnormalities, and certain cancers or even have anti-aging properties. The recent researches indicate that the degree of metabolic modulation and adaptation response of cells to reductants as well as oxidants establish their survival and homeostasis, which is linked with very critical balance in imbalances in cellular redox capacity and signaling, and that might be an answer the questions why some antioxidants or phytochemicals potentially could do more harm than good, or why some proteins lose their function by increase interactions with glyco- and lipo-oxidation mediates in the cells (carbonyl stress). Nonetheless, pursue of healthy aging has led the use of antioxidants as a means to disrupt age-associated physiological dysfunctions, dysregulated metabolic processes or prevention of many age-related diseases. Although it is still early to define their exact clinical benefits for treating age-related disease, a diet rich in polyphenolic or other forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders. It is now clear that any deficiency in antioxidant vitamins, inadequate enzymatic antioxidant defenses can distinctive for many age-related disease, and protein carbonylation can used as an indicator of oxidative stress associated diseases and aging status. This review examines antioxidant compounds and plant polyphenols as redox regulators in health, disease and aging processes with hope that a better understanding of the many mechanisms involved with these distinct compounds, which may lead to better health and novel treatment approaches for age-related diseases.
Collapse
Affiliation(s)
- Volkan Ergin
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | |
Collapse
|
53
|
Taylor JA, Tan CO. BP regulation VI: elevated sympathetic outflow with human aging: hypertensive or homeostatic? Eur J Appl Physiol 2013; 114:511-9. [PMID: 24078210 DOI: 10.1007/s00421-013-2731-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/16/2013] [Indexed: 11/30/2022]
Abstract
Though conventional wisdom suggests that a rise in blood pressure is a reality of advancing age, in fact, it appears that progressive elevation in sympathetic activity, not necessarily accompanied by increased blood pressure, is intrinsic to cardiovascular aging in humans. The mechanism behind this elevation would seem to reside in homeostatic cardiovascular regulation; nonetheless, the balance of factors that result in elevated sympathetic outflow with age remains elusive. Age-related increases in sympathetic nervous outflow cannot be fully explained by increases in body mass, body adiposity, or other metabolic factors; interrelations among cardiac output, peripheral resistance, and blood pressure may not reflect a determinative hemodynamic interrelation but rather parallel phenomena; and there is no simple linear relationship between baroreflex control and resting levels of sympathetic activity. In contrast to systemic relationships, available data suggest that elevated sympathetic outflow may derive from the inter-relationship between centrally driven sympatho-excitation and a decline in the ability of sympathetic outflow to effect peripheral vascular responses. This review aims to integrate the current knowledge of mechanisms underlying elevated sympathetic outflow with age. It seeks to synthesize these data in the context of proposing that an age-related decline in the ability of sympathetic outflow to effect regional vascular responses incites a compensatory elevation in resting sympathetic activity to maintain homeostatic balance, presumably to maintain adequate control of blood pressure.
Collapse
|
54
|
VandeVrede L, Abdelhamid R, Qin Z, Choi J, Piyankarage S, Luo J, Larson J, Bennett BM, Thatcher GRJ. An NO donor approach to neuroprotective and procognitive estrogen therapy overcomes loss of NO synthase function and potentially thrombotic risk. PLoS One 2013; 8:e70740. [PMID: 23976955 PMCID: PMC3745399 DOI: 10.1371/journal.pone.0070740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/28/2013] [Indexed: 01/16/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3(rd) generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer's transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ramy Abdelhamid
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zhihui Qin
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jaewoo Choi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sujeewa Piyankarage
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jia Luo
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John Larson
- Department of Psychiatry, Neuropsychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian M. Bennett
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
55
|
Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. Virulence 2013; 4:543-55. [PMID: 23924893 PMCID: PMC5359751 DOI: 10.4161/viru.25949] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Malaria affects millions of people around the world and a small subset of those infected develop cerebral malaria. The clinical presentation of cerebral malaria differs between children and adults, and it has been suggested that age-related changes in the endothelial response may account for some of these differences. During cerebral malaria, parasites sequester within the brain microvasculature but do not penetrate into the brain parenchyma and yet, the infection causes severe neurological symptoms. Endothelial dysfunction is thought to play an important role in mediating these adverse clinical outcomes. During infection, the endothelium becomes activated and more permeable, which leads to increased inflammation, hemorrhages, and edema in the surrounding tissue. We hypothesize that post-natal developmental changes, occurring in both endothelial response and the neurovascular unit, account for the differences observed in the clinical presentations of cerebral malaria in children compared with adults.
Collapse
|
56
|
Gonzalez‐Covarrubias V, Beekman M, Uh H, Dane A, Troost J, Paliukhovich I, Kloet FM, Houwing‐Duistermaat J, Vreeken RJ, Hankemeier T, Slagboom EP. Lipidomics of familial longevity. Aging Cell 2013; 12:426-34. [PMID: 23451766 PMCID: PMC3709127 DOI: 10.1111/acel.12064] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
Middle-aged offspring of nonagenarians, as compared to their spouses (controls), show a favorable lipid metabolism marked by larger LDL particle size in men and lower total triglyceride levels in women. To investigate which specific lipids associate with familial longevity, we explore the plasma lipidome by measuring 128 lipid species using liquid chromatography coupled to mass spectrometry in 1526 offspring of nonagenarians (59 years ± 6.6) and 675 (59 years ± 7.4) controls from the Leiden Longevity Study. In men, no significant differences were observed between offspring and controls. In women, however, 19 lipid species associated with familial longevity. Female offspring showed higher levels of ether phosphocholine (PC) and sphingomyelin (SM) species (3.5–8.7%) and lower levels of phosphoethanolamine PE (38:6) and long-chain triglycerides (TG) (9.4–12.4%). The association with familial longevity of two ether PC and four SM species was independent of total triglyceride levels. In addition, the longevity-associated lipid profile was characterized by a higher ratio of monounsaturated (MUFA) over polyunsaturated (PUFA) lipid species, suggesting that female offspring have a plasma lipidome less prone to oxidative stress. Ether PC and SM species were identified as novel longevity markers in females, independent of total triglycerides levels. Several longevity-associated lipids correlated with a lower risk of hypertension and diabetes in the Leiden Longevity Study cohort. This sex-specific lipid signature marks familial longevity and may suggest a plasma lipidome with a better antioxidant capacity, lower lipid peroxidation and inflammatory precursors, and an efficient beta-oxidation function.
Collapse
Affiliation(s)
- Vanessa Gonzalez‐Covarrubias
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | - Marian Beekman
- Molecular Epidemiology Leiden University Medical Center Leiden The Netherlands
- Netherlands Consortium for Healthy Ageing Leiden The Netherlands
| | - Hae‐Won Uh
- Netherlands Consortium for Healthy Ageing Leiden The Netherlands
- Medical Statistics and Bioinformatics Leiden University Medical Center Leiden The Netherlands
| | - Adrie Dane
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | - Jorne Troost
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | - Iryna Paliukhovich
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | - Frans M. Kloet
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | | | - Rob J. Vreeken
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | - Thomas Hankemeier
- Netherlands Metabolomics Centre Leiden The Netherlands
- Analytical Biosciences Leiden University Leiden The Netherlands
| | - Eline P. Slagboom
- Molecular Epidemiology Leiden University Medical Center Leiden The Netherlands
- Netherlands Consortium for Healthy Ageing Leiden The Netherlands
| |
Collapse
|
57
|
Marín C, Yubero-Serrano EM, López-Miranda J, Pérez-Jiménez F. Endothelial aging associated with oxidative stress can be modulated by a healthy mediterranean diet. Int J Mol Sci 2013; 14:8869-89. [PMID: 23615475 PMCID: PMC3676761 DOI: 10.3390/ijms14058869] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Aging is a condition which favors the development of atherosclerosis, which has been associated with a breakdown in repair processes that occurs in response to cell damage. The dysregulation of the biological systems associated with aging are produced partly through damage which accumulates over time. One major source of this injury is oxidative stress, which can impair biological structures and the mechanisms by which they are repaired. These mechanisms are based on the pathogenesis of endothelial dysfunction, which in turn is associated with cardiovascular disease, carcinogenesis and aging. The dependent dysfunction of aging has been correlated with a reduction in the number and/or functional activity of endothelial progenitor cells, which could hinder the repair and regeneration of the endothelium. In addition, aging, inflammation and oxidative stress are endogenous factors that cause telomere shortening, which is dependent on oxidative cell damage. Moreover, telomere length correlates with lifestyle and the consumption of a healthy diet. Thus, diseases associated with aging and age may be caused by the long-term effects of oxidative damage, which are modified by genetic and environmental factors. Considering that diet is a very important source of antioxidants, in this review we will analyze the relationship between oxidative stress, aging, and the mechanisms which may be involved in a higher survival rate and a lower incidence of the diseases associated with aging in populations which follow a healthy diet.
Collapse
Affiliation(s)
- Carmen Marín
- Lipids and Atherosclerosis Unit, Maimonides Institute for Research in Biomedicina at Cordoba (IMIBIC)/Reina Sofia University Hospital/University of Cordoba and CIBER Fisiopatologia Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Cordoba, 14004, Spain.
| | | | | | | |
Collapse
|
58
|
Trott DW, Luttrell MJ, Seawright JW, Woodman CR. Aging impairs PI3K/Akt signaling and NO-mediated dilation in soleus muscle feed arteries. Eur J Appl Physiol 2013; 113:2039-46. [DOI: 10.1007/s00421-013-2639-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/31/2013] [Indexed: 10/27/2022]
|
59
|
Tan CO, Tamisier R, Hamner JW, Taylor JA. Characterizing sympathetic neurovascular transduction in humans. PLoS One 2013; 8:e53769. [PMID: 23326501 PMCID: PMC3542370 DOI: 10.1371/journal.pone.0053769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
Despite its critical role for cardiovascular homeostasis in humans, only a few studies have directly probed the transduction of sympathetic nerve activity to regional vascular responses – sympathetic neurovascular transduction. Those that have variably relied on either vascular resistance or vascular conductance to quantify the responses. However, it remains unclear which approach would better reflect the physiology. We assessed the utility of both of these as well as an alternative approach in 21 healthy men. We recorded arterial pressure (Finapres), peroneal sympathetic nerve activity (microneurography), and popliteal blood flow (Doppler) during isometric handgrip exercise to fatigue. We quantified and compared transduction via the relation of sympathetic activity to resistance and to conductance and via an adaptation of Poiseuille’s relation including pressure, sympathetic activity, and flow. The average relationship between sympathetic activity and resistance (or conductance) was good when assessed over 30-second averages (mean R2 = 0.49±0.07) but lesser when incorporating beat-by-beat time lags (R2 = 0.37±0.06). However, in a third of the subjects, these relations provided relatively weak estimates (R2<0.33). In contrast, the Poiseuille relation reflected vascular responses more accurately (R2 = 0.77±0.03, >0.50 in 20 of 21 individuals), and provided reproducible estimates of transduction. The gain derived from the relation of resistance (but not conductance) was inversely related to transduction (R2 = 0.37, p<0.05), but with a proportional bias. Thus, vascular resistance and conductance may not always be reliable surrogates for regional sympathetic neurovascular transduction, and assessment from a Poiseuille relation between pressure, sympathetic nerve activity, and flow may provide a better foundation to further explore differences in transduction in humans.
Collapse
Affiliation(s)
- Can Ozan Tan
- Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, Massachusetts, United States of America.
| | | | | | | |
Collapse
|
60
|
Gombos RB, Brown JC, Teefy J, Gibeault RL, Conn KL, Schang LM, Hemmings DG. Vascular dysfunction in young, mid-aged and aged mice with latent cytomegalovirus infections. Am J Physiol Heart Circ Physiol 2012; 304:H183-94. [PMID: 23125213 DOI: 10.1152/ajpheart.00461.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human cytomegalovirus (HCMV) is associated with vascular diseases in both immunosuppressed and immunocompetent individuals. CMV infections cycle between active and latent phases throughout life. We and others have shown vascular dysfunction during active mouse CMV (mCMV) infections. Few studies have examined changes in physiology during latent CMV infections, particularly vascular responses or whether the negative effects of aging on vascular function and fertility will be exacerbated under these conditions. We measured vascular responses in intact mesenteric and uterine arteries dissected from young, mid-aged, and aged latently mCMV-infected (mCMV genomes are present but infectious virus is undetectable) and age-matched uninfected mice using a pressure myograph. We tested responses to the α(1)-adrenergic agonist phenylephrine, the nitric oxide donor sodium nitroprusside, and the endothelium-dependent vasodilator methacholine. In young latently mCMV-infected mice, vasoconstriction was increased and vasodilation was decreased in mesenteric arteries, whereas both vasoconstriction and vasodilation were increased in uterine arteries compared with those in age-matched uninfected mice. In reproductively active mid-aged latently infected mice, mesenteric arteries showed little change, whereas uterine arteries showed greatly increased vasoconstriction. These vascular effects may have contributed to the decreased reproductive success observed in mid-aged latently mCMV-infected compared with age-matched uninfected mice (16.7 vs. 46.7%, respectively). In aged latently infected mice, vasodilation is increased in mesenteric and uterine arteries likely to compensate for increased vasoconstriction to mediators other than phenylephrine. The novel results of this study show that even when active mCMV infections become undetectable, vascular dysfunction continues and differs with age and artery origin.
Collapse
Affiliation(s)
- R B Gombos
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
61
|
Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, Kowalski CA, Deeter N, Nichols A, Deesing M, Arrant C, Ruan T, Boehme C, McCamey DR, Rou J, Ambal K, Narra KK, Summers SA, Abel ED, Symons JD. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes 2012; 61:1848-59. [PMID: 22586587 PMCID: PMC3379648 DOI: 10.2337/db11-1399] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vascular dysfunction that accompanies obesity and insulin resistance may be mediated by lipid metabolites. We sought to determine if vascular ceramide leads to arterial dysfunction and to elucidate the underlying mechanisms. Pharmacological inhibition of de novo ceramide synthesis, using the Ser palmitoyl transferase inhibitor myriocin, and heterozygous deletion of dihydroceramide desaturase prevented vascular dysfunction and hypertension in mice after high-fat feeding. These findings were recapitulated in isolated arteries in vitro, confirming that ceramide impairs endothelium-dependent vasorelaxation in a tissue-autonomous manner. Studies in endothelial cells reveal that de novo ceramide biosynthesis induced protein phosphatase 2A (PP2A) association directly with the endothelial nitric oxide synthase (eNOS)/Akt/Hsp90 complex that was concurrent with decreased basal and agonist-stimulated eNOS phosphorylation. PP2A attenuates eNOS phosphorylation by preventing phosphorylation of the pool of Akt that colocalizes with eNOS and by dephosphorylating eNOS. Ceramide decreased the association between PP2A and the predominantly cytosolic inhibitor 2 of PP2A. We conclude that ceramide mediates obesity-related vascular dysfunction by a mechanism that involves PP2A-mediated disruption of the eNOS/Akt/Hsp90 signaling complex. These results provide important insight into a pathway that represents a novel target for reversing obesity-related vascular dysfunction.
Collapse
Affiliation(s)
- Quan-Jiang Zhang
- College of Health, University of Utah, Salt Lake City, Utah
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
| | - William L. Holland
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lloyd Wilson
- College of Health, University of Utah, Salt Lake City, Utah
| | | | - Devin Kearns
- College of Health, University of Utah, Salt Lake City, Utah
| | - Judd M. Cahoon
- College of Health, University of Utah, Salt Lake City, Utah
| | - Dix Pettey
- College of Health, University of Utah, Salt Lake City, Utah
| | - Jason Losee
- College of Health, University of Utah, Salt Lake City, Utah
| | - Bradlee Duncan
- College of Health, University of Utah, Salt Lake City, Utah
| | - Derrick Gale
- College of Health, University of Utah, Salt Lake City, Utah
| | | | | | | | | | - Colton Arrant
- College of Health, University of Utah, Salt Lake City, Utah
| | - Ting Ruan
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Christoph Boehme
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Dane R. McCamey
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Janvida Rou
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Kapil Ambal
- Department of Physics and Astronomy, College of Science, University of Utah, Salt Lake City, Utah
| | - Krishna K. Narra
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Scott A. Summers
- Program in Cardiovascular and Metabolic Diseases, Duke-NUS Graduate Medical School, Singapore, and the Stedman Center for Nutrition and Metabolism Research, Duke University Medical Center, Durham, North Carolina
| | - E. Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah
- Corresponding authors: E. Dale Abel, , and J. David Symons,
| | - J. David Symons
- College of Health, University of Utah, Salt Lake City, Utah
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
- Corresponding authors: E. Dale Abel, , and J. David Symons,
| |
Collapse
|
62
|
Cau SBA, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012; 3:218. [PMID: 22737132 PMCID: PMC3382417 DOI: 10.3389/fphys.2012.00218] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/31/2012] [Indexed: 12/24/2022] Open
Abstract
Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Medical School of Ribeirao Preto Ribeirao Preto, Brazil
| | | | | |
Collapse
|
63
|
Abstract
Aging is a dominant risk factor for most forms of cardiovascular disease. Impaired angiogenesis and endothelial dysfunction likely contribute to the increased prevalence of both cardiovascular diseases and their adverse sequelae in the elderly. Angiogenesis is both an essential adaptive response to physiological stress and an endogenous repair mechanism after ischemic injury. In addition, induction of angiogenesis is a promising therapeutic approach for ischemic diseases. For these reasons, understanding the basis of age-related impairment of angiogenesis and endothelial function has important implications for understanding and managing cardiovascular disease. In this review, we discuss the molecular mechanisms that contribute to impaired angiogenesis in the elderly and potential therapeutic approaches to improving vascular function and angiogenesis in aging patients.
Collapse
Affiliation(s)
- Johanna Lähteenvuo
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
64
|
Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163:694-712. [PMID: 21615386 DOI: 10.1111/j.1476-5381.2011.01279.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
65
|
|
66
|
Abstract
The aging process affects all organs, including the kidneys. As part of this process, progressive scarring and a measurable decline in renal function occur in most people over time. The improved understanding of the processes that can lead to and/or hasten scarring and loss of renal function over time parallels advances in our understanding of the aging process. Clinical factors, including hypertension, diabetes mellitus, obesity, abnormal lipid levels and vitamin D deficiency, have been associated with increasing renal sclerosis with age. In addition, tissue factors such as angiotensin II, advanced glycation end products, oxidative stress and Klotho are associated with renal aging. These associations and possible interventions, including the control of blood pressure, blood sugar, weight, diet and calorie restriction might make renal aging more preventable than inevitable.
Collapse
|
67
|
El-Bassossy HM, El-Moselhy MA, Mahmoud MF. Pentoxifylline alleviates vascular impairment in insulin resistance via TNF-α inhibition. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:277-85. [PMID: 21800096 DOI: 10.1007/s00210-011-0669-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
Abstract
Deterioration of vascular reactivity plays a pivotal role in vascular complications. Pentoxifylline (PTX) is a well-tolerated drug used to treat vascular insufficiency. We investigated the protective effect of PTX against vascular impairment in insulin resistance. Insulin resistance was induced by fructose (10%) in drinking water while PTX was concurrently administered (50 mg/kg(-1)) for 8 weeks. Serum levels of glucose, insulin, tumor necrosis factor alpha (TNF-α) were determined. Isolated aorta reactivity to phenylephrine (PE), potassium chloride (KCl), and acetylcholine (ACh) was studied, as was nitric oxide (NO) generation and histopathology. Insulin resistance was accompanied with a significant elevation in serum TNF-α level, marked leukocytes infiltration, and endothelial pyknosis. PTX inhibited insulin resistance and prevented TNF-α elevation, leukocyte infiltration and endothelial pyknosis. Vascular dysfunction was evident in insulin resistance as increased vascular contractility to PE and decreased relaxation to ACh, whereas PTX protected against this dysfunction. Notably, in vitro incubation with TNF-α (1 ng/ml(-1)) increased contractility to PE and decreased relaxation to ACh while concomitant PTX (1 mM) incubation partially restored response to ACh but not to PE. Furthermore, TNF-α reduced ACh-induced NO generation, whereeas PTX restored it. In conclusion, PTX protects from the impairment in vascular reactivity in insulin resistance, by a mechanism involving TNF-α inhibition.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Hypertension and Vascular Center, Wake Forest University Baptist Medical Center, Winston-Salem, NC, 27157, USA.
| | | | | |
Collapse
|
68
|
Visioli F, Hagen TM. Antioxidants to enhance fertility: role of eNOS and potential benefits. Pharmacol Res 2011; 64:431-7. [PMID: 21745572 DOI: 10.1016/j.phrs.2011.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 01/23/2023]
Abstract
The use of antioxidants is now often used as a pharmacological adjunct to limit infertility. Indeed, the lay public rightly perceives oxidative stress and, thus, antioxidant treatment as important modulators of infertility. While the direct effects of antioxidant treatment on the quality of semen and oocytes are still under investigation, a significant body of evidence points to loss of vascular tone as a root-cause of erectile dysfunction and, possibly, alterations to female reproduction. In this article, we will critically review the often neglected link between vascular dysfunction and infertility. A particular emphasis will be on the potential use of antioxidants to increase fertility and promote conception.
Collapse
|
69
|
Maruyama Y. Aging and arterial-cardiac interactions in the elderly. Int J Cardiol 2011; 155:14-9. [PMID: 21316775 DOI: 10.1016/j.ijcard.2011.01.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
Abstract
Cardiovascular system changes with aging, and these changes are modified by arteriosclerosis-risk factors, i.e., hypertension and diabetes, as well as arterial-cardiac interactions. Regarding age-related changes in the cardiovascular system, Lakatta et al. reported morphological and functional changes that are specific to the cardiovascular aging and are distinct from arteriosclerotic changes. After then, various studies on the mechanism of aging of the cardiovascular system have been performed from the viewpoint of cellular aging, endothelial or endocardial function, and fibroblast. Aging-related changes in the cardiovascular system include death and dysfunction of cell, and matrix fibrosis, but these can also be induced by various causes other than aging. To elucidate the relationship between aging and remodeling of the cardiovascular system, firstly, it is necessary to clarify the phenomena of cellular aging. Changes also differ between the heart and arteries, and there are time lags between aging and aging-associated morphological and functional changes in the cardiovascular system: some changes appear early (early type) or later (delayed type) and some changes occur at the same speed with aging (linear type). In this report, the latest findings concerning aging-associated functional and morphological changes in the arteries and the heart are reviewed and the studies are summarized. Arteries and the heart change with aging while interacting with each other. These arterial-cardiac interactions are also described.
Collapse
Affiliation(s)
- Yoshiaki Maruyama
- Department of Health Promotion, Saitama Medical Center, Saitama Medical, University, Kawagoe, Japan.
| |
Collapse
|
70
|
Trott DW, Seawright JW, Luttrell MJ, Woodman CR. NAD(P)H oxidase-derived reactive oxygen species contribute to age-related impairments of endothelium-dependent dilation in rat soleus feed arteries. J Appl Physiol (1985) 2011; 110:1171-80. [PMID: 21233343 DOI: 10.1152/japplphysiol.01037.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | |
Collapse
|
71
|
Abstract
Evidence has consistently indicated that activation of sphingomyelinases and/or ceramide synthases and the resulting accumulation of ceramide mediate cellular responses to stressors such as lipopolysaccharide, interleukin 1beta, tumor necrosis factor alpha, serum deprivation, irradiation and various antitumor treatments. Recent studies had identified the genes encoding most of the enzymes responsible for the generation of ceramide and ongoing research is aimed at characterizing their individual functions in cellular response to stress. This chapter discusses the seminal and more recent discoveries in regards to the pathways responsible for the accumulation of ceramide during stress and the mechanisms by which ceramide affects cell functions. The former group includes the roles of neutral sphingomyelinase 2, serine palmitoyltransferase, ceramide synthases, as well as the secretory and endosomal/lysosomal forms of acid sphingomyelinase. The latter summarizes the mechanisms by which ceramide activate its direct targets, PKCzeta, PP2A and cathepsin D. The ability of ceramide to affect membrane organization is discussed in the light of its relevance to cell signaling. Emerging evidence to support the previously assumed notion that ceramide acts in a strictly structure-specific manner are also included. These findings are described in the context of several physiological and pathophysiological conditions, namely septic shock, obesity-induced insulin resistance, aging and apoptosis of tumor cells in response to radiation and chemotherapy.
Collapse
|
72
|
Tabatadze N, Savonenko A, Song H, Bandaru VVR, Chu M, Haughey NJ. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res 2010; 88:2940-51. [PMID: 20629193 DOI: 10.1002/jnr.22438] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sphingolipid ceramide is a bioactive signaling lipid that is thought to play important roles in modulating synaptic activity, in part by regulating the function of excitatory postsynaptic receptors. However, the molecular mechanisms by which ceramide exerts its effects on synaptic activity remain largely unknown. We recently demonstrated that a rapid generation of ceramide by neutral sphingomyelinase-2 (nSMase2; also known as "sphingomyelin phosphodiesterase-3") played a key role in modulating excitatory postsynaptic currents by controlling the insertion and clustering of NMDA receptors (Wheeler et al. [2009] J. Neurochem. 109:1237-1249). We now demonstrate that nSMase2 plays a role in memory. Inhibition of nSMase2 impaired spatial and episodic-like memory in mice. At the molecular level, inhibition of nSMase2 decreased ceramide, increased PSD-95, increased the number of AMPA receptors, and altered the subunit composition of NMDA receptors. Our study identifies nSMase2 as an important component for efficient memory formation and underscores the importance of ceramide in regulating synaptic events related to learning and memory.
Collapse
Affiliation(s)
- Nino Tabatadze
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
73
|
Monette JS, Gómez LA, Moreau RF, Dunn KC, Butler JA, Finlay LA, Michels AJ, Shay KP, Smith EJ, Hagen TM. (R)-α-Lipoic acid treatment restores ceramide balance in aging rat cardiac mitochondria. Pharmacol Res 2010; 63:23-9. [PMID: 20934512 DOI: 10.1016/j.phrs.2010.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 01/11/2023]
Abstract
Inflammation results in heightened mitochondrial ceramide levels, which cause electron transport chain dysfunction, elevates reactive oxygen species, and increases apoptosis. As mitochondria in aged hearts also display many of these characteristics, we hypothesized that mitochondrial decay stems partly from an age-related ceramidosis that heretofore has not been recognized for the heart. Intact mitochondria or their purified inner membranes (IMM) were isolated from young (4-6 mo) and old (26-28 mo) rats and analyzed for ceramides by LC-MS/MS. Results showed that ceramide levels increased by 32% with age and three ceramide isoforms, found primarily in the IMM (e.g. C(16)-, C(18)-, and C(24:1)-ceramide), caused this increase. The ceramidosis may stem from enhanced hydrolysis of sphingomyelin, as neutral sphingomyelinase (nSMase) activity doubled with age but with no attendant change in ceramidase activity. Because (R)-α-lipoic acid (LA) improves many parameters of cardiac mitochondrial decay in aging and lowers ceramide levels in vascular endothelial cells, we hypothesized that LA may limit cardiac ceramidosis and thereby improve mitochondrial function. Feeding LA [0.2%, w/w] to old rats for two weeks prior to mitochondrial isolation reversed the age-associated decline in glutathione levels and concomitantly improved Complex IV activity. This improvement was associated with lower nSMase activity and a remediation in mitochondrial ceramide levels. In summary, LA treatment lowers ceramide levels to that seen in young rat heart mitochondria and restores Complex IV activity which otherwise declines with age.
Collapse
Affiliation(s)
- Jeffrey S Monette
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JAF. Beneficial effects of melatonin on cardiological alterations in a murine model of accelerated aging. J Pineal Res 2010; 49:312-20. [PMID: 20738757 DOI: 10.1111/j.1600-079x.2010.00800.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigated the effect of aging-related parameters such as inflammation, oxidative stress and cell death in the heart in an animal model of accelerated senescence and analyzed the effects of chronic administration of melatonin on these markers. Thirty male mice of senescence-accelerated prone (SAMP8) and 30 senescence-accelerated-resistant mice (SAMR1) at 2 and 10 months of age were used. Animals were divided into eight experimental groups, four from each strain: two young control groups, two old untreated control groups, and four melatonin-treated groups. Melatonin was provided at two different dosages (1 and 10 mg/kg/day) in the drinking water. After 30 days of treatment, the expression of inflammatory mediators (tumor necrosis factor-alpha, interleukin 1 and 10, NFkBp50 and NFkBp52), apoptosis markers (BAD, BAX and Bcl2) and parameters related to oxidative stress (heme oxygenases 1 and 2, endothelial and inducible nitric oxide synthases) were determined in the heart by real-time reverse transcription polymerase chain reaction (RT-PCR). Inflammation, as well as, oxidative stress and apoptosis markers was increased in old SAMP8 males, when compared to its young controls. SAMR1 mice showed significantly lower basal levels of the measured parameters and smaller increases with age or no increases at all. After treatment with melatonin, these age-altered parameters were partially reversed, especially in SAMP8 mice. The results suggest that oxidative stress and inflammation increase with aging and that chronic treatment with melatonin, a potent antioxidant, reduces these parameters. The effects were more marked in the SAMP8 animals.
Collapse
Affiliation(s)
- Katherine Forman
- Department of Physiology, Medical School, University Complutense of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
75
|
Spijkers LJA, Alewijnse AE, Peters SLM. Sphingolipids and the orchestration of endothelium-derived vasoactive factors: when endothelial function demands greasing. Mol Cells 2010; 29:105-11. [PMID: 20127284 DOI: 10.1007/s10059-010-0042-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 02/02/2023] Open
Abstract
Vasomotor tone is regulated by a complex interplay of a variety of extrinsic neurohumoral and intrinsic factors. It is the endothelium that has a major influence on smooth muscle cell tone via the release of intrinsic vasoactive factors and is therefore an important regulator of vasomotor tone. Sphingolipids are an emerging class of lipid mediators with important physiological properties. In the last two decades it has not only become increasingly clear that sphingolipid signaling plays a pivotal role in immune function, but also its role in the vascular system is now becoming more recognized. In this mini-review we will highlight the possible cross-talk between sphingolipids and intrinsic vasoactive factors released by the endothelium. Via this cross-talk sphingolipids can orchestrate vasomotor tone and may therefore also be involved in the pathophysiology of disease states associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Léon J A Spijkers
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
76
|
Kim JH, Bugaj LJ, Oh YJ, Bivalacqua TJ, Ryoo S, Soucy KG, Santhanam L, Webb A, Camara A, Sikka G, Nyhan D, Shoukas AA, Ilies M, Christianson DW, Champion HC, Berkowitz DE. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol (1985) 2009; 107:1249-57. [PMID: 19661445 PMCID: PMC2763842 DOI: 10.1152/japplphysiol.91393.2008] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 07/28/2009] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2(-)) production than young. Acute inhibition of both NOS, with N(G)-nitro-l-arginine methyl ester, and arginase, with 2S-amino- 6-boronohexanoic acid (ABH), significantly reduced O2(-) production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692-702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2(-) production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness.
Collapse
Affiliation(s)
- Jae Hyung Kim
- Anesthesiology, Tower 711, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Visioli F, Bernaert H, Corti R, Ferri C, Heptinstall S, Molinari E, Poli A, Serafini M, Smit HJ, Vinson JA, Violi F, Paoletti R. Chocolate, lifestyle, and health. Crit Rev Food Sci Nutr 2009; 49:299-312. [PMID: 19234942 DOI: 10.1080/10408390802066805] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Interest in the biological activities of cocoa polyphenols is increasing steadily. In fact, the high polyphenol content of cocoa, coupled with its widespread presence in many food items, render this food of particular interest from the nutritional and "pharmacological" viewpoints. This paper summarizes the new findings and developments regarding the effects of cocoa and chocolate consumption on human health as presented at the International Conference "Chocolate, Lifestyle, and Health" (Milan, Italy, March 2, 2007) regarding the effects of cocoa and chocolate consumption on human health.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Micronutrients and Cardiovascular Disease, UR7079, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Pavoine C, Pecker F. Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc Res 2009; 82:175-83. [PMID: 19176603 DOI: 10.1093/cvr/cvp030] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sphingomyelinases (SMases) hydrolyse sphingomyelin, releasing ceramide and creating a cascade of bioactive lipids. These lipids include sphingosine and sphingosine-1-phosphate, all of which have a specific signalling capacity. Sphingomyelinase activation occurs in different cardiovascular system cell types, namely cardiac myocytes, endothelial and vascular smooth muscle cells, mediating cell proliferation, cell death, and contraction of cardiac and vascular myocytes. Three main types of SMases contribute to cardiovascular physiology: the lysosomal and secreted acidic SMases (L- and S-ASMases, respectively) and the membrane neutral SMase (NSMase). These three enzymes have common activators, including ischaemia/reperfusion stress and proinflammatory cytokines, but they differ in their enzymatic properties and subcellular locations that determine the final effect of enzyme activation. This review focuses on the recent advances in the understanding of ASMase and NSMase pathways and their specific contribution to cardiovascular pathophysiology. Current knowledge indicates that the inhibitors of the different SMase types are potential tools for the treatment of cardiovascular diseases. Acid SMase inhibitors could be tools against post-ischaemia reperfusion injury and in the treatment of atherosclerosis. Neutral SMase inhibitors could be tools for the treatment of atherosclerosis, heart failure, and age-related decline in vasomotion. However, the design of bioavailable and more specific SMase-type inhibitors remains a challenge.
Collapse
|
79
|
Shay KP, Hagen TM. Age-associated impairment of Akt phosphorylation in primary rat hepatocytes is remediated by alpha-lipoic acid through PI3 kinase, PTEN, and PP2A. Biogerontology 2008; 10:443-56. [PMID: 18931933 DOI: 10.1007/s10522-008-9187-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/30/2008] [Indexed: 01/22/2023]
Abstract
Akt is a highly regulated serine/threonine kinase involved in stress response and cell survival. Stress response pathways must cope with increasing chronic stress susceptibility with age. We found an age-related lesion in Akt activity via loss of phosphorylation on Ser473. In hepatocytes from old rats, basal phospho-Ser473 Akt is 30% lower when compared to young, but basal phospho-Thr308 Akt is unchanged. (R)-alpha-lipoic acid (LA), a dithiol compound with antioxidant properties, is effective against age-related increases in oxidative stress and has been used to improve glucose utilization through insulin receptor (IR) pathway-mediated Akt phosphorylation. Treatment with physiologically relevant doses of LA (50 microM) provided a 30% increase in phospho-Ser473. Furthermore, two phosphatases that antagonize Akt, PTEN and PP2A, were both partially inhibited by LA. Thus, LA may be a nutritive agent that can remediate loss of function in the Akt pathway and aid in the survival of liver cells.
Collapse
Affiliation(s)
- Kate Petersen Shay
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA.
| | | |
Collapse
|
80
|
Lipoic acid significantly restores, in rats, the age-related decline in vasomotion. Br J Pharmacol 2008; 153:1615-22. [PMID: 18297110 DOI: 10.1038/bjp.2008.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The age-related decline in vasorelaxation is largely due to ceramide-induced induction of phosphatase 2A (PP2A), which limits nitric oxide synthase (eNOS) phosphorylation at stimulatory sites. We hypothesized that ceramide accumulation was from an age-related loss of endothelial glutathione (GSH) and subsequent activation of neutral sphingomyelinase (nSMase), an enzyme whose activity increases when GSH is limited. EXPERIMENTAL APPROACH Old (30-32 mo) F344xBN rats were given (R)-alpha-lipoic acid (LA), an agent known to induce GSH synthesis. Vasorelaxation was measured in aortic rings; GSH and ceramide levels, activity of nSMase and eNOS phosphorylation (by Western blot) was measured in aortic endothelial cells, isolated from the same aortas. KEY RESULTS In old animals, endothelium-dependent relaxation in aortic rings was decreased, GSH levels and its redox state in aortic endothelia were over 30% lower and nSMase activity and endothelial ceramide levels were three-fold increased, relative to young (2-4 mo) rats. LA treatment of old animals improved relaxation in aortic rings, reversed the changes in endothelial GSH, in nSMase activities and in ceramide levels. Similar effects on GSH levels and nSMase activity in old rats were also induced by treatment with GSH monoethylester. Activation (by phosphorylation) of eNOS was decreased by about 50% in old rats and this age-related decrease was partially reversed by LA treatment. CONCLUSIONS AND IMPLICATIONS Decreased endothelial GSH was partly responsible for the age-related loss of vascular endothelial function and LA might be therapeutically evaluated to treat endothelial dysfunction.
Collapse
|
81
|
Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, Meydani SN. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. THE JOURNAL OF IMMUNOLOGY 2007; 179:4829-39. [PMID: 17878382 DOI: 10.4049/jimmunol.179.7.4829] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a leading risk factor for type 2 diabetes (T2D). Aging is associated with an increase in T2D incidence, which is not totally explained by the much lower prevalence of obesity in the elderly. Low-grade inflammation in adipose tissue (AT) contributes to insulin resistance and T2D. Thus, we determined whether inflammatory responses are up-regulated with age in AT. The results showed that visceral AT from old C57BL mice had significantly higher mRNA expression of the proinflammatory cytokines IL-1beta, IL-6, TNF-alpha, and COX-2 and lower expression of anti-inflammatory PPAR-gamma than those of young mice. We further showed that adipocytes (AD) and not stromal vascular cells including macrophages (Mphi) were the cells responsible for this higher inflammatory state of the aged AT, suggesting that the age-associated increase in AT inflammation is distinguished from that seen in obesity, in which Mphi are the main contributors. However, peritoneal Mphi of either age (young or old) produced more TNF-alpha and IL-6 after incubation in old AD-conditioned medium compared with young AD-conditioned medium. This suggests that in addition to producing more inflammatory cytokines, AD from old mice induce a higher inflammatory response in other cells. Sphingolipid ceramide was higher in old compared with young AD. Reducing ceramide levels or inhibiting NF-kappaB activation decreased cytokine production, whereas the addition of ceramide increased cytokine production in young AD to a level comparable to that seen in old AD, suggesting that ceramide-induced activation of NF-kappaB plays a key role in AT inflammation.
Collapse
Affiliation(s)
- Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer Unites States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
82
|
Stanislavov R, Nikolova V, Rohdewald P. Improvement of erectile function with Prelox: a randomized, double-blind, placebo-controlled, crossover trial. Int J Impot Res 2007; 20:173-80. [PMID: 17703218 DOI: 10.1038/sj.ijir.3901597] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In a randomly allocated, double-blind, placebo-controlled, crossover design, 50 patients with mild to moderate erectile dysfunction (ED) were treated for 1 month with placebo or a combination of L-arginine aspartate and Pycnogenol (Prelox). Patients reported sexual function from diaries. Testosterone levels and endothelial NO synthase (e-NOS) were monitored along with routine clinical chemistry. Intake of Pycnogenol for 1 month restored erectile function to normal. Intercourse frequency doubled. e-NOS in spermatozoa and testosterone levels in blood increased significantly. Cholesterol levels and blood pressure were lowered. No unwanted effects were reported. Prelox is a promising alternative to treat mild to moderate ED.
Collapse
Affiliation(s)
- R Stanislavov
- Department of Obstetrics and Gynecology, Medical University Sofia, Faculty of Medicine, Sofia, Bulgaria
| | | | | |
Collapse
|
83
|
Radin NS. Allylic structures in cancer drugs and body metabolites that control cell life and death. Expert Opin Drug Discov 2007; 2:809-21. [DOI: 10.1517/17460441.2.6.809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
84
|
Schmitt CA, Handler N, Heiss EH, Erker T, Dirsch VM. No evidence for modulation of endothelial nitric oxide synthase by the olive oil polyphenol hydroxytyrosol in human endothelial cells. Atherosclerosis 2007; 195:e58-64. [PMID: 17399719 DOI: 10.1016/j.atherosclerosis.2007.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 12/11/2022]
Abstract
Reduced nitric oxide (NO) availability is associated with the development of atherosclerosis. Upregulation of endothelial nitric oxide synthase (eNOS) activity is pursued as a strategy for the prevention of cardiovascular diseases. The polyphenol hydroxytyrosol (HT) which is present in olive oil and red wine, is regarded to be partly responsible for the beneficial effects associated with olive oil consumption and has shown antiatherogenic activity in vitro and in vivo. To elucidate the underlying molecular mechanisms, we investigated possible effects of HT on the endothelial nitric oxide synthase (eNOS). We used human endothelial cells (EA.hy926) and examined eNOS on three different levels, addressing eNOS promoter transactivation, eNOS enzyme activity and nitric oxide availability. Cells were treated with a broad range of HT concentrations (from 10 nM to 100 microM) and for different incubation times (15 min to 24 h). HT did not exert significant positive effects on eNOS in any of our assay systems. Neither did we find evidence for a possible synergism between the red wine polyphenol resveratrol and HT. We conclude that a direct modulation of eNOS is unlikely to account for the antiatherogenic properties of HT under non-inflammatory conditions.
Collapse
|
85
|
Chung AWY, Au Yeung K, Cortes SF, Sandor GGS, Judge DP, Dietz HC, van Breemen C. Endothelial dysfunction and compromised eNOS/Akt signaling in the thoracic aorta during the progression of Marfan syndrome. Br J Pharmacol 2007; 150:1075-83. [PMID: 17339838 PMCID: PMC2013910 DOI: 10.1038/sj.bjp.0707181] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Aortic complications account for the major mortality in Marfan syndrome (MFS), a connective tissue disorder caused by mutations in FBN1 encoding fibrillin-1. We hypothesized that MFS impaired endothelial function and nitric oxide (NO) production in the aorta. EXPERIMENTAL APPROACH Mice (at 3, 6, 9 and 12 months of age) heterozygous for the Fbn1 allele encoding a cysteine substitution (Fbn1 (C1039G/+), Marfan mice, n=75), the most common class of mutation in MFS, were compared with age-matched control littermates (n=75). Thoracic and abdominal aortas from the two groups were studied. KEY RESULTS Isometric force measurements revealed that relaxation to ACh (but not to sodium nitroprusside) was diminished in the phenylephrine-precontracted Marfan thoracic aorta at 6 months of age (pEC(50)=6.12+/-0.22; maximal response, E(max)=52.7+/-6.8%; control: pEC(50)=7.34+/-0.19; E(max)=84.8+/-2.2%). At one year, both inhibition of NO production with N(omega)-nitro-L-arginine methyl ester, or denudation of endothelium increased the phenylephrine-stimulated contraction in the control thoracic aorta by 35%, but had no effect in the Marfan aorta, indicating a loss of basal NO production in the Marfan vessel. From 6 months, a reduced phosphorylation of endothelial NOS (eNOS)(Ser1177) and Akt(Thr308) detected by Western blotting was observed in the Marfan thoracic aorta, which was accompanied by decreased levels of cGMP. Expressions of Akt and eNOS in the abdominal aorta were not different between the two groups. CONCLUSIONS AND IMPLICATIONS MFS impairs endothelial function and signaling of NO production in the thoracic aorta, suggesting the importance of NO in the age-related progression of thoracic aortic manifestations.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Age Factors
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Calcium/metabolism
- Cyclic GMP/metabolism
- Disease Models, Animal
- Disease Progression
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Fibrillin-1
- Fibrillins
- Marfan Syndrome/metabolism
- Marfan Syndrome/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- A W Y Chung
- Child and Family Research Institute and Departments of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|