51
|
Cronobacter sakazakii CICC 21544 responds to the combination of carvacrol and citral by regulating proton motive force. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Mendonça AA, da Silva PKN, Calazans TLS, de Souza RB, Elsztein C, de Morais Junior MA. Gene regulation of the Lactobacillus vini in response to industrial stress in the fuel ethanol production. Microbiol Res 2020; 236:126450. [PMID: 32146295 DOI: 10.1016/j.micres.2020.126450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
The industrial ethanol fermentation imposes several stresses to microorganisms. However, some bacterial species are well adapted and manage to endure these harmful conditions. Lactobacillus vini is one of the most found bacteria in these environments, indicating the existence of efficient tolerance mechanisms. In view of this premise, the present study aimed to describe the tolerance of L. vini to several stressing agents encounter in industrial environments and the genetic components of the stress response. In general, L. vini showed significant tolerance to stressors commonly found in fuel-ethanol fermentations, and only doses higher than normally reached in processes restrained its growth. The lag phase and the growth rate were the most responsive kinetic parameter affected. Gene expression analysis revealed that uspII gene positively responded to all conditions tested, a typical profile of a general stress response gene. In addition, the results also revealed aspects of regulatory modules of co-expressed genes responding to different stresses, and also the similarities of response mechanism with basis in common cellular damages. Altogether, these data contribute to uncover the factors that could favour L. vini in the industrial fermentation which could be shared with other well adapted species and reports the first stress response genes in this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
53
|
Drecktrah D, Hall LS, Brinkworth AJ, Comstock JR, Wassarman KM, Samuels DS. Characterization of 6S RNA in the Lyme disease spirochete. Mol Microbiol 2020; 113:399-417. [PMID: 31742773 PMCID: PMC7047579 DOI: 10.1111/mmi.14427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022]
Abstract
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
54
|
Khan A, Davlieva M, Panesso D, Rincon S, Miller WR, Diaz L, Reyes J, Cruz MR, Pemberton O, Nguyen AH, Siegel SD, Planet PJ, Narechania A, Latorre M, Rios R, Singh KV, Ton-That H, Garsin DA, Tran TT, Shamoo Y, Arias CA. Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis. Proc Natl Acad Sci U S A 2019; 116:26925-26932. [PMID: 31818937 PMCID: PMC6936494 DOI: 10.1073/pnas.1916037116] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions.
Collapse
Affiliation(s)
- Ayesha Khan
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- MD Anderson Cancer Center, University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Milya Davlieva
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Diana Panesso
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, 110111 Bogotá, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, 110111 Bogotá, Colombia
| | - William R. Miller
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, 110111 Bogotá, Colombia
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), 8320000 Santiago, Chile
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, 110111 Bogotá, Colombia
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
| | | | - April H. Nguyen
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- MD Anderson Cancer Center, University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Sara D. Siegel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
| | - Paul J. Planet
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pediatric Infectious Disease Division, Children’s Hospital of Philadelphia, Philadelphia, PA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 12560
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 12560
| | - Mauricio Latorre
- Center for Genome Regulation and Center for Mathematical Modeling, Universidad de Chile, 8320000 Santiago, Chile
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, 8320000 Santiago, Chile
- Laboratorio de Biotecnología, Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, 2841158 Rancagua, Chile
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, 110111 Bogotá, Colombia
| | - Kavindra V. Singh
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA 90024
| | - Danielle A. Garsin
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- MD Anderson Cancer Center, University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Truc T. Tran
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Cesar A. Arias
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Division of Infectious Diseases, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030
- MD Anderson Cancer Center, University of Texas Health Graduate School of Biomedical Sciences, Houston, TX 77030
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, 110111 Bogotá, Colombia
- Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, TX 77030
| |
Collapse
|
55
|
Siebenaller C, Junglas B, Schneider D. Functional Implications of Multiple IM30 Oligomeric States. FRONTIERS IN PLANT SCIENCE 2019; 10:1500. [PMID: 31824532 PMCID: PMC6882379 DOI: 10.3389/fpls.2019.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of more complex assemblies has been reported. We here present and discuss research on IM30 conducted within the past 25 years with a special emphasis on the question of why we potentially need IM30 supercomplexes in vivo.
Collapse
Affiliation(s)
| | | | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
56
|
Delhaye A, Collet JF, Laloux G. A Fly on the Wall: How Stress Response Systems Can Sense and Respond to Damage to Peptidoglycan. Front Cell Infect Microbiol 2019; 9:380. [PMID: 31799211 PMCID: PMC6863773 DOI: 10.3389/fcimb.2019.00380] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023] Open
Abstract
The envelope of Gram-negative bacteria is critical for survival across a wide range of environmental conditions. The inner membrane, the periplasm and the outer membrane form a complex compartment, home to many essential processes. Hence, constant monitoring by envelope stress response systems ensure correct biogenesis of the envelope and maintain its homeostasis. Inside the periplasm, the cell wall, made of peptidoglycan, has been under the spotlight for its critical role in bacterial growth as well as being the target of many antibiotics. While much research is centered around understanding the role of the many enzymes involved in synthesizing the cell wall, much less is known about how the cell can detect perturbations of this assembly process, and how it is regulated during stress. In this review, we explore the current knowledge of cell wall defects sensing by stress response systems, mainly in the model bacterium Escherichia coli. We also discuss how these systems can respond to cell wall perturbations to increase fitness, and what implications this has on cell wall regulation.
Collapse
Affiliation(s)
- Antoine Delhaye
- de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Jean-François Collet
- de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | | |
Collapse
|
57
|
Jobling MG. Trust but Verify: Uncorroborated Assemblies of Plasmid Genomes from Next-Generation Sequencing Data Are Likely Spurious Comment on "Diverse Plasmids Harboring blaCTX-M-15 in Klebsiella pneumoniae ST11 Isolates from Several Asian Countries," by So Yeon Kim and Kwan Soo Ko (Microb. Drug Resist. 2019; 25(2):227-232; DOI: 10.1089/mdr.2018.0020). Microb Drug Resist 2019; 25:1521-1524. [PMID: 31343390 DOI: 10.1089/mdr.2018.0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael G Jobling
- Retired; Department of Immunology and Microbiology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
58
|
Tidhar A, Levy Y, Zauberman A, Vagima Y, Gur D, Aftalion M, Israeli O, Chitlaru T, Ariel N, Flashner Y, Zvi A, Mamroud E. Disruption of the NlpD lipoprotein of the plague pathogen Yersinia pestis affects iron acquisition and the activity of the twin-arginine translocation system. PLoS Negl Trop Dis 2019; 13:e0007449. [PMID: 31170147 PMCID: PMC6553720 DOI: 10.1371/journal.pntd.0007449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
We have previously shown that the cell morphogenesis NlpD lipoprotein is essential for virulence of the plague bacteria, Yersinia pestis. To elucidate the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis of the wild-type Y. pestis strain and an nlpD mutant under conditions mimicking early stages of infection. The analysis suggested that NlpD is involved in three phenomena: (i) Envelope stability/integrity evidenced by compensatory up-regulation of the Cpx and Psp membrane stress-response systems in the mutant; (ii) iron acquisition, supported by modulation of iron metabolism genes and by limited growth in iron-deprived medium; (iii) activity of the twin-arginine (Tat) system, which translocates folded proteins across the cytoplasmic membrane. Virulence studies of Y. pestis strains mutated in individual Tat components clearly indicated that the Tat system is central in Y. pestis pathogenicity and substantiated the assumption that NlpD essentiality in iron utilization involves the activity of the Tat system. This study reveals a new role for NlpD in Tat system activity and iron assimilation suggesting a modality by which this lipoprotein is involved in Y. pestis pathogenesis. We have previously shown that the NlpD lipoprotein, which is involved in the regulation of cell morphogenesis, is essential for virulence of the plague bacteria, Yersinia pestis. To uncover the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis as well as phenotypic and virulence evaluation analyses of the nlpD and related mutants. The study reveals a new role for the Y. pestis NlpD lipoprotein in iron assimilation and Tat system activity.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Naomi Ariel
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail: (AT); (EM)
| |
Collapse
|
59
|
Anh Le TT, Thuptimdang P, McEvoy J, Khan E. Phage shock protein and gene responses of Escherichia coli exposed to carbon nanotubes. CHEMOSPHERE 2019; 224:461-469. [PMID: 30831497 DOI: 10.1016/j.chemosphere.2019.02.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Two-dimensional electrophoretic, western blotting, and quantitative polymerase chain reaction analyses of Escherichia coli cells exposed to pristine single walled carbon nanotubes (SWCNTs), and hydroxyl and carboxylic functionalized SWCNTs (SWCNT-OHs and SWCNT-COOHs) were conducted. SWCNT concentration and length were experimental variables. Exposing E. coli cells to SWCNTs led to changes in protein and gene expressions. Several proteins altered their regulations at a low SWCNT concentration (10 μg/ml) and were shut down at a high SWCNT concentration (100 μg/ml). The expressions of the phage shock protein (psp) operon including pspA, pspB, and pspC genes responded to the membrane stressors, SWCNTs, were also examined. While pspA and pspC expressions were influenced by the length, concentration, and functional groups of SWCNTs, pspB expression was not induced by SWCNTs. The alterations in phage shock protein and gene expressions indicated that SWCNTs caused cell membrane perturbation.
Collapse
Affiliation(s)
- Tu Thi Anh Le
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA; Biology Department, Dalat University, Dalat, Lamdong, Viet Nam.
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Environmental Science Research Center (ESRC), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, Fargo, ND 58108, USA.
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
60
|
Engel J, Veksler-Lublinsky I, Ziv-Ukelson M. Constrained Gene Block Discovery and Its Application to Prokaryotic Genomes. J Comput Biol 2019; 26:745-766. [PMID: 31140838 DOI: 10.1089/cmb.2019.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in Next Generation Sequencing techniques, combined with global efforts to study infectious diseases, yield huge and rapidly-growing databases of microbial genomes. These big new data statistically empower genomic-context based approaches to functional analysis: the idea is that groups of genes that are clustered locally together across many genomes usually express protein products that interact in the same biological pathway (e.g., operons). The problem of finding such conserved "gene blocks" in a given genomic data has been studied extensively. In this work, we propose a new gene block discovery problem variant: find conserved gene blocks abiding by a user specification of biological functional constraints. We take advantage of the biological constraints to efficiently prune the search space. This is achieved by modeling the new problem as a special constrained variant of the well-studied "Closed Frequent Itemset Mining" problem, generalized here to handle item duplications. We exemplify the application of the tool we developed for this problem with two different case studies related to microbial ATP (adenosine triphosphate)-binding cassette (ABC) transporters.
Collapse
Affiliation(s)
- Jonathan Engel
- 1Department of Computer Science, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Isana Veksler-Lublinsky
- 2Department of Software and Information Systems Engineering, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Ziv-Ukelson
- 1Department of Computer Science, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
61
|
Yang Z, Zeng X, Tsui SKW. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics 2019; 20:394. [PMID: 31113361 PMCID: PMC6528289 DOI: 10.1186/s12864-019-5746-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
Background Mycobacterium tuberculosis (MTB) is a common bacterium causing tuberculosis and remains a major pathogen for mortality. Although the MTB genome has been extensively explored for two decades, the functions of 27% (1051/3906) of encoded proteins have yet to be determined and these proteins are annotated as hypothetical proteins. Methods We assigned functions to these hypothetical proteins using SSEalign, a newly designed algorithm utilizing structural information. A set of rigorous criteria was applied to these annotations in order to examine whether they were supported by each parameter. Virulence factors and potential drug targets were also screened among the annotated proteins. Results For 78% (823/1051) of the hypothetical proteins, we could identify homologs in Escherichia coli and Salmonella typhimurium by using SSEalign. Functional classification analysis indicated that 62.2% (512/823) of these annotated proteins were enzymes with catalytic activities and most of these annotations were supported by at least two other independent parameters. A relatively high proportion of transporter was identified in MTB genome, indicating the potential frequent transportation of frequent absorbing essential metabolites and excreting toxic materials in MTB. Twelve virulence factors and ten vaccine candidates were identified within these MTB hypothetical proteins, including two genes (rpoS and pspA) related to stress response to the host immune system. Furthermore, we have identified six novel drug target candidates among our annotated proteins, including Rv0817 and Rv2927c, which could be used for treating MTB infection. Conclusions Our annotation of the MTB hypothetical proteins will probably serve as a useful dataset for future MTB studies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5746-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR
| | - Xi Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR. .,Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR. .,Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR.
| |
Collapse
|
62
|
Tran NT, Huang X, Hong HJ, Bush MJ, Chandra G, Pinto D, Bibb MJ, Hutchings MI, Mascher T, Buttner MJ. Defining the regulon of genes controlled by σ E , a key regulator of the cell envelope stress response in Streptomyces coelicolor. Mol Microbiol 2019; 112:461-481. [PMID: 30907454 PMCID: PMC6767563 DOI: 10.1111/mmi.14250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
The extracytoplasmic function (ECF) σ factor, σE , is a key regulator of the cell envelope stress response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been known for over a decade, a comprehensive analysis of the genes under its control has not been undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. Approximately half of the genes identified encode proteins implicated in cell envelope function. Seventeen novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE -binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to neutralize membrane surface charge. Taken together, these analyses provide biological insight into the σE -mediated cell envelope stress response in the genus Streptomyces.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaoluo Huang
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniela Pinto
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thorsten Mascher
- Department Biology I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
63
|
Sharma RS, Karmakar S, Kumar P, Mishra V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol Evol 2019; 9:2263-2304. [PMID: 30847110 PMCID: PMC6392359 DOI: 10.1002/ece3.4743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/25/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
Theories in soil biology, such as plant-microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below-ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above-ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost-effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature-based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.
Collapse
Affiliation(s)
- Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Swagata Karmakar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Pankaj Kumar
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental StudiesUniversity of DelhiDelhiIndia
| |
Collapse
|
64
|
Montánchez I, Ogayar E, Plágaro AH, Esteve-Codina A, Gómez-Garrido J, Orruño M, Arana I, Kaberdin VR. Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated temperature provides insights into the putative mechanisms of its persistence and spread in the time of global warming. Sci Rep 2019; 9:289. [PMID: 30670759 PMCID: PMC6343004 DOI: 10.1038/s41598-018-36483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Discovering the means to control the increasing dissemination of pathogenic vibrios driven by recent climate change is challenged by the limited knowledge of the mechanisms in charge of Vibrio spp. persistence and spread in the time of global warming. To learn about physiological and gene expression patterns associated with the long-term persistence of V. harveyi at elevated temperatures, we studied adaptation of this marine bacterium in seawater microcosms at 30 °C which closely mimicked the upper limit of sea surface temperatures around the globe. We found that nearly 90% of cells lost their culturability and became partly damaged after two weeks, thus suggesting a negative impact of the combined action of elevated temperature and shortage of carbon on V. harveyi survival. Moreover, further gene expression analysis revealed that major adaptive mechanisms were poorly coordinated and apparently could not sustain cell fitness. On the other hand, elevated temperature and starvation promoted expression of many virulence genes, thus potentially reinforcing the pathogenicity of this organism. These findings suggest that the increase in disease outbreaks caused by V. harveyi under rising sea surface temperatures may not reflect higher cell fitness, but rather an increase in virulence enabling V. harveyi to escape from adverse environments to nutrient rich, host-pathogen associations.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Elixabet Ogayar
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain. .,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain. .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
65
|
Noise in bacterial gene expression. Biochem Soc Trans 2018; 47:209-217. [PMID: 30578346 DOI: 10.1042/bst20180500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
The expression level of a gene can fluctuate significantly between individuals within a population of genetically identical cells. The resultant phenotypic heterogeneity could be exploited by bacteria to adapt to changing environmental conditions. Noise is hence a genome-wide phenomenon that arises from the stochastic nature of the biochemical reactions that take place during gene expression and the relatively low abundance of the molecules involved. The production of mRNA and proteins therefore occurs in bursts, with alternating episodes of high and low activity during transcription and translation. Single-cell and single-molecule studies demonstrated that noise within gene expression is influenced by a combination of both intrinsic and extrinsic factors. However, our mechanistic understanding of this process at the molecular level is still rather limited. Further investigation is necessary that takes into account the detailed knowledge of gene regulation gained from biochemical studies.
Collapse
|
66
|
Siroli L, Braschi G, de Jong A, Kok J, Patrignani F, Lanciotti R. Transcriptomic approach and membrane fatty acid analysis to study the response mechanisms of Escherichia coli to thyme essential oil, carvacrol, 2-(E)-hexanal and citral exposure. J Appl Microbiol 2018; 125:1308-1320. [PMID: 30028070 DOI: 10.1111/jam.14048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/21/2018] [Accepted: 07/15/2018] [Indexed: 12/18/2022]
Abstract
AIMS The application of essential oils (EOs) and their components as food preservatives is promising but requires a deeper understanding of their mechanisms of action. This study aims to evaluate the effects of thyme EO, carvacrol, citral and 2-(E)-hexenal, on whole-genome gene expression (the transcriptome), as well as the fatty acid (FA) composition of the cell membranes of Escherichia coli K12. METHODS AND RESULTS Therefore, we studied the response against 1 h of exposure to sublethal concentrations of natural antimicrobials, of exponentially growing E. coli K12, using DNA microarray technology and a gas chromatographic method. The results show that treatment with a sublethal concentration of the antimicrobials strongly affects global gene expression in E. coli for all antimicrobials used. Major changes in the expression of genes involved in metabolic pathways as well as in FA biosynthesis and protection against oxidative stress were evidenced. Moreover, the sublethal treatments resulted in increased levels of unsaturated and cyclic FAs as well as an increase in the chain length compared to the controls. CONCLUSIONS The down-regulation of genes involved in aerobic metabolism indicates a shift from respiration to fermentative growth. Moreover, the results obtained suggest that the cytoplasmic membrane of E. coli is the major cellular target of EOs and their components. In addition, the key role of membrane unsaturated FAs in the response mechanisms of E. coli to natural antimicrobials has been confirmed in this study. SIGNIFICANCE AND IMPACT OF THE STUDY The transcriptomic data obtained signify a further step to understand the mechanisms of action of natural antimicrobials also when sublethal concentrations and short-term exposure. In addition, this research goes in deep correlating the transcriptomic modification with the changes in E. coli FA composition of cell membrane identified as the main target of the natural antimicrobials.
Collapse
Affiliation(s)
- L Siroli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy.,Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - G Braschi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy
| | - A de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, The Netherlands
| | - J Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, AG Groningen, The Netherlands
| | - F Patrignani
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy.,Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| | - R Lanciotti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Campus of Food Science, Cesena, Italy.,Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Cesena (FC), Italy
| |
Collapse
|
67
|
Fire blight host-pathogen interaction: proteome profiles of Erwinia amylovora infecting apple rootstocks. Sci Rep 2018; 8:11689. [PMID: 30076380 PMCID: PMC6076297 DOI: 10.1038/s41598-018-30064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/24/2018] [Indexed: 11/09/2022] Open
Abstract
Fire blight, caused by the enterobacterium Erwinia amylovora, is a destructive disease, which can affect most members of the Rosaceae family. Since no significant genomic differences have been found by others to explain differences in virulence, we used here a gel-based proteomic approach to elucidate mechanisms and key players that allow the pathogen to survive, grow and multiply inside its host. Therefore, two strains with proven difference in virulence were grown under controlled conditions in vitro as well as in planta (infected apple rootstocks). Proteomic analysis including 2DE and mass spectrometry revealed that proteins involved in transcription regulation were more abundant in the in planta condition for both strains. In addition, genes involved in RNA processing were upregulated in planta for the highly virulent strain PFB5. Moreover, the upregulation of structural components of the F0F1-ATP synthase are major findings, giving important information on the infection strategy of this devastating pathogen. Overall, this research provides the first proteomic profile of E. amylovora during infection of apple rootstocks and insights into the response of the pathogen in interaction with its host.
Collapse
|
68
|
Association of Mycobacterium Proteins with Lipid Droplets. J Bacteriol 2018; 200:JB.00240-18. [PMID: 29760207 DOI: 10.1128/jb.00240-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis is a global pathogen of significant medical importance. A key aspect of its life cycle is the ability to enter into an altered physiological state of nonreplicating persistence during latency and resist elimination by the host immune system. One mechanism by which M. tuberculosis facilitates its survival during latency is by producing and metabolizing intracytoplasmic lipid droplets (LDs). LDs are quasi-organelles consisting of a neutral lipid core such as triacylglycerol surrounded by a phospholipid monolayer and proteins. We previously reported that PspA (phage shock protein A) associates with LDs produced in Mycobacterium In particular, the loss or overproduction of PspA alters LD homeostasis in Mycobacterium smegmatis and attenuates the survival of M. tuberculosis during nonreplicating persistence. Here, M. tuberculosis PspA (PspAMtb) and a ΔpspA M. smegmatis mutant were used as model systems to investigate the mechanism by which PspA associates with LDs and determine if other Mycobacterium proteins associate with LDs using a mechanism similar to that for PspA. Through this work, we established that the amphipathic helix present in the first α-helical domain (H1) of PspA is both necessary and sufficient for the targeting of this protein to LDs. Furthermore, we identified other Mycobacterium proteins that also possess amphipathic helices similar to PspA H1, including a subset that localize to LDs. Altogether, our results indicate that amphipathic helices may be an important mechanism by which proteins target LDs in prokaryotes.IMPORTANCEMycobacterium spp. are one of the few prokaryotes known to produce lipid droplets (LDs), and their production has been linked to aspects of persistent infection by M. tuberculosis Unfortunately, little is known about LD production in these organisms, including how LDs are formed, their function, or the identity of proteins that associate with them. In this study, an established M. tuberculosis LD protein and a surrogate Mycobacterium host were used as model systems to study the interactions between proteins and LDs in bacteria. Through these studies, we identified a commonly occurring protein motif that is able to facilitate the association of proteins to LDs in prokaryotes.
Collapse
|
69
|
Heidrich ES, Brüser T. Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA. PLoS One 2018; 13:e0198564. [PMID: 29906279 PMCID: PMC6003685 DOI: 10.1371/journal.pone.0198564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
PspA is a key component of the bacterial Psp membrane-stress response system. The biochemical and functional characterization of PspA is impeded by its oligomerization and aggregation properties. It was recently possible to solve the coiled coil structure of a completely soluble PspA fragment, PspA(1–144), that associates with the σ54 enhancer binding protein PspF at its W56-loop and thereby down-regulates the Psp response. We now found that the C-terminal part of PspA, PspA(145–222), also interacts with PspF and inhibits its activity in the absence of full-length PspA. Surprisingly, PspA(145–222) effects changed completely in the presence of full-length PspA, as promoter activity was triggered instead of being inhibited under this condition. PspA(145–222) thus interfered with the inhibitory effect of full-length PspA on PspF, most likely by interacting with full-length PspA that remained bound to PspF. In support of this view, a comprehensive bacterial-2-hybrid screen as well as co-purification analyses indicated a self-interaction of PspA(145–222) and an interaction with full-length PspA. This is the first direct demonstration of PspA/PspA and PspA/PspF interactions in vivo that are mediated by the C-terminus of PspA. The data indicate that regulatory binding sites on PspF do not only exist for the N-terminal coiled coil domain but also for the C-terminal domain of PspA. The inhibition of PspF by PspA-(145–222) was reduced upon membrane stress, whereas the inhibition of PspF by PspA(1–144) did not respond to membrane stress. We therefore propose that the C-terminal domain of PspA is crucial for the regulation of PspF in response to Psp system stimuli.
Collapse
Affiliation(s)
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
70
|
Ravi J, Anantharaman V, Aravind L, Gennaro ML. Variations on a theme: evolution of the phage-shock-protein system in Actinobacteria. Antonie Van Leeuwenhoek 2018; 111:753-760. [PMID: 29488183 PMCID: PMC5916035 DOI: 10.1007/s10482-018-1053-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/19/2018] [Indexed: 11/30/2022]
Abstract
The phage shock protein (Psp) stress-response system protects bacteria from envelope stress through a cascade of interactions with other proteins and membrane lipids to stabilize the cell membrane. A key component of this multi-gene system is PspA, an effector protein that is found in diverse bacterial phyla, archaea, cyanobacteria, and chloroplasts. Other members of the Psp system include the cognate partners of PspA that are part of known operons: pspF||pspABC in Proteobacteria, liaIHGFSR in Firmicutes, and clgRpspAMN in Actinobacteria. Despite the functional significance of the Psp system, the conservation of PspA and other Psp functions, as well as the various genomic contexts of PspA, remain poorly characterized in Actinobacteria. Here we utilize a computational evolutionary approach to systematically identify the variations of the Psp system in ~450 completed actinobacterial genomes. We first determined the homologs of PspA and its cognate partners (as reported in Escherichia coli, Bacillus subtilis, and Mycobacterium tuberculosis) across Actinobacteria. This survey revealed that PspA and most of its functional partners are prevalent in Actinobacteria. We then found that PspA occurs in four predominant genomic contexts within Actinobacteria, the primary context being the clgRpspAM system previously identified in Mycobacteria. We also constructed a phylogenetic tree of PspA homologs (including paralogs) to trace the conservation and evolution of PspA across Actinobacteria. The genomic context revealed that PspA shows changes in its gene-neighborhood. The presence of multiple PspA contexts or of other known Psp members in genomic neighborhoods that do not carry pspA suggests yet undiscovered functional implications in envelope stress response mechanisms.
Collapse
Affiliation(s)
- Janani Ravi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
71
|
Puffal J, García-Heredia A, Rahlwes KC, Siegrist MS, Morita YS. Spatial control of cell envelope biosynthesis in mycobacteria. Pathog Dis 2018; 76:4953754. [DOI: 10.1093/femspd/fty027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/25/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
72
|
CUI XIAOWEN, SHERMAN WEN HSUMING, KINOSHITA YOSHIMASA, KOISHI SHOTA, ISOWAKI CHIKA, OU LIUSHU, MASUDA YOSHIMITSU, HONJOH KENICHI, MIYAMOTO TAKAHISA. Role of Phage Shock Protein in Recovery of Heat-injured Salmonella. Biocontrol Sci 2018; 23:17-25. [DOI: 10.4265/bio.23.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- XIAOWEN CUI
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - HSU-MING SHERMAN WEN
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - YOSHIMASA KINOSHITA
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - SHOTA KOISHI
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - CHIKA ISOWAKI
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - LIUSHU OU
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - YOSHIMITSU MASUDA
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - KEN-ICHI HONJOH
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - TAKAHISA MIYAMOTO
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| |
Collapse
|
73
|
Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R. The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum. Mol Microbiol 2017; 106:719-741. [PMID: 28922502 DOI: 10.1111/mmi.13839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 02/03/2023]
Abstract
When the cell envelope integrity is compromised, bacteria trigger signaling cascades resulting in the production of proteins that counteract these extracytoplasmic stresses. Here, we show that the two-component system EsrSR regulates a cell envelope stress response in the Actinobacterium Corynebacterium glutamicum. The sensor kinase EsrS possesses an amino-terminal phage shock protein C (PspC) domain, a property that sets EsrSR apart from all other two-component systems characterized so far. An integral membrane protein, EsrI, whose gene is divergently transcribed to the esrSR gene locus and which interestingly also possesses a PspC domain, acts as an inhibitor of EsrSR under non-stress conditions. The resulting EsrISR three-component system is activated among others by antibiotics inhibiting the lipid II cycle, such as bacitracin and vancomycin, and it orchestrates a broad regulon including the esrI-esrSR gene locus itself, genes encoding heat shock proteins, ABC transporters, and several putative membrane-associated or secreted proteins of unknown function. Among those, the ABC transporter encoded by cg3322-3320 was shown to be directly involved in bacitracin resistance of C. glutamicum. Since similar esrI-esrSR loci are present in a large number of actinobacterial genomes, EsrISR represents a novel type of stress-responsive system whose components are highly conserved in the phylum Actinobacteria.
Collapse
Affiliation(s)
- Britta Kleine
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Ava Chattopadhyay
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Tino Polen
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Daniela Pinto
- Institut für Mikrobiologie, Technische Universität Dresden, Zellescher Weg 20b, Dresden D-01217, Germany
| | - Thorsten Mascher
- Institut für Mikrobiologie, Technische Universität Dresden, Zellescher Weg 20b, Dresden D-01217, Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Melanie Brocker
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| |
Collapse
|
74
|
Saur M, Hennig R, Young P, Rusitzka K, Hellmann N, Heidrich J, Morgner N, Markl J, Schneider D. A Janus-Faced IM30 Ring Involved in Thylakoid Membrane Fusion Is Assembled from IM30 Tetramers. Structure 2017; 25:1380-1390.e5. [DOI: 10.1016/j.str.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 01/22/2023]
|
75
|
Jovanovic M, Waite C, James E, Synn N, Simpson T, Kotta-Loizou I, Buck M. Functional Characterization of Key Residues in Regulatory Proteins HrpG and HrpV of Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:656-665. [PMID: 28488468 DOI: 10.1094/mpmi-03-17-0073-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The plant pathogen Pseudomonas syringae pv. tomato DC3000 uses a type III secretion system (T3SS) to transfer effector proteins into the host. The expression of T3SS proteins is controlled by the HrpL σ factor. Transcription of hrpL is σ54-dependent and bacterial enhancer-binding proteins HrpR and HrpS coactivate the hrpL promoter. The HrpV protein imposes negative control upon HrpR and HrpS through direct interaction with HrpS. HrpG interacts with HrpV and relieves such negative control. The sequence alignments across Hrp group I-type plant pathogens revealed conserved HrpV and HrpG amino acids. To establish structure-function relationships in HrpV and HrpG, either truncated or alanine substitution mutants were constructed. Key functional residues in HrpV and HrpG are found within their C-terminal regions. In HrpG, L101 and L105 are indispensable for the ability of HrpG to directly interact with HrpV and suppress HrpV-dependent negative regulation of HrpR and HrpS. In HrpV, L108 and G110 are major determinants for interactions with HrpS and HrpG. We propose that mutually exclusive binding of HrpS and HrpG to the same binding site of HrpV governs a transition from negative control to activation of the HrpRS complex leading to HrpL expression and pathogenicity of P. syringae.
Collapse
Affiliation(s)
- Milija Jovanovic
- 1 Imperial College London, Imperial College Road, London, SW7 2AZ, U.K
| | - Christopher Waite
- 1 Imperial College London, Imperial College Road, London, SW7 2AZ, U.K
| | - Ellen James
- 2 Trio Medicines Ltd., Hammersmith Medicines Research, Cumberland Avenue, London, NW10 7EW, U.K.; and
| | - Nicholas Synn
- 1 Imperial College London, Imperial College Road, London, SW7 2AZ, U.K
| | - Timothy Simpson
- 3 Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, U.K
| | - Ioly Kotta-Loizou
- 1 Imperial College London, Imperial College Road, London, SW7 2AZ, U.K
| | - Martin Buck
- 1 Imperial College London, Imperial College Road, London, SW7 2AZ, U.K
| |
Collapse
|
76
|
Abstract
Transcription initiation is highly regulated in bacterial cells, allowing adaptive gene regulation in response to environment cues. One class of promoter specificity factor called sigma54 enables such adaptive gene expression through its ability to lock the RNA polymerase down into a state unable to melt out promoter DNA for transcription initiation. Promoter DNA opening then occurs through the action of specialized transcription control proteins called bacterial enhancer-binding proteins (bEBPs) that remodel the sigma54 factor within the closed promoter complexes. The remodelling of sigma54 occurs through an ATP-binding and hydrolysis reaction carried out by the bEBPs. The regulation of bEBP self-assembly into typically homomeric hexamers allows regulated gene expression since the self-assembly is required for bEBP ATPase activity and its direct engagement with the sigma54 factor during the remodelling reaction. Crystallographic studies have now established that in the closed promoter complex, the sigma54 factor occupies the bacterial RNA polymerase in ways that will physically impede promoter DNA opening and the loading of melted out promoter DNA into the DNA-binding clefts of the RNA polymerase. Large-scale structural re-organizations of sigma54 require contact of the bEBP with an amino-terminal glutamine and leucine-rich sequence of sigma54, and lead to domain movements within the core RNA polymerase necessary for making open promoter complexes and synthesizing the nascent RNA transcript.
Collapse
|
77
|
Baron F, Bonnassie S, Alabdeh M, Cochet MF, Nau F, Guérin-Dubiard C, Gautier M, Andrews SC, Jan S. Global Gene-expression Analysis of the Response of Salmonella Enteritidis to Egg White Exposure Reveals Multiple Egg White-imposed Stress Responses. Front Microbiol 2017; 8:829. [PMID: 28553268 PMCID: PMC5428311 DOI: 10.3389/fmicb.2017.00829] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42°C, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism of egg white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45°C) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilization genes, despite no evidence indicating the presence of these substrates in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- Science de la Vie et de la Terre, Université de Rennes IRennes, France
| | - Mariah Alabdeh
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Marie-Françoise Cochet
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | | | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| |
Collapse
|
78
|
Two Novel Vesicle-Inducing Proteins in Plastids 1 Genes Cloned and Characterized in Triticum urartu. PLoS One 2017; 12:e0170439. [PMID: 28103282 PMCID: PMC5245824 DOI: 10.1371/journal.pone.0170439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/04/2017] [Indexed: 01/26/2023] Open
Abstract
Vesicle-inducing protein in plastids 1 (Vipp1) is thought to play an important role both in thylakoid biogenesis and chloroplast envelope maintenance during stress. Vipp1 is conserved in photosynthetic organisms and forms a high homo-oligomer complex structure that may help sustain the membrane integrity of chloroplasts. This study cloned two novel VIPP1 genes from Triticum urartu and named them TuVipp1 and TuVipp2. Both proteins shared high identity with the homologous proteins AtVipp1 and CrVipp1. TuVipp1 and TuVipp2 were expressed in various organs of common wheat, and both genes were induced by light and various stress treatments. Purified TuVipp1 and TuVipp2 proteins showed secondary and advanced structures similar to those of the homologous proteins. Similar to AtVipp1, TuVipp1 is a chloroplast target protein. Additionally, TuVipp1 was able to rescue the phenotypes of pale leaves, lethality, and disordered chloroplast structures of AtVipp1 (-/-) mutant lines. Collectively, our data demonstrate that TuVipp1 and TuVipp2 are functional proteins in chloroplasts in wheat and may be critical for maintaining the chloroplast envelope under stress and membrane biogenesis upon photosynthesis.
Collapse
|
79
|
Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:28-39. [DOI: 10.1016/j.bbamem.2016.10.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
|
80
|
Interactions between the Cytoplasmic Domains of PspB and PspC Silence the Yersinia enterocolitica Phage Shock Protein Response. J Bacteriol 2016; 198:3367-3378. [PMID: 27698088 DOI: 10.1128/jb.00655-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/30/2016] [Indexed: 01/24/2023] Open
Abstract
The phage shock protein (Psp) system is a widely conserved cell envelope stress response that is essential for the virulence of some bacteria, including Yersinia enterocolitica Recruitment of PspA by the inner membrane PspB-PspC complex characterizes the activated state of this response. The PspB-PspC complex has been proposed to be a stress-responsive switch, changing from an OFF to an ON state in response to an inducing stimulus. In the OFF state, PspA cannot access its binding site in the C-terminal cytoplasmic domain of PspC (PspCCT), because this site is bound to PspB. PspC has another cytoplasmic domain at its N-terminal end (PspCNT), which has been thought to play a role in maintaining the OFF state, because its removal causes constitutive activation. However, until now, this role has proved recalcitrant to experimental investigation. Here, we developed a combination of approaches to investigate the role of PspCNT in Y. enterocolitica Pulldown assays provided evidence that PspCNT mediates the interaction of PspC with the C-terminal cytoplasmic domain of PspB (PspBCT) in vitro Furthermore, site-specific oxidative cross-linking suggested that a PspCNT-PspBCT interaction occurs only under noninducing conditions in vivo Additional experiments indicated that mutations in pspC might cause constitutive activation by compromising this PspCNT binding site or by causing a conformational disturbance that repositions PspCNT in vivo These findings have provided the first insight into the regulatory function of the N-terminal cytoplasmic domain of PspC, revealing that its ability to participate in an inhibitory complex is essential to silencing the Psp response. IMPORTANCE The phage shock protein (Psp) response has generated widespread interest because it is linked to important phenotypes, including antibiotic resistance, biofilm formation, and virulence in a diverse group of bacteria. Therefore, achieving a comprehensive understanding of how this response is controlled at the molecular level has obvious significance. An integral inner membrane protein complex is believed to be a critical regulatory component that acts as a stress-responsive switch, but some essential characteristics of the switch states are poorly understood. This study provides an important advance by uncovering a new protein interaction domain within this membrane protein complex that is essential to silencing the Psp response in the absence of an inducing stimulus.
Collapse
|
81
|
Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, Chong CS. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure. J Basic Microbiol 2016; 57:151-161. [PMID: 27859397 DOI: 10.1002/jobm.201600494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/23/2016] [Indexed: 01/15/2023]
Abstract
Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L-1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
Collapse
Affiliation(s)
- Jia Chun Lim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Suganthi Thevarajoo
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chitra Selvaratnam
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zaharah Ibrahim
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Chun Shiong Chong
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
82
|
Manganelli R, Gennaro ML. Protecting from Envelope Stress: Variations on the Phage-Shock-Protein Theme. Trends Microbiol 2016; 25:205-216. [PMID: 27865622 DOI: 10.1016/j.tim.2016.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Abstract
During envelope stress, critical inner-membrane functions are preserved by the phage-shock-protein (Psp) system, a stress response that emerged from work with Escherichia coli and other Gram-negative bacteria. Reciprocal regulatory interactions and multiple effector functions are well documented in these organisms. Searches for the Psp system across phyla reveal conservation of only one protein, PspA. However, examination of Firmicutes and Actinobacteria reveals that PspA orthologs associate with non-orthologous regulatory and effector proteins retaining functions similar to those in Gram-negative counterparts. Conservation across phyla emphasizes the long-standing importance of the Psp system in prokaryotes, while inter- and intra-phyla variations within the system indicate adaptation to different cell envelope structures, bacterial lifestyles, and/or bacterial morphogenetic strategies.
Collapse
Affiliation(s)
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA.
| |
Collapse
|
83
|
Hennig R, West A, Debus M, Saur M, Markl J, Sachs JN, Schneider D. The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:126-136. [PMID: 27836697 DOI: 10.1016/j.bbabio.2016.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/17/2022]
Abstract
IM30/Vipp1 proteins are crucial for thylakoid membrane biogenesis in chloroplasts and cyanobacteria. A characteristic C-terminal extension distinguishes these proteins from the homologous bacterial PspA proteins, and this extension has been discussed to be key for the IM30/Vipp1 activity. Here we report that the extension of the Synechocystis IM30 protein is indispensable, and argue that both, the N-terminal PspA-domain as well as the C-terminal extension are needed in order for the IM30 protein to conduct its in vivo function. In vitro, we show that the PspA-domain of IM30 is vital for stability/folding and oligomer formation of IM30 as well as for IM30-triggered membrane fusion. In contrast, the IM30 C-terminal domain is involved in and necessary to stabilize defined contacts to negatively charged membrane surfaces, and to modulate the IM30-induced membrane fusion activity. Although the two IM30 protein domains have distinct functional roles, only together they enable IM30 to work properly.
Collapse
Affiliation(s)
- Raoul Hennig
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Ana West
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Martina Debus
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Michael Saur
- Institut für Zoologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Jürgen Markl
- Institut für Zoologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Dirk Schneider
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany.
| |
Collapse
|
84
|
Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:537-549. [PMID: 27693914 DOI: 10.1016/j.bbamem.2016.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Heidrich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Adrien Thurotte
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
85
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
86
|
Abstract
The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| | - Andrew J Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| |
Collapse
|
87
|
Rv2744c Is a PspA Ortholog That Regulates Lipid Droplet Homeostasis and Nonreplicating Persistence in Mycobacterium tuberculosis. J Bacteriol 2016; 198:1645-1661. [PMID: 27002134 DOI: 10.1128/jb.01001-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/16/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant cause of morbidity and mortality worldwide, despite the availability of a live attenuated vaccine and anti-TB antibiotics. The vast majority of individuals infected with M. tuberculosis develop an asymptomatic latent infection in which the bacterium survives within host-generated granulomatous lesions in a physiologically altered metabolic state of nonreplicating persistence. The granuloma represents an adverse environment, as M. tuberculosis is exposed to various stressors capable of disrupting the essential constituents of the bacterium. In Gram-negative and Gram-positive bacteria, resistance to cell envelope stressors that perturb the plasma membrane is mediated in part by proteins comprising the phage shock protein (Psp) system. PspA is an important component of the Psp system; in the presence of envelope stress, PspA localizes to the inner face of the plasma membrane, homo-oligomerizes to form a large scaffold-like complex, and helps maintain plasma membrane integrity to prevent a loss of proton motive force. M. tuberculosis and other members of the Mycobacterium genus are thought to encode a minimal functional unit of the Psp system, including an ortholog of PspA. Here, we show that Rv2744c possesses structural and physical characteristics that are consistent with its designation as a PspA family member. However, although Rv2744c is upregulated under conditions of cell envelope stress, loss of Rv2744c does not alter resistance to cell envelope stressors. Furthermore, Rv2744c localizes to the surface of lipid droplets in Mycobacterium spp. and regulates lipid droplet number, size, and M. tuberculosis persistence during anaerobically induced dormancy. Collectively, our results indicate that Rv2744c is a bona fide ortholog of PspA that may function in a novel role to regulate lipid droplet homeostasis and nonreplicating persistence (NRP) in M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the causative agent of tuberculosis, a disease associated with significant morbidity and mortality worldwide. M. tuberculosis is capable of establishing lifelong asymptomatic infections in susceptible individuals and reactivating during periods of immune suppression to cause active disease. The determinants that are important for persistent infection of M. tuberculosis or for reactivation of this organism from latency are poorly understood. In this study, we describe our initial characterizations of Rv2744c, an ortholog of phage shock protein A (PspA) that regulates the homeostasis of lipid bodies and nonreplicating persistence in M. tuberculosis This function of PspA in M. tuberculosis is novel and suggests that PspA may represent a unique bacterial target upon which to base therapeutic interventions against this organism.
Collapse
|
88
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
89
|
Radeck J, Gebhard S, Orchard PS, Kirchner M, Bauer S, Mascher T, Fritz G. Anatomy of the bacitracin resistance network inBacillus subtilis. Mol Microbiol 2016; 100:607-20. [DOI: 10.1111/mmi.13336] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Jara Radeck
- Technische Universität Dresden, Institute of Microbiology; Dresden Germany
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Susanne Gebhard
- University of Bath, Department of Biology and Biochemistry, Milner Centre for Evolution; Bath United Kingdom
| | | | - Marion Kirchner
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Stephanie Bauer
- Ludwig-Maximilians-Universität Mänchen, Department Biology I; Mänchen Germany
| | - Thorsten Mascher
- Technische Universität Dresden, Institute of Microbiology; Dresden Germany
| | - Georg Fritz
- Philipps-Universität Marburg, LOEWE-Center for Synthetic Microbiology (SYNMIKRO); Marburg Germany
| |
Collapse
|
90
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
91
|
Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, Heinzen RA. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form. PLoS One 2016; 11:e0149957. [PMID: 26909555 PMCID: PMC4766238 DOI: 10.1371/journal.pone.0149957] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/05/2016] [Indexed: 11/19/2022] Open
Abstract
A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.
Collapse
Affiliation(s)
- Kelsi M. Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bryan Hansen
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Vinod Nair
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
92
|
Aurand TC, March JC. Development of a synthetic receptor protein for sensing inflammatory mediators interferon‐γ and tumor necrosis factor‐α. Biotechnol Bioeng 2016; 113:492-500. [DOI: 10.1002/bit.25832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 11/05/2022]
Affiliation(s)
- T. Christopher Aurand
- Department of Biological and Environmental EngineeringCornell UniversityIthaca14853New York
| | - John C. March
- Department of Biological and Environmental EngineeringCornell UniversityIthaca14853New York
| |
Collapse
|
93
|
Zhang N, Jovanovic G, McDonald C, Ces O, Zhang X, Buck M. Transcription Regulation and Membrane Stress Management in Enterobacterial Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:207-30. [DOI: 10.1007/978-3-319-32189-9_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
94
|
Papanastasiou M, Orfanoudaki G, Kountourakis N, Koukaki M, Sardis MF, Aivaliotis M, Tsolis KC, Karamanou S, Economou A. Rapid label-free quantitative analysis of the E. coli
BL21(DE3) inner membrane proteome. Proteomics 2015; 16:85-97. [DOI: 10.1002/pmic.201500304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/05/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Malvina Papanastasiou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department Pathology & Laboratory Medicine, Perelman School of Medicine; University of Pennsylvania; Philadelphia USA
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
| | - Nikos Kountourakis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Marios Frantzeskos Sardis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
| | - Konstantinos C. Tsolis
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology; Foundation for Research & Technology; Iraklio Greece
- Department of Biology; University of Crete; Iraklio Greece
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology; Katholieke Universiteit Leuven; Leuven Belgium
| |
Collapse
|
95
|
Abstract
Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies.
Collapse
Affiliation(s)
- Joke Donné
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sylvia Dewilde
- Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
96
|
Kaberdin VR, Montánchez I, Parada C, Orruño M, Arana I, Barcina I. Unveiling the Metabolic Pathways Associated with the Adaptive Reduction of Cell Size During Vibrio harveyi Persistence in Seawater Microcosms. MICROBIAL ECOLOGY 2015; 70:689-700. [PMID: 25903990 DOI: 10.1007/s00248-015-0614-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Owing to their ubiquitous presence and ability to act as primary or opportunistic pathogens, Vibrio species greatly contribute to the diversity and evolution of marine ecosystems. This study was aimed at unveiling the cellular strategies enabling the marine gammaproteobacterium Vibrio harveyi to adapt and persist in natural aquatic systems. We found that, although V. harveyi incubation in seawater microcosm at 20 °C for 2 weeks did not change cell viability and culturability, it led to a progressive reduction in the average cell size. Microarray analysis revealed that this morphological change was accompanied by a profound decrease in gene expression affecting the central carbon metabolism, major biosynthetic pathways, and energy production. In contrast, V. harveyi elevated expression of genes closely linked to the composition and function of cell envelope. In addition to triggering lipid degradation via the β-oxidation pathway and apparently promoting the use of endogenous fatty acids as a major energy and carbon source, V. harveyi upregulated genes involved in ancillary mechanisms important for sustaining iron homeostasis, cell resistance to the toxic effect of reactive oxygen species, and recycling of amino acids. The above adaptation mechanisms and morphological changes appear to represent the major hallmarks of the initial V. harveyi response to starvation.
Collapse
Affiliation(s)
- Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| | - Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Claudia Parada
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Isabel Barcina
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
97
|
Southern SJ, Male A, Milne T, Sarkar-Tyson M, Tavassoli A, Oyston PCF. Evaluating the role of phage-shock protein A in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2015; 161:2192-203. [PMID: 26374246 PMCID: PMC5452601 DOI: 10.1099/mic.0.000175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phage-shock protein (Psp) response is an extracytoplasmic response system that is vital for maintenance of the cytoplasmic membrane when the cell encounters stressful conditions. The paradigm of the Psp response has been established in Escherichia coli. The response has been shown to be important for survival during the stationary phase, maintenance of the proton motive force across membranes and implicated in virulence. In this study, we identified a putative PspA homologue in Burkholderia pseudomallei, annotated as BPSL2105. Similar to the induction of PspA in E. coli, the expression of B. pseudomallei BPSL2105 was induced by heat shock. Deletion of BPSL2105 resulted in a survival defect in the late stationary phase coincident with dramatic changes in the pH of the culture medium. The B. pseudomallei BPSL2105 deletion mutant also displayed reduced survival in macrophage infection – the first indication that the Psp response plays a role during intracellular pathogenesis in this species. The purified protein formed large oligomeric structures similar to those observed for the PspA protein of E. coli, and PspA homologues in Bacillus, cyanobacteria and higher plants, providing further evidence to support the identification of BPSL2105 as a PspA-like protein in B. pseudomallei.
Collapse
Affiliation(s)
- Stephanie J Southern
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Abigail Male
- 2Department of Chemistry, University of Southampton, Southampton, UK
| | - Timothy Milne
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - Mitali Sarkar-Tyson
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK 3University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ali Tavassoli
- 2Department of Chemistry, University of Southampton, Southampton, UK 4The Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Petra C F Oyston
- 1Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| |
Collapse
|
98
|
Zhang N, Schäfer J, Sharma A, Rayner L, Zhang X, Tuma R, Stockley P, Buck M. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis. J Mol Biol 2015; 427:3516-3526. [PMID: 26365052 PMCID: PMC4641871 DOI: 10.1016/j.jmb.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022]
Abstract
In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. The bridge helix and switch regions form an intricate network in RNAP. The σ70 and σ54 transcription systems differentially use this interaction network. Transcription factor DksA and σ54 Region I also contribute to this network. Disruption of this network enhances backtracking and intrinsic RNA hydrolysis.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Jorrit Schäfer
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lucy Rayner
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Xiaodong Zhang
- Division of Macromolecular Structure and Function, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Martin Buck
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
99
|
Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. PspF-binding domain PspA1-144and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Mol Microbiol 2015; 98:743-59. [DOI: 10.1111/mmi.13154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Hendrik Osadnik
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Michael Schöpfel
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Eyleen Heidrich
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Denise Mehner
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Christoph Parthier
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Milton T. Stubbs
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Thomas Brüser
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| |
Collapse
|
100
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|