51
|
Sóñora C, Calo G, Fraccaroli L, Pérez-Leirós C, Hernández A, Ramhorst R. Tissue Transglutaminase on Trophoblast Cells as a Possible Target of Autoantibodies Contributing to Pregnancy Complications in Celiac Patients. Am J Reprod Immunol 2014; 72:485-95. [DOI: 10.1111/aji.12290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cecilia Sóñora
- Immunology Laboratory; School of Sciences/School of Chemistry; Montevideo Uruguay
- EUTM-School of Medicine UDELAR; Montevideo Uruguay
| | - Guillermina Calo
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| | - Laura Fraccaroli
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| | - Claudia Pérez-Leirós
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| | - Ana Hernández
- Immunology Laboratory; School of Sciences/School of Chemistry; Montevideo Uruguay
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory; School of Sciences; University of Buenos Aires and National Research Council (IQUIBICEN-CONICET); Buenos Aires; Argentina
| |
Collapse
|
52
|
Toro AR, Maymó JL, Ibarbalz FM, Pérez AP, Maskin B, Faletti AG, Margalet VS, Varone CL. Leptin is an anti-apoptotic effector in placental cells involving p53 downregulation. PLoS One 2014; 9:e99187. [PMID: 24922063 PMCID: PMC4055782 DOI: 10.1371/journal.pone.0099187] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.
Collapse
Affiliation(s)
- Ayelén Rayen Toro
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Lorena Maymó
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Matías Ibarbalz
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonio Pérez Pérez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Bernardo Maskin
- Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Alicia Graciela Faletti
- Centro de Estudios Farmacológicos y Botánicos, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Víctor Sánchez Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Cecilia Laura Varone
- Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
53
|
Grasso E, Paparini D, Hauk V, Salamone G, Leiros CP, Ramhorst R. Differential migration and activation profile of monocytes after trophoblast interaction. PLoS One 2014; 9:e97147. [PMID: 24849800 PMCID: PMC4029600 DOI: 10.1371/journal.pone.0097147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
Macrophages at the maternal-placental interface coordinate opposite demands under the control of trophoblast cells such as the response against pathogens on one hand, and apoptotic cell clearance and wound healing with the production of suppressor cytokines. Here, we investigated whether trophoblast cells induce maternal monocyte activation towards an alternative activated macrophage profile and whether bacterial or viral stimuli modulate their migratory properties. We used an in vitro model of the maternal-placental interface represented by co-cultures of CD14+ cells isolated from fertile women with first trimester trophoblast cell line (Swan-71 cells) in the presence or absence of pathogen associated molecular pattern (PAMP) stimuli lipopolysaccharide (LPS), peptidoglycan (PGN) or poly [I:C]). Maternal CD14+ cells showed increased CD16 and CD39 expression, both markers associated to an alternative activation profile, with no changes in CD80 expression after trophoblast cell interaction. These changes were accompanied by increased IL-10 and decreased IL-12 production by CD14+ cells. After stimulation with LPS, PGN or poly [I:C], monocytes co-cultured with trophoblast cells had lower production of TNF-α and IL-1β compared with non co-cultured monocytes. Interestingly, monocyte migration towards trophoblast cells was prevented in the presence of LPS or PGN but not after 24h of stimulation with poly [I:C]. LPS or PGN also decreased CCR5, CXCL-8 and CCL5 expression. Finally, trophoblast cells co-cultured with monocytes in the presence of pathological stimuli failed to increase chemokine expression, indicating a bidirectional effect. In conclusion, trophoblast might 'instruct' maternal monocytes to express an alternative activation profile and restrain their early recruitment under pathological threats as one of the first strategies to avoid potential tissue damage at the maternal-placental interface.
Collapse
Affiliation(s)
- Esteban Grasso
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN- CONICET (National Research Council), Buenos Aires, Argentina
| | - Daniel Paparini
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN- CONICET (National Research Council), Buenos Aires, Argentina
| | - Vanesa Hauk
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN- CONICET (National Research Council), Buenos Aires, Argentina
| | - Gabriela Salamone
- Immunology Department, Instituto de Investigaciones Hematológicas e Instituto de Estudios Oncológicos “Fundación Maissa”; Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Perez Leiros
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN- CONICET (National Research Council), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN- CONICET (National Research Council), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
54
|
Grasso E, Paparini D, Agüero M, Mor G, Pérez Leirós C, Ramhorst R. VIP contribution to the decidualization program: regulatory T cell recruitment. J Endocrinol 2014; 221:121-31. [PMID: 24492467 DOI: 10.1530/joe-13-0565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During early pregnancy, the human uterus undergoes profound tissue remodeling characterized by leukocyte invasion and production of proinflammatory cytokines, followed by tissue repair and tolerance maintenance induction. Vasoactive intestinal peptide (VIP) is produced by trophoblast cells and modulates the maternal immune response toward a tolerogenic profile. Here, we evaluated the contribution of the VIP/VPAC to endometrial renewal, inducing decidualization and the recruitment of induced regulatory T cells (iTregs) that accompany the implantation period. For that purpose, we used an in vitro model of decidualization with a human endometrial stromal cell line (HESC) stimulated with progesterone (P4) and lipopolysaccharide (LPS) simulating the inflammatory response during implantation and human iTregs (CD4(+)CD25(+)FOXP3(+)) differentiated from naïve T cells obtained from peripheral blood mononuclear cells of fertile women. We observed that VIP and its receptor VPAC1 are constitutively expressed in HESCs and that P4 increased VIP expression. Moreover, in HESC VIP induced expression of RANTES (CCL5), one of the main chemokines involved in T cell recruitment, and this effect is enhanced by the presence of P4 and LPS. Finally, assays of the migration of iTregs toward conditioned media from HESCs revealed that endogenous VIP production induced by P4 and LPS and RANTES production were involved, as anti-RANTES neutralizing Ab or VIP antagonist prevented their migration. We conclude that VIP may have an active role in the decidualization process, thus contributing to recruitment of iTregs toward endometrial stromal cells by increasing RANTES expression in a P4-dependent manner.
Collapse
Affiliation(s)
- Esteban Grasso
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and IQUIBICEN- CONICET (National Research Council of Science and Technology), Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2 Piso 4, Buenos Aires C1428EHA, Argentina School of Sciences, University of Buenos Aires, Buenos Aires, Argentina Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
55
|
Schumacher A, Zenclussen AC. Regulatory T cells: regulators of life. Am J Reprod Immunol 2014; 72:158-70. [PMID: 24661545 DOI: 10.1111/aji.12238] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022] Open
Abstract
Pregnancy still represents one of the most fascinating paradoxical phenomena in science. Immediately after conception, the maternal immune system is challenged by the presence of foreign paternal antigens in the semen. This triggers mechanisms of recognition and tolerance that all together allow the embryo to implant and later the fetus to develop. Tolerance mechanisms to maintain pregnancy are of special interest as they defy the classical immunology rules. Several cell types, soluble factors, and immune regulatory molecules have been proposed to contribute to fetal tolerance. Within these, regulatory T cells (Treg) are one of the most studied immune cell populations lately. They are reportedly involved in fetal acceptance. Here, we summarize several aspects of Treg biology in normal and pathologic pregnancies focusing on Treg frequencies, subtypes, antigen specificity, and activity as well as on factors influencing Treg generation, recruitment, and function. This review also highlights the contribution of fetal Treg in tolerance induction and addresses the role of Treg in autoimmune diseases and infections during gestation. Finally, the potential of Treg as a predictive marker for the success of assisted reproductive techniques and for therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics & Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
56
|
Choi JH, Jung J, Na KH, Cho KJ, Yoon TK, Kim GJ. Effect of Mesenchymal Stem Cells and Extracts Derived from the Placenta on Trophoblast Invasion and Immune Responses. Stem Cells Dev 2014; 23:132-45. [DOI: 10.1089/scd.2012.0674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jong Ho Choi
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - Jieun Jung
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - Kyu-Hwan Na
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - Kyung Jin Cho
- Department of Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Tae Ki Yoon
- Fertility Center of CHA General Hospital, CHA Research Institute, CHA University, Seoul, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| |
Collapse
|
57
|
Rowe JH, Ertelt JM, Xin L, Way SS. Regulatory T cells and the immune pathogenesis of prenatal infection. Reproduction 2013; 146:R191-203. [PMID: 23929902 DOI: 10.1530/rep-13-0262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pregnancy in placental mammals offers exceptional comprehensive benefits of in utero protection, nutrition, and metabolic waste elimination for the developing fetus. However, these benefits also require durable strategies to mitigate maternal rejection of fetal tissues expressing foreign paternal antigens. Since the initial postulate of expanded maternal immune tolerance by Sir Peter Medawar 60 years ago, an amazingly elaborate assortment of molecular and cellular modifications acting both locally at the maternal-placental interface and systemically have been shown to silence potentially detrimental maternal immune responses. In turn, simultaneously maintaining host defense against the infinite array of potential pathogens during pregnancy is equally important. Fortunately, resistance against most infections is preserved seamlessly throughout gestation. On the other hand, recent studies on pathogens with unique predisposition for prenatal infections have uncovered distinctive holes in host defense associated with the reproductive process. Using these infections to probe the response during pregnancy, the immune suppressive regulatory subset of maternal CD4 T cells has been increasingly shown to dictate the inter-workings between prenatal infection susceptibility and pathogenesis of ensuing pregnancy complications. Herein, the recent literature suggesting a necessity for maternal regulatory T cells (Tregs) in pregnancy-induced immunological shifts that sustain fetal tolerance is reviewed. Additional discussion is focused on how expansion of maternal Treg suppression may become exploited by pathogens that cause prenatal infections and the perilous potential of infection-induced immune activation that may mitigate fetal tolerance and inadvertently inject hostility into the protective in utero environment.
Collapse
Affiliation(s)
- Jared H Rowe
- Division of Infectious Diseases, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7017, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
58
|
Dhamne C, Chung Y, Alousi AM, Cooper LJN, Tran DQ. Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front Immunol 2013; 4:253. [PMID: 23986762 PMCID: PMC3753660 DOI: 10.3389/fimmu.2013.00253] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, much has been learnt and much more to discover about Foxp3(+) regulatory T cells (Tregs). Initially, it was thought that Tregs were a unique entity that originates in the thymus. It is now recognized that there is a fraternal twin sibling that is generated in the periphery. The difficulty is in the distinction between these two subsets. The ability to detect, monitor, and analyze these two subsets in health and disease will provide invaluable insights into their functions and purposes. The plasticity and mechanisms of action can be unique and not overlapping within these subsets. Therefore, the therapeutic targeting of a particular subset of Tregs might be more efficacious. In the past couple of years, a vast amount of data have provided a better understanding of the cellular and molecular components essential for their development and stability. Many studies are implicating their preferential involvement in certain diseases and immunologic tolerance. However, it remains controversial as to whether any phenotypic markers have been identified that can differentiate thymic versus peripheral Tregs. This review will address the validity and controversy regarding Helios, Lap/Garp and Neuropilin-1 as markers of thymic Tregs. It also will discuss updated information on distinguishing features of these two subsets and their critical roles in maternal-fetal tolerance and transplantation.
Collapse
Affiliation(s)
- Chetan Dhamne
- Department of Paediatrics, University Children’s Medical Institute, National University Hospital, Singapore
| | - Yeonseok Chung
- Institute of Molecular Medicine, Center for Immunology and Autoimmune Diseases, UTHealth, Houston, TX, USA
| | - Amin Majid Alousi
- Department of Pediatrics Patient Care, Division of Pediatrics, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Laurence J. N. Cooper
- Department of Stem Cell Transplant and Cellular Therapy, Division of Cancer Medicine, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Dat Quoc Tran
- Department of Pediatrics, Divisions of Allergy/Immunology, Pediatric Research Center, UTHealth, Houston, TX, USA
| |
Collapse
|
59
|
Robertson SA, Prins JR, Sharkey DJ, Moldenhauer LM. Seminal fluid and the generation of regulatory T cells for embryo implantation. Am J Reprod Immunol 2013; 69:315-30. [PMID: 23480148 DOI: 10.1111/aji.12107] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/30/2013] [Indexed: 12/13/2022] Open
Abstract
T regulatory (Treg) cells are essential mediators of the maternal immune adaptation necessary for embryo implantation. In mice, insufficient Treg cell activity results in implantation failure, or constrains placental function and fetal growth. In women, Treg cell deficiency is linked with unexplained infertility, miscarriage, and pre-eclampsia. To devise strategies to improve Treg cell function, it is essential to define the origin of the Treg cells in gestational tissues, and the regulators that control their functional competence and recruitment. Male seminal fluid is a potent source of the Treg cell-inducing agents TGFβ and prostaglandin E, and coitus is one key factor involved in expanding the pool of inducible Treg cells that react with paternal alloantigens shared by conceptus tissues. In mice, coitus initiates a sequence of events whereby female dendritic cells cross-present seminal fluid antigens and activate T cells, which in turn circulate via the blood to be sequestered into the endometrium. Similar events may occur in the human genital tract, where seminal fluid induces immune cell changes that appear competent to prime Treg cells. Improved understanding of how seminal fluid influences Treg cells in women should ultimately assist in the development of new therapies for immune-mediated pathologies of pregnancy.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
60
|
Qiao Y, Fang JG, Xiao J, Liu T, Liu J, Zhang YL, Chen SH. Effect of baicalein on the expression of VIP in extravillous cytotrophoblasts infected with human cytomegalovirus in vitro. ACTA ACUST UNITED AC 2013; 33:406-411. [PMID: 23771668 DOI: 10.1007/s11596-013-1132-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 01/11/2023]
Abstract
This paper aimed to study the ability of baicalein to block human cytomegalovirus (HCMV) infection in extravillous cytotrophoblasts (EVT) and its effect on the vasoactive intestinal peptide (VIP) expression in HCMV-infected EVT in vitro. A human trophoblast cell line (HPT-8) was chosen in this study. HCMV with 100 TCID50 was added into culture medium to infect HPT-8 cells, and then HCMV pp65 antigen was assayed by immunofluorescence staining. The infection status was determined by virus titration. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect virus DNA load in the infected cells. The expression of VIP mRNA and protein in the infected cells was measured by qRT-PCR, immunocytochemistry and Western blotting. Concentration of VIP secreted in supernatants was determined by ELISA. Red-stained HCMV pp65 antigens were found in infected HPT-8 cells 48 h after infection. HCMV replicated in large quantity in infected HPT-8 cells 4 days after infection, reaching a peak at day 6 post-infection. After treatment with baicalein, virus DNA load in infected HPT-8 cells was decreased (P<0.05), and the levels of VIP mRNA and protein, and the concentration were raised to the normal (P>0.05). Our study suggested that baicalein exerts a positive effect on the VIP expression in HCMV-infected EVT at maternal-fetal interface.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Guo Fang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Xiao
- Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Tai'an City Central Hospital, Tai'an, 271000, China
| | - Jing Liu
- Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Li Zhang
- Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Su-Hua Chen
- Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
61
|
Burt TD. Fetal regulatory T cells and peripheral immune tolerance in utero: implications for development and disease. Am J Reprod Immunol 2013; 69:346-58. [PMID: 23432802 PMCID: PMC3951896 DOI: 10.1111/aji.12083] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
The developing fetus must actively learn to tolerate benign antigens or suffer the consequences of broken tolerance. Tolerance of self-antigens prevents development of autoimmune diseases and is achieved by both deletion of autoreactive T cell clones in the thymus (central tolerance) and by the suppressive influence of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) in the periphery. Fetal CD4(+) T cells have a strong predisposition to differentiate into tolerogenic Tregs that actively promote self-tolerance, as well as tolerance to non-inherited antigens on chimeric maternal cells that reside in fetal tissues. As the fetus nears birth, a crucial transition must occur between the tolerogenic fetal immune system and a more defensive adult-type immune system that is able to combat pathogens. This paper will review the unique tolerogenic nature of fetal T cells and will examine evidence for a novel model of fetal immune development: the layered immune system hypothesis.
Collapse
Affiliation(s)
- Trevor D Burt
- Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
62
|
Gomez-Lopez N, Vega-Sanchez R, Castillo-Castrejon M, Romero R, Cubeiro-Arreola K, Vadillo-Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol 2013; 69:212-30. [PMID: 23347265 PMCID: PMC3600361 DOI: 10.1111/aji.12074] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Spontaneous labor at term involves leukocyte recruitment and infiltration into the choriodecidua; yet, characterization of these leukocytes and their immunological mediators is incomplete. The purpose of this study was to characterize the immunophenotype of choriodecidual leukocytes as well as the expression of inflammatory mediators in human spontaneous parturition at term. METHOD OF STUDY Choriodecidual leukocytes were analyzed by FACS, immunohistochemistry, and RT-PCR in three different groups: (i) preterm gestation delivered for medical indications without labor; (ii) term pregnancy without labor; and (iii) term pregnancy after spontaneous labor. RESULTS Two T-cell subsets of memory-like T cells (CD3(+) CD4(+) CD45RO(+) and CD3(+) CD4(-) CD8(-) CD45RO(+) cells) were identified in the choriodecidua of women who had spontaneous labor. Evidence for an extensive immune signaling network composed of chemokines (CXCL8 and CXCL10), chemokine receptors (CXCR1-3), cytokines (IL-1β and TNF-α), cell adhesion molecules, and MMP-9 was identified in these cells during spontaneous labor at term. CONCLUSIONS The influx of memory-like T cells in the choriodecidua and the evidence that they are active by producing chemokines and cytokines, and expressing chemokine receptors, cell adhesion molecules, and a matrix-degrading enzyme provides support for the participation of the adaptive immune system in the mechanisms of spontaneous parturition at term.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Research Direction and Department of Nutrition Research, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
63
|
Zenclussen AC. Adaptive immune responses during pregnancy. Am J Reprod Immunol 2013; 69:291-303. [PMID: 23418773 DOI: 10.1111/aji.12097] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 02/05/2023] Open
Abstract
It has long been believed that there is no immune interaction between mother and conceptus during pregnancy. This concept changed after evidence was provided that the maternal immune system is aware of the semiallogeneic conceptus and develops strategies to tolerate it. Since then, finely regulated mechanisms of active tolerance toward the fetus have been described. This Special Issue of the American Journal of Reproductive Immunology deals with these mechanisms. It begins with the description of minor histocompatibility antigens in the placenta; it further goes through adaptive immune responses toward paternal fetal antigens, mostly concentrating on regulatory T cells and molecules modulating the Th1/Th2 balance. The participation of antibody-producing B cells in normal and pathological pregnancies is also discussed. This introductory chapter resumes the concepts presented throughout the Issue and discusses the clinical applications raised from these concepts.
Collapse
Affiliation(s)
- Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
64
|
Pérez Leirós C, Ramhorst R. Tolerance induction at the early maternal-placental interface through selective cell recruitment and targeting by immune polypeptides. Am J Reprod Immunol 2013; 69:359-68. [PMID: 23405982 DOI: 10.1111/aji.12087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022] Open
Abstract
Pregnancy challenges immune cells and immunomodulatory circuits of the mother and the developing fetus to dynamically adapt to each other in an homeostatic and tolerant environment for fetal growth. This entails the coordination of multiple cellular processes all devoted to accommodate and nourish the fetus while protecting the mother from endogenous and exogenous threatens. From the earliest stages of pregnancy, several strategies to efficiently communicate immune and trophoblast cells within the interface or at a distance were identified and chemokines might act at on different targets through direct or indirect mechanisms. Here, we briefly review some mechanisms of T regulatory cell recruitment to the early maternal-placental interfaces to accomplish immunotolerance and homeostatic control and we discuss evidence on two locally released polypeptides, RANTES (regulated on activation, normal, T-cell expressed, and secreted) and vasoactive intestinal peptide (VIP), as novel contributors to the multiplicity of immune tolerant responses and uterine quiescence requirements.
Collapse
Affiliation(s)
- Claudia Pérez Leirós
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
65
|
Liu C, Wang XZ, Sun XB. Assessment of sperm antigen specific T regulatory cells in women with recurrent miscarriage. Early Hum Dev 2013; 89:95-100. [PMID: 22925355 DOI: 10.1016/j.earlhumdev.2012.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/07/2012] [Accepted: 08/11/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The prevalence of recurrent miscarriage (RM) is about 1-3% of women; the pathogenesis of RM is not fully understood yet. This study aims to assess the sperm antigen specific regulatory T cells (Treg) in women with RM. METHODS A group of women with RM was recruited into this study. The sperm antigen was extracted from the semen samples of each woman's husband. The sperm antigen specific T cell response was assessed by flow cytometry. RESULTS Low frequency of sperm specific Tregs and high frequency of T helper (Th)1 cells were detected in RM women as compared with women without RM. The sperm specific Tregs in RM women expressed less Ubc13. Knockdown of Ubc13 from Tregs converted the Tregs to effector T cells. CONCLUSIONS Immune deregulation may play an important role in RM.
Collapse
Affiliation(s)
- Chaodong Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | |
Collapse
|
66
|
Fraccaroli L, Grasso E, Hauk V, Cortelezzi M, Calo G, Pérez Leirós C, Ramhorst R. Defects in the vasoactive intestinal peptide (VIP)/VPAC system during early stages of the placental-maternal leucocyte interaction impair the maternal tolerogenic response. Clin Exp Immunol 2012; 170:310-20. [PMID: 23121672 PMCID: PMC3518891 DOI: 10.1111/j.1365-2249.2012.04668.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/17/2022] Open
Abstract
Successful embryo implantation occurs followed by a local inflammatory/T helper type 1 (Th1) response, subsequently redirected towards a tolerogenic predominant profile. The lack of control of this initial local inflammatory response may be an underlying cause of early pregnancy complications as recurrent spontaneous abortions (RSA). Considering that vasoactive intestinal peptide (VIP) mediates anti-inflammatory and tolerogenic effects in several conditions we hypothesized that VIP might contribute to tolerance towards trophoblast antigens during the early interaction of maternal leucocytes and trophoblast cells. In this study we investigated VIP/VPAC system activity and expression on maternal peripheral blood mononuclear cells (PBMCs) after interaction with immortalized trophoblast cells (Swan-71 cell line) as an in-vitro model of feto-maternal interaction, and we analysed whether it modulates maternal regulatory T cell (T(reg))/Th1 responses. We also investigated the contribution of the endogenous VIP/VPAC system to RSA pathogenesis. VIP decreased T-bet expression significantly, reduced monocyte chemotactic protein-1 (MCP-1) and nitrite production in co-cultures of PBMCs from fertile women with trophoblast cells; while it increased the frequency of CD4(+) CD25(+) forkhead box protein 3 (Foxp3)(+) cells, transforming growth factor (TGF)-β expression and interleukin (IL)-10 secretion. These effects were prevented by VIP-specific antagonist. Interestingly, PBMCs from RSA patients displayed significantly higher T-bet expression, lower T(reg) frequency and lower frequency of VIP-producer CD4 lymphocytes after the interaction with trophoblast cells. Moreover, the patients displayed a significantly lower frequency of endometrial CD4(+) VIP(+) cells in comparison with fertile women. VIP showed a Th1-limiting and T(reg) -promoting response in vitro that would favour early pregnancy outcome. Because RSA patients displayed defects in the VIP/VPAC system, this neuropeptide could be a promising candidate for diagnostic biomarker or surrogate biomarker for recurrent spontaneous abortions.
Collapse
Affiliation(s)
- L Fraccaroli
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires and National Research Council (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
67
|
Salamone G, Fraccaroli L, Gori S, Grasso E, Paparini D, Geffner J, Pérez Leirós C, Ramhorst R. Trophoblast cells induce a tolerogenic profile in dendritic cells. Hum Reprod 2012; 27:2598-606. [PMID: 22718280 DOI: 10.1093/humrep/des208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs), which are biased toward a tolerogenic profile, play a pivotal role in tissue-remodeling processes and angiogenesis at the maternal-fetal interface. Here, we analyzed the effect of trophoblast cells on the functional profile of DCs to gain insight on the tolerogenic mechanisms underlying the human placental-maternal dialog at early stages of gestation. METHODS DCs were differentiated from peripheral blood monocytes obtained from fertile women (n = 21), in the presence of interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor during 5 days in culture. Then, DCs were cultured with trophoblast cells (Swan-71 cell line obtained from normal cytotrophoblast, at 7 weeks) for 24 h and for an additional 24 h in the absence or presence of lipopolysaccharide (LPS) from Escherichia coli. DCs were recovered and used for flow cytometry, enzyme-linked immunosorbent assay, RT-PCR and suppression and migration assays. RESULTS Trophoblast cells significantly prevented the increase in CD83 expression induced by LPS without affecting the expression of CD86, CD40 and human leukocyte antigen-DR (P < 0.05). Trophoblast cells significantly decreased the production of IL-12p70 and tumor necrosis factor-α, while it increased the production of IL-10 (P < 0.05). No changes were observed in the production of IL-6 and monocyte chemotactic protein-1. The culture of DCs with trophoblast cells, also suppressed the stimulation of the allogeneic response triggered by LPS (P < 0.05). Conditioned DCs were able to increase the frequency of CD4 + CD25 + Foxp3 cells and this effect was accompanied by an increase in indoleamine 2, 3-dioxygenase expression in DCs (P < 0.05). CONCLUSIONS The interaction of DCs with trophoblast cells promotes the differentiation of DCs into cells with a predominantly tolerogenic profile that could contribute to a tolerogenic microenvironment at the maternal-fetal interface.
Collapse
Affiliation(s)
- Gabriela Salamone
- Immunology Department, Instituto de Investigaciones Hematológicas and Instituto de Estudios Oncológicos Fundación Maissa, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Silasi M, Mor G. Decidual stromal cells as regulators of T-cell access to the maternal-fetal interface. Am J Reprod Immunol 2012; 68:279-81. [PMID: 22935072 DOI: 10.1111/aji.12006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 11/29/2022] Open
Abstract
A recent study in the journal Science offers insights into the mechanism behind feto-maternal tolerance, as evidenced by changes in the immuno-logical environment of the uterus and decidua. They also provide a rich area of research for the understanding of the regulation of the immune system in other complicated medical conditions, including cancer and pregnancies affected by infection or autoimmunity.
Collapse
Affiliation(s)
- Michelle Silasi
- Reproductive Immunology Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
69
|
Ramhorst RE, Giribaldi L, Fraccaroli L, Toscano MA, Stupirski JC, Romero MD, Durand ES, Rubinstein N, Blaschitz A, Sedlmayr P, Genti-Raimondi S, Fainboim L, Rabinovich GA. Galectin-1 confers immune privilege to human trophoblast: implications in recurrent fetal loss. Glycobiology 2012; 22:1374-86. [PMID: 22752006 DOI: 10.1093/glycob/cws104] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanisms accounting for the protection of the fetal semi-allograft from maternal immune cells remain incompletely understood. In previous studies, we showed that galectin-1 (Gal1), an immunoregulatory glycan-binding protein, hierarchically triggers a cascade of tolerogenic events at the mouse fetomaternal interface. Here, we show that Gal1 confers immune privilege to human trophoblast cells through the modulation of a number of regulatory mechanisms. Gal1 was mainly expressed in invasive extravillous trophoblast cells of human first trimester and term placenta in direct contact with maternal tissue. Expression of Gal1 by the human trophoblast cell line JEG-3 was primarily controlled by progesterone and pro-inflammatory cytokines and impaired T-cell responses by limiting T cell viability, suppressing the secretion of Th1-type cytokines and favoring the expansion of CD4(+)CD25(+)FoxP3(+) regulatory T (T(reg)) cells. Targeted inhibition of Gal1 expression through antibody (Ab)-mediated blockade, addition of the specific disaccharide lactose or retroviral-mediated siRNA strategies prevented these immunoregulatory effects. Consistent with a homeostatic role of endogenous Gal1, patients with recurrent pregnancy loss showed considerably lower levels of circulating Gal1 and had higher frequency of anti-Gal1 auto-Abs in their sera compared with fertile women. Thus, endogenous Gal1 confers immune privilege to human trophoblast cells by triggering a broad tolerogenic program with potential implications in threatened pregnancies.
Collapse
Affiliation(s)
- Rosanna E Ramhorst
- Laboratory of Immunopharmacology, Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kim SY, Romero R, Tarca AL, Bhatti G, Kim CJ, Lee J, Elsey A, Than NG, Chaiworapongsa T, Hassan SS, Kang GH, Kim JS. Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface. Am J Reprod Immunol 2012; 68:8-27. [PMID: 22385097 DOI: 10.1111/j.1600-0897.2012.01108.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/19/2012] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Decidual macrophages (dMφ) of the mother and placental macrophages (Hofbauer cells, HC) of the fetus are deployed at a critical location: the feto-maternal interface. This study was conducted to compare the DNA methylome of maternal and fetal monocytes, dMφ, and HC and thereby to determine the immunobiological importance of DNA methylation in pregnancy. METHOD OF STUDY Paired samples were obtained from normal pregnant women at term not in labor and their neonates. Maternal monocytes (MMo) and fetal monocytes (FMo) were isolated from the peripheral blood of mothers and fetal cord blood, respectively. dMφ and HC were obtained from the decidua of fetal membranes and placentas, respectively. DNA methylation profiling was performed using the Illumina Infinium Human Methylation27 BeadChip. Quantitative real-time PCR and Western Blot were performed for validation experiments. RESULTS (i) Significant differences in DNA methylation were found in each comparison (MMo versus FMo, 65 loci; dMφ versus HC, 266 loci; MMo versus dMφ, 199 loci; FMo versus HC, 1030 loci). (ii) Many of the immune response-related genes were hypermethylated in fetal cells (FMo and HC) compared to maternal cells (MMo and dMφ). (iii) Genes encoding markers of classical macrophage activation were hypermethylated, and genes encoding alternative macrophage activation were hypomethylated in dMφ and HC compared to MMo and FMo, respectively. (iv) mRNA expressions of DNMT1, DNMT3A, and DNMT3B were significantly lower in dMφ than in HC. (v) 5-azacytidine treatment increased expression of INCA1 in dMφ. CONCLUSIONS The findings herein indicate that DNA methylation patterns change during monocyte-macrophage differentiation at the feto-maternal interface. It is also suggested that DNA methylation is an important component of the biological machinery conferring an anti-inflammatory phenotype to macrophages at the feto-maternal interface.
Collapse
Affiliation(s)
- Sun Young Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Xu Y, Tarquini F, Romero R, Kim CJ, Tarca AL, Bhatti G, Lee J, Sundell IB, Mittal P, Kusanovic JP, Hassan SS, Kim JS. Peripheral CD300a+CD8+ T lymphocytes with a distinct cytotoxic molecular signature increase in pregnant women with chronic chorioamnionitis. Am J Reprod Immunol 2012; 67:184-97. [PMID: 22077960 PMCID: PMC3479405 DOI: 10.1111/j.1600-0897.2011.01088.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PROBLEM CD300a is an immunomodulatory molecule of the immunoglobulin receptor superfamily expressed in the leukocytes of myeloid and lymphoid lineages. However, its biological function on CD8+ T lymphocytes remains largely unknown. This study was conducted to assess the biological significance of CD300a expression in T lymphocytes and to determine whether its expression in peripheral T lymphocytes changes in pregnant women presenting with antifetal rejection. METHODS OF STUDY Microarray analysis was performed using total RNA isolated from peripheral CD300a+ and CD300a- T lymphocytes. Flow cytometric analysis of the peripheral blood samples of pregnant women and pathologic examination of the placentas were conducted. RESULTS A large number of genes (N = 1245) were differentially expressed between CD300a- and CD300a+ subsets of CD8+ T lymphocytes, which included CCR7, CD244, CX3CR1, GLNY, GZMB, GZMK, IL15, ITGB1, KLRG1, PRF1, and SLAMF7. Gene ontology analysis of differentially expressed genes demonstrated enrichment of biological processes such as immune response, cell death, and signal transduction. CD300a expression in CD8+ T lymphocytes was coupled to a more cytotoxic molecular signature. Of note, the proportion of CD300a+CD8+ T lymphocytes increased in pregnant women with chronic chorioamnionitis (antifetal rejection of the chorioamniotic membranes; P < 0.05). CONCLUSION The findings of this study strongly suggest an increase in systemic T-lymphocyte-mediated cytotoxicity in pregnant women with chronic chorioamnionitis as a manifestation of maternal antifetal rejection.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Federica Tarquini
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Computer Science, Wayne State University, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - JoonHo Lee
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - I. Birgitta Sundell
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Pooja Mittal
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jung-Sun Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|