51
|
Phenotypic and genotypic determination of β-lactamase-producing Escherichia coli strains isolated from raw milk and clinical mastitis samples, Mashhad, Iran. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
52
|
Ghenea AE, Zlatian OM, Cristea OM, Ungureanu A, Mititelu RR, Balasoiu AT, Vasile CM, Salan AI, Iliuta D, Popescu M, Udriștoiu AL, Balasoiu M. TEM,CTX-M,SHV Genes in ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a County Clinical Emergency Hospital Romania-Predominance of CTX-M-15. Antibiotics (Basel) 2022; 11:antibiotics11040503. [PMID: 35453254 PMCID: PMC9028254 DOI: 10.3390/antibiotics11040503] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background: CTX-M betalactamases have shown a rapid spread in the recent years among Enterobacteriaceae and have become the most prevalent Extended Spectrum Beta-Lactamases (ESBLs) in many parts of the world. The introduction and dissemination of antibiotic-resistant genes limits options for treatment, increases mortality and morbidity in patients, and leads to longer hospitalization and expensive costs. We aimed to identify the beta-lactamases circulating encoded by the genes blaCTX-M-15, blaSHV-1 and blaTEM-1 in Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) strains. Furthermore, we established the associated resistance phenotypes among patients hospitalized in the Intensive Care Unit (ICU) from County Clinical Emergency Hospital of Craiova, Romania. Methods: A total of 46 non-duplicated bacterial strains (14 strains of E. coli and 32 strains of K. pneumoniae), which were resistant to ceftazidime (CAZ) and cefotaxime (CTX) by Kirby–Bauer disk diffusion method, were identified using the automated VITEK2 system. Detection of ESBL-encoding genes and other resistance genes was carried out by PCR. Results. E. coli strains were resistant to 3rd generation cephalosporins and moderately resistant to quinolones, whereas K. pneumoniae strains were resistant to penicillins, cephalosporins, and sulfamides, and moderately resistant to quinolones and carbapenems. Most E. coli strains harbored blaCTX-M-15 gene (13/14 strains), a single strain had the blaSHV-1 gene, but 11 strains harbored blaTEM-1 gene. The mcr-1 gene was not detected. We detected tet(A) gene in six strains and tet(B) in one strain. In K. pneumoniae strains we detected blaCTX-M-15 in 23 strains, blaSHV-1 in all strains and blaTEM-1 in 14 strains. The colistin resistance gene mcr-1 was not detected. The tetracycline gene tet(A) was detected in 11 strains, but the gene tet(B) was not detected in any strains. Conclusions. The development in antibiotic resistance highlights the importance of establishing policies to reduce antibiotic use and improving the national resistance surveillance system in order to create local antibiotic therapy guidelines.
Collapse
Affiliation(s)
- Alice Elena Ghenea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Ovidiu Mircea Zlatian
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Oana Mariana Cristea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
- Correspondence: (O.M.C.); (C.M.V.)
| | - Anca Ungureanu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Radu Razvan Mititelu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Andrei Theodor Balasoiu
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Corina Maria Vasile
- Department of Paediatrics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (O.M.C.); (C.M.V.)
| | - Alex-Ioan Salan
- Department of Oral and Maxillofacial Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Daniel Iliuta
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca-Loredana Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania;
| | - Maria Balasoiu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| |
Collapse
|
53
|
Isolation, Identification, Characterization, and Plasmid Profile of Urinary Tract Infectious Escherichia coli from Clinical Samples. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7234586. [PMID: 35356239 PMCID: PMC8958076 DOI: 10.1155/2022/7234586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022]
Abstract
Objective In recent times, urinary tract infection (UTI) is one of the most widely recognized bacterial diseases all over the planet. UTI influences individuals of any age and gender. The target of this study is to concentrate on the recurrence of uropathogens, the antimicrobial susceptibility pattern of the isolates, and the plasmid profile of people from the government clinics of Karaikudi. Methods From July 2017 to December 2017, 100 urine tests were gathered and handled for the isolation of pathogenic microbes. In total, 89 isolates were found from the samples collected. Results Escherichia coli was discovered as the most common bacterial isolate screened from the UTI-infected people, accounting for 28.09 percent of all isolates. E. coli was seen to be the highest prevalent bacterium for UTI in all age groups and demonstrated resistance to routinely used medications, especially cefpodoxime and novobiocin, which have been 100 percent resistant. The E. coli isolates screened were positive for beta-lactamase and film generation, and they have strong antimicrobial resistance. As a result, the E. coli strains with the highest prevalence of virulence determinants have become more resistant to many medications because they support the microorganism in overcoming the host's defense and colonizing or entering the urinary system. The amplified 16S rRNA product was analyzed, and phylogenetic relationships were determined. The presence of TEM (56 percent), CTX-M (64 percent), SHV (40 percent), and OXA (60 percent) was discovered. Among E. coli isolates, CTX-M was the most common extended spectrum-beta lactamase (ESBL). Multiplex PCR was also used to identify the existence of CTX-M subgroups in E. coli isolates. Conclusion Finally, we urge that antibiotic selection should be predicated on the awareness of the specific prevalence and that novel antimicrobial medicines for urinary infections be developed to combat the overuse of antibiotics.
Collapse
|
54
|
Monteiro GP, de Melo RT, Guidotti-Takeuchi M, Dumont CF, Ribeiro RAC, Guerra W, Ramos LMS, Paixão DA, dos Santos FAL, Rodrigues DDP, Boleij P, Hoepers PG, Rossi DA. A Ternary Copper (II) Complex with 4-Fluorophenoxyacetic Acid Hydrazide in Combination with Antibiotics Exhibits Positive Synergistic Effect against Salmonella Typhimurium. Antibiotics (Basel) 2022; 11:388. [PMID: 35326852 PMCID: PMC8944508 DOI: 10.3390/antibiotics11030388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed effective antimicrobial measures. The minimum inhibitory concentration was evaluated for seven antimicrobials, isolated and combined with the copper (II) complex [Cu(4-FH)(phen)(ClO4)2] (4-FH = 4-fluorophenoxyacetic acid hydrazide and phen = 1,10-phenanthroline), known as DRI-12, in planktonic and sessile ST. In parallel, 42 resistance genes were screened (PCR/microarray). All strains were multidrug resistant (MDR). Resistance to carbapenems and polymyxins (86 and 88%, respectively) have drawn attention to the emergence of the problem in Brazil, and resistance is observed also to CIP and CFT (42 and 67%, respectively), the drugs of choice in treatment. Resistance to beta-lactams was associated with the genes blaTEM/blaCTX-M in 39% of the strains. Lower concentrations of DRI-12 (62.7 mg/L, or 100 μM) controlled planktonic and sessile ST in relation to AMP/SUL/TET and AMP/SUL/TET/COL, respectively. The synergistic effect provided by DRI-12 was significant for COL/CFT and COL/AMP in planktonic and sessile ST, respectively, and represents promising alternatives for the control of MDR ST.
Collapse
Affiliation(s)
- Guilherme Paz Monteiro
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Roberta Torres de Melo
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Carolyne Ferreira Dumont
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Rosanne Aparecida Capanema Ribeiro
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Luana Munique Sousa Ramos
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Drielly Aparecida Paixão
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (W.G.); (L.M.S.R.); (D.A.P.)
| | - Fernanda Aparecida Longato dos Santos
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| | | | - Peter Boleij
- Check-Points B.V., 6709 PD Wageningen, The Netherlands;
| | - Patrícia Giovana Hoepers
- Postgraduate Program in Veterinary Science, Federal University of Uberlândia, Uberlândia 38402-018, Brazil;
| | - Daise Aparecida Rossi
- Laboratory of Molecular Epidemiology, Federal University of Uberlândia, Uberlândia 38402-018, Brazil; (G.P.M.); (M.G.-T.); (C.F.D.); (R.A.C.R.); (F.A.L.d.S.); (D.A.R.)
| |
Collapse
|
55
|
Valdez C, Costa C, Simões M, de Carvalho CCCR, Baptista T, Campos MJ. Detection of mcr-1 Gene in Undefined Vibrio Species Isolated from Clams. Microorganisms 2022; 10:394. [PMID: 35208850 PMCID: PMC8876837 DOI: 10.3390/microorganisms10020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
The increase of antimicrobial resistant strains is leading to an emerging threat to public health. Pathogenic Vibrio are responsible for human and animal illness. The Enterobacteriaceae family includes microorganisms that affect humans, causing several infections. One of the main causes of human infection is related to the ingestion of undercooked seafood. Due to their filter-feeding habit, marine invertebrates, such as clams, are known to be a natural reservoir of specific microbial communities. In the present study, Vibrionaceae and coliforms microorganisms were isolated from clams. A microbial susceptibility test was performed using the disk diffusion method. From 43 presumptive Vibrio spp. and 17 coliforms, three Vibrio spp. with MICs to colistin >512 mg L-1 were found. From the 23 antimicrobial resistance genes investigated, only the three isolates that showed phenotypic resistance to colistin contained the mcr-1 gene. Genotypic analysis for virulence genes in EB07V indicated chiA gene presence. The results from the plasmid cure and transformation showed that the resistance is chromosomally mediated. Biochemical analysis and MLSA, on the basis of four protein-coding gene sequences (recA, rpoB, groEL and dnaJ), grouped the isolates into the genus Vibrio but distinguished them as different from any known Vibrio spp.
Collapse
Affiliation(s)
- Christian Valdez
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.V.); (C.C.); (M.S.); (T.B.)
| | - Cátia Costa
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.V.); (C.C.); (M.S.); (T.B.)
| | - Marco Simões
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.V.); (C.C.); (M.S.); (T.B.)
| | - Carla C. C. R. de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Teresa Baptista
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.V.); (C.C.); (M.S.); (T.B.)
| | - Maria J. Campos
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (C.V.); (C.C.); (M.S.); (T.B.)
| |
Collapse
|
56
|
Phetburom N, Boueroy P, Chopjitt P, Hatrongjit R, Nuanualsuwan S, Kerdsin A. Phenotypic and molecular characterization of β-lactamase and plasmid-mediated quinolone resistance genes in Klebsiella oxytoca isolated from slaughtered pigs in Thailand. Vet World 2022; 15:309-315. [PMID: 35400952 PMCID: PMC8980382 DOI: 10.14202/vetworld.2022.309-315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Over recent years, antimicrobial-resistant Klebsiella species in humans, animals, food animals, food products, and agricultural environments have been the center of attention due to its role in the evolution of antimicrobial resistance. The emergence of resistance to fluoroquinolones and cephalosporins of third and higher generations in Klebsiella oxytoca has not received much attention in animal husbandry compared to that in Klebsiella pneumoniae. Reports on K. oxytoca are limited in the study area. Therefore, we investigated the antimicrobial susceptibility and resistance genes in K. oxytoca isolated from slaughtered pigs in Thailand. Materials and Methods Microbiological examination was conducted on 384 Klebsiella spp. isolates recovered from slaughtered pigs in ten provinces of Thailand. Seventy-two K. oxytoca isolates (18.75%) were examined for antimicrobial-resistant genes (β-lactamase [bla TEM, bla CTX-M, and bla SHV]) and fluoroquinolone-resistant genes (qnrA, qnrB, qnrC, qnrD, qnrS, oqxAB, aac(6')-Ib-cr, and qepA). Results The most common genotype was bla CTX-M (58/72, 80.55%), followed by bla TEM with bla CTX-M (7/72, 9.72%) and bla TEM (6/72, 8.33%). The most common bla CTX-M group was bla CTX-M-1 (19/58, 32.76%), followed by bla CTX-M-9 (1/58, 1.72%). Plasmid-mediated quinolone resistance genes were identified in 13 (18.05%) isolates: qnrS (16.70%) and qnrB (1.4%). All 13 isolates had qnrS transferable to an Escherichia coli recipient, whereas qnrB was not detected in any transconjugants. Either bla CTX-M or bla TEM harbored by one K. oxytoca strain was transferable to an E. coli recipient. Analysis of antimicrobial susceptibility revealed that more than 90% of the bla CTX-M-carrying K. oxytoca isolates were susceptible to chloramphenicol, trimethoprim, ceftazidime, cefepime, cefotaxime, amoxicillin-clavulanic acid, piperacillin-tazobactam, and fosfomycin. All K. oxytoca isolates (13) harboring qnr were susceptible to carbapenem and ceftriaxone; however, 43 (74.13%) of the K. oxytoca isolates harboring bla CTX-M exhibited extended-spectrum β-lactamase activity. Most of the K. oxytoca isolates from pigs were highly resistant to ampicillin, azithromycin, and gentamicin. Conclusion To prevent further transmission of Klebsiella spp. Between food animals and humans, strict control of antibiotic use in clinical and livestock settings is necessary along with routine disinfection of the livestock environment and efforts to increase awareness of antimicrobial resistance transmission.
Collapse
Affiliation(s)
- Nattamol Phetburom
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anusak Kerdsin
- Department of Community Health, Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
57
|
Ballén V, Gabasa Y, Ratia C, Sánchez M, Soto S. Correlation Between Antimicrobial Resistance, Virulence Determinants and Biofilm Formation Ability Among Extraintestinal Pathogenic Escherichia coli Strains Isolated in Catalonia, Spain. Front Microbiol 2022; 12:803862. [PMID: 35087504 PMCID: PMC8786794 DOI: 10.3389/fmicb.2021.803862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli is a well-characterized bacterium highly prevalent in the human intestinal tract and the cause of many important infections. The aim of this study was to characterize 376 extraintestinal pathogenic E. coli strains collected from four hospitals in Catalonia (Spain) between 2016 and 2017 in terms of antimicrobial resistance, siderophore production, phylogroup classification, and the presence of selected virulence and antimicrobial resistance genes. In addition, the association between these characteristics and the ability to form biofilms was also analyzed. The strains studied were classified into four groups according to their biofilm formation ability: non-biofilm formers (15.7%), weak (23.1%), moderate (35.6%), and strong biofilm formers (25.6%). The strains were highly resistant to ciprofloxacin (48.7%), trimethoprim-sulfamethoxazole (47.9%), and ampicillin (38%), showing a correlation between higher resistance to ciprofloxacin and lower biofilm production. Seventy-three strains (19.4%) were ESBL-producers. However, no relationship between the presence of ESBL and biofilm formation was found. The virulence factor genes fimH (92%), pgaA (84.6%), and irp1 (77.1%) were the most prevalent in all the studied strains. A statistically significant correlation was found between biofilm formation and the presence of iroN, papA, fimH, sfa, cnf, hlyA, iutA, and colibactin-encoding genes clbA, clbB, clbN, and clbQ. Interestingly, a high prevalence of colibactin-encoding genes (19.9%) was observed. Colibactin is a virulence factor, which interferes with the eukaryotic cell cycle and has been associated with colorectal cancer in humans. Most colibactin-encoding E. coli isolates belonged to phylogroup B2, exhibited low antimicrobial resistance but moderate or high biofilm-forming ability, and were significantly associated with most of the virulence factor genes tested. Additionally, the analysis of their clonal relatedness by PFGE showed 48 different clusters, indicating a high clonal diversity among the colibactin-positive strains. Several studies have correlated the pathogenicity of E. coli and the presence of virulence factor genes; however, colibactin and its relationship to biofilm formation have been scarcely investigated. The increasing prevalence of colibactin in E. coli and other Enterobacteriaceae and the recently described correlation with biofilm formation, makes colibactin a promising therapeutic target to prevent biofilm formation and its associated adverse effects.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Melany Sánchez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
58
|
Liao CY, Balasubramanian B, Peng JJ, Tao SR, Liu WC, Ma Y. Antimicrobial Resistance of Escherichia coli From Aquaculture Farms and Their Environment in Zhanjiang, China. Front Vet Sci 2022; 8:806653. [PMID: 35004933 PMCID: PMC8740034 DOI: 10.3389/fvets.2021.806653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a major concern worldwide. To evaluate the AMR of Escherichia coli in aquaculture farms of Zhanjiang, China, a total of 90 samples from the water, soil, and sediment of three aquaculture farms (farms I, II, and III) in Zhanjiang were collected, and 90 strains of E. coli were isolated for drug resistance analysis and AMR gene detection. The results indicated that the isolated 90 strains of E. coli have high resistance rates to penicillin, amoxicillin, ampicillin, tetracycline, compound sulfamethoxazole, sulfisoxazole, chloramphenicol, florfenicol, and rifampin (≥70%). Among these antimicrobial drugs, the resistance rate to rifampicin is as high as 100%. Among the isolated 90 strains of E. coli, all of them were resistant to more than two kinds of antimicrobial drugs, the number of strains resistant to nine kinds of drugs was the largest (19 strains), and the most resistant strain showed resistance to 16 kinds of antibacterial drugs. Regarding the AMR genes, among the three aquaculture farms, the most resistance genes were detected in farm II (28 species). The detection rate of blaTEM, blaCIT, blaNDM, floR, OptrA, cmlA, aphA1, Sul2, oqxA, and qnrS in 90 isolates of E. coli was high (≥50%). The detection rate of carbapenem-resistant genes, such as blaKPC, blaIMP, and cfr, was relatively lower ( ≤ 30%), and the detection rate of mcr2 was the lowest (0). At least four AMR genes were detected for each strain, and 15 AMR genes were detected at most. Among them, the number of strains that carried 10 AMR genes was the largest (15 strains). Finally, a correlation analysis found that the AMR genes including blaTEM, blaCIT, floR, OptrA, cmlA, aac(3)-II, Sul2, ereA, ermB, oqxB, qnrA, mcr1, and mcr2 had a high correlation rate with drug resistance (≥50%). To summarize, the 90 strains of E. coli isolated from water, surrounding soil, and sediment samples showed resistance to multi-antimicrobial drugs and carried various antimicrobial resistance genes. Thus, it is essential to strengthen the rational use of antimicrobial drugs, especially the amide alcohol drugs, and control the AMR in the aquaculture industry of Zhanjiang, China.
Collapse
Affiliation(s)
- Cui-Yi Liao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | | | - Jin-Ju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Song-Ruo Tao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Wen-Chao Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
59
|
Yamagishi Y, Nakayama N, Matsunaga N, Sakanashi D, Suematsu H, Matsumoto Y, Mikamo H. Novel approach for rapid detection of extended spectrum β-lactamase and metalloid-β-lactamase using drug susceptibility testing microfluidic device (DSTM). J Infect Chemother 2022; 28:526-531. [PMID: 35016830 DOI: 10.1016/j.jiac.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND/PURPOSE Rapid detection of β-lactamases is important in a recent situation where resistant bacteria are increasing. By using the drug susceptibility testing microfluidic device (DSTM), rapid screening of extended spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) has become possible. METHODS β-lactams and β-lactamase inhibitors were pre-fixed in the DSTM for use. A bacterial suspension in Mueller-Hinton broth (McF 0.25) was introduced into the device, and the effects of β-lactamase inhibitor on morphological changes caused by β-lactam were evaluated after 3 h incubation. RESULTS Clinical isolates genetically confirmed to produce β-lactamase were used. Of the 84 ESBL-producing strains, 80 strains (95%) turned to be ESBL positive, and five strains (6%) of them MBL were positive as well as ESBL. Four strains (5%) were negative for both ESBL and MBL. Of the 24 MBL-producing strains, 23 strains (96%) were positive for MBL. All the 43 AmpC-producing strains were negative for both ESBL and MBL. Of the 156 ESBL- and MBL-nonproducing strains, 155 strains (99%) were negative for both ESBL and MBL, and one strain was positive for ESBL. With this method, the detection sensitivity was 95% and the specificity was 100% for ESBL, whereas the detection sensitivity was 96% and the specificity was 98% for MBL. These results were not significantly different from the results of the disc diffusion method. CONCLUSION The DSTM method allows rapid detection of β-lactamases in 3 h and may be a useful replacement for the disc diffusion method.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School Hospital, Kochi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Norihisa Nakayama
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Fukoku CO., LTD, Saitama, Japan
| | | | - Daisuke Sakanashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan
| | - Hiroyuki Suematsu
- Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan
| | - Yoshimi Matsumoto
- Fukoku CO., LTD, Saitama, Japan; Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Infection Control and Prevention, Aichi Medical University Hospital, Aichi, Japan.
| |
Collapse
|
60
|
Sornsenee P, Chimplee S, Arbubaker A, Kongchai S, Madimong H, Romyasamit C. Occurrence, Antimicrobial Resistance Profile, and Characterization of Extended-spectrum β-Lactamase-Producing Escherichia coli Isolates from Minced Meat at Local Markets in Thailand. Foodborne Pathog Dis 2021; 19:232-240. [PMID: 34941425 DOI: 10.1089/fpd.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli exhibits strong multidrug resistance (MDR) to ampicillin and third-generation cephalosporins. This study examined the occurrence, antimicrobial susceptibility, and molecular genetic features of ESBL-producing E. coli isolates from three commonly consumed minced meat varieties, namely pork, chicken, and beef. In total, 150 samples were collected from 10 local markets in Thailand. ESBL-producing E. coli was identified in 78 samples (52%), and minced chicken meat was most contaminated (79.17%). The isolates exhibited potential susceptibility to amikacin (96.16%) and carbapenems (91-95%). However, ESBL-producing E. coli displayed strong resistance to ampicillin and cefpodoxime (100%) and high MDR to 3-5 antibiotic classes (94.87%). Most presumptive ESBL producers harbored ESBL resistance genes (97.44%), most commonly blaTEM (78.21%). Indeed, our results demonstrated that raw minced meat has a high occurrence of ESBL-producing E. coli harboring ESBL resistance genes, highlighting the importance of implementation of sanitary handling practices to reduce microbial contamination in commercial meat as well as the need for consumer education on safe handling and cooking of meat products.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Arseesa Arbubaker
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand
| | - Sutharinee Kongchai
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand
| | - Hilmee Madimong
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Thailand.,Research Center of Excellence in Innovation of Essential Oil, Walailak University, Tha Sala, Thailand
| |
Collapse
|
61
|
Klebsiella pneumoniae Complex Harboring mcr-1, mcr-7, and mcr-8 Isolates from Slaughtered Pigs in Thailand. Microorganisms 2021; 9:microorganisms9122436. [PMID: 34946038 PMCID: PMC8703602 DOI: 10.3390/microorganisms9122436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Dissemination of the mobile colistin resistance gene mcr in Enterobacterales among humans, animals, and the environment is a public health issue. We characterized mcr genes in the Klebsiella pneumoniae complex (KpnC) isolated from slaughtered pigs in Thailand. The 280 KpnCs consisted of K. pneumoniae (85%), Klebsiella quasipneumoniae (8.21%), and Klebsiella variicola (6.79%). mcr genes were detected in 6.79% (19/280) of KpnC isolates, consisting of mcr-8 (n = 9; 3.21%), mcr-7 (n = 7; 2.50%), mcr-7 + mcr-8 (n = 2; 0.71%), and mcr-1 + mcr-7 (n = 1; 0.36%). K. pneumoniae predominantly carried the mcr-7 and mcr-8 genes, while K. variicola and K. quasipneumoniae harbored mcr-7 and mcr-8, respectively. Six of the nineteen mcr-harboring KpnC isolates exhibited colistin resistance, and five had mcr-1 or mcr-8 transferable to an Escherichia coli recipient. Antimicrobial susceptibility analysis revealed that all mcr-carrying KpnC isolates were susceptible to carbapenems, cefotaxime, cefepime, amoxicillin/clavulanic acid, piperacillin/tazobactam, amikacin, and fosfomycin, and had high resistance to azithromycin. Multilocus sequence analysis demonstrated that the mcr-harboring KpnC isolates were genetically diverse. A ‘One-Health’ approach is useful to combat antimicrobial-resistant bacteria through coordinating the human, animal, and environmental sectors. Hence, continuous monitoring and surveillance of mcr-carrying KpnCs throughout the pork supply chain is crucial for ensuring public health.
Collapse
|
62
|
Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Antibiotics (Basel) 2021; 10:antibiotics10121442. [PMID: 34943653 PMCID: PMC8698178 DOI: 10.3390/antibiotics10121442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the blaTEM antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of blaTEM and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of blaTEM and blaCTX-M was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria.
Collapse
|
63
|
Within patient genetic diversity of bla KPC harboring Klebsiella pneumoniae in a Colombian hospital and identification of a new NTE KPC platform. Sci Rep 2021; 11:21409. [PMID: 34725422 PMCID: PMC8560879 DOI: 10.1038/s41598-021-00887-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Resistance to carbapenems in Klebsiellapneumoniae has been mostly related with the worldwide dissemination of KPC, largely due to the pandemic clones belonging to the complex clonal (CC) 258. To unravel blaKPC post-endemic clinical impact, here we describe clinical characteristics of 68 patients from a high complexity hospital, and the molecular and genetic characteristics of their 139 blaKPC—K.pneumoniae (KPC-Kp) isolates. Of the 26 patients that presented relapses or reinfections, 16 had changes in the resistance profiles of the isolates recovered from the recurrent episodes. In respect to the genetic diversity of KPC-Kp isolates, PFGE revealed 45 different clonal complexes (CC). MLST for 12 representative clones showed ST258 was present in the most frequent CC (23.0%), however, remaining 11 representative clones belonged to non-CC258 STs (77.0%). Interestingly, 16 patients presented within-patient genetic diversity of KPC-Kp clones. In one of these, three unrelated KPC-Kp clones (ST258, ST504, and ST846) and a blaKPC—K.variicola isolate (ST182) were identified. For this patient, complete genome sequence of one representative isolate of each clone was determined. In K.pneumoniae isolates blaKPC was mobilized by two Tn3-like unrelated platforms: Tn4401b (ST258) and Tn6454 (ST504 and ST846), a new NTEKPC-IIe transposon for first time characterized also determined in the K.variicola isolate of this study. Genome analysis showed these transposons were harbored in different unrelated but previously reported plasmids and in the chromosome of a K.pneumoniae (for Tn4401b). In conclusion, in the blaKPC post-endemic dissemination in Colombia, different KPC-Kp clones (mostly non-CC258) have emerged due to integration of the single blaKPC gene in new genetic platforms. This work also shows the intra-patient resistant and genetic diversity of KPC-Kp isolates. This circulation dynamic could impact the effectiveness of long-term treatments.
Collapse
|
64
|
Pintor-Cora A, Álvaro-Llorente L, Otero A, Rodríguez-Calleja JM, Santos JA. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods 2021; 10:foods10112609. [PMID: 34828891 PMCID: PMC8619215 DOI: 10.3390/foods10112609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fresh vegetables are an essential part of a healthy diet, but microbial contamination of fruits and vegetables is a serious concern to human health, not only for the presence of foodborne pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9% vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11) and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even though their implication in human infections is rare, they can become an environmental reservoir of antibiotic-resistance genes that can be further disseminated along the food chain.
Collapse
|
65
|
Montero L, Irazabal J, Cardenas P, Graham JP, Trueba G. Extended-Spectrum Beta-Lactamase Producing- Escherichia coli Isolated From Irrigation Waters and Produce in Ecuador. Front Microbiol 2021; 12:709418. [PMID: 34671324 PMCID: PMC8521160 DOI: 10.3389/fmicb.2021.709418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
In cities across the globe, the majority of wastewater – that includes drug resistant and pathogenic bacteria among other contaminants – is released into streams untreated. This water is often subsequently used for irrigation of pastures and produce. This use of wastewater-contaminated streams allows antibiotic-resistant bacteria to potentially cycle back to humans through agricultural products. In this study, we investigated the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from produce and irrigation water across 17 provinces of Ecuador. A total of 117 vegetable samples, 119 fruit samples, and 38 irrigation water samples were analyzed. Results showed that 11% of the samples were positive for E. coli including 11 irrigation water samples (29%), and samples of 13 vegetables (11%), and 11 fruits (9%). Among the 165 E. coli isolates cultured, 96 (58%) had the ESBL phenotype, and 58% of ESBL producing E. coli came from irrigation water samples, 11% from vegetables, and 30% from fruits. The blaCTX–M–55, blaCTX–M 65, and blaCTX–M 15 genes were the most frequently found gene associated with the ESBL phenotype and coincided with the blaCTX–M alleles associated with human infections in Ecuador. Three isolates had the mcr-1 gene which is responsible for colistin resistance. This report provides evidence of the potential role of irrigation water in the growing antimicrobial resistance crisis in Ecuador.
Collapse
Affiliation(s)
- Lorena Montero
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jorge Irazabal
- Agrocalidad, Agencia de Regulación y Control Fito y Zoosanitario, Quito, Ecuador
| | - Paul Cardenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P Graham
- Environmental Health Sciences Division, University of California, Berkeley, Berkeley, CA, United States
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
66
|
Cobo-Díaz JF, Alvarez-Molina A, Alexa EA, Walsh CJ, Mencía-Ares O, Puente-Gómez P, Likotrafiti E, Fernández-Gómez P, Prieto B, Crispie F, Ruiz L, González-Raurich M, López M, Prieto M, Cotter P, Alvarez-Ordóñez A. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. MICROBIOME 2021; 9:204. [PMID: 34645520 PMCID: PMC8515711 DOI: 10.1186/s40168-021-01131-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The microorganisms that inhabit food processing environments (FPE) can strongly influence the associated food quality and safety. In particular, the possibility that FPE may act as a reservoir of antibiotic-resistant microorganisms, and a hotspot for the transmission of antibiotic resistance genes (ARGs) is a concern in meat processing plants. Here, we monitor microbial succession and resistome dynamics relating to FPE through a detailed analysis of a newly opened pork cutting plant over 1.5 years of activity. RESULTS We identified a relatively restricted principal microbiota dominated by Pseudomonas during the first 2 months, while a higher taxonomic diversity, an increased representation of other taxa (e.g., Acinetobacter, Psychrobacter), and a certain degree of microbiome specialization on different surfaces was recorded later on. An increase in total abundance, alpha diversity, and β-dispersion of ARGs, which were predominantly assigned to Acinetobacter and associated with resistance to certain antimicrobials frequently used on pig farms of the region, was detected over time. Moreover, a sharp increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae and vancomycin-resistant Enterococcaceae was observed when cutting activities started. ARGs associated with resistance to β-lactams, tetracyclines, aminoglycosides, and sulphonamides frequently co-occurred, and mobile genetic elements (i.e., plasmids, integrons) and lateral gene transfer events were mainly detected at the later sampling times in drains. CONCLUSIONS The observations made suggest that pig carcasses were a source of resistant bacteria that then colonized FPE and that drains, together with some food-contact surfaces, such as equipment and table surfaces, represented a reservoir for the spread of ARGs in the meat processing facility. Video Abstract.
Collapse
Affiliation(s)
- José F. Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | | | - Elena A. Alexa
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Present address: Microbiology Department, National University of Ireland, Galway, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Paula Puente-Gómez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Eleni Likotrafiti
- Department of Food Science & Technology, International Hellenic University, Thessaloniki, Greece
| | | | - Bernardo Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Fiona Crispie
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lorena Ruiz
- Dairy Research Institute, Spanish National Research Council, Instituto de Productos Lácteos de Asturias-CSIC, Villaviciosa, Spain
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias Spain
| | - Montserrat González-Raurich
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Mercedes López
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
- Institute of Food Science and Technology, Universidad de León, León, Spain
| |
Collapse
|
67
|
Ballén V, Gabasa Y, Ratia C, Ortega R, Tejero M, Soto S. Antibiotic Resistance and Virulence Profiles of Klebsiella pneumoniae Strains Isolated From Different Clinical Sources. Front Cell Infect Microbiol 2021; 11:738223. [PMID: 34540722 PMCID: PMC8440954 DOI: 10.3389/fcimb.2021.738223] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium capable of colonizing, invading, and causing infections in different anatomical sites of the human body. Its ability to evade the immune system, its increasing antimicrobial resistance and the emergence of hypervirulent pathotypes have become a major challenge in the medical field. In this study, 127 strains from different clinical sources (urine, respiratory tract or blood) were characterized for antimicrobial resistance, the presence of virulence factor genes, serum resistance, hypermucoviscosity and the ability to form biofilms. Specific characteristics of the uropathogenic strains were examined and compared with the other clinical groups. Differences were found between urine and the other groups of strains. Urine strains showed the highest antibiotic resistance (64.91%) compared to blood (63.64%) or respiratory strains (51.35%) as well as the highest extended-spectrum beta-lactamases (ESBL) production. These strains also showed statistically significant high resistance to fosfomycin (24.56%) compared to the other groups (p = 0.008). Regarding virulence, 84.21% of the urine strains presented the uge gene, showing a statistically significant difference (p = 0.03) compared to the other clinical sources, indicating a possible role of this gene in the development of urinary tract infection. In addition, 46% of biofilm-forming strains belonged to the urine sample group (p = 0.043). In conclusion, K. pneumoniae strains isolated from urine samples showed higher antimicrobial resistance, ESBL production, and biofilm-forming ability compared to those isolated from respiratory or blood samples. The rapid spread of clinical strains with these characteristics is of concern, and new therapeutic alternatives are essential to mitigate their harmful effects.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Raquel Ortega
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Marc Tejero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
68
|
Guevara PD, Maes M, Thanh DP, Duarte C, Rodriguez EC, Montaño LA, Dan THN, Nguyen TNT, Carey ME, Campos J, Chinen I, Perez E, Baker S. A genomic snapshot of Salmonella enterica serovar Typhi in Colombia. PLoS Negl Trop Dis 2021; 15:e0009755. [PMID: 34529660 PMCID: PMC8478212 DOI: 10.1371/journal.pntd.0009755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/28/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) circulating in Latin America. It has been observed that typhoid fever is still endemic in this part of the world; however, a lack of standardized blood culture surveillance across Latin American makes estimating the true disease burden problematic. The Colombian National Health Service established a surveillance system for tracking bacterial pathogens, including S. Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates collected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted genotyping method in Latin America) and whole genome sequencing (WGS). We found that the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Consequently, these data suggest that these are endemic clades circulating in Colombia. We found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the first time that S. Typhi isolated from Colombia have been characterized by WGS, and after comparing these data with those generated using PFGE, we conclude that PFGE is unsuitable for tracking S. Typhi clones and mapping transmission. The genetic diversity of pathogens such as S. Typhi is limited in Latin America and should be targeted for future surveillance studies incorporating WGS.
Collapse
Affiliation(s)
| | - Mailis Maes
- University of Cambridge School of Clinical Medicine Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Level 5 Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | | | | | - Thanh Ho Ngoc Dan
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - To Nguyen Thi Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Megan E. Carey
- University of Cambridge School of Clinical Medicine Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Level 5 Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Josefina Campos
- Red Pulsenet Latinoamérica y el Caribe, INEI-ANLIS “Dr Carlos Malbran, Buenos Aires, Argentina
| | - Isabel Chinen
- Red Pulsenet Latinoamérica y el Caribe, INEI-ANLIS “Dr Carlos Malbran, Buenos Aires, Argentina
| | - Enrique Perez
- Health Emergencies Department, Pan American Health Organization/World Health Organization, PAHO/WHO, Washington DC, United States of America
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Level 5 Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
69
|
Hofmann P, Alabi A, Manouana GP, Onwugamba FC, Hasenauer A, Agbanrin MD, Gouleu CSM, Bingoulou G, Borrmann S, McCall MBB, Adegnika AA. High ESBL-E colonization rate among children in Gabon: a follow-up study. J Med Microbiol 2021; 70. [PMID: 34402781 DOI: 10.1099/jmm.0.001405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A previous study conducted in Gabon, Central Africa, in 2010/11 found a high colonization rate with extended-spectrum β-lactamase-producing enterobacterales (ESBL-E) among children of ~34 %. Eight years later, we aimed to reassess the ESBL-E rate and previously identified risk factors for colonization in children from Gabon. We conducted a cross-sectional cohort study in 2018 on 92 outpatients under 5 years of age with diarrhoea in Lambaréné, Gabon, in whom a rectal swab was obtained at the initial medical encounter (baseline). Fifty-eight of these provided a further rectal swab 1 week afterwards. ESBL-E colonization was assessed [following the European Committee on Antimicrobial Susceptibility Testing (EUCAST)], and in confirmed ESBL-E isolates the susceptibility to meropenem and the prevalence of the most abundant ESBL genes, bla CTX-M, bla SHV, and bla TEM, were investigated. At baseline, the ESBL-E colonization rate was 57 % (52/92; 95 % CI: 46-67). Hospitalization during the previous year, chicken consumption in the past week and young age were identified as independent risk factors for ESBL-E colonization at baseline. On day 7, the ESBL-E carriage rate was 72 % (42/58; 95 % CI: 59-83). All ESBL-E isolates (n=293) were susceptible to meropenem and bla CTX-M was the most frequently detected β-lactamase gene. The ESBL-E colonization rate among children from Gabon is alarmingly high, with indications of further increase over recent years. While all ESBL-E strains remain currently susceptible to meropenem, in practice no adequate treatment is available locally for severe infections with such isolates. It is thus of the utmost importance to invest in improved hospital infection prevention and control measures to combat ESBL-E effectively.
Collapse
Affiliation(s)
- Philipp Hofmann
- Charité - Universitätsmedizin, Berlin, Germany.,Institute for Tropical Medicine, University of Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany
| | | | - Gédéon P Manouana
- Institute for Tropical Medicine, University of Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Francis C Onwugamba
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Amelia Hasenauer
- Department of Infection and Immunity, University College, London, UK
| | | | | | - Gédéon Bingoulou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Université des Sciences et de la Santé, Libreville, Gabon
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Matthew B B McCall
- Institute for Tropical Medicine, University of Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ayola A Adegnika
- Institute for Tropical Medicine, University of Tübingen and German Center for Infection Research (DZIF), Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
70
|
Synergistic Antibacterial Effects of Meropenem in Combination with Aminoglycosides against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 and blaNDM-5. Antibiotics (Basel) 2021; 10:antibiotics10081023. [PMID: 34439073 PMCID: PMC8388987 DOI: 10.3390/antibiotics10081023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Infections due to carbapenem-resistant Escherichia coli (CREC) are problematic due to limitation in treatment options. Combination therapies of existing antimicrobial agents have become a reliable strategy to control these infections. In this study, the synergistic effects of meropenem in combination with aminoglycosides were assessed by checkerboard and time-kill assays. Of the 35 isolates, 19 isolates (54.3%) were resistant to carbapenems (imipenem and meropenem) with the MIC ranges from 16 to 128 µg/mL. These isolates were resistant to almost all antibiotic classes. Molecular characteristics revealed co-harboring of carbapenemase (blaNDM-1, blaNDM-5 and blaOXA-48) and extended-spectrum β-lactamases (ESBL) genes (blaCTX-M, blaSHV and blaTEM). The checkerboard assay displayed synergistic effects of meropenem and several aminoglycosides against most CREC isolates. Time-kill assays further demonstrated strong synergistic effects of meropenem in combination with either amikacin, gentamicin, kanamycin, streptomycin, and tobramycin. The results suggested that meropenem in combination with aminoglycoside therapy might be an efficient optional treatment for infections cause by CREC.
Collapse
|
71
|
Kuo SC, Wang YC, Tan MC, Huang WC, Shiau YR, Wang HY, Lai JF, Huang IW, Lauderdale TL. In vitro activity of imipenem/relebactam, meropenem/vaborbactam, ceftazidime/avibactam, cefepime/zidebactam and other novel antibiotics against imipenem-non-susceptible Gram-negative bacilli from Taiwan. J Antimicrob Chemother 2021; 76:2071-2078. [PMID: 33956969 DOI: 10.1093/jac/dkab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the susceptibility of imipenem-non-susceptible Escherichia coli (INS-EC), Klebsiella pneumoniae (INS-KP), Acinetobacter baumannii (INS-AB) and Pseudomonas aeruginosa (INS-PA) to novel antibiotics. METHODS MICs were determined using the broth microdilution method. Carbapenemase and ESBL phenotypic testing and PCR for genes encoding ESBLs, AmpCs and carbapenemases were performed. RESULTS Zidebactam, avibactam and relebactam increased the respective susceptibility rates to cefepime, ceftazidime and imipenem of 17 INS-EC by 58.8%, 58.8% and 70.6%, of 163 INS-KP by 77.9%, 88.3% and 76.1% and of 81 INS-PA by 45.7%, 38.3% and 85.2%, respectively. Vaborbactam increased the meropenem susceptibility of INS-EC by 41.2% and of INS-KP by 54%. Combinations of β-lactams and novel β-lactamase inhibitors or β-lactam enhancers (BLI-BLE) were inactive against 136 INS-AB. In 58 INS-EC and INS-KP with exclusively blaKPC-like genes, zidebactam, avibactam, relebactam and vaborbactam increased the susceptibility of the partner β-lactams by 100%, 96.6%, 84.5% and 75.9%, respectively. In the presence of avibactam, ceftazidime was active in an additional 85% of 20 INS-EC and INS-KP with exclusively blaOXA-48-like genes while with zidebactam, cefepime was active in an additional 75%. INS-EC and INS-KP with MBL genes were susceptible only to cefepime/zidebactam. The β-lactam/BLI-BLE combinations were active against INS-EC and INS-KP without detectable carbapenemases. For INS-EC, INS-KP and INS-AB, tigecycline was more active than omadacycline and eravacycline but eravacycline had a lower MIC distribution. Lascufloxacin and delafloxacin were active in <35% of these INS isolates. CONCLUSIONS β-Lactam/BLI-BLE combinations were active in a higher proportion of INS-EC, INS-KP and INS-PA. The susceptibility of novel fluoroquinolones and tetracyclines was not superior to that of old ones.
Collapse
Affiliation(s)
- Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Chen Tan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wei-Cheng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yih-Ru Shiau
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hui-Ying Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jui-Fen Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
72
|
Adwan G, Omar G. Phenotypic and molecular characterization of fluoroquinolone resistant Pseudomonas aeruginosa isolates in Palestine. BRAZ J BIOL 2021; 82:e239868. [PMID: 34190800 DOI: 10.1590/1519-6984.239868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
Fluoroquinolones are important antimicrobial agents for the treatment of Pseudomonas infections. A total of 11 isolates of P. aeruginosa were collected from different clinical samples from different medical centers in the North West Bank-Palestine during 2017. In this study, resistance to fluoroquinolones and secretions of β-lactamases were detected by phenotypic methods, while presence of β-lactamase gene sequences and other virulence factors were detected by PCR technique. PCR product for gyrA, parC and parE genes were sequenced for further analyses. The phylogenetic analyses, population diversity indices and haplotypes determination were conducted using computer programs MEGA version 6, DnaSP 5.1001 and median-joining algorithm in the program Network 5, respectively. Results of this study showed that the MIC for ciprofloxacin and norfloxacin had a range of 32-256 µg/ml. In addition, all isolates carried either exoT or exoT and exoY genes, different β-lactamase genes and 82% of these isolates harbored class 1 integrons. Analyses of the gyrA, parC and parE sequences were found to be polymorphic, had high haplotype diversity (0.945-0.982), low nucleotide diversity (0.01225-0.02001) and number of haplotypes were 9 for each gyrA and parE genes and 10 haplotypes for parC gene. The founder haplotypes being Hap-1 (18%), Hap-2 (27.3%) and Hap-6 (9.1%) for gyrA, parC and parE genes, respectively. Two of ParE haplotypes were detected as indel haplotypes. The Median-joining- (MJ) networks constructed from haplotypes of these genes showed a star-like expansion. The neutrality tests (Tajima's D test and Fu's Fs test) for these genes showed negative values. Palestinian fluoroquinolone resistant P. aeruginosa strains showed high MIC level for fluoroquinolones, β-lactamase producers, carried type III secretion exotoxin-encoding genes, most of them had integrase I gene and had high level of mutations in QRDR regions in gyrA, parC and parE genes. All these factors may play an important role in the invasiveness of these strains and make them difficult to treat. Isolation of these strains from different medical centers, indicate the need for a strict application of infection control measures in Medical centers in the North West Bank-Palestine that aim to reduce expense and damage caused by P. aeruginosa infections. Molecular analyses showed that Palestinian fluoroquinolone resistant P. aeruginosa haplotypes are not genetically differentiated; however, more mutations may exist in these strains.
Collapse
Affiliation(s)
- G Adwan
- An-Najah National University, Department of Biology and Biotechnology, Nablus, Palestine
| | - G Omar
- An-Najah National University, Department of Biology and Biotechnology, Nablus, Palestine
| |
Collapse
|
73
|
Melo RT, Galvão NN, Guidotti-Takeuchi M, Peres PABM, Fonseca BB, Profeta R, Azevedo VAC, Monteiro GP, Brenig B, Rossi DA. Molecular Characterization and Survive Abilities of Salmonella Heidelberg Strains of Poultry Origin in Brazil. Front Microbiol 2021; 12:674147. [PMID: 34220757 PMCID: PMC8253257 DOI: 10.3389/fmicb.2021.674147] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of the study was to evaluate the genotypic and phenotypic characteristics of 20 strains of S. Heidelberg (SH) isolated from broilers produced in southern Brazil. The similarity and presence of genetic determinants linked to virulence, antimicrobial resistance, biofilm formation, and in silico-predicted metabolic interactions revealed this serovar as a threat to public health. The presence of the ompC, invA, sodC, avrA, lpfA, and agfA genes was detected in 100% of the strains and the luxS gene in 70% of them. None of the strains carries the blaSHV, mcr-1, qnrA, qnrB, and qnrS genes. All strains showed a multidrug-resistant profile to at least three non-β-lactam drugs, which include colistin, sulfamethoxazole, and tetracycline. Resistance to penicillin, ceftriaxone (90%), meropenem (25%), and cefoxitin (25%) were associated with the presence of blaCTX–M and blaCMY–2 genes. Biofilm formation reached a mature stage at 25 and 37°C, especially with chicken juice (CJ) addition. The sodium hypochlorite 1% was the least efficient in controlling the sessile cells. Genomic analysis of two strains identified more than 100 virulence genes and the presence of resistance to 24 classes of antibiotics correlated to phenotypic tests. Protein-protein interaction (PPI) prediction shows two metabolic pathways correlation with biofilm formation. Virulence, resistance, and biofilm determinants must be constant monitoring in SH, due to the possibility of occurring infections extremely difficult to cure and due risk of the maintenance of the bacterium in production environments.
Collapse
Affiliation(s)
- Roberta T Melo
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Newton N Galvão
- Ministry of Agriculture, Livestock and Supply, Rio de Janeiro, Brazil
| | | | - Phelipe A B M Peres
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Belchiolina B Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution (GEE), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme P Monteiro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Daise A Rossi
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
74
|
Odoi H, Boamah VE, Boakye YD, Agyare C. Prevalence and Phenotypic and Genotypic Resistance Mechanisms of Multidrug-Resistant Pseudomonas aeruginosa Strains Isolated from Clinical, Environmental, and Poultry Litter Samples from the Ashanti Region of Ghana. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:9976064. [PMID: 34221030 PMCID: PMC8221878 DOI: 10.1155/2021/9976064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
Background Antibiotic resistance in bacteria is a major global health challenge. Reports on the prevalence of multidrug-resistant P. aeruginosa, a common pathogenic bacterium implicated in nosocomial infections and poultry diseases, are limited in Ghana. This study therefore sought to determine the prevalence of P. aeruginosa from hospitals, poultry farms, and environmental samples from the Ashanti region of Ghana. Methodology. Stool, urine, and blood samples from 364 patients from two hospitals in the Ashanti region of Ghana were randomly sampled. P. aeruginosa was isolated and confirmed using routine selective media and PCR-based oprL gene amplification. The Kirby-Bauer disk diffusion method employing EUCAST breakpoint values was used to identify multidrug-resistant strains. The occurrence of common antibiotic inactivating enzymes and resistance encoding genes and the assessment of strain efflux capacity were investigated with double disc synergy test (DDST), imipenem-EDTA synergy test, phenylboronic acid test, D-test, routine PCR, and ethidium bromide agar-cartwheel method. Results A total of 87 (9.7%, n = 87/900) P. aeruginosa isolates were confirmed from the samples. 75% (n = 65/87) were resistant to more than one group of antipseudomonal agents, while 43.6% (n = 38/87) were multidrug-resistant (MDR). High prevalence of extended spectrum β-lactamases (84.2%), metallo-β-lactamases (34.1%), and AmpC inducible cephalosporinases (50%) was observed in the MDR strains. About 57.8% of the MDR strains showed moderate to very high efflux capacity. Class 1 integrons were detected in 89.4% of the MDR isolates but β-lactamase encoding genes (bla SHV , bla TEM , bla CTX-M , bla VIM , and bla IMP ) were not detected. Conclusion Surveillance of antibiotic-resistant strains of bacteria should be routinely conducted in clinical and veterinary practice in Ghana to inform selection of antibiotics for therapeutic use.
Collapse
Affiliation(s)
- Hayford Odoi
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Vivian Etsiapa Boamah
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Duah Boakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Agyare
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
75
|
Munasinghe T, Vidanapathirana G, Kuthubdeen S, Ekanayake A, Angulmaduwa S, De Silva K, Subhasinghe S, Kalupahana R, Liyanapathirana V, Ip M. Colonization with selected antibiotic resistant bacteria among a cohort of Sri Lankan university students. BMC Infect Dis 2021; 21:578. [PMID: 34130629 PMCID: PMC8207576 DOI: 10.1186/s12879-021-06289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Antibiotic Resistance is an imminent global public health threat. Antibiotic resistance emerged in healthcare settings and has now moved on to the community settings. This study was conducted to identify the rates of asymptomatic colonization with selected antibiotic resistant organisms, (Methicillin Resistant Staphylococcus aureus (MRSA), Extended Spectrum Beta Lactamase (ESBL) producing Escherichia coli and Klebsiella spp and carbapenem resistant E.coli and Klebsiella spp) - among a group of university students in Sri Lanka. Identification of genetic determinants of MRSA and ESBL was an additional objective of the study. Methods A self - collected nasal swab and a peri-rectal swab collected after passing stools were obtained. Routine microbiological methods were used for the isolation S.aureus from the nasal swab and E.coli and Klebsiella species from the peri-rectal swab. Antibiotic sensitivity testing was performed as recommended by clinical and laboratory standard institute (CLSI). Three (3) genes that are responsible for ESBL production; blaCTX-M, blaSHV, and blaTEM were tested using previously described primers and PCR procedures. Identification of MecA and PVL genes attributed to MRSA was also done with PCR. Results A total of 322 participants between 21 and 28 years were recruited representing 5 different faculties of study. Seventy one (22.0%) were colonized with S.aureus and 14 among them with MRSA, making the MRSA colonization rate of 4.3%. Forty five (15%) of the participants were colonized with an ESBL producing E.coli or Klebsiella spp. No one was colonized with carbapenem resistant E.coli or Klebsiella species. Of the 45 ESBL producers the commonest genetic determinant identified was blaCTX-M (n = 36), while 16 isolates had blaTEM and 7 had blaSHV. Similarly, of the 14 isolates identified as MRSA, 3 (21.4%) were found to be PVL positive while 11 (78.6%) were MecA positive. Conclusions A high rate of colonization with ESBL producing E.coli and Klebsiella species was noted in our study group.
Collapse
Affiliation(s)
- Thilini Munasinghe
- Postgraduate Institute of Science, University of Peradeniya, Kandy, Sri Lanka
| | | | - Shahlina Kuthubdeen
- Postgraduate Institute of Science, University of Peradeniya, Kandy, Sri Lanka
| | - Asela Ekanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka
| | - Sacheera Angulmaduwa
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka
| | - Kunchana De Silva
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka
| | | | - Ruwani Kalupahana
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Kandy, Sri Lanka
| | - Veranja Liyanapathirana
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Kandy, Sri Lanka.
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
76
|
Vargas JM, Moreno Mochi MP, López CG, Alarcón JA, Acosta N, Soria K, Nuñez JM, Villafañe S, Ramacciotti J, Del Campo R, Jure MA. [Impact of an active surveillance program and infection control measures on the incidence of carbapenem-resistant Gram-negative bacilli in an intensive care unit]. Rev Argent Microbiol 2021; 54:134-142. [PMID: 34088536 DOI: 10.1016/j.ram.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/30/2022] Open
Abstract
Hospital-acquired infections caused by carbapenem-resistant Gram-negative bacteria (CRGNB) have been increasingly reported worldwide and are associated with high rates of mortality especially in intensive care units(ICUs). Early identification through rectal surveillance cultures and implementation of infection control measures(ICM) including contact precautions, staff education on cleaning and hand hygiene may reduce the spread of these microorganisms. The aim of this work was to assess the impact of enhanced ICM on CRGNB colonization and to describe the molecular epidemiology of these bacteria in a polyvalent ICU in a tertiary level hospital. A prospective study including audits and active surveillance culture program, with molecular characterization, was conducted before and after the implementation of prevention programs and infection control measures. Microbiological screening was performed in chromogenic media; PCR targeting β-lactamases genes (blaKPC, blaNDM, blaVIM and blaOXA-48, blaSHV and blaCTX-M), molecular typing by PFGE; and MLST in K. pneumoniae were performed. CRGNB colonization was reduced from 16.92% to 9.67% upon implementing the infection control measures. In K. pneumoniae the most frequent carbapenemase type was KPC-2 associated with SHV-2 and CTX-M-15, and was disseminated in various STs (ST17, ST13, ST2256, ST353); there was no persistence of particular clones and virulence factors showed no association with hypervirulence. IMP-1 carbapenemase predominated in A. baumannii and the PFGE analysis individualized 3 clusters, assuming that the dissemination in the ICU was clonal. The early detection of patients colonized with CRBGN by using epidemiological surveillance cultures and the implementation of prophylactic measures are key to reducing the incidence of these microorganisms.
Collapse
Affiliation(s)
- Juan Martín Vargas
- Laboratorio de Bacteriología Certificado, Cátedra de Bacteriología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina.
| | - María Paula Moreno Mochi
- Laboratorio de Bacteriología Certificado, Cátedra de Bacteriología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Carolina Graciela López
- Laboratorio de Bacteriología Certificado, Cátedra de Bacteriología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Janet Alejandra Alarcón
- Laboratorio de Bacteriología Certificado, Cátedra de Bacteriología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Nancy Acosta
- Unidad de cuidados intensivos 1 (UCI1), Hospital Ángel Cruz Padilla, San Miguel de Tucumán, Tucumán, Argentina
| | - Karina Soria
- Departamento de Infectología, Hospital Ángel Cruz Padilla, San Miguel de Tucumán, Tucumán, Argentina
| | - Juan Manuel Nuñez
- Departamento de Infectología, Hospital Ángel Cruz Padilla, San Miguel de Tucumán, Tucumán, Argentina
| | - Sandra Villafañe
- Departamento de Infectología, Hospital Ángel Cruz Padilla, San Miguel de Tucumán, Tucumán, Argentina
| | - Jorge Ramacciotti
- Unidad de cuidados intensivos 1 (UCI1), Hospital Ángel Cruz Padilla, San Miguel de Tucumán, Tucumán, Argentina
| | - Rosa Del Campo
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, España
| | - María Angela Jure
- Laboratorio de Bacteriología Certificado, Cátedra de Bacteriología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
77
|
Jeong J, Lee JY, Kang MS, Lee HJ, Kang SI, Lee OM, Kwon YK, Kim JH. Comparative Characteristics and Zoonotic Potential of Avian Pathogenic Escherichia coli (APEC) Isolates from Chicken and Duck in South Korea. Microorganisms 2021; 9:946. [PMID: 33925760 PMCID: PMC8145765 DOI: 10.3390/microorganisms9050946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which is an economically important disease in the poultry industry worldwide. The present study investigated O-serogroups, phylogenetic groups, antimicrobial resistance, and the existence of virulence-associated genes (VAGs) and antimicrobial resistance genes in 125 APEC isolates between 2018 and 2019 in Korea. The phylogenetic group B2 isolates were confirmed for human-related sequence types (STs) through multi-locus sequence typing (MLST). O-serogroups O2 (12.5%) and O78 (10.3%) and phylogenetic group B1 (36.5%) and A (34.5%) were predominant in chicken and duck isolates, respectively. Out of 14 VAGs, iucD, iroN, hlyF, and iss were found significantly more in chicken isolates than duck isolates (p < 0.05). The resistance to ampicillin, ceftiofur, ceftriaxone, and gentamicin was higher in chicken isolates than duck isolates (p < 0.05). The multidrug resistance (MDR) rates of chicken and duck isolates were 77.1% and 65.5%, respectively. One isolate resistant to colistin (MIC 16 μg/mL) carried mcr-1. The B2-ST95 APEC isolates possessed more than 9 VAGs, and most of them were MDR (82.4%). This report is the first to compare the characteristics of APEC isolates from chickens and ducks in Korea and to demonstrate that B2-ST95 isolates circulating in Korea have zoonotic potential and pose a public health risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Hyun Kim
- Avian Disease Research Division, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea; (J.J.); (J.-Y.L.); (M.-S.K.); (H.-J.L.); (S.-I.K.); (O.-M.L.); (Y.-K.K.)
| |
Collapse
|
78
|
Existence of Multiple ESBL Genes among Phenotypically Confirmed ESBL Producing Klebsiella pneumoniae and Escherichia coli Concurrently Isolated from Clinical, Colonization and Contamination Samples from Neonatal Units at Bugando Medical Center, Mwanza, Tanzania. Antibiotics (Basel) 2021; 10:antibiotics10050476. [PMID: 33919117 PMCID: PMC8143173 DOI: 10.3390/antibiotics10050476] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The proportions and similarities of extended-spectrum β-lactamase (ESBL) producing K. pneumoniae (ESBL-KP) and E. coli (ESBL-EC) carrying multiple ESBL genes is poorly known at our setting. This study investigated the existence of multiple ESBL genes (blaCTX-M, blaTEM, and blaSHV) among ESBL-KP and ESBL-EC concurrently isolated from clinical, colonization, and contamination samples from neonatology units in Mwanza-Tanzania. Twenty and 55 presumptive ESBL-EC and ESBL-KP, respectively, from a previous study archived at −80 °C were successfully recovered for this study. Isolates were screened and confirmed for production of ESBLs by phenotypic methods followed by multiplex PCR assay to determine ESBL genes. All (100%) and 97.3% of presumptive ESBL isolates were phenotypically confirmed by Clinical and Laboratory Standards Institute (CLSI) and modified double-disc synergy methods, respectively. About 93.3% (70/75) of phenotypically confirmed ESBL isolates had at least one ESBL gene, whereby for 62.9% (44/70), all ESBL genes (blaCTX-M, blaTEM, and blaSHV) were detected. Eight pairs of ESBL bacteria show similar patterns of antibiotics susceptibility and ESBL genes. ESBL-KP and ESBL-EC, concurrently isolated from clinical, colonization and contamination samples, harbored multiple ESBL genes. Further, eight pairs of ESBL isolates had similar patterns of antibiotics susceptibility and ESBL genes, suggesting transmission of and/or sharing of mobile genetic elements (MGEs) among ESBL-KP and ESBL-EC.
Collapse
|
79
|
Incidence of a subsequent carbapenem-resistant Enterobacteriaceae infection after previous colonisation or infection: a prospective cohort study. Int J Antimicrob Agents 2021; 57:106340. [PMID: 33857538 DOI: 10.1016/j.ijantimicag.2021.106340] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVES In patients with a history of carbapenemase-producing, carbapenem-resistant Enterobacteriaceae (CP-CRE), the need for CP-CRE targeted treatment in subsequent sepsis episodes is unclear. This study aimed to characterise the incidence of subsequent CP-CRE infective episodes in individuals with prior CP-CRE colonisation and/or infection, and identify predictors for these subsequent CP-CRE infections. METHODS All adult inpatients with CP-CRE detected from any site between June 2012 and May 2014 at a tertiary-care hospital were prospectively followed for two years to assess for any subsequent CP-CRE infections. Potential factors to which patients were exposed during the follow-up period were collected from medical records and analysed. RESULTS A total of 171 patients were enrolled. Of 151 patients who entered the follow-up period, 16 (10.6%) developed a subsequent CP-CRE infection. The median time to a subsequent infective episode was 24.5 days (12-105 days). The type of carbapenemase was highly conserved within index and subsequent paired episodes (16 of 17 pairs). Patients with first CP-CRE isolated from intra-abdominal or respiratory sources were ≥7 times more likely to develop a subsequent infection, while most rectal carriers remain colonised. For carriers (n = 133), Klebsiella spp. (OR 4.7) and OXA carbapenemase (OR 9.4) were significant predictors of subsequent infection. In patients with initial infection (n = 18), end-stage renal failure requiring dialysis (OR 22.0) was the only predisposing factor. CONCLUSION The incidence of subsequent infections in patients with prior colonisation was low. Consideration for CP-CRE targeted therapy is recommended in patients on dialysis and previous CP-CRE infections involving the bloodstream and/or respiratory tract.
Collapse
|
80
|
Molecular Detection of Drug-Resistance Genes of blaOXA-23-blaOXA-51 and mcr-1 in Clinical Isolates of Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9040786. [PMID: 33918745 PMCID: PMC8069495 DOI: 10.3390/microorganisms9040786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa has caused high rates of mortality due to the appearance of strains with multidrug resistance (MDR) profiles. This study aimed to characterize the molecular profile of virulence and resistance genes in 99 isolates of P. aeruginosa recovered from different clinical specimens. The isolates were identified by the automated method Vitek2, and the antibiotic susceptibility profile was determined using different classes of antimicrobials. The genomic DNA was extracted and amplified by multiplex polymerase chain reaction (mPCR) to detect different virulence and antimicrobial resistance genes. Molecular typing was performed using the enterobacterial repetitive intergenic consensus (ERIC-PCR) technique to determine the clonal relationship among P. aeruginosa isolates. The drug susceptibility profiles of P. aeruginosa for all strains showed high levels of drug resistance, particularly, 27 (27.3%) isolates that exhibited extensively drug-resistant (XDR) profiles, and the other isolates showed MDR profiles. We detected the polymyxin E (mcr-1) gene in one strain that showed resistance against colistin. The genes that confer resistance to oxacillin (blaOXA-23 and blaOXA-51) were present in three isolates. One of these isolates carried both genes. As far as we know from the literature, this is the first report of the presence of blaOXA-23 and blaOXA-51 genes in P. aeruginosa.
Collapse
|
81
|
Uyanik T, Gülel GT, Alişarli M. Characterization of extended-spectrum beta-lactamase-producing Enterobacterales from organic and conventional chicken meats. Lett Appl Microbiol 2021; 72:783-790. [PMID: 33735446 DOI: 10.1111/lam.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/30/2022]
Abstract
This study was conducted to isolate and identify extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales in conventional and organic chicken meats, which were sold in Turkey. A total of 200 raw chicken meat sample (100 conventional and 100 organic) were used as material. Classic culture technique based on chromogenic method was used for the isolation of bacteria, and the identification was performed with VITEK MS. Phenotypic ESBL production was detected by combined disc diffusion method. Gene regions responsible for ESBL production were determined by PCR. MIC values of isolates were detected by VITEK 2. Phenotypic ESBL-producing Enterobacterales were detected in 46% of conventional chicken meats and in 22% of organic chicken meats. Of the 115 isolates obtained, 97 (84%) were Escherichia coli, 12 (10%) were Klebsiella pneumoniae, four (3·48%) were Serratia fonticola, one (0·87%) was Rahnella aquatilis, and one (0·87%) was Serratia liquefaciens. PCR analysis revealed that 109 of 115 isolates (94·78%) contained at least one of the blaCTX-M , blaTEM , and blaSHV genes. Of the 115 ESBL-producing isolates, 103 (89·57%) were found resistant to at least one antibiotic except for the β-lactam group. The contamination level of ESBL-producing Enterobacterales was higher in conventional chicken meats (P < 0·001).
Collapse
Affiliation(s)
- T Uyanik
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum/Samsun, Turkey
| | - G T Gülel
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum/Samsun, Turkey
| | - M Alişarli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Atakum/Samsun, Turkey
| |
Collapse
|
82
|
Adeyemo AT, Kolawole B, Rotimi VO, Aboderin AO. Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. Afr J Lab Med 2021; 10:1261. [PMID: 33824857 PMCID: PMC8008032 DOI: 10.4102/ajlm.v10i1.1261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023] Open
Abstract
Background Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. Objective The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. Methods Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. Results There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla VIM. Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). Conclusion Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria.
Collapse
Affiliation(s)
- Adeyemi T Adeyemo
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals, Ile-Ife, Nigeria
| | - Babatope Kolawole
- Department of Medicine, Faculty of Clinical Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Vincent O Rotimi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aaron O Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals, Ile-Ife, Nigeria.,Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
83
|
Fallah N, Rad M, Ghazvini K, Ghaemi M, Jamshidi A. Molecular typing and prevalence of extended-spectrum β-lactamase genes in diarrhoeagenic Escherichia coli strains isolated from foods and humans in Mashhad, Iran. J Appl Microbiol 2021; 131:2033-2048. [PMID: 33719123 DOI: 10.1111/jam.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
AIMS Present study was aimed to determine ESBL-encoding genes distribution in Diarrhoeagenic Escherichia coli (DEC) isolated from animal-source food products and human clinical samples in Mashhad, Iran. The strains were also further studied to analyse genotypic diversity and find genetic relationships between them. METHODS AND RESULTS The number of 85 DEC strains including 52 and 33 strains isolated from 300 food and 520 human stool samples, respectively. Randomly amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic-PCR (rep-PCR) typing methods were used to track their genetic relationships. The ESBL-encoding genes prevalence was approximately 70% in both groups of isolates. The blaTEM , blaCTX-M and blaSHV were prevalent in 67·1, 20 and 10·6% of isolates, respectively. The ESBL-positives showed significantly higher resistance rates to gentamicin, co-trimoxazole, tetracycline, aztreonam and chloramphenicol (P < 0·05). Fingerprinting patterns-based dendrograms divided DEC strains into separate clusters irrespective of their sources and pathotypes. In typing field, rep-PCR provided more discriminatory power (Simpson's index of diversity (SID) = 0·925) than RAPD (SID = 0·812). CONCLUSION Molecular similarity between certain animal-sourced food products and clinical sample strains supported food-borne transmission routes for genotypic elements such as ESBL-encoding genes. SIGNIFICANCE AND IMPACT OF THE STUDY Findings emphasize the importance of resistance issues, the need to improve treatment guidelines and routine surveillance of hygienic measures during food processing.
Collapse
Affiliation(s)
- N Fallah
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Rad
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - K Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Ghaemi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Jamshidi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
84
|
Ilyas S, Rasool MH, Arshed MJ, Qamar MU, Aslam B, Almatroudi A, Khurshid M. The Escherichia coli Sequence Type 131 Harboring Extended-Spectrum Beta-Lactamases and Carbapenemases Genes from Poultry Birds. Infect Drug Resist 2021; 14:805-813. [PMID: 33688215 PMCID: PMC7936925 DOI: 10.2147/idr.s296219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aim The extended-spectrum beta-lactamases (ESBLs), as well as carbapenemases, are considered as the foremost resistance determinants throughout the world. However, the relevant data especially related to the sequence types of ESBL and carbapenemases producing Escherichia coli from the poultry is limited from Pakistan. Here, we present the data on the genetic diversity of E. coli strains isolated from the poultry birds from the poultry farms located in Islamabad, Pakistan, and the underlying resistance mechanisms to beta-lactam agents. Methods Of 250 broilers from 25 different farms (10 birds from each farm), the cecal samples were obtained and analyzed for the presence of ESBLs producing E. coli (ESBL-Ec) as well as carbapenemases producing E. coli (CPEc) strains using selective agar for ESBL and carbapenemases screening. The susceptibility profiling of the ESBL-Ec and CPEc isolates was evaluated followed by multi-locus sequence typing. Results A total of 119 strains were positive for ESBL production whereas 37 strains were found positive to produce carbapenemases in addition to ESBLs. The MLST analysis has shown a diversity of isolates as the E. coli isolates from poultry birds correspond to a total of 16 sequence types (STs). The ST131 (22/48, 46%) followed by ST8051 (10/48, 21%) were the main STs in this study. The blaCTX-M gene was detected in all the poultry E. coli strains whereas the blaTEM was found in 45.5% of strains. The blaVIM was found in all 37 CPEc isolates whereas the blaNDM and blaIMP were found in 31/37 (83.8%) and 16/37 (43.2%) CPEc isolates respectively. Conclusion The overall results have shown the prevalence of diverse genotypes among the ESBL-Ec and carbapenemase-producing E. coli (CPEC) from poultry. Furthermore, the study documents poultry birds as a persisting reservoir of extensively antimicrobial-resistant E. coli ST131 in Pakistan, suggesting a potential threat to public health.
Collapse
Affiliation(s)
- Sana Ilyas
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Javed Arshed
- National Veterinary Laboratory, National Agriculture Research Council, Islamabad, Pakistan
| | | | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
85
|
Merino I, Porter SB, Johnston B, Clabots C, Thuras P, Ruiz-Garbajosa P, Cantón R, Johnson JR. Molecularly defined extraintestinal pathogenic Escherichia coli status predicts virulence in a murine sepsis model better than does virotype, individual virulence genes, or clonal subset among E. coli ST131 isolates. Virulence 2021; 11:327-336. [PMID: 32264739 PMCID: PMC7161687 DOI: 10.1080/21505594.2020.1747799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Escherichia coli ST131, mainly its H30 clade, is the leading cause of extraintestinal E. coli infections but its correlates of virulence are undefined. MATERIALS AND METHODS We tested in a murine sepsis model 84 ST131 isolates that differed by country of origin (Spain vs. USA), clonal subset, resistance markers, and virulence genes (VGs). Virulence outcomes, including illness severity score (ISS) and "killer" status (>80% mouse lethality), were compared statistically with clonal subset, individual and combined VGs, molecularly defined extraintestinal and uropathogenic E. coli (ExPEC, UPEC) status, and country of origin. RESULTS Virulence varied widely by strain. Univariable correlates of median ISS and percent "killer" (outcomes if variable present vs. absent) included pap (ISS, 4.4 vs. 3.8; "killer", 71% vs. 46%), kpsMII (4.1 vs. 2.3; 59% vs. 25%), K2/K100 (4.4 vs. 3.2; 77% vs. 41%), ExPEC (4.2 vs. 2.2; 62% vs. 17%), Spanish origin (4.3 vs. 3.1; 65% vs. 36%), and H30R1 subset (2.5 vs. 4.1; 35% vs. 59%). With multivariable adjustment, ExPEC status was the only consistently significantly predictive variable. CONCLUSION Within ST131 the strongest predictor of experimental virulence was molecularly defined ExPEC status. Clonal subsets seemed to behave differently in the murine sepsis model by country of origin.
Collapse
Affiliation(s)
- Irene Merino
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Stephen B Porter
- Infectious Diseases, Minneapolis Veterans Health Care System, Minneapolis, MN, USA
| | | | - Connie Clabots
- Infectious Diseases, Minneapolis Veterans Health Care System, Minneapolis, MN, USA
| | - Paul Thuras
- Mental Health Service Line, Minneapolis Veterans Health Care System, Minneapolis, MN, USA.,Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - James R Johnson
- Infectious Diseases, Minneapolis Veterans Health Care System, Minneapolis, MN, USA.,Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
86
|
Phenotypic and genotypic detection of antibiotic-resistant bacteria in fresh fruit juices from a public hospital in Rio de Janeiro. Arch Microbiol 2021; 203:1471-1475. [PMID: 33398401 DOI: 10.1007/s00203-020-02139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Gram-negative bacteria are worrisome because they are becoming resistant to many antibiotic available options, mainly in hospital environment. Several studies have noted the presence of bacteria producing extended-spectrum beta-lactamase, with the presence of antibiotic-resistance genes in fresh vegetables and fruits. This study aimed to detect the presence of phenotypic and genotypic resistance in eight samples of fresh fruit juices served to patients admitted to a hospital in Rio de Janeiro. The growth of microorganisms on MacConkey and XLD agar was carried out to obtain a "pool" of Gram-negative bacteria. The disk diffusion test and the polymerase chain reaction were performed to detect the phenotypic and genotypic resistance of Gram-negative bacteria to the tested antibiotics. The multidrug resistance was detected in all samples and the shv, tem, ctx, tetA, tetB and oxa- 48 genes were found in the samples, including the presence of class 2 and 3 integrons. We can conclude that the selection methodology allows the detection of a greater number of genes and this found warns about the risk of making these foods available to patients in hospitals.
Collapse
|
87
|
Aung MS, Win NC, San N, Hlaing MS, Myint YY, Thu PP, Aung MT, Yaa KT, Maw WW, Urushibara N, Kobayashi N. Prevalence of Extended-Spectrum Beta-Lactamase/Carbapenemase Genes and Quinolone-Resistance Determinants in Klebsiella pneumoniae Clinical Isolates from Respiratory Infections in Myanmar. Microb Drug Resist 2021; 27:36-43. [DOI: 10.1089/mdr.2019.0490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nyein Chan Win
- Department of Medicine, University of Medicine 2, Yangon, Myanmar
| | - Nilar San
- Department of Microbiology, University of Medicine 2, Yangon, Myanmar
| | - Myat Su Hlaing
- Department of Microbiology, University of Medicine 2, Yangon, Myanmar
| | - Yi Yi Myint
- Department of Microbiology, University of Medicine 2, Yangon, Myanmar
| | - Pyae Phyo Thu
- Department of Microbiology, University of Medicine 2, Yangon, Myanmar
| | - Myint Thazin Aung
- Department of Microbiology, North Okkalapa General Hospital, Yangon, Myanmar
| | - Kyaw Thu Yaa
- Department of Medicine, University of Medicine 2, Yangon, Myanmar
| | - Win Win Maw
- Department of Microbiology, University of Medicine 2, Yangon, Myanmar
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
88
|
Cooper AL, Carter C, McLeod H, Wright M, Sritharan P, Tamber S, Wong A, Carrillo CD, Blais BW. Detection of carbapenem-resistance genes in bacteria isolated from wastewater in Ontario. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial carbapenem resistance is a major public health concern since these antimicrobials are often the last resort to treat serious human infections. To evaluate methodologies for detection of carbapenem resistance, carbapenem-tolerant bacteria were isolated from wastewater treatment plants in Toronto, Ottawa, and Arnprior, Ontario. A total of 135 carbapenem-tolerant bacteria were recovered. Polymerase chain reaction (PCR) indicated the presence of carbapenem hydrolysing enzymes KPC ( n = 10), GES ( n = 5), VIM ( n = 7), and IMP ( n = 1), and β-lactamases TEM ( n = 7), PER ( n = 1), and OXA-variants ( n = 16). A subset of 46 isolates were sequenced and analysed using ResFinder and CARD-RGI. Both programs detected carbapenem resistance genes in 35 sequenced isolates and antimicrobial resistance genes (ARGs) conferring resistance to multiple class of other antibiotics. Where β-lactamase resistance genes were not initially identified, lowering the thresholds for ARG detection enabled identification of closely related β-lactamases. However, no known carbapenem resistance genes were found in seven sequenced Pseudomonas spp. isolates. Also of note was a multi-drug-resistant Klebsiella pneumoniae isolate from Ottawa, which harboured resistance to seven antimicrobial classes including β-lactams. These results highlight the diversity of genes encoding carbapenem resistance in Ontario and the utility of whole genome sequencing over PCR for ARG detection where resistance may result from an assortment of genes.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Cassandra Carter
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Hana McLeod
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Marie Wright
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Prithika Sritharan
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Catherine D. Carrillo
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
| | - Burton W. Blais
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
89
|
Khanawapee A, Kerdsin A, Chopjitt P, Boueroy P, Hatrongjit R, Akeda Y, Tomono K, Nuanualsuwan S, Hamada S. Distribution and Molecular Characterization of Escherichia coli Harboring mcr Genes Isolated from Slaughtered Pigs in Thailand. Microb Drug Resist 2020; 27:971-979. [PMID: 33325796 DOI: 10.1089/mdr.2020.0242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The resistance of Enterobacteriaceae to colistin mediated by plasmid-borne mobile mcr genes is an emerging public health concern. This study aimed to explore the distribution and characteristics of Escherichia coli isolates harboring mcr genes from slaughtered pigs in Thailand from 2014 to 2015. A total of 779 E. coli isolates were assessed, of which 61 (7.8%) were found to carry mcr genes, including mcr-1, mcr-3, mcr-6, mcr-7, mcr-8, and mcr-9, together with co-occurrences of mcr-1+mcr-3, mcr-1+mcr-9, and mcr-3+mcr-6+mcr-7. In these mcr-harboring E. coli isolates, mcr-1 (40.9%) and mcr-9 (32.8%) were predominant. Colistin resistance was mainly mediated by the mcr-1 gene, whereas intermediate resistance was noted in isolates that harbored mcr-9, mcr-6, mcr-7, and mcr-8 genes. Most E. coli isolates harboring mcr genes were susceptible to third-generation cephalosporins and all of these isolates were susceptible to carbapenems. Clermont phylotyping demonstrated that mcr-harboring isolates mainly belonged to phylogroup A (44.3%), followed by phylogroups B1 (34.4%), D (14.8%), and B2 (6.6%). Multilocus sequence typing revealed that 25 sequence types (STs) were assigned to 45 mcr-harboring E. coli isolates, whereas the remaining 16 isolates were novel STs. The mcr-1 and mcr-9 genes were mostly predominant in ST101 and ST8900, respectively. This study provides a comprehensive insight into the prevalence and diversity of mcr-harboring E. coli isolates obtained from slaughtered pigs across Thailand. Strengthening of surveillance systems by the government for controlling and preventing mcr dissemination from animals to humans or vice versa is urgently needed. No clinical trial registration number.
Collapse
Affiliation(s)
- Aunyarat Khanawapee
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
90
|
Molecular detection of extended spectrum β-lactamase genes in Escherichia coli clinical isolates from diarrhoeic children in Kano, Nigeria. PLoS One 2020; 15:e0243130. [PMID: 33270734 PMCID: PMC7714196 DOI: 10.1371/journal.pone.0243130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
The increase in antimicrobial resistance in developed and developing countries is a global public health challenge. In this context β-lactamase production is a major contributing factor to resistance globally. The aim of this study was to determine the prevalence of phenotypic and genotypic extended spectrum β-lactamases (ESBLs) in 296 E. coli isolates recovered from diarrhoeic children younger than five years in Kano whose susceptibility profile against 7 antimicrobials had been determined. The E. coli isolates were subjected to double disc synergy test for phenotypic ESBLs detection and ESBL associated genes (blaCTX-M, blaTEM and blaSHV) were detected using conventional PCR. Phenotypically, 12.8% (38/296) E. coli isolates presented a ESBLs phenotype, with a significantly higher proportion in isolates from females compared with males (P-value = 0.024). blaCTX-M 73.3% and blaTEM 73.3% were the predominant resistance genes in the ESBLs positive E. coli (each detected in 22/30 isolates, of which 14 harboured both). In addition, 1/30 harboured blaCTX-M + blaTEM + blaSHV genes simultaneously. This study demonstrates the presence of ESBLs E. coli isolates in clinically affected children in Kano, and demonstrates the circulation of blaCTX-M and blaTEM associated with those phenotypes. Enactment of laws on prudent antibiotic use is urgently needed in Kano.
Collapse
|
91
|
Chukamnerd A, Pomwised R, Paing Phoo MT, Terbtothakun P, Hortiwakul T, Charoenmak B, Chusri S. In vitro synergistic activity of fosfomycin in combination with other antimicrobial agents against carbapenem-resistant Klebsiella pneumoniae isolated from patients in a hospital in Thailand. J Infect Chemother 2020; 27:507-514. [PMID: 33221181 DOI: 10.1016/j.jiac.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Carbapenem-resistant Klebsiella pneumoniae (CRKP) causes high morbidity and mortality worldwide. The purpose of the study was to assess the synergistic activity of fosfomycin in combination with other antimicrobial agents against CRKP isolated from patients in Songklanagarind Hospital, Thailand. METHODS A total of 35 K. pneumoniae isolates were obtained from patients in Songklanagarind Hospital. The MICs of imipenem and meropenem were determined in all isolates by broth microdilution. In all CRKP isolates, the presence of carbapenemase and extended-spectrum β-lactamase (ESBL) genes was investigated by PCR, while the production of these enzymes was determined by combined disk test. In the carbapenemase-genes-negative CRKP isolates, the porin loss and efflux pump were characterized by SDS-PAGE and broth microdilution, respectively. Finally, the synergistic effects of fosfomycin and other antimicrobial agents were evaluated by checkerboard analysis. RESULTS Twenty-one of 35 K. pneumoniae isolates were classified as CRKP. Most of CRKP isolates carried blaNDM-1 (n = 18), blaSHV (n = 21), blaCTX-M (n = 21), and blaTEM (n = 16). In fosfomycin-based combination, the result showed that the highest synergistic activity in this study was observed in the combination of fosfomycin and gentamicin (61.9%). CONCLUSION These findings suggested that the fosfomycin and gentamicin combination might be useful as a possible treatment option for CRKP infection.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - May Thet Paing Phoo
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Pawarisa Terbtothakun
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Infectious Disease Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Boonsri Charoenmak
- Infectious Disease Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarunyou Chusri
- Infectious Disease Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
92
|
PRAJAPATI BI, SOLANKI KM, DEVI SARITA, KATIRA BP, PATEL SS, RAVAL SH, MOMIN RR. Phenotypic and molecular characterization of ESBLs producing Escherichia coli in bovine faecal and milk samples of North Gujarat. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i7.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Extended-spectrum β-lactamases (ESBLs) producing E. coli seems to be emerging in veterinary science impacting major threat to public health due to resistance to golden age antibiotics. In this study a total of 109 samples (42 faecal and 67 mastitis milk) of bovines were collected from different regions of North Gujarat. The samples were cultured and identified by standard procedures. The screening for ESBLs production was performed by using Cefotaxime and Cefotaxime+Clavulanate (Combination disc screening method). A total of 71 E. coli isolates were recovered from 109 samples processed, out of which thirty (42.25%) isolates (17 from milk and 13 from faecal) were positive for ESBLs showing multiple resistance to the antibiotics used. The ESBL confirmed isolates were further processed for detection of blaCTX-M, blaTEM, and blaSHV genes. Major gene detected was blaTEM in 17 (23.94%) E. coli isolates. Antibiotic resistance pattern of E. coli isolates was studied against eleven commonly used antimicrobial drugs in the northern region of Gujarat. The results recorded resistance tofollowing antibiotics: tetracycline (100%), ampicillin/sulbactum (83.10%), amoxiclav and gentamicin (83.10%), chloramphenicol (57.74%), ceftriaxone (66.19%), cefoperazone (66.19%), ciprofloxacin (74.65%), amikacin (57.74%), enrofloxacin (74.65%) and, levofloxacin (74.65%).
Collapse
|
93
|
Onwugamba FC, Mellmann A, Nwaugo VO, Süselbeck B, Schaumburg F. Antimicrobial resistant and enteropathogenic bacteria in 'filth flies': a cross-sectional study from Nigeria. Sci Rep 2020; 10:16990. [PMID: 33046808 PMCID: PMC7552403 DOI: 10.1038/s41598-020-74112-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
‘Filth flies’ facilitate the dispersal of pathogens between animals and humans. The objective was to study the intestinal colonization with antimicrobial resistant and enteropathogenic bacteria in ‘filth flies’ from Nigeria. Flies from Southern Nigeria were screened for extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), Staphylococcus aureus, Salmonella sp., Shigella sp., Campylobacter sp. and Yersinia enterocolitica by culture. ESBL-E were tested for blaSHV, blaCTX-M and blaTEM; S. aureus was screened for enterotoxins. Spa typing and multilocus sequence typing (MLST) was done for S. aureus and MLST for Escherichia coli. Of 2,000 flies, 400 were randomly collected for species identification. The most common species were Musca domestica (44.8%, 179/400), Chrysomya putoria (21.6%, 85/400) and Musca sorbens (18.8%, 75/400). Flies were colonized with S. aureus (13.8%, 275/2,000) and ESBL-E (0.8%, 16/2,000). No other enteropathogenic bacteria were detected. The enterotoxin sei was most common (26%, 70/275) in S. aureus, followed by sea (12%, n = 32/275). Four S. aureus isolates were methicillin resistant (mecA positive, t674 and t5305, ST15). The blaCTX-M (n = 16) was the most prevalent ESBL subtype, followed by blaTEM (n = 8). ‘Filth flies’ can carry antimicrobial resistant bacteria in Nigeria. Enterotoxin-positive S. aureus might be the main reason for food poisoning by ‘filth flies’ in the study area.
Collapse
Affiliation(s)
- Francis Chinedu Onwugamba
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149, Münster, Germany
| | - Alexander Mellmann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149, Münster, Germany.,Institute for Hygiene, University Hospital Münster, Robert-Koch-Straße 41, 48149, Münster, Germany
| | | | - Benno Süselbeck
- Center for Information Processing, University of Münster, Röntgenstraße 9-13, 48149, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149, Münster, Germany.
| |
Collapse
|
94
|
Melo R, Resende A, Mendonça E, Nalevaiko P, Monteiro G, Buiatte A, Rossi D. Salmonella Minnesota de origem avícola apresenta fatores de virulência e risco potencial aos humanos. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-10884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO Objetivou-se avaliar características de virulência, perfil de resistência antimicrobiana e padrão de similaridade genética de 71 cepas de Salmonella Minnesota isoladas na cadeia produtiva de frangos de corte, entre 2009 e 2010, em duas unidades de uma empresa (A e B). Os isolados foram sorotipificados e submetidos ao teste de susceptibilidade antimicrobiana pelo teste de difusão em disco. Utilizando-se PCR, foi avaliada a presença dos genes invA, lpfA, agfA e sefA e os genes de resistência aos betalactâmicos (bla TEM , bla SHV e bla CTX-M ). A relação filogenética foi determinada por RAPD-PCR. Os maiores percentuais de resistência foram para tetraciclina e sulfonamida. Foram reconhecidos oito perfis de resistência aos antimicrobianos entre as cepas isoladas na indústria A, e 11 perfis de resistência na indústria B. Do total de cepas, 100% foram positivas para o gene invA, 98,6% para o gene agfA, 49,3% para o gene lpfA e nenhuma para o gene sefA. Três cepas foram positivas para o gene bla TEM (4,2%) e 11 (15,5%) para o gene bla CTX-M . A avaliação filogenética demonstrou a presença de sete clusters com similaridade superior a 80% e três perfis distintos. Com base no dendrograma, observou-se a disseminação de um mesmo perfil em ambas as empresas.
Collapse
Affiliation(s)
- R.T. Melo
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | | | - D.A. Rossi
- Universidade Federal de Uberlândia, Brazil
| |
Collapse
|
95
|
Sabry MA, Abdel-Moein KA, Abdel-Kader F, Hamza E. Extended-spectrum β-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication. J Glob Antimicrob Resist 2020; 22:742-748. [PMID: 32623001 DOI: 10.1016/j.jgar.2020.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES This study investigated the occurrence of extended-spectrum β-lactamase (ESBL)-producing Salmonella and the associated virulence genes among farmed chickens. METHODS Cloacal swab samples were collected from apparently healthy and diseased chickens and were cultured for Salmonella using conventional methods. The isolates were serotyped using slide agglutination tests and were examined by polymerase chain reaction (PCR) for the virulence genes invA, stn, svpC and pefA and the outer membrane protein-encoding genes ompA and ompF. Screening for ESBL resistance was performed using the disk-diffusion test, the combinational-disk test with clavulanic acid, and multiplex PCR for blaTEM, blaSHV, blaCTX-M and blaOXA. The presence of the AmpC blaCMy-2 was tested among the ESBL-negative isolates by uniplex PCR. The resistant isolates were partially sequenced based on the stn gene. RESULTS The Salmonella isolation rate was 3.4% (6/175) from healthy and 11.1% (14/126) from diseased chickens. The 20 isolates belong to serotypes with public health significance like Typhimurium, Kentucky and Infantis. All the isolates possess invA, stn, svpC and ompF genes; 16 isolates harboured ompA, and one carried pefA. Of the 20 isolates, 19 were resistant to more than one antibiotic. Of these 19 isolates, 16 were ESBL-producing with the majority carrying blaTEM and blaSHV genes. The four ESBL-negative isolates carried blaCMY-2. Partial-stn-sequencing of the isolates revealed a high genetic relatedness to Salmonella strains from patients in Egypt and Asia. CONCLUSIONS Virulent ESBL-producing Salmonella was isolated from healthy and diseased chickens; the strains have a close relationship to human strains, posing a public health threat.
Collapse
Affiliation(s)
- Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Khaled A Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Fatma Abdel-Kader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Eman Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
96
|
Huang YS, Lai LC, Chen YA, Lin KY, Chou YH, Chen HC, Wang SS, Wang JT, Chang SC. Colonization With Multidrug-Resistant Organisms Among Healthy Adults in the Community Setting: Prevalence, Risk Factors, and Composition of Gut Microbiome. Front Microbiol 2020; 11:1402. [PMID: 32670243 PMCID: PMC7328365 DOI: 10.3389/fmicb.2020.01402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The prevalence of colonization with multidrug-resistant organisms (MDROs) among healthy adults in the community is largely unknown. This study investigated the colonization rate of multidrug-resistant Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE) in the community in Taiwan, and compared the gut microbiota between MDRO carriers and non-carriers. METHODS This prospective cohort study was conducted from March 2017 to February 2018 at the Hsin-Chu and Jin-Shan branches of National Taiwan University Hospital. Nasal swabs and stool samples were obtained from healthy adults attending a health examination to screen for MDROs. Bacteria isolates of MDROs were tested for antibiotic susceptibility and resistant genes. Relevant data were collected using a standardized questionnaire to evaluate the risk factors for MDROs carriage, and 16S rRNA metagenomics sequencing was performed to analyze gut microbiota. RESULTS Among 187 participants, 4.6% (8/174) carried MRSA and 41.4% (77/186) carried third-generation cephalosporin-resistant (3GC-R) Escherichia coli or Klebsiella pneumoniae. The carriage rate of AmpC beta-lactamases and ESBL-producing strains were 16.1 and 27.4%, respectively. No carbapenem-resistant Enterobacteriaceae (CRE) or VRE were detected. The dominant resistant gene of E. coli isolates was CTX-M-type (73%), while that of K. pneumoniae was AmpC beta-lactamases (80%). In the multivariate analysis, the significant risk factors for carrying 3GC-R E. coli or K. pneumoniae were being an employee of technology company A [adjusted odds ratio (aOR) 4.127; 95% confidence interval (CI) 1.824-9.336; p = 0.001], and traveling to Southeast Asia in the past year (aOR 6.545; 95% CI 1.071-40.001; p = 0.042). The gut microbiota analysis showed that the phylum Proteobacteria and the family Enterobacteriaceae were significantly more abundant in 3GC-R E. coli and K. pneumoniae carriers. CONCLUSION A high rate of Taiwanese adults in the community carried 3GC-R Enterobacteriaceae, while no CRE or VRE colonization was noted. Compared with non-carriers, an expansion of Enterobacteriaceae in gut microbiota was found among 3GC-R Enterobacteriaceae carriers.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-An Chen
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yin Lin
- Department of Medicine, National Taiwan University Hospital, New Taipei City, Taiwan
| | - Yi-Hsuan Chou
- Department of Medicine, National Taiwan University Hospital, New Taipei City, Taiwan
| | - Hsiu-Chi Chen
- Health Management Center, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Shu-Sheng Wang
- Department of Family Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
97
|
Ortiz-Brizuela E, Caro-Vega Y, Bobadilla-Del-Valle M, Leal-Vega F, Criollo-Mora E, López Luis BA, Esteban-Kenel V, Torres-Veintimilla E, Galindo-Fraga A, Olivas-Martínez A, Tovar-Calderón E, Torres-González P, Sifuentes-Osornio J, Ponce-de-León A. The influence of hospital antimicrobial use on carbapenem-non-susceptible Enterobacterales incidence rates according to their mechanism of resistance: a time-series analysis. J Hosp Infect 2020; 105:757-765. [PMID: 32565368 DOI: 10.1016/j.jhin.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Carbapenem non-susceptible Enterobacterales (CNSE) can be broadly divided into those that produce carbapenemases (carbapenemase-producing Enterobacterales (CPE)), and those that harbour other mechanisms of resistance (non-carbapenemase-producing CNSE (NCP-CNSE)). AIM To determine the predictors of CNSE nosocomial incidence rates according to their mechanism of resistance. METHODS A time-series analysis was conducted (July 2013 to December 2018) to evaluate the relationship in time between hospital antibiotic use and the percentage of adherence to hand hygiene with the CNSE rates. FINDINGS In all, 20,641 non-duplicated Enterobacterales isolates were identified; 2.2% were CNSE. Of these, 48.1% and 51.9% were CPE and NCP-CNSE, respectively. Of the CPE, 78.3% possessed a blaOXA-232 gene. A transfer function model was identified for CNSE, CPE, and OXA-232 CPE that explained 20.8%, 19.3%, and 24.2% of their variation, respectively. According to the CNSE and CPE models, an increase in piperacillin-tazobactam (TZP) use of 1 defined daily dose (DDD) per 100 hospital patient-days (HPD) would lead to an increase of 0.69 and 0.49 CNSE and CPE cases per 10,000 HPD, respectively. The OXA-232 CPE model estimates that an increase of 1 DDD per 100 HPD of TZP use would lead to an increase of 0.43 OXA-232 CPE cases per 10,000 HPD. A transfer function model was not identified for NCP-CNSE, nor was there an association between the adherence to handhygiene and the CNSE rates. CONCLUSION The use of TZP is related in time with the CPE nosocomial rates, mostly explained by its effect on OXA-232 CPE.
Collapse
Affiliation(s)
- E Ortiz-Brizuela
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Y Caro-Vega
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Bobadilla-Del-Valle
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - F Leal-Vega
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - E Criollo-Mora
- Department of Pharmacy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - B A López Luis
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - V Esteban-Kenel
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - E Torres-Veintimilla
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A Galindo-Fraga
- Department of Epidemiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A Olivas-Martínez
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - E Tovar-Calderón
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - P Torres-González
- Laboratory of Clinical Microbiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J Sifuentes-Osornio
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A Ponce-de-León
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
98
|
Association of intestinal colonization of ESBL-producing Enterobacteriaceae in poultry slaughterhouse workers with occupational exposure-A German pilot study. PLoS One 2020; 15:e0232326. [PMID: 32497054 PMCID: PMC7272067 DOI: 10.1371/journal.pone.0232326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/13/2020] [Indexed: 11/19/2022] Open
Abstract
Background Bacteria that have acquired antimicrobial resistance, in particular ESBL-producing Enterobacteriaceae, are an important healthcare concern. Therefore, transmission routes and risk factors are of interest, especially for the carriage of ESBL-producing E. coli. Since there is an enhanced risk for pig slaughterhouse employees to carry ESBL-producing Enterobacteriaceae, associated with animal contact as potential risk factor, the present study investigated the occurrence of ESBL-producing Enterobacteriaceae in poultry slaughterhouse employees. Due to the higher level of resistant Enterobacteriaceae in primary poultry production than in pig production, a higher risk of intestinal colonization of poultry slaughterhouse employees was expected. Results ESBL-producing Enterobacteriaceae were detected in 5.1% (5 of 99) of the fecal samples of slaughterhouse workers. The species of these isolates was confirmed as E. coli. PCR assays revealed the presence of the genes blaCTX-M-15 (n = 2) and blaSHV-12 (n = 3) in these isolates, partly in combination with the β-lactamase gene blaTEM-135. Participants were divided into two groups according to their occupational exposure and results indicated an increased probability of colonization with ESBL-producing Enterobacteriaceae for the group of ‘higher exposure’ (OR 3.7, exact 95% CI 0.6–23.5; p = 0.4). For intestinal colonization with ESBL-producing Enterobacteriaceae, a prevalence of 10% (3/30) was observed in the group of ‘higher exposure’ versus 2.9% (2/69) in the group of ‘lower exposure’. Employees in working steps such as ‘hanging’ poultry in the process of slaughter and ‘evisceration’ seemed to have a higher risk for intestinal colonization with ESBL-producing Enterobacteriaceae compared to the group of ‘lower exposure’. Conclusion This study is the first of its kind to collect data on the occupational exposure of slaughterhouse workers to ESBL-producing Enterobacteriaceae in Europe. The results suggested that colonization with ESBL-producing Enterobacteriaceae is associated with occupational exposure in poultry slaughterhouses. However, the presence of ESBL-producing E. coli isolates in only 5.1% (5/99) of the tested employees in poultry slaughterhouses suggests a lower transmission risk than in pig slaughterhouses.
Collapse
|
99
|
Arredondo A, Blanc V, Mor C, Nart J, León R. Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. Clin Oral Investig 2020; 24:4639-4648. [PMID: 32495224 DOI: 10.1007/s00784-020-03333-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: blaTEM, blaSHV, blaCTX-M, blaCfxA, blaCepA, blaCblA, and blaampC. Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. blaCfxA was the gene most detected, being observed in 24.8% of the isolates, followed by blaTEM (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes.
Collapse
Affiliation(s)
- Alexandre Arredondo
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain
| | - Carolina Mor
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Rubén León
- Department of Microbiology, Dentaid Research Center, Cerdanyola del Vallès, Spain.
| |
Collapse
|
100
|
An investigation of extended-spectrum β-lactamases (ESBLs) in Klebsiella isolated from foodborne outbreaks in Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|