51
|
Qiu F, Qu M, Zhang X, Wang H, Ding S. Hypothalamus and pituitary transcriptome profiling of male and female Hong Kong grouper (Epinephelus akaara). Gene 2018; 656:73-79. [PMID: 29481846 DOI: 10.1016/j.gene.2018.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/04/2018] [Accepted: 02/22/2018] [Indexed: 11/27/2022]
Abstract
Hong Kong grouper (Epinephelus akaara) is an important commercially cultured marine fish in Asia, and a protogynous hermaphrodite with the "diandry" pattern. In order to explore the gene expression patterns of hypothalamus and pituitary between male and female Hong Kong grouper, we used RNA-seq technology to investigate transcriptomes of both tissues in immature and mature male and female adults. This produced 227,227,148 and 215,858,948 high quality reads from hypothalamus and pituitary, which were jointly assembled into 199,203 unigenes. Among them, 30,786 unigenes were mapped to known genes. Differential expression analysis revealed 275 unigenes that were differentially expressed between immature male and female adults and 561 between mature male and female adults. According to annotation and KEGG information, these differentially expressed genes (DEGs) were involved in development, metabolism, and regulation of transcription. One DEG, amino-terminal enhancer of split (AES), a member of the Groucho/transducin-like enhancer of split family of transcriptional regulators that played important roles in neurogenesis, segmentation, and sex determination, was significantly upregulated in male individuals in both immature and mature adult comparisons, indicating it may be involved in male reproductive function during development. Our report, for the first time, uses RNA-seq technology to investigate transcriptomes of both hypothalamus and pituitary in teleost fish, and provides a basis for further studies of molecular mechanism of sex determination and development in Hong Kong grouper.
Collapse
Affiliation(s)
- Fan Qiu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China; Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Meng Qu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Xiang Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Huan Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361012, China.
| |
Collapse
|
52
|
Wu GC, Chang CF. Primary males guide the femaleness through the regulation of testicular Dmrt1 and ovarian Cyp19a1a in protandrous black porgy. Gen Comp Endocrinol 2018; 261:198-202. [PMID: 28188743 DOI: 10.1016/j.ygcen.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 11/30/2022]
Abstract
Controlling the development of the sexes is critically important for the broodstock management in aquaculture. Sex steroids are widely used for sex control of fish. However, hermaphroditic fish have a plastic sex, and a stable sex is difficult to maintain with sex steroids. We used the black porgy (Acanthopagrus schlegelii) as a model to understand the possible mechanism of sexual fate decision. Low exogenous estradiol (E2) induced male development. In contrast, high exogenous E2 induced the regression of the testis and the development of the ovary and resulted in an unstable expression of femaleness (passive femaleness, with ovaries containing only the primary oocytes). The removal of testicular tissue by surgery resulted in the early development of vitellogenic oocytes and active femaleness. Our data also demonstrated that the male-to-female sex change is blocked by the maintenance of male function with gonadotropin-induced dmrt1 expression in the testis. Furthermore, our data also indicated that ovarian cyp19a1a expression is regulated by the testis through epigenetic modifications. Therefore, the primary male guides the femaleness in the protandrous black porgy and the transition of sexual fate from male to female is determined by the status of the testicular tissue.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Ocean, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
53
|
Tsakogiannis A, Manousaki T, Lagnel J, Sterioti A, Pavlidis M, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The transcriptomic signature of different sexes in two protogynous hermaphrodites: Insights into the molecular network underlying sex phenotype in fish. Sci Rep 2018; 8:3564. [PMID: 29476120 PMCID: PMC5824801 DOI: 10.1038/s41598-018-21992-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/14/2018] [Indexed: 01/22/2023] Open
Abstract
Sex differentiation is a puzzling problem in fish due to the variety of reproductive systems and the flexibility of their sex determination mechanisms. The Sparidae, a teleost family, reflects this remarkable diversity of sexual mechanisms found in fish. Our aim was to capture the transcriptomic signature of different sexes in two protogynous hermaphrodite sparids, the common pandora Pagellus erythrinus and the red porgy Pagrus pagrus in order to shed light on the molecular network contributing to either the female or the male phenotype in these organisms. Through RNA sequencing, we investigated sex-specific differences in gene expression in both species' brains and gonads. The analysis revealed common male and female specific genes/pathways between these protogynous fish. Whereas limited sex differences found in the brain indicate a sexually plastic tissue, in contrast, the great amount of sex-biased genes observed in gonads reflects the functional divergence of the transformed tissue to either its male or female character. Α common "crew" of well-known molecular players is acting to preserve either sex identity of the gonad in these fish. Lastly, this study lays the ground for a deeper understanding of the complex process of sex differentiation in two species with an evolutionary significant reproductive system.
Collapse
Affiliation(s)
- A Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - T Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - J Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - A Sterioti
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, Heraklion, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece.
| |
Collapse
|
54
|
Jia Y, Wang F, Zhang R, Liang T, Zhang W, Ji X, Du Q, Chang Z. Identification of suh gene and evidence for involvement of notch signaling pathway on gonadal differentiation of Yellow River carp (Cyprinus carpio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:375-386. [PMID: 29164452 DOI: 10.1007/s10695-017-0441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
The suh gene is crucial in Notch pathway and regulates mammalian gonad development. In this study, the sequences of suh1 and suh2 genes in Yellow River carp (Cyprinus carpio) were verified. The partial 5'-flanking regions of suh1 and suh2 were analyzed and several potential transcription factor-binding sites were identified. Phylogenetic, gene structure, and chromosome synteny analyses revealed that carp suh1 and suh2 were orthologs and homologous to vertebrate suh. Investigation of the expression profiles of suh1 and suh2 with qPCR showed that these genes were abundant in the brain and gonad of carp, with suh1 exhibiting sexual dimorphism expression pattern in gonad. To study the relationship between gonad differentiation and Notch signaling, primordial gonads were exposed to DAPT, an inhibitor of Notch signaling, in vitro and in vivo. The results revealed a significant downregulation of suh1 and other Notch genes in vitro. In addition, expression of male-biased genes, such as amh, dmrt1, etc., was downregulated, whereas that of female-biased genes, such as foxl2, gdf9, etc., was upregulated. When the primordial gonads were subjected to long-term DAPT exposure, an increased proportion of ovary and delay in testis development were observed. These results suggest that suh gene may have a conservative function between teleosts and mammals. Furthermore, Notch signaling was found to be involved in gonad differentiation in Yellow River carp, and DAPT was noted to inhibit and enhance the expression of male- and female-biased genes, respectively, and induce the increase in number of females.
Collapse
Affiliation(s)
- Yongfang Jia
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Fang Wang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Ruihua Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Tingting Liang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - WanWan Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiaolin Ji
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Qiyan Du
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
55
|
Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Gonadal development and expression of sex-specific genes during sex differentiation in the Japanese eel. Gen Comp Endocrinol 2018; 257:74-85. [PMID: 28826812 DOI: 10.1016/j.ygcen.2017.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 02/08/2023]
Abstract
The process of gonadal development and mechanism involved in sex differentiation in eels are still unclear. The objectives were to investigate the gonadal development and expression pattern of sex-related genes during sex differentiation in the Japanese eel, Anguilla japonica. For control group, the elvers of 8-10cm were reared for 8months; and for feminization, estradiol-17β (E2) was orally administered to the elvers of 8-10cm for 6months. Only males were found in the control group, suggesting a possible role of environmental factors in eel sex determination. In contrast, all differentiated eels in E2-treated group were female. Gonad histology revealed that control male eels seem to differentiate through an intersexual stage, while female eels (E2-treated) would differentiate directly from an undifferentiated gonad. Tissue distribution and sex-related genes expression during gonadal development were analyzed by qPCR. The vasa, figla and sox3 transcripts in gonads were significantly increased during sex differentiation. High vasa expression occurred in males; figla and sox3 were related to ovarian differentiation. The transcripts of dmrt1 and sox9a were significantly increased in males during testicular differentiation and development. The cyp19a1 transcripts were significantly increased in differentiating and differentiated gonads, but did not show a differential expression between the control and E2-treated eels. This suggests that cyp19a1 is involved both in testicular differentiation and development in control males, and in the early stage of ovarian differentiation in E2-treated eels. Importantly, these results also reveal that cyp19a1 is not a direct target for E2 during gonad differentiation in the eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan.
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan
| | - Sylvie Dufour
- Sorbonne Universités, Muséum National d'Histoire Naturelle, UPMC Univ Paris 06, UNICAEN, UA, CNRS 7208, IRD 207, Biology of Aquatic Organisms and Ecosystems (BOREA), 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
56
|
Schartl M, Schories S, Wakamatsu Y, Nagao Y, Hashimoto H, Bertin C, Mourot B, Schmidt C, Wilhelm D, Centanin L, Guiguen Y, Herpin A. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol 2018; 16:16. [PMID: 29378592 PMCID: PMC5789577 DOI: 10.1186/s12915-018-0485-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element. Electronic supplementary material The online version of this article (10.1186/s12915-018-0485-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital, 97080, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Susanne Schories
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yuko Wakamatsu
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yusuke Nagao
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chloé Bertin
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Brigitte Mourot
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Cornelia Schmidt
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dagmar Wilhelm
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lazaro Centanin
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Amaury Herpin
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
57
|
Expression and cellular localization of double sex and mab-3 related transcription factor 1 in testes of postnatal Small-Tail Han sheep at different developmental stages. Gene 2017; 642:467-473. [PMID: 29174386 DOI: 10.1016/j.gene.2017.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
Double sex and mab-3 related transcription factor 1 (Dmrt1), an evolutionarily conserved gene, is a sex-related gene expressed in male gonads, that is involved in the regulation of sex differentiation, testicular development and reproductive function maintenance. Until now, functional studies on the Dmrt1 gene in sheep (Ovis aries) have been lacking. In this study, testis, heart, liver, spleen, lung, kidney and longissimus dorsi muscle tissues were collected from Small-Tail Han sheep at 0, 2, 5, 12 and 24months after birth (mab). Dmrt1 expression and cellular localization were detected in various testicular tissues by quantitative real time PCR (qRT-PCR), western blot and immunohistochemistry methods. The morphological structures of testicular tissues at different developmental stages were observed by hematoxylin & eosin (HE) staining. The Dmrt1 mRNA expression levels in 12 and 24 mab sheep were significantly higher than those in 0 and 2 mab sheep (P<0.05), and Dmrt1 protein expression showed a similar trend. The qRT-PCR results in various tissues at 12 mab showed that Dmrt1 mRNA was predominantly expressed in testes. Immunohistochemical staining in testes at different developmental stages showed that Dmrt1 protein immunoreactive responses were mainly localized in Sertoli cells and gonocytes at 0, 2 and 5 mab, while they were localized in spermatocytes, sperm cells and some spermatogonia and Sertoli cells at 12 and 24 mab. We speculate that the Dmrt1 gene plays a vital role in postnatal sheep spermatogenesis, perhaps by regulating the maturation and functional maintenance of Sertoli cells, the proliferation and differentiation of gonocytes in prepubertal sheep testes, and the mitosis and meiosis of germ cells in adult sheep, but the specific mechanisms underlying these phenomena must be further studied and verified. ABBREVIATIONS
Collapse
|
58
|
Double sex and mab-3 related transcription factor 1 regulates differentiation and proliferation in dairy goat male germline stem cells. J Cell Physiol 2017; 233:2537-2548. [DOI: 10.1002/jcp.26129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
|
59
|
Rodrigues N, Studer T, Dufresnes C, Ma WJ, Veltsos P, Perrin N. Dmrt1 polymorphism and sex-chromosome differentiation in Rana temporaria. Mol Ecol 2017; 26:4897-4905. [PMID: 28675502 DOI: 10.1111/mec.14222] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Sex-determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex-chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex-determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X-linked and Y-linked Dmrt1 haplotypes. Some males had fixed male-specific alleles at all markers ("differentiated" Y chromosomes), others only at Dmrt1 ("proto-" Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex-determining locus. From our results, the polymorphism in sex-chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.
Collapse
Affiliation(s)
- Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tania Studer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Christophe Dufresnes
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
60
|
Lu C, Wu J, Xiong S, Zhang X, Zhang J, Mei J. MicroRNA-203a regulates fast muscle differentiation by targeting dmrt2a in zebrafish embryos. Gene 2017; 625:49-54. [PMID: 28483596 DOI: 10.1016/j.gene.2017.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/25/2023]
Abstract
Dmrt2b (doublesex and mab-3 related transcription factor 2b) has been revealed to be involved in zebrafish slow muscle development. However, the function of dmrt2a, a paralogue gene of dmrt2b, remains unclear during zebrafish muscle development. Here, we demonstrated that knockdown of dmrt2a resulted in severe developmental defects, and caused downregulation of fast muscle marker myhz-2 and upregulation of slow muscle marker myhz-5, respectively. It is known that microRNAs (miRNAs) control many biological events including muscle development. Dmrt2a was predicted to be a target gene of miR-203, which was further verified by luciferase reporter assay, since miR-203a was found to directly reduce the expression of dmrt2a by binding to the seed sequence of its 3'UTR. After miR-203a injection into zebrafish embryos, the expression of dmrt2a was significantly inhibited. Similar to the effect of dmrt2a knockdown, miR-203a overexpression led to downregulation of myhz-2 and upregulation of myhz-5. Our studies indicated that miR-203a directly regulated dmrt2a expression to control fast and slow muscle differentiation, while overexpression of miR-203a or knockdown of dmrt2a will impair fast muscle development and promote slow muscle development.
Collapse
Affiliation(s)
- Chang Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuting Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemei Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
61
|
Valencia A, Rojo-Bartolomé I, Bizarro C, Cancio I, Ortiz-Zarragoitia M. Alteration in molecular markers of oocyte development and intersex condition in mullets impacted by wastewater treatment plant effluents. Gen Comp Endocrinol 2017; 245:10-18. [PMID: 27296671 DOI: 10.1016/j.ygcen.2016.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022]
Abstract
Wastewater Treatment Plant (WWTP) discharges are an important source of endocrine disrupting chemicals (EDCs) into the aquatic environment. Fish populations inhabiting downstream of WWTP effluents show alterations in gonad and gamete development such as intersex condition, together with xenoestrogenic effects such as vitellogenin up-regulation. However, the molecular mechanisms participating in the development of intersex condition in fish are not elucidated. The aim of this study was to assess the impact of two WWTPs effluents (Gernika and Bilbao-Galindo situated in the South East Bay of Biscay) with different contaminant loads, in thicklip grey mullet (Chelon labrosus) populations inhabiting downstream, examining the presence and severity of intersex condition, during two seasons. Molecular markers of xenoestrogenicity and oocyte differentiation and development (vtgAa, cyp19a1a, cyp19a1b, cyp11b, foxl2, dmrt1 and gtf3a) were also studied. Intersex mullets were identified downstream of both WWTPs and vtgAa was upregulated in intersex and non intersex males. Sex dependent differential transcription levels of target genes were detected in mullets from Galindo. However, no such pattern was observed in mullets from Gernika, suggesting an attenuating effect over studied genes caused by a higher presence of EDCs in this site, as indicated by the elevated prevalence of intersex mullets in this population. In conclusion, no direct association between xenoestrogenic responses and intersex condition was established. Mullets from Gernika showed signs of severe EDC exposure compared to those from Galindo, as demonstrated by the higher prevalence of intersex males and the reduction in transcription profile differences between sexes of gametogenic gene markers.
Collapse
Affiliation(s)
- Ainara Valencia
- CBET Research Group, Dep. of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), PO BOX 644, E-48080 Bilbao, Basque Country, Spain
| | - Iratxe Rojo-Bartolomé
- CBET Research Group, Dep. of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), PO BOX 644, E-48080 Bilbao, Basque Country, Spain
| | - Cristina Bizarro
- CBET Research Group, Dep. of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), PO BOX 644, E-48080 Bilbao, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dep. of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), PO BOX 644, E-48080 Bilbao, Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Dep. of Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), PO BOX 644, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
62
|
Zhang W, Liu Y, Yu H, Du X, Zhang Q, Wang X, He Y. Transcriptome analysis of the gonads of olive flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1581-1594. [PMID: 27704311 DOI: 10.1007/s10695-016-0242-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Olive flounder (Paralichthys olivaceus) is an economically important cultured marine fish in China, Korea, and Japan. Controlling and managing the breeding of olive flounder in captivity is an imperative step toward obtaining a sustainable supply of this fish in aquaculture production systems. Therefore, investigation on the molecular regulatory mechanism of gonadal development and gametogenesis in this species is of great significance in aquaculture. Furthermore, identification of the expression profile of numerous sex-related genes is the first step to primarily understand such molecular regulatory mechanism. Six female and six male gonads obtained from 2-year-old olive flounders were sequenced using Illumina, which produced 6.68 and 6.24 GB data for ovary and testis, respectively. The reads were mapped to the draft genome of olive flounder, and then the reads per kilobase per million (FPKM) for each gene were calculated. The female-/male-biased expressed genes were investigated based on the FPKM values. Overall, 3086 female-biased and 5048 male-biased genes were screened out. GO enrichment analysis showed that the GO terms "male meiosis," "gamete generation," "fertilization," "spermatogenesis," and "germ plasma" were enriched in male-biased genes. In addition, the GO terms "cell morphogenesis involved in differentiation," "embryonic morphogenesis," "plasma membrane," "steroid hormone receptor activity," and "aromatase activity" were enriched in female-biased genes. Moreover, 373,369 single nucleotide polymorphisms and 32,993 indels were identified in the transcriptome. This work is the largest collection of gonad transcriptome data for olive flounder and provides an extensive resource for future gonadal development and gametogenesis molecular biology studies in this species.
Collapse
Affiliation(s)
- Wei Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China
| | - Yuezhong Liu
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China
| | - Haiyang Yu
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China
| | - Xinxin Du
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China
| | - Quanqi Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China
| | - Xubo Wang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China.
| | - Yan He
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
63
|
Todd EV, Liu H, Muncaster S, Gemmell NJ. Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev 2016; 10:223-241. [PMID: 27820936 DOI: 10.1159/000449297] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Sexual fate is no longer seen as an irreversible deterministic switch set during early embryonic development but as an ongoing battle for primacy between male and female developmental trajectories. That sexual fate is not final and must be actively maintained via continuous suppression of the opposing sexual network creates the potential for flexibility into adulthood. In many fishes, sexuality is not only extremely plastic, but sex change is a usual and adaptive part of the life cycle. Sequential hermaphrodites begin life as one sex, changing sometime later to the other, and include species capable of protandrous (male-to-female), protogynous (female-to-male), or serial (bidirectional) sex change. Natural sex change involves coordinated transformations across multiple biological systems, including behavioural, anatomical, neuroendocrine, and molecular axes. We here review the biological processes underlying this amazing transformation, focussing particularly on its molecular basis, which remains poorly understood, but where new genomic technologies are significantly advancing our understanding of how sex change is initiated and progressed at the molecular level. Knowledge of how a usually committed developmental process remains plastic in sequentially hermaphroditic fishes is relevant to understanding the evolution and functioning of sexual developmental systems in vertebrates generally, as well as pathologies of sexual development in humans.
Collapse
Affiliation(s)
- Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
64
|
Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis. Sci Rep 2016; 6:35461. [PMID: 27748421 PMCID: PMC5066260 DOI: 10.1038/srep35461] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups-rather than just two contrasting conditions- and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.
Collapse
|
65
|
Geffroy B, Guilbaud F, Amilhat E, Beaulaton L, Vignon M, Huchet E, Rives J, Bobe J, Fostier A, Guiguen Y, Bardonnet A. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context. Sci Rep 2016; 6:34041. [PMID: 27658729 PMCID: PMC5034313 DOI: 10.1038/srep34041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022] Open
Abstract
Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels.
Collapse
Affiliation(s)
- Benjamin Geffroy
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Florian Guilbaud
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Elsa Amilhat
- UMR 5110 CNRS - UPVD (CEFREM), Université de Perpignan, Bâtiment R, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Laurent Beaulaton
- Onema, pôle Gest’Aqua, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France
- INRA, 1224 (U3E), Pôle Gest’Aqua, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France
| | - Matthias Vignon
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Emmanuel Huchet
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Jacques Rives
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| | - Julien Bobe
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Alexis Fostier
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Yann Guiguen
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000 Rennes, France
| | - Agnès Bardonnet
- INRA, UMR 1224 Ecobiop, Aquapôle, Pôle Gest’Aqua, Quartier Ibarron, 64310, Saint Pée sur Nivelle, France
- UPPA, UMR 1224 Ecobiop, UFR des Sciences de la Côte Basque, allée du parc Montaury, 64600, Anglet, France
| |
Collapse
|
66
|
Liu H, Todd EV, Lokman PM, Lamm MS, Godwin JR, Gemmell NJ. Sexual plasticity: A fishy tale. Mol Reprod Dev 2016; 84:171-194. [PMID: 27543780 DOI: 10.1002/mrd.22691] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/16/2016] [Indexed: 01/08/2023]
Abstract
Teleost fish exhibit remarkably diverse and plastic patterns of sexual development. One of the most fascinating modes of plasticity is functional sex change, which is widespread in marine fish including species of commercial importance; however, the regulatory mechanisms remain elusive. In this review, we explore such sexual plasticity in fish, using the bluehead wrasse (Thalassoma bifasciatum) as the primary model. Synthesizing current knowledge, we propose that cortisol and key neurochemicals modulate gonadotropin releasing hormone and luteinizing hormone signaling to promote socially controlled sex change in protogynous fish. Future large-scale genomic analyses and systematic comparisons among species, combined with manipulation studies, will likely uncover the common and unique pathways governing this astonishing transformation. Revealing the molecular and neuroendocrine mechanisms underlying sex change in fish will greatly enhance our understanding of vertebrate sex determination and differentiation as well as phenotypic plasticity in response to environmental influences. Mol. Reprod. Dev. 84: 171-194, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Erica V Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - P Mark Lokman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina.,W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
67
|
Casane D, Rétaux S. Evolutionary Genetics of the Cavefish Astyanax mexicanus. ADVANCES IN GENETICS 2016; 95:117-59. [PMID: 27503356 DOI: 10.1016/bs.adgen.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Blind and depigmented fish belonging to the species Astyanax mexicanus are outstanding models for evolutionary genetics. During their evolution in the darkness of caves, they have undergone a number of changes at the morphological, physiological, and behavioral levels, but they can still breed with their river-dwelling conspecifics. The fertile hybrids between these two morphotypes allow forward genetic approaches, from the search of quantitative trait loci to the identification of the mutations underlying the evolution of troglomorphism. We review here the past 30years of evolutionary genetics on Astyanax: from the first crosses and the discovery of convergent evolution of different Astyanax cavefish populations to the most recent evolutionary transcriptomics and genomics studies that have provided researchers with potential candidate genes to be tested using functional genetic approaches. Although significant progress has been made and some genes have been identified, cavefish have not yet fully revealed the secret of their adaptation to the absence of light. In particular, the genetic determinism of their loss of eyes seems complex and still puzzles researchers. We also discuss future research directions, including searches for the origin of cave alleles and searches for selection genome-wide, as well as the necessary but missing information on the timing of cave colonization by surface fish.
Collapse
Affiliation(s)
- D Casane
- Laboratory EGCE, CNRS and University of Paris-Sud, Gif-sur-Yvette, France; Paris Diderot University, Sorbonne Paris Cité, France
| | - S Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
68
|
Caruso CC, Breton TS, Berlinsky DL. The effects of temperature on ovarian aromatase (cyp19a1a) expression and sex differentiation in summer flounder (Paralichthys dentatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:795-805. [PMID: 26643906 DOI: 10.1007/s10695-015-0176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Female summer flounder grow considerably faster and larger than males, and a tremendous increase in performance can therefore be realized through production of monosex female populations. Rearing temperature has been shown to affect sex differentiation in other teleost species by influencing expression of genes encoding transcription factors or enzymes involved in endocrine function. Cyp19a1a is a well-studied gene that had been shown to play a role in ovarian development, and exhibits sexually dimorphic expression in other species. In the present study, summer flounder (37 days post-hatch; DPH) were raised at 13, 16 or 19 °C. Fish from all three treatments were sampled throughout development and analyzed in qPCR to determine cyp19a1a gene expression levels. Sex ratios of additional fish grown to ≥150 mm at each temperature treatment were determined. Low female production was achieved overall (26.9, 17.6 and 0% at 13, 16 and 19 °C, respectively). Cyp19a1a expression was significantly lower at 52 DPH (~15 mm total length) at the male-producing temperature (19 °C) and increased to similar levels as other treatments at 66 DPH. Expression levels later in juvenile development (66-191 DPH) largely decreased with fish size. The period of sex differentiation in summer flounder remains unknown, but cyp19a1a expression patterns suggest that it may occur earlier in development than that of congenerics. Further research is necessary to understand the sex-determining mechanisms in this species before sexually dimorphic growth can be used to achieve economic advantages in commercial production.
Collapse
Affiliation(s)
- Catherine C Caruso
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH, 03824, USA
| | - Timothy S Breton
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH, 03824, USA
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME, 04938, USA
| | - David L Berlinsky
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH, 03824, USA.
| |
Collapse
|
69
|
Bar I, Cummins S, Elizur A. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii). BMC Genomics 2016; 17:217. [PMID: 26965070 PMCID: PMC4785667 DOI: 10.1186/s12864-016-2397-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. RESULTS Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. CONCLUSIONS Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.
Collapse
Affiliation(s)
- Ido Bar
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Scott Cummins
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4558 Maroochydore DC, Queensland, Australia
| |
Collapse
|
70
|
Ma D, Ma A, Huang Z, Wang G, Wang T, Xia D, Ma B. Transcriptome Analysis for Identification of Genes Related to Gonad Differentiation, Growth, Immune Response and Marker Discovery in The Turbot (Scophthalmus maximus). PLoS One 2016; 11:e0149414. [PMID: 26925843 PMCID: PMC4771204 DOI: 10.1371/journal.pone.0149414] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Background Turbot Scophthalmus maximus is an economically important species extensively aquacultured in China. The genetic selection program is necessary and urgent for the sustainable development of this industry, requiring more and more genome background knowledge. Transcriptome sequencing is an excellent alternative way to identify transcripts involved in specific biological processes and exploit a considerable quantity of molecular makers when no genome sequences are available. In this study, a comprehensive transcript dataset for major tissues of S. maximus was produced on basis of an Illumina platform. Results Total RNA was isolated from liver, spleen, kidney, cerebrum, gonad (testis and ovary) and muscle. Equal quantities of RNA from each type of tissues were pooled to construct two cDNA libraries (male and female). Using the Illumina paired-end sequencing technology, nearly 44.22 million clean reads in length of 100 bp were generated and then assembled into 106,643 contigs, of which 71,107 were named unigenes with an average length of 892 bp after the elimination of redundancies. Of these, 24,052 unigenes (33.83% of the total) were successfully annotated. GO, KEGG pathway mapping and COG analysis were performed to predict potential genes and their functions. Based on our sequence analysis and published documents, many candidate genes with fundamental roles in sex determination and gonad differentiation (dmrt1), growth (ghrh, myf5, prl/prlr) and immune response (TLR1/TLR21/TLR22, IL-15/IL-34), were identified for the first time in this species. In addition, a large number of credible genetic markers, including 21,192 SSRs and 8,642 SNPs, were identified in the present dataset. Conclusion This informative transcriptome provides valuable new data to increase genomic resources of Scophthalmus maximus. The future studies of corresponding gene functions will be very useful for the management of reproduction, growth and disease control in turbot aquaculture breeding programs. The molecular markers identified in this database will aid in genetic linkage analyses, mapping of quantitative trait loci, and acceleration of marker assisted selection programs.
Collapse
Affiliation(s)
- Deyou Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Dalian Ocean University, Dalian, 116023, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- * E-mail:
| | - Zhihui Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Guangning Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ting Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dandan Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Benhe Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
71
|
Leng XQ, Du HJ, Li CJ, Cao H. Molecular characterization and expression pattern of dmrt1 in the immature Chinese sturgeon Acipenser sinensis. JOURNAL OF FISH BIOLOGY 2016; 88:567-579. [PMID: 26706998 DOI: 10.1111/jfb.12852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
In this study, the cDNA of dmrt1 gene from the Chinese sturgeon Acipenser sinensis was isolated and its expression pattern was characterized in different tissues of immature A. sinensis. By real-time quantitative PCR (qrtPCR) analysis, the A. sinensis dmrt1 mRNA was detected mainly in gonad and with a higher level in the testis than the ovary, especially in 3 and 4 year-old samples. This indicated that the dmrt1 expression exhibited gradual testis specificity with development. The subcellular localization analysis indicated that the Dmrt1 protein exists only in germ cells and not in somatic cells. These results suggest that A. sinensis dmrt1 might be a highly specific sex differentiation gene for testis development and spermatogenesis.
Collapse
Affiliation(s)
- X Q Leng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Agriculture Ministry of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - H J Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - C J Li
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Agriculture Ministry of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - H Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| |
Collapse
|
72
|
Xu G, Huang T, Jin X, Cui C, Li D, Sun C, Han Y, Mu Z. Morphology, sex steroid level and gene expression analysis in gonadal sex reversal of triploid female (XXX) rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:193-202. [PMID: 26373423 DOI: 10.1007/s10695-015-0129-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
In non-mammalian vertebrates, estrogens and expressions of cyp19a1 and foxl2 play critical roles in maintaining ovary differentiation and development, while dmrt1 and sox9 are male-specific genes in testicular differentiation and are highly conserved. In order to deeply understand the morphological change, sex steroids level and molecular mechanism of triploid female gonadal reversal in rainbow trout, we studied the ovary morphology, tendency of estradiol-17β (E2) and testosterone (T) levels and the relative expressions of dmrt1, cyp19a1, sox9 and foxl2 in juvenile and adult fish. Our results demonstrated that the development of triploid female gonads in rainbow trout went through arrested development, oocytes dedifferentiation, ovary reconstruction and sex reversal finally. During early gonadal development (154-334 days post-fertilization), the expressions of foxl2 and cyp19a1 increased linearly, while expressions of dmrt1 and sox9 were extremely suppressed, and E2 level was higher, while T level was lower. During the mid-to-late period of triploid female gonadal development (574-964 days post-fertilization), the expressions of dmrt1 and sox9 remained high and were very close to the quantity of diploid male genes, and T levels were even reaching diploid male plasma concentrations, while expressions of cyp19a1 and foxl2 were decreased, leading to decrease in E2 level. We realized that the development model of rainbow trout triploid female gonads was extremely rare, and the regulatory mechanism was very special. Genes involved in gonadal development and endogenous estrogens are pivotal factors in fish natural sex reversal.
Collapse
Affiliation(s)
- Gefeng Xu
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianqing Huang
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xian Jin
- Harbin Academy of Agricultural Science, Harbin, China
| | - Cunhe Cui
- Harbin Academy of Agricultural Science, Harbin, China
| | - Depeng Li
- Harbin Academy of Agricultural Science, Harbin, China
| | - Cong Sun
- Harbin Academy of Agricultural Science, Harbin, China
| | - Ying Han
- Department of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Zhenbo Mu
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| |
Collapse
|
73
|
Qu XC, Jiang JY, Cheng C, Feng L, Liu QG. Cloning and transcriptional expression of a novel gene during sex inversion of the rice field eel (Monopterus albus). SPRINGERPLUS 2015; 4:745. [PMID: 26693104 PMCID: PMC4666882 DOI: 10.1186/s40064-015-1544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
Abstract
We performed annealing control primer (ACP)-based differential-display reverse transcription-polymerase chain reaction (DDRT-PCR) to isolate differentially expressed genes (DEGs) from the stage IV ovary and ovotestis of the rice field eel, Monopterus albus. Using 20
arbitrary ACP primers, 14 DEG expressed-sequence tags were identified and sequenced. The transcriptional expression of one DEG, G2, was significantly greater in the ovotestis than the stage IV ovary. To understand the role of G2 in sex inversion, G2 cDNA was cloned and semi-RT-PCR, real time PCR were performed during gonad development. The full-length G2 cDNA was 650 base pairs (bp) and it comprised a 5′-untranslated region (UTR) of 82 bp, a 3′-UTR of 121 bp and an open reading frame of 444 bp that encoded a 148-amino acid protein. The expression of G2 was weak during early ovarian development
until the stage IV ovary, but expression increased significantly with gonad development. We speculate that G2 may play an important function during sex inversion and testis development in the rice field eel, but the full details of the function of this gene requires further research.
Collapse
Affiliation(s)
- X C Qu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - J Y Jiang
- College of Life Sciences, Guangxi Normal University, Guilin, 541004 China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
| | - C Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - L Feng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Q G Liu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
74
|
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 2015; 6:26. [PMID: 26613014 PMCID: PMC4660848 DOI: 10.1186/s13293-015-0044-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored. Methods RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females. Results Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed. Conclusions Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
75
|
Adeyemo OK, Kroll KJ, Denslow ND. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:60-71. [PMID: 26448268 DOI: 10.1016/j.aquatox.2015.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Exposure of fish embryos to relatively low concentrations of oil has been implicated in sub-lethal toxicity. The objective of this study was to determine the effects of the exposure of Menidia beryllina embryos at 30-48h post-fertilization to the water accommodated fractions of oil (WAF, 200ppm, v/v), dispersants (20ppm, v/v, Corexit 9500 or 9527), and mixtures of oil and each of the dispersants to produce chemically enhanced water accommodated fractions (CEWAFs) over a 72-hour period. The polyaromatic hydrocarbon (PAH) and benzene, toluene, ethylene and xylene (BTEX) constituents of the 5X concentrated exposure solutions (control, WAF, dispersants and CEWAFs) were determined and those of the 1× exposures were derived using a dilution factor. PAH, BTEX and low molecular weight PAH constituents greater than 1ppb were observed in WAF and the dispersants, but at much higher levels in CEWAFs. The WAF and CEWAFs post-weathering were diluted at 1:5 (200ml WAF/CEWAF: 800ml 25ppt saltwater) for embryo exposures. Mortality, heartbeat, embryo normalcy, abnormality types and severities were recorded. The qPCR assay was used to quantify abundances of transcripts of target genes for sexual differentiation and sex determination (StAR, dmrt-1, amh, cyp19b, vtg and chg-L,), growth regulation (ghr) and stress response (cyp1a and Hsp90); and gapdh served as the housekeeping gene. Temperature was 21±1.5°C throughout the experimental period, while mortality was low and not significantly different (p=0.68) among treatments. Heartbeat was significantly different (0.0034) with the lowest heartbeats recorded in Corexit 9500 (67.5beats/min) and 9527 (67.1beats/min) exposed embryos compared with controls (82.7beats/min). Significantly more treated embryos were in a state of deterioration, with significantly more embryos presenting arrested tissue differentiation compared with controls (p=0.021). Exposure to WAF, dispersants and CEWAF induced aberrant expression of all the genes, with star, dmrt-1, ghr and hsp90 being significantly down-regulated in CEWAF and cyp19b in Corexit 9527. The cyp1a and cyp19b were significantly up-regulated in CEWAFs and WAF, respectively. The molecular endpoints were most sensitive, especially the expression of star, cyp19b, cyp1a, hsp90 and could therefore be used as early indicators of long term effects of Corexit 9500 and 9527 usage in oil spill management on M. beryllina, a valid sentinel for oil pollution events.
Collapse
Affiliation(s)
- Olanike K Adeyemo
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
76
|
Vizziano-Cantonnet D, Di Landro S, Lasalle A, Martínez A, Mazzoni TS, Quagio-Grassiotto I. Identification of the molecular sex-differentiation period in the siberian sturgeon. Mol Reprod Dev 2015; 83:19-36. [DOI: 10.1002/mrd.22589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Denise Vizziano-Cantonnet
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - Santiago Di Landro
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - André Lasalle
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - Anabel Martínez
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - Talita Sarah Mazzoni
- Departamento de Morfologia; Instituto de Biociências de Botucatu, UNESP; Botucatu São Paulo Brazil
| | - Irani Quagio-Grassiotto
- Departamento de Morfologia; Instituto de Biociências de Botucatu, UNESP; Botucatu São Paulo Brazil
| |
Collapse
|
77
|
Herpin A, Schartl M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 2015; 16:1260-74. [PMID: 26358957 DOI: 10.15252/embr.201540667] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves.
Collapse
Affiliation(s)
- Amaury Herpin
- Department Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany INRA, UR1037 Fish Physiology and Genomics, Sex Differentiation and Oogenesis Group (SDOG), Rennes, France
| | - Manfred Schartl
- Department Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
78
|
Shi J, Hong Y, Sheng J, Peng K, Wang J. De novo transcriptome sequencing to identify the sex-determination genes in Hyriopsis schlegelii. Biosci Biotechnol Biochem 2015; 79:1257-65. [DOI: 10.1080/09168451.2015.1025690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
This study presents the first analysis of expressed transcripts in the spermary and ovary of Hyriopsis schlegelii (H. schlegelii). A total of 132,055 unigenes were obtained and 31,781 of these genes were annotated. In addition, 19,511 upregulated and 25,911 downregulated unigenes were identified in the spermary. Ten sex-determination genes were selected and further analyzed by real-time PCR. In addition, mammalian genes reported to govern sex-determination pathways, including Sry, Dmrt1, Dmrt2, Sox9, GATA4, and WT1 in males and Wnt4, Rspo1, Foxl2, and β-catenin in females, were also identified in H. schlegelii. These results suggest that H. schlegelii and mammals use similar gene regulatory mechanisms to control sex determination. Moreover, genes associated with dosage compensation mechanisms, such as Msl1, Msl2, and Msl3, and hermaphrodite phenotypes, such as Tra-1, Tra-2α, Tra-2β, Fem1A, Fem1B, and Fem1C, were also identified in H. schlegelii. The identification of these genes indicates that diverse regulatory mechanisms regulate sexual polymorphism in H. schlegelii.
Collapse
Affiliation(s)
- Jianwu Shi
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi, Nanchang University, Jiangxi, China
| | - Junqing Sheng
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Kou Peng
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Junhua Wang
- School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
79
|
The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom. C R Biol 2015; 338:451-62. [DOI: 10.1016/j.crvi.2015.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
|
80
|
Lamm MS, Liu H, Gemmell NJ, Godwin JR. The Need for Speed: Neuroendocrine Regulation of Socially-controlled Sex Change. Integr Comp Biol 2015; 55:307-22. [DOI: 10.1093/icb/icv041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
81
|
DMRT1 is required for Müllerian duct formation in the chicken embryo. Dev Biol 2015; 400:224-36. [PMID: 25684667 DOI: 10.1016/j.ydbio.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
DMRT1 is a conserved transcription factor with a central role in gonadal sex differentiation. In all vertebrates studied, DMRT1 plays an essential function in testis development and/or maintenance. No studies have reported a role for DMRT1 outside the gonads. Here, we show that DMRT1 is expressed in the paired Müllerian ducts in the chicken embryo, where it is required for duct formation. DMRT1 mRNA and protein are expressed in the early forming Müllerian ridge, and in cells undergoing an epithelial to mesenchyme transition during duct morphogenesis. RNAi-mediated knockdown of DMRT1 in ovo causes a greatly reduced mesenchymal layer, which blocks caudal extension of the duct luminal epithelium. Critical markers of Müllerian duct formation in mammals, Pax2 in the duct epithelium and Wnt4 in the mesenchyme, are conserved in chicken and their expression disrupted in DMRT1 knockdown ducts. We conclude that DMRT1 is required for the early steps of Müllerian duct development. DMRT1 regulates Müllerian ridge and mesenchyme formation and its loss blocks caudal extension of the duct. While DMRT1 plays an important role during testis development and maintenance in many vertebrate species, this is the first report showing a requirement for DMRT1 in Müllerian duct development.
Collapse
|
82
|
Heule C, Göppert C, Salzburger W, Böhne A. Genetics and timing of sex determination in the East African cichlid fish Astatotilapia burtoni. BMC Genet 2014; 15:140. [PMID: 25494637 PMCID: PMC4278230 DOI: 10.1186/s12863-014-0140-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 11/22/2022] Open
Abstract
Background The factors determining sex are diverse in vertebrates and especially so in teleost fishes. Only a handful of master sex-determining genes have been identified, however great efforts have been undertaken to characterize the subsequent genetic network of sex differentiation in various organisms. East African cichlids offer an ideal model system to study the complexity of sexual development, since many different sex-determining mechanisms occur in closely related species of this fish family. Here, we investigated the sex-determining system and gene expression profiles during male development of Astatotilapia burtoni, a member of the rapidly radiating and exceptionally species-rich haplochromine lineage. Results Crossing experiments with hormonally sex-reversed fish provided evidence for an XX-XY sex determination system in A. burtoni. Resultant all-male broods were used to assess gene expression patterns throughout development of a set of candidate genes, previously characterized in adult cichlids only. Conclusions We could identify the onset of gonad sexual differentiation at 11–12 dpf. The expression profiles identified wnt4B and wt1A as the earliest gonad markers in A. burtoni. Furthermore we identified late testis genes (cyp19a1A, gsdf, dmrt1 and gata4), and brain markers (ctnnb1A, ctnnb1B, dax1A, foxl2, foxl3, nanos1A, nanos1B, rspo1, sf-1, sox9A and sox9B). Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0140-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corina Heule
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Carolin Göppert
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
83
|
Lu J, Luan P, Zhang X, Xue S, Peng L, Mahbooband S, Sun X. Gonadal transcriptomic analysis of yellow catfish (Pelteobagrus fulvidraco): identification of sex-related genes and genetic markers. Physiol Genomics 2014; 46:798-807. [PMID: 25185028 DOI: 10.1152/physiolgenomics.00088.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Yellow catfish (Pelteobagrus fulvidraco) has been recognized as a vital freshwater aquaculture species in East and Southeast Asia. In addition to its commercial interest, it is also attracted much attention because of its value in studying sex-determination mechanisms. A comprehensive gonadal transcriptome analysis is believed to provide a resource for genome annotation, candidate gene identification, and molecular marker development. Herein, we performed a de novo assembly of yellow catfish gonad transcriptome by high-throughput Illumina sequencing. A total of 82,123 contigs were obtained, ranging from 351 to 21,268 bp, and N50 of 2,329 bp. Unigenes of 21,869 in total were identified. Of these, 229 and 1,188 genes were found to be specifically expressed in XY gonad tissue for 1 yr and 2 yr old yellow catfish, respectively; correspondingly, 51 and 40 genes were identified in XX gonad tissue at those two stages. Gene ontology and KEGG analysis were conducted and classified all contigs into different categories. A large number of unigenes involved in sex determination were identified, as well as microsatellites and SNP variants. The expression patterns of sex-related genes were then validated by quantitative real-time PCR (qRT-PCR) suggesting the high reliability of RNA-Seq results. In this study, the transcriptome of yellow catfish gonad was first sequenced, assembled, and characterized; it provides a valuable genomic resource for better understanding of yellow catfish sex determination as well as development of molecular markers, thereby assisting in the production of monosex yellow catfish for aquaculture.
Collapse
Affiliation(s)
- Jianguo Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Xiaofeng Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Shuqun Xue
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China
| | - Lina Peng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; Harbin Normal University, Harbin, Peoples Republic of China; and
| | - Shahid Mahbooband
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, Peoples Republic of China; National and Local United Engineering Lab for Freshwater Fish Breeding, Harbin, Peoples Republic of China;
| |
Collapse
|
84
|
Expression characterization of testicular DMRT1 in both Sertoli cells and spermatogenic cells of polyploid gibel carp. Gene 2014; 548:119-25. [DOI: 10.1016/j.gene.2014.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/03/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022]
|
85
|
Manousaki T, Tsakogiannis A, Lagnel J, Sarropoulou E, Xiang JZ, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo). BMC Genomics 2014; 15:655. [PMID: 25099474 PMCID: PMC4133083 DOI: 10.1186/1471-2164-15-655] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Background Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles. Results Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species. Conclusions We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-655) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Costas S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (I,M,B,B,C,), Hellenic Centre for Marine Research (H,C,M,R,), Heraklion, Greece.
| |
Collapse
|
86
|
Mei J, Yan W, Fang J, Yuan G, Chen N, He Y. Identification of a gonad-expression differential gene insulin-like growth factor-1 receptor (Igf1r) in the swamp eel (Monopterus albus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1181-1190. [PMID: 24488410 DOI: 10.1007/s10695-014-9914-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In vertebrate species, the biopotential embryonic gonad differentiation is affected by many key genes and key steroidogenic enzymes. Insulin-like growth factor-1 receptor (Igf1r) has been considered as an important sex-differentiation gene in mammals and could mediate the biological action of Igf1, an important regulator of key steroidogenic enzymes. However, Igf1r gene is still unknown in the swamp eel, an economically important fish. In our study, we identified Igf1r gene in the swamp eel, which was a 2,148-bp open-reading frame encoding a protein of 716 amino acids. The alignment and the phylogenetic tree showed that Igf1r of the swamp eel had a conservative sequence with other vertebrates, especial fishes. Western blotting of Igf1r showed that Igf1r expressed much more in ovotestis and testis than in ovary, indicating an important role of Igf1r during gonad differentiation. We analyzed ubiquitination of Igf1r by co-immunoprecipitation and found the amount of ubiquitinated Igf1r was increased from ovary, ovotestis to testis, which was reversely to the trend of Hsp10 expression during gonadal transformation. It was possible that Hsp10 could suppress Igf1r ubiquitination during gonadal development of the swamp eel.
Collapse
Affiliation(s)
- Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
87
|
Zheng Y, Liang H, Xu P, Li M, Wang Z. Molecular cloning of Pcc-dmrt1s and their specific expression patterns in Pengze crucian carp (Carassius auratus var. Pengze) affected by 17α-methyltestosterone. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1141-1155. [PMID: 24445816 DOI: 10.1007/s10695-014-9911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Dmrt1, an important transcription factor associated with testicular differentiation, is conserved among teleost, which could also be detected in ovaries. In the present study, three isoforms of Pcc-dmrt1s (Pcc-dmrt1a, Pcc-dmrt1b and Pcc-dmrt1c) resulting from alternative splicing of the dmrt1 gene were cloned and characterized in the triploid gynogenetic fish, the Pengze crucian carp. Their mRNA expression profiling was investigated in juvenile developmental stages, tissues of the adult fish, and the juveniles under 84.2 ng/L 17α-methyltestosterone (MT) treatments. Results showed that their putative proteins shared high identities to Dmrt1 in cyprinid fish species. Gene expression profiling in the developmental stages showed that all the three target genes had a highest/lowest expression at 56/40 days post-hatching (dph), respectively. The period of 40 dph appeared to be a key time during the process of the ovary development of Pengze crucian carp. The tissue distribution results indicated that Pcc-dmrt1s were predominantly expressed in hepatopancreas, brain, spleen and ovary of the female fish. MT significantly increased the mRNA expression of Pcc-dmrt1a (all 4-week exposures) and Pcc-dmrt1b (except for week 2), while repressed Pcc-dmrt1c transcripts at all exposure period except for week 2. MT extremely significant repressed cyp19a1a transcripts for 1 week. The present study indicated that MT could influence the ovary development of Pengze crucian carp by disturbing gene expressions of Pcc-dmrt1s and cyp19a1a. Furthermore, the present study will be of great significance to broaden the understanding of masculinizing pathway during ovary development in gynogenetic teleost.
Collapse
Affiliation(s)
- Yao Zheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | | | | | | | | |
Collapse
|
88
|
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC. Sex determination: why so many ways of doing it? PLoS Biol 2014; 12:e1001899. [PMID: 24983465 PMCID: PMC4077654 DOI: 10.1371/journal.pbio.1001899] [Citation(s) in RCA: 744] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination.
Collapse
Affiliation(s)
- Doris Bachtrog
- University of California, Berkeley, Department of Integrative Biology, Berkeley, California, United States of America
| | - Judith E. Mank
- University College London, Department of Genetics, Evolution and Environment, London, United Kingdom
| | - Catherine L. Peichel
- Fred Hutchinson Cancer Research Center, Divisions of Human Biology and Basic Sciences, Seattle, Washington, United States of America
| | - Mark Kirkpatrick
- University of Texas, Department of Integrative Biology, Austin, Texas, United States of America
| | - Sarah P. Otto
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada
| | - Tia-Lynn Ashman
- University of Pittsburgh, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States of America
| | - Matthew W. Hahn
- Indiana University, Department of Biology, Bloomington Indiana, United States of America
| | - Jun Kitano
- National Institute of Genetics, Ecological Genetics Laboratory, Mishima, Shizuoka, Japan
| | - Itay Mayrose
- Tel Aviv University, Department of Molecular Biology and Ecology of Plants, Tel Aviv, Israel
| | - Ray Ming
- University of Illinois, Department of Plant Biology, Urbana-Champaign, Illinois, United States of America
| | - Nicolas Perrin
- University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland
| | - Laura Ross
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| | - Nicole Valenzuela
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, Ames, Iowa, United States of America
| | - Jana C. Vamosi
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, Canada
| | | |
Collapse
|
89
|
Arezo MJ, Papa N, Guttierrez V, García G, Berois N. Sex determination in annual fishes: Searching for the master sex-determining gene in Austrolebias charrua (Cyprinodontiformes, Rivulidae). Genet Mol Biol 2014; 37:364-74. [PMID: 25071401 PMCID: PMC4094610 DOI: 10.1590/s1415-47572014005000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/09/2014] [Indexed: 11/22/2022] Open
Abstract
Evolution of sex determination and differentiation in fishes involves a broad range of sex strategies (hermaphroditism, gonochorism, unisexuality, environmental and genetic sex determination). Annual fishes inhabit temporary ponds that dry out during the dry season when adults die. The embryos exhibit an atypical developmental pattern and remain buried in the bottom mud until the next rainy season. To elucidate genomic factors involved in the sex determination in annual fish, we explored the presence of a candidate sex-specific gene related to the cascade network in Austrolebias charrua. All phylogenetic analyses showed a high posterior probability of occurrence for a clade integrated by nuclear sequences (aprox. 900 bp) from both adults (male and female), with partial cDNA fragments of A. charrua from juveniles (male) and the dsx D. melanogaster gene. The expressed fragment was detected from blastula to adulthood stages showing a sexually dimorphic expression pattern. The isolated cDNA sequence is clearly related to dsx D. melanogaster gene and might be located near the top of the sex determination cascade in this species.
Collapse
Affiliation(s)
- María José Arezo
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| | - Nicolás Papa
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| | - Verónica Guttierrez
- Sección Genética Evolutiva,
Facultad de Ciencias,
Universidad de la República,
Montevideo,
Uruguay
| | - Graciela García
- Sección Genética Evolutiva,
Facultad de Ciencias,
Universidad de la República,
Montevideo,
Uruguay
| | - Nibia Berois
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| |
Collapse
|
90
|
Li XY, Zhang XJ, Li Z, Hong W, Liu W, Zhang J, Gui JF. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol Phylogenet Evol 2014; 78:96-104. [PMID: 24859683 DOI: 10.1016/j.ympev.2014.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 11/27/2022]
Abstract
Polyploidy lineages, despite very rare in vertebrates, have been proposed to play significant role in speciation and evolutionary success, but the occurrence history and consequences are still largely unknown. In this study, we used the conserved Dmrt1 to analyze polyploidy occurrence and evolutionary process in polyploid gibel carp. We identified two divergent Dmrt1 genes and respectively localized the two genes on three homologous chromosomes. Subsequently, the corresponding full-length cDNAs and genomic sequences of Dmrt1 genes were also characterized from the closely related species including Carassius auratus auratus and Cyprinus carpio, and their two Dmrt1 genes were respectively localized on two homologous chromosomes. Significantly, the evolutionary relationship analyses among cDNA and genomic DNA sequences of these Dmrt1 genes revealed two rounds of polyploidy origins in the gibel carp: an early polyploidy might result in an common tetraploid ancestor of Carassius auratus gibelio, Carassius auratus auratus and Cyprinus carpio before 18.49 million years ago (Mya), and an late polyploidy might occur from evolutionary branch of Carassius auratus at around 0.51 Mya, which lead to the occurrence of the hexaploid gibel carp. Therefore, this study provides clear genetic evidence for understanding occurrence time and historical process of polyploidy in polyploid vertebrates.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
91
|
Malcom JW, Kudra RS, Malone JH. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J Genomics 2014; 2:68-76. [PMID: 25031658 PMCID: PMC4091447 DOI: 10.7150/jgen.8044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Frog sex chromosomes offer an ideal system for advancing our understanding of genome evolution and function because of the variety of sex determination systems in the group, the diversity of sex chromosome maturation states, the ease of experimental manipulation during early development. After briefly reviewing sex chromosome biology generally, we focus on what is known about frog sex determination, sex chromosome evolution, and recent, genomics-facilitated advances in the field. In closing we highlight gaps in our current knowledge of frog sex chromosomes, and suggest priorities for future research that can advance broad knowledge of gene dose and sex chromosome evolution.
Collapse
Affiliation(s)
- Jacob W Malcom
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - Randal S Kudra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| | - John H Malone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, 06269 USA
| |
Collapse
|
92
|
Identification of Dmrt genes and their up-regulation during gonad transformation in the swamp eel (Monopterus albus). Mol Biol Rep 2014; 41:1237-45. [PMID: 24390316 DOI: 10.1007/s11033-013-2968-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
The swamp eel is a teleost fish with a characteristic of natural sex reversal and an ideal model for vertebrate sexual development. However, underlying molecular mechanisms are poorly understood. We report the identification of five DM (doublesex and mab-3) domain genes in the swamp eel that include Dmrt2, Dmrt2b, Dmrt3, Dmrt4 and Dmrt5, which encode putative proteins of 527, 373, 471, 420 and 448 amino acids, respectively. Phylogenetic tree showed that these genes are clustered into corresponding branches of the DM genes in vertebrates. Southern blot analysis indicated that the Dmrt1-Dmrt3-Dmrt2 genes are tightly linked in a conserved gene cluster. Notably, these Dmrt genes are up-regulated during gonad transformation. Furthermore, mRNA in situ hybridisation showed that Dmrt2, Dmrt3, Dmrt4 and Dmrt5 are expressed in developing germ cells. These results are evidence that the DM genes are involved in sexual differentiation in the swamp eel.
Collapse
|
93
|
Santerre C, Sourdaine P, Adeline B, Martinez AS. Cg-SoxE and Cg-β-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol 2014; 167:68-76. [DOI: 10.1016/j.cbpa.2013.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
|
94
|
Wen AY, You F, Sun P, Li J, Xu DD, Wu ZH, Ma DY, Zhang PJ. CpG methylation of dmrt1 and cyp19a promoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. JOURNAL OF FISH BIOLOGY 2014; 84:193-205. [PMID: 24372528 DOI: 10.1111/jfb.12277] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 10/11/2013] [Indexed: 06/03/2023]
Abstract
To better understand the effects of DNA methylation on the expression patterns of dmrt1 (Doublesex and Mab-3-related transcription factor 1) and cyp19a (Cytochrome P450 19a) in the Japanese flounder Paralichthys olivaceus, quantitative expressions, cellular distributions and cytosine-p-guanine (CpG) methylation patterns of these two genes in the gonads were analysed. The results showed that P. olivaceus dmrt1 expression was 70 times higher in the testis than in the ovary (P < 0·05). Its mRNA was detected clearly in spermatocytes and Sertoli cells of the testis, but weakly in the ovary. Paralichthys olivaceus cyp19a expression was 40 times higher in the ovary than in the testis (P < 0·01). Its mRNA was detected clearly in follicular cells of the ovary, but weakly in spermatocytes of the testis. The dmrt1 promoter CpGs were not methylated in the testis, whereas 57·69% were methylated in the ovary. For the cyp19a promoter CpGs, 97·5% were methylated in the testis and 73·33% were methylated in the ovary. These findings demonstrate that P. olivaceus dmrt1 and cyp19a are sex-related genes with sexual dimorphic expression, CpG methylation levels of the two genes are consistent with their expression quantities, and this epigenetic modification can influence the differential expression of genes in the gonads of P. olivaceus.
Collapse
Affiliation(s)
- A Y Wen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, People's Republic of China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Ubeda-Manzanaro M, Merlo MA, Ortiz-Delgado JB, Rebordinos L, Sarasquete C. Expression profiling of the sex-related gene Dmrt1 in adults of the Lusitanian toadfish Halobatrachus didactylus (Bloch and Schneider, 1801). Gene 2013; 535:255-65. [PMID: 24275345 DOI: 10.1016/j.gene.2013.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023]
Abstract
Doublesex and mab-3 related transcription factor 1 (Dmrt1) gene is a widely conserved gene involved in sex determination and differentiation across phyla. To gain insights on Dmrt1 implication for fish gonad cell differentiation and gametogenesis development, its mRNA was isolated from testis and ovary from the Lusitanian toadfish (Halobatrachus didactylus). The cDNA from Dmrt1 was synthesized and cloned, whereas its quantitative and qualitative gene expression, as well as its protein immunolocalization, were analyzed. A main product of 1.38 kb, which encodes a protein of 295 aa, was reported, but other minority Dmrt1 products were also identified by RACE-PCR. This gene is predominantly expressed in testis (about 20 times more than in other organs or tissues), specially in spermatogonia, spermatocytes and spermatids, as well as in somatic Sertoli cells, indicating that Dmrt1 plays an important role in spermatogenesis. Although Dmrt1 transcripts also seem to be involved in oogenesis development, and it cannot be excluded that toadfish Dmrt1 could be functionally involved in other processes not related to sex.
Collapse
Affiliation(s)
- María Ubeda-Manzanaro
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| | - Manuel A Merlo
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Río San Pedro, 11510, Puerto Real, Cadiz, Spain.
| | - Juan B Ortiz-Delgado
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| | - Laureana Rebordinos
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Río San Pedro, 11510, Puerto Real, Cadiz, Spain.
| | - Carmen Sarasquete
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| |
Collapse
|
96
|
Groh KJ, Schönenberger R, Eggen RIL, Segner H, Suter MJF. Analysis of protein expression in zebrafish during gonad differentiation by targeted proteomics. Gen Comp Endocrinol 2013; 193:210-20. [PMID: 23968773 DOI: 10.1016/j.ygcen.2013.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms governing sex determination and differentiation in the zebrafish (Danio rerio) are not fully understood. To gain more insights into the function of specific genes in these complex processes, the expression of multiple candidates needs to be assessed, preferably on the protein level. Here, we developed a targeted proteomics method based on selected reaction monitoring (SRM) to study the candidate sex-related proteins in zebrafish which were selected based on a global proteomics analysis of adult gonads and representational difference analysis of male and female DNA, as well as on published information on zebrafish and other vertebrates. We employed the developed SRM protocols to acquire time-resolved protein expression profiles during the gonad differentiation period in vas::EGFP transgenic zebrafish. Evidence on protein expression was obtained for the first time for several candidate genes previously studied only on the mRNA level or suggested by bioinformatic predictions. Tuba1b (tubulin alpha 1b), initially included in the study as one of the potential housekeeping proteins, was found to be preferentially expressed in the adult testis with nearly absent expression in the ovary. The revealed changes in protein expression patterns associated with gonad differentiation suggest that several of the examined proteins, especially Ilf2 and Ilf3 (interleukin enhancer-binding factors 2 and 3), Raldh3 (retinaldehyde dehydrogenase type 3), Zgc:195027 (low density lipoprotein-related receptor protein 3) and Sept5a (septin 5a), may play a specific role in the sexual differentiation in zebrafish.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|
97
|
Bellefroid EJ, Leclère L, Saulnier A, Keruzore M, Sirakov M, Vervoort M, De Clercq S. Expanding roles for the evolutionarily conserved Dmrt sex transcriptional regulators during embryogenesis. Cell Mol Life Sci 2013; 70:3829-45. [PMID: 23463235 PMCID: PMC11113232 DOI: 10.1007/s00018-013-1288-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/18/2013] [Accepted: 01/31/2013] [Indexed: 01/20/2023]
Abstract
Dmrt genes encode a large family of transcription factors characterized by the presence of a DM domain, an unusual zinc finger DNA binding domain. While Dmrt genes are well known for their important role in sexual development in arthropodes, nematodes and vertebrates, several new findings indicate emerging functions of this gene family in other developmental processes. Here, we provide an overview of the evolution, structure and mechanisms of action of Dmrt genes. We summarize recent findings on their function in sexual regulation and discuss more extensively the role played by these proteins in somitogenesis and neural development.
Collapse
Affiliation(s)
- Eric J Bellefroid
- Laboratoire de Génétique du Développement, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Profs. Jeener et Brachet 12, 6041, Gosselies, Belgium,
| | | | | | | | | | | | | |
Collapse
|
98
|
Cheng J, Czypionka T, Nolte AW. The genomics of incompatibility factors and sex determination in hybridizing species of Cottus (Pisces). Heredity (Edinb) 2013; 111:520-9. [PMID: 23981957 DOI: 10.1038/hdy.2013.76] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 11/09/2022] Open
Abstract
Cottus rhenanus and Cottus perifretum have formed hybrid lineages and narrow hybrid zones that can be best explained through the action of natural selection. However, the underlying selective forces as well as their genomic targets are not well understood. This study identifies genomic regions in the parental species that cause hybrid incompatibilities and tests whether these manifest in a sex-specific manner to learn about processes that affect natural hybridization in Cottus. Interspecific F2 crosses were analyzed for 255 markers for genetic mapping and to detect transmission distortion as a sign for genetic incompatibilities. The Cottus map consists of 24 linkage groups with a total length of 1575.4 cM. A male heterogametic (XY) sex determination region was found on different linkage groups in the two parental species. Genetic incompatibilities were incomplete, varied among individuals and populations and were not associated with the heterogametic sex. The variance between populations and individuals makes it unlikely that there are species-specific incompatibility loci that could affect the gene pool of natural hybrids in a simple and predictable way. Conserved synteny with sequenced fish genomes permits to genetically study the Cottus genome through the transfer of genomic information from the model fish species. Homology relationships of candidate genomic regions in Cottus indicate that sex determination is not based on the same genomic regions found in other fish species. This suggests a fast evolutionary turnover of the genetic basis of sex determination that, together with the small size of the heterogametic regions, may contribute to the absence of fitness effects related to the Haldane's rule.
Collapse
Affiliation(s)
- J Cheng
- Evolutionary Genetics of Fishes, Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | |
Collapse
|
99
|
Sun F, Liu S, Gao X, Jiang Y, Perera D, Wang X, Li C, Sun L, Zhang J, Kaltenboeck L, Dunham R, Liu Z. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome. PLoS One 2013; 8:e68452. [PMID: 23874634 PMCID: PMC3709890 DOI: 10.1371/journal.pone.0068452] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022] Open
Abstract
Background Catfish has a male-heterogametic (XY) sex determination system, but genes involved in gonadogenesis, spermatogenesis, testicular determination, and sex determination are poorly understood. As a first step of understanding the transcriptome of the testis, here, we conducted RNA-Seq analysis using high throughput Illumina sequencing. Methodology/Principal Findings A total of 269.6 million high quality reads were assembled into 193,462 contigs with a N50 length of 806 bp. Of these contigs, 67,923 contigs had hits to a set of 25,307 unigenes, including 167 unique genes that had not been previously identified in catfish. A meta-analysis of expressed genes in the testis and in the gynogen (double haploid female) allowed the identification of 5,450 genes that are preferentially expressed in the testis, providing a pool of putative male-biased genes. Gene ontology and annotation analysis suggested that many of these male-biased genes were involved in gonadogenesis, spermatogenesis, testicular determination, gametogenesis, gonad differentiation, and possibly sex determination. Conclusion/Significance We provide the first transcriptome-level analysis of the catfish testis. Our analysis would lay the basis for sequential follow-up studies of genes involved in sex determination and differentiation in catfish.
Collapse
Affiliation(s)
- Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Xiaoyu Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Dayan Perera
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Xiuli Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Ludmilla Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
100
|
Forconi M, Canapa A, Barucca M, Biscotti MA, Capriglione T, Buonocore F, Fausto AM, Makapedua DM, Pallavicini A, Gerdol M, De Moro G, Scapigliati G, Olmo E, Schartl M. Characterization of sex determination and sex differentiation genes in Latimeria. PLoS One 2013; 8:e56006. [PMID: 23634199 PMCID: PMC3636272 DOI: 10.1371/journal.pone.0056006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022] Open
Abstract
Genes involved in sex determination and differentiation have been identified in mice, humans, chickens, reptiles, amphibians and teleost fishes. However, little is known of their functional conservation, and it is unclear whether there is a common set of genes shared by all vertebrates. Coelacanths, basal Sarcopterygians and unique "living fossils", could help establish an inventory of the ancestral genes involved in these important developmental processes and provide insights into their components. In this study 33 genes from the genome of Latimeria chalumnae and from the liver and testis transcriptomes of Latimeria menadoensis, implicated in sex determination and differentiation, were identified and characterized and their expression levels measured. Interesting findings were obtained for GSDF, previously identified only in teleosts and now characterized for the first time in the sarcopterygian lineage; FGF9, which is not found in teleosts; and DMRT1, whose expression in adult gonads has recently been related to maintenance of sexual identity. The gene repertoire and testis-specific gene expression documented in coelacanths demonstrate a greater similarity to modern fishes and point to unexpected changes in the gene regulatory network governing sexual development.
Collapse
Affiliation(s)
- Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria A. Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia Strutturale e Funzionale, Università Federico II, Napoli, Italy
| | - Francesco Buonocore
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Anna M. Fausto
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Daisy M. Makapedua
- Faculty of Fisheries and Marine Science, University of Sam Ratulangi, Manado, Indonesia
| | | | - Marco Gerdol
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Gianluca De Moro
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Giuseppe Scapigliati
- Dipartimento per l'Innovazione nei Sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, Viterbo, Italy
| | - Ettore Olmo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|