51
|
Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:454-67. [PMID: 19128203 PMCID: PMC2878195 DOI: 10.2174/187152708786927886] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions.
Collapse
Affiliation(s)
- E A Engleman
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
52
|
Mandt BH, Allen RM, Zahniser NR. Individual differences in initial low-dose cocaine-induced locomotor activity and locomotor sensitization in adult outbred female Sprague-Dawley rats. Pharmacol Biochem Behav 2008; 91:511-6. [PMID: 18817807 DOI: 10.1016/j.pbb.2008.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 09/03/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Sex and individual differences are important considerations when studying cocaine responsiveness. We have previously shown that male Sprague-Dawley (S-D) rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively) based on their locomotor activity following a single dose of cocaine (10 mg/kg, i.p.). Further, this distinction was found to predict dopamine transporter function, cocaine-induced locomotor sensitization, cocaine conditioned place preference and motivation to self-administer cocaine. Here we investigated whether or not individual differences in cocaine-induced locomotor activity and locomotor sensitization exist in female S-D rats. Female rats exhibited a broad range of locomotor activation following either a 5 or 10 mg/kg cocaine injection, allowing for classification as LCRs or HCRs. When administered over 7 days, both doses induced locomotor sensitization in female LCRs/HCRs. However, the magnitude of effects produced by 5 mg/kg cocaine in female LCRs/HCRs was more comparable to that produced by 10 mg/kg in male LCRs/HCRs, both of which, interestingly, developed sensitization in this study. These findings suggest that female S-D rats, like male S-D rats, can be classified as LCRs/HCRs and highlight the importance of accounting for dose when studying sex and individual differences to the effects of cocaine.
Collapse
Affiliation(s)
- Bruce H Mandt
- University of Colorado Denver, School of Medicine, Department of Pharmacology, Aurora, CO 80045, United States.
| | | | | |
Collapse
|
53
|
A role for neuronal nicotinic acetylcholine receptors in ethanol-induced stimulation, but not cocaine- or methamphetamine-induced stimulation. Psychopharmacology (Berl) 2008; 196:377-87. [PMID: 17938890 DOI: 10.1007/s00213-007-0969-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Cocaine (COC), ethanol (EtOH), and methamphetamine (MA) are widely abused substances and share the ability to induce behavioral stimulation in mice and humans. Understanding the biological basis of behavioral stimulation to COC, EtOH, and MA may provide a greater understanding of drug and alcohol abuse. OBJECTIVES In these studies we set out to determine if neuronal nicotinic acetylcholine receptors were involved in the acute locomotor responses to these drugs, our measure of behavioral stimulation. METHODS A panel of acetylcholine receptor antagonists was used to determine if nicotinic receptors were involved in EtOH- and psychostimulant-induced stimulation. We tested the effect of these drugs in genotypes of mice (FAST and DBA/2J) that are extremely sensitive to this drug effect. To determine which acetylcholine receptor subunits may be involved in this response, relative expression of the alpha3, alpha6, beta2, and beta4 subunit genes was examined in mice selectively bred for high and low response to EtOH. RESULTS Mecamylamine, but not hexamethonium, attenuated the acute locomotor response to EtOH. The acetylcholine receptor antagonist dihydro-beta-erythroidine and methyllycaconitine had no effect on this response. The alpha6 and beta4, but not alpha3 or beta2, subunits of the acetylcholine receptor were differentially expressed between mice bred for extreme differences in EtOH stimulation. Mecamylamine had no effect on psychostimulant-induced locomotor activity. CONCLUSIONS Neuronal nicotinic receptors are involved in EtOH, but not psychostimulant, stimulation. These studies suggest a lack of involvement of some nicotinic receptor subtypes, but more work is needed to determine the specific receptor subtypes involved in this behavior.
Collapse
|
54
|
Phillips TJ, Kamens HM, Wheeler JM. Behavioral genetic contributions to the study of addiction-related amphetamine effects. Neurosci Biobehav Rev 2007; 32:707-59. [PMID: 18207241 PMCID: PMC2360482 DOI: 10.1016/j.neubiorev.2007.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/28/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022]
Abstract
Amphetamines, including methamphetamine, pose a significant cost to society due to significant numbers of amphetamine-abusing individuals who suffer major health-related consequences. In addition, methamphetamine use is associated with heightened rates of violent and property-related crimes. The current paper reviews the existing literature addressing genetic differences in mice that impact behavioral responses thought to be relevant to the abuse of amphetamine and amphetamine-like drugs. Summarized are studies that used inbred strains, selected lines, single-gene knockouts and transgenics, and quantitative trait locus (QTL) mapping populations. Acute sensitivity, neuroadaptive responses, rewarding and conditioned effects are among those reviewed. Some gene mapping work has been accomplished, and although no amphetamine-related complex trait genes have been definitively identified, translational work leading from results in the mouse to studies performed in humans is beginning to emerge. The majority of genetic investigations have utilized single-gene knockout mice and have concentrated on dopamine- and glutamate-related genes. Genes that code for cell support and signaling molecules are also well-represented. There is a large behavioral genetic literature on responsiveness to amphetamines, but a considerably smaller literature focused on genes that influence the development and acceleration of amphetamine use, withdrawal, relapse, and behavioral toxicity. Also missing are genetic investigations into the effects of amphetamines on social behaviors. This information might help to identify at-risk individuals and in the future to develop treatments that take advantage of individualized genetic information.
Collapse
|
55
|
Kliethermes CL, Kamens HM, Crabbe JC. Drug reward and intake in lines of mice selectively bred for divergent exploration of a hole board apparatus. GENES BRAIN AND BEHAVIOR 2007; 6:608-18. [PMID: 17147699 DOI: 10.1111/j.1601-183x.2006.00289.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Individuals characterized as high-novelty seekers are more likely to abuse drugs than are low-novelty seekers, and it is possible that the biological substrates underlying novelty seeking and drug abuse are similar. We selectively bred replicate lines of mice from a B6D2 F3 hybrid stock for high exploratory behavior (HEB) or low exploratory behavior (LEB) as measured by the number of head dips on a hole board. To determine whether common genes might influence exploratory behavior and behaviors relevant to drug abuse, we tested HEB and LEB mice for conditioned place preference produced by ethanol and d-amphetamine and also examined oral methamphetamine intake. After four generations of selection, HEB and LEB mice did not differ in the magnitude of place preference for ethanol, but LEB mice showed a greater place preference for an amphetamine-paired location than did HEB mice. However, this difference did not replicate in mice tested from the fifth generation of selection. The selected lines also did not differ in sensitization to the locomotor stimulant effects of d-amphetamine that developed across the conditioning trials. Finally, HEB and LEB mice consumed equivalently low amounts of methamphetamine. These results suggest that common genes do not influence head dipping and several behaviors potentially relevant to drug abuse.
Collapse
Affiliation(s)
- C L Kliethermes
- Ernest Gallo Clinic & Research Center, University of California, 5858 Horton Street, Suite 200, Emeryville, San Francisco, CA 94608, USA.
| | | | | |
Collapse
|
56
|
Einat H, Shaldubina A, Bersudsky Y, Belmaker RH. Prospects for the Development of Animal Models for the Study of Bipolar Disorder. MEDICAL PSYCHIATRY 2007. [DOI: 10.3109/9781420021158.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
57
|
Kruzich PJ. Does response-contingent access to cocaine reinstate previously extinguished cocaine-seeking behavior in C57BL/6J mice? Brain Res 2007; 1149:165-71. [PMID: 17362889 DOI: 10.1016/j.brainres.2007.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/15/2007] [Accepted: 02/18/2007] [Indexed: 11/21/2022]
Abstract
Inbred strains of mice are valuable tools for determining the impact of genes and the environment on behavior. However, use of mice in intravenous (iv) cocaine self-administration (SA) extinction/reinstatement paradigms has yielded mixed results. Mice do demonstrate significant conditioned reinstatement but do not significantly reinstate previously extinguished cocaine-seeking behavior when passively primed with cocaine. We tested the hypothesis that C57BL/6J (B6) mice would reinstate previously extinguished cocaine-seeking behavior when provided with response-contingent access to conditioned cues and fixed doses of cocaine. Male B6 mice were implanted with jugular catheters and trained to lever press for cocaine infusions. Each infusion was paired with a compound stimulus (light and tone; LT). Following 14 days of SA, subjects underwent extinction training--responding resulted in no programmed consequences. After at least 5 extinction sessions, cue-primed reinstatement was tested (LT-test). For the LT-test, mice received response-contingent presentations of the LT. After the LT-test, subjects returned to extinction training. Once responding decreased to extinction criteria, cocaine priming began. During cocaine priming, mice had response-contingent access to saline, 1.05, 3.5, or 17.5 mg/kg cocaine. Response-contingent presentations of the LT significantly reinstated cocaine-seeking behavior in the mice. Response-contingent access to cocaine dose-dependently reinstated responding. Our results suggest that response-contingent access to cocaine is a robust method for modeling cocaine craving and relapse in mice.
Collapse
Affiliation(s)
- Paul J Kruzich
- Department of Physiology, Medical College of Georgia, GA 30192, USA.
| |
Collapse
|
58
|
Veenstra-VanderWeele J, Qaadir A, Palmer AA, Cook EH, de Wit H. Association between the casein kinase 1 epsilon gene region and subjective response to D-amphetamine. Neuropsychopharmacology 2006; 31:1056-63. [PMID: 16237383 DOI: 10.1038/sj.npp.1300936] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animal models suggest that the casein kinase 1 epsilon gene (Csnk1e) contributes to variability in stimulant response. Csnk1e is a key component in the Darpp-32 (Dopamine-And-cAMP-Regulated-Phosphoprotein-32 kDa) second messenger pathway and has been implicated in previous pharmacological and pharmacogenetic studies in mice. Mice bred for methamphetamine sensitivity showed linkage to the region of chromosome 15 that contains Csnk1e and also showed a 10-fold increase in expression of Csnk1e. We used a double-blind, crossover design in healthy human volunteers to test association between polymorphisms in the CSNK1E region and subjective response to placebo, 10, or 20 mg of oral D-amphetamine. Repeated-measures ANOVA was used to analyze interactions between genotype and drug response. The primary outcome measure, subjects' ratings of whether they felt a drug effect (Drug Effects Questionnaire (DEQ)), revealed a significant effect (p=0.010) at one single-nucleotide polymorphism (rs135745). Subjects with more copies of the rs135745 C allele were more sensitive to the low dose of D-amphetamine (p=0.001), which corresponded to a leftward shift in the dose-response curve. These findings demonstrate the successful translation of pharmacogenetic results from mice to humans.
Collapse
Affiliation(s)
- Jeremy Veenstra-VanderWeele
- Institute of Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
59
|
Mitchell SH, Reeves JM, Li N, Phillips TJ. Delay Discounting Predicts Behavioral Sensitization to Ethanol in Outbred WSC Mice. Alcohol Clin Exp Res 2006; 30:429-37. [PMID: 16499483 DOI: 10.1111/j.1530-0277.2006.00047.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcoholic individuals discount the value of future rewards more steeply than social drinkers, which is viewed as symptomatic of higher levels of impulsivity. However, the mechanisms underlying this difference are unknown. This study examined 2 hypotheses about the relationship between discounting and ethanol's effects in mice: (1) steep discounters are less sensitive to the initial stimulant-like effects of ethanol and (2) steep discounters exhibit greater behavioral adaptation to stimulant effects with repeated ethanol exposure. METHODS An adjusting amount procedure was used to assess discounting as a function of delay in ethanol-naïve genetically heterogeneous WSC mice. Mice chose between a small amount of sucrose solution delivered immediately and 19.5 microL delivered following a delay (0, 2, 4, 8, or 12 seconds, varied between sessions). Within sessions, the amount (microL) of immediate sucrose was adjusted until animals became indifferent between the immediate and specific delayed reward. Hyperbolic discount functions were fitted to quantify the degree of delay discounting. Then, in a within-subjects design over 13 days, mice received a pattern of daily injections of saline or ethanol, and after certain treatments their locomotor activity was assessed for 15 minutes. RESULTS Animals with steeper discount functions (greater impulsivity) tended to exhibit less locomotor stimulation on their initial exposure to ethanol. However, steeper discounting was positively associated with increases in locomotor activity after repeated exposure (sensitization), indicating that steep discounters showed higher levels of sensitization to the stimulating effects of ethanol. CONCLUSIONS These results suggest 2 behavioral effects of ethanol, associated with an increased risk for alcohol abuse, that are associated with variations in delay discounting.
Collapse
Affiliation(s)
- Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
60
|
Phillips T, Crabbe J. Determining addiction ‐ genes and substance use. DRUGS AND ALCOHOL TODAY 2005. [DOI: 10.1108/17459265200500060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Does having alcoholic parents make you more susceptible to alcohol problems? Why do some people develop drink or drug problems while others in the same family do not? How much can genetic research tell us about why drink and drugs can affect people in so many different ways? With genetic research discovering increasing links with behaviour we invited two of the leading addiction and gene researchers to explain the science. Tamara Phillips and John Crabbe uncover the ever‐emerging world of genetic research and addiction theory.
Collapse
|
61
|
Rhodes JS, Ryabinin AE, Crabbe JC. Patterns of brain activation associated with contextual conditioning to methamphetamine in mice. Behav Neurosci 2005; 119:759-71. [PMID: 15998197 DOI: 10.1037/0735-7044.119.3.759] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Classical conditioning is thought to play a key role in addiction. The authors used c-Fos immunohistochemistry to demonstrate a conditioned physiological response to methamphetamine (meth) in mice. Male outbred mice were placed into an environment where they had previously experienced 2 mg/kg meth or saline. The meth-paired mice displayed increased c-Fos in several brain regions, including the nucleus accumbens, prefrontal cortex, orbitofrontal cortex, basolateral amygdala, and bed nucleus of the stria terminalis. No conditioned locomotor activity was observed, but individual activity levels strongly correlated with c-Fos in many regions. A batch effect among immunohistochemical assays was demonstrated. Results implicate specific brain regions in classical conditioning to meth and demonstrate the importance of considering locomotor activity and batch in a c-Fos study.
Collapse
Affiliation(s)
- Justin S Rhodes
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA.
| | | | | |
Collapse
|
62
|
Palmer AA, Verbitsky M, Suresh R, Kamens HM, Reed CL, Li N, Burkhart-Kasch S, McKinnon CS, Belknap JK, Gilliam TC, Phillips TJ. Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mamm Genome 2005; 16:291-305. [PMID: 16104378 DOI: 10.1007/s00335-004-2451-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In an effort to identify genes that may be important for drug-abuse liability, we mapped behavioral quantitative trait loci (bQTL) for sensitivity to the locomotor stimulant effect of methamphetamine (MA) using two mouse lines that were selectively bred for high MA-induced activity (HMACT) or low MA-induced activity (LMACT). We then examined gene expression differences between these lines in the nucleus accumbens, using 20 U74Av2 Affymetrix microarrays and quantitative polymerase chain reaction (qPCR). Expression differences were detected for several genes, including Casein Kinase 1 Epsilon (Csnkle), glutamate receptor, ionotropic, AMPA1 (GluR1), GABA B1 receptor (Gabbr1), and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (Darpp-32). We used the www.WebQTL.org database to identify QTL that regulate the expression of the genes identified by the microarrays (expression QTL; eQTL). This approach identified an eQTL for Csnkle on Chromosome 15 (LOD = 3.8) that comapped with a bQTL for the MA stimulation phenotype (LOD = 4.5), suggesting that a single allele may cause both traits. The chromosomal region containing this QTL has previously been associated with sensitivity to the stimulant effects of cocaine. These results suggest that selection was associated with (and likely caused) altered gene expression that is partially attributable to different frequencies of gene expression polymorphisms. Combining classical genetics with analysis of whole-genome gene expression and bioinformatic resources provides a powerful method for provisionally identifying genes that influence complex traits. The identified genes provide excellent candidates for future hypothesis-driven studies, translational genetic studies, and pharmacological interventions.
Collapse
Affiliation(s)
- Abraham A Palmer
- Columbia Genome Center, Columbia University, 1150 St. Nicholas Ave., New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Phillips TJ, Broadbent J, Burkhart-Kasch S, Henderson C, Wenger CD, McMullin C, McKinnon CS, Cunningham CL. Genetic Correlational Analyses of Ethanol Reward and Aversion Phenotypes in Short-Term Selected Mouse Lines Bred for Ethanol Drinking or Ethanol-Induced Conditioned Taste Aversion. Behav Neurosci 2005; 119:892-910. [PMID: 16187818 DOI: 10.1037/0735-7044.119.4.892] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short-term selective breeding created mouse lines divergent for ethanol drinking (high drinking short-term selected line [STDRHI], low drinking [STDRLO]) or ethanol-induced conditioned taste aversion (CTA; high [HTA], low [LTA]). Compared with STDRLO, STDRHI mice consumed more saccharin and less quinine, exhibited greater ethanol-induced conditioned place preference (CPP), and showed reduced ethanol stimulation and sensitization under some conditions; a line difference in ethanol-induced CTA was not consistently found. Compared with LTA, HTA mice consumed less ethanol but were similar in saccharin consumption, sensitivity to ethanol-induced CPP, and ethanol-induced locomotor stimulation and sensitization. These data suggest that ethanol drinking is genetically associated with several reward-and aversion-related traits. The interpretation of ethanol-induced CTA as more genetically distinct must be tempered by the inability to test the CTA lines beyond Selection Generation 2.
Collapse
Affiliation(s)
- Tamara J Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|