51
|
Krämer U. Planting molecular functions in an ecological context with Arabidopsis thaliana. eLife 2015; 4:e06100. [PMID: 25807084 PMCID: PMC4373673 DOI: 10.7554/elife.06100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
The vascular plant Arabidopsis thaliana is a central genetic model and universal reference organism in plant and crop science. The successful integration of different fields of research in the study of A. thaliana has made a large contribution to our molecular understanding of key concepts in biology. The availability and active development of experimental tools and resources, in combination with the accessibility of a wealth of cumulatively acquired knowledge about this plant, support the most advanced systems biology approaches among all land plants. Research in molecular ecology and evolution has also brought the natural history of A. thaliana into the limelight. This article showcases our current knowledge of the natural history of A. thaliana from the perspective of the most closely related plant species, providing an evolutionary framework for interpreting novel findings and for developing new hypotheses based on our knowledge of this plant.
Collapse
Affiliation(s)
- Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
52
|
Donohue K, Burghardt LT, Runcie D, Bradford KJ, Schmitt J. Applying developmental threshold models to evolutionary ecology. Trends Ecol Evol 2015; 30:66-77. [DOI: 10.1016/j.tree.2014.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/16/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023]
|
53
|
Burghardt LT, Metcalf CJE, Wilczek AM, Schmitt J, Donohue K. Modeling the influence of genetic and environmental variation on the expression of plant life cycles across landscapes. Am Nat 2014; 185:212-27. [PMID: 25616140 DOI: 10.1086/679439] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | | | | | | |
Collapse
|
54
|
Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proc Natl Acad Sci U S A 2014; 111:18787-92. [PMID: 25516986 DOI: 10.1073/pnas.1412274111] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seasonal behavior is important for fitness in temperate environments but it is unclear how progeny gain their initial seasonal entrainment. Plants use temperature signals to measure time of year, and changes to life histories are therefore an important consequence of climate change. Here we show that in Arabidopsis the current and prior temperature experience of the mother plant is used to control germination of progeny seeds, via the activation of the florigen Flowering Locus T (FT) in fruit tissues. We demonstrate that maternal past and current temperature experience are transduced to the FT locus in silique phloem. In turn, FT controls seed dormancy through inhibition of proanthocyanidin synthesis in fruits, resulting in altered seed coat tannin content. Our data reveal that maternal temperature history is integrated through FT in the fruit to generate a metabolic signal that entrains the behavior of progeny seeds according to time of year.
Collapse
|
55
|
Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL, Cavender-Bares J, Donohue K, Rubio de Casas R. The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. THE NEW PHYTOLOGIST 2014; 203:300-309. [PMID: 24684268 DOI: 10.1111/nph.12782] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/26/2014] [Indexed: 05/28/2023]
Abstract
Seed dormancy, by controlling the timing of germination, can strongly affect plant survival. The kind of seed dormancy, therefore, can influence both population and species-level processes such as colonization, adaptation, speciation, and extinction. We used a dataset comprising over 14,000 taxa in 318 families across the seed plants to test hypotheses on the evolution of different kinds of seed dormancy and their association with lineage diversification. We found morphophysiological dormancy to be the most likely ancestral state of seed plants, suggesting that physiologically regulated dormancy in response to environmental cues was present at the origin of seed plants. Additionally, we found that physiological dormancy (PD), once disassociated from morphological dormancy, acted as an 'evolutionary hub' from which other dormancy classes evolved, and that it was associated with higher rates of lineage diversification via higher speciation rates. The environmental sensitivity provided by dormancy in general, and by PD in particular, appears to be a key trait in the diversification of seed plants.
Collapse
Affiliation(s)
- Charles G Willis
- Center for the Environment, Harvard University, 24 Oxford St, Cambridge, MA, 02138, USA; Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Nonogaki M, Sall K, Nambara E, Nonogaki H. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:527-39. [PMID: 24520869 DOI: 10.1111/tpj.12472] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/28/2014] [Accepted: 02/06/2014] [Indexed: 05/03/2023]
Abstract
Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology.
Collapse
Affiliation(s)
- Mariko Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | | | | | | |
Collapse
|
57
|
Alonso-Blanco C, Méndez-Vigo B. Genetic architecture of naturally occurring quantitative traits in plants: an updated synthesis. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:37-43. [PMID: 24565952 DOI: 10.1016/j.pbi.2014.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/20/2014] [Accepted: 01/26/2014] [Indexed: 05/08/2023]
Abstract
Deciphering the genetic and molecular bases of quantitative variation is a long-standing challenge in plant biology because it is essential for understanding evolution and for accelerating plant breeding. Recent multi-trait analyses at different phenotypic levels are uncovering the pleiotropy and the genetic regulation underlying high-level complex traits. Thus, the number of known causal loci, genes and nucleotide polymorphisms is expanding. Current plant causal catalogs contain ∼400 genes and natural polymorphisms revealing several dysfunctional allelic series that involve multiple mutations. In addition, repeated evolution of quantitative traits mediated by large effect alleles is found across plant phylogeny. Finally, systematic analyses of genetic and environmental interactions are beginning to elucidate the molecular mechanisms of relevant interactions.
Collapse
Affiliation(s)
- Carlos Alonso-Blanco
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049, Spain.
| | - Belén Méndez-Vigo
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049, Spain
| |
Collapse
|
58
|
Fishman L, Sweigart AL, Kenney AM, Campbell S. Major quantitative trait loci control divergence in critical photoperiod for flowering between selfing and outcrossing species of monkeyflower (Mimulus). THE NEW PHYTOLOGIST 2014; 201:1498-1507. [PMID: 24304557 DOI: 10.1111/nph.12618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/29/2013] [Indexed: 05/29/2023]
Abstract
• Divergence in flowering time is a key contributor to reproductive isolation between incipient species, as it enforces habitat specialization and causes assortative mating even in sympatry. Understanding the genetic basis of flowering time divergence illuminates the origins and maintenance of species barriers. • We investigated the genetics of divergence in critical photoperiod for flowering between yellow monkeyflowers Mimulus guttatus (outcrosser, summer flowering) and Mimulus nasutus (selfer, spring flowering). We used quantitative trait locus (QTL) mapping of F2 hybrids and fine-mapping in nearly isogenic lines to characterize the genomic regions underlying a > 2 h critical photoperiod difference between allopatric populations, and then tested whether the same QTLs control flowering time in sympatry. • We identified two major QTLs that almost completely explain M. nasutus's ability to flower in early spring; they are shared by allopatric and sympatric population pairs. The smaller QTL is coincident with one that differentiates ecotypes within M. guttatus, but the larger effect QTL appears unique to M. nasutus. • Unlike floral traits associated with mating system divergence, large interspecific differences in flowering phenology depend on only a few loci. Major critical photoperiod QTLs may be 'speciation genes' and also restrict interspecific gene flow in secondary sympatry.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Amanda M Kenney
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Samantha Campbell
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
59
|
Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses. FRONTIERS IN PLANT SCIENCE 2014; 5:233. [PMID: 24904627 PMCID: PMC4036127 DOI: 10.3389/fpls.2014.00233] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/10/2014] [Indexed: 05/18/2023]
Abstract
Seed dormancy has played a significant role in adaptation and evolution of seed plants. While its biological significance is clear, molecular mechanisms underlying seed dormancy induction, maintenance and alleviation still remain elusive. Intensive efforts have been made to investigate gibberellin and abscisic acid metabolism in seeds, which greatly contributed to the current understanding of seed dormancy mechanisms. Other mechanisms, which might be independent of hormones, or specific to the seed dormancy pathway, are also emerging from genetic analysis of "seed dormancy mutants." These studies suggest that chromatin remodeling through histone ubiquitination, methylation and acetylation, which could lead to transcription elongation or gene silencing, may play a significant role in seed dormancy regulation. Small interfering RNA and/or long non-coding RNA might be a trigger of epigenetic changes at the seed dormancy or germination loci, such as DELAY OF GERMINATION1. While new mechanisms are emerging from genetic studies of seed dormancy, novel hypotheses are also generated from seed germination studies with high throughput gene expression analysis. Recent studies on tissue-specific gene expression in tomato and Arabidopsis seeds, which suggested possible "mechanosensing" in the regulatory mechanisms, advanced our understanding of embryo-endosperm interaction and have potential to re-draw the traditional hypotheses or integrate them into a comprehensive scheme. The progress in basic seed science will enable knowledge translation, another frontier of research to be expanded for food and fuel production.
Collapse
Affiliation(s)
- Hiroyuki Nonogaki
- *Correspondence: Hiroyuki Nonogaki, Department of Horticulture, Oregon State University, 4017 ALS Bldg., Corvallis OR 97331, USA e-mail:
| |
Collapse
|
60
|
Donohue K. WHY ONTOGENY MATTERS DURING ADAPTATION: DEVELOPMENTAL NICHE CONSTRUCTION AND PLEIOTORPY ACROSS THE LIFE CYCLE INARABIDOPSIS THALIANA. Evolution 2013; 68:32-47. [DOI: 10.1111/evo.12284] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Kathleen Donohue
- Department of Biology; Duke University; Box 90338 Durham NC 27708
| |
Collapse
|
61
|
Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol Evol 2013; 29:8-14. [PMID: 24126050 DOI: 10.1016/j.tree.2013.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/07/2013] [Accepted: 09/19/2013] [Indexed: 01/15/2023]
Abstract
Niche construction occurs when the traits of an organism influence the environment that it experiences. Research has focused on niche-constructing traits that are fixed within populations or species. However, evidence increasingly demonstrates that niche-constructing traits vary among genotypes within populations. Here, we consider the potential implications of genetic variation in niche construction for evolutionary genetics. Specifically, genetic variation in niche-constructing traits creates a correlation between genotype and environment. Because the environment influences which genes and genetic interactions underlie trait variation, genetic variation in niche construction can alter inferences about the heritability, pleiotropy, and epistasis of traits that are phenotypically plastic. The effects of niche construction on these key evolutionary parameters further suggest novel ways by which niche construction can influence evolution.
Collapse
|