51
|
Rubio-Gracia F, García-Berthou E, Guasch H, Zamora L, Vila-Gispert A. Size-related effects and the influence of metabolic traits and morphology on swimming performance in fish. Curr Zool 2020; 66:493-503. [PMID: 33376477 PMCID: PMC7750985 DOI: 10.1093/cz/zoaa013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/14/2020] [Indexed: 01/26/2023] Open
Abstract
Energy metabolism fuels swimming and other biological processes. We compared the swimming performance and energy metabolism within and across eight freshwater fish species. Using swim tunnel respirometers, we measured the standard metabolic rate (SMR) and maximum metabolic rate (MMR) and calculated the critical swimming speed (Ucrit). We accounted for body size, metabolic traits, and some morphometric ratios in an effort to understand the extent and underlying causes of variation. Body mass was largely the best predictor of swimming capacity and metabolic traits within species. Moreover, we found that predictive models using total length or SMR, in addition to body mass, significantly increased the explained variation of Ucrit and MMR in certain fish species. These predictive models also underlined that, once body mass has been accounted for, Ucrit can be independently affected by total length or MMR. This study exemplifies the utility of multiple regression models to assess within-species variability. At interspecific level, our results showed that variation in Ucrit can partly be explained by the variation in the interrelated traits of MMR, fineness, and muscle ratios. Among the species studied, bleak Alburnus alburnus performed best in terms of swimming performance and efficiency. By contrast, pumpkinseed Lepomis gibbosus showed very poor swimming performance, but attained lower mass-specific cost of transport (MCOT) than some rheophilic species, possibly reflecting a cost reduction strategy to compensate for hydrodynamic disadvantages. In conclusion, this study provides insight into the key factors influencing the swimming performance of fish at both intra- and interspecific levels.
Collapse
Affiliation(s)
| | | | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain.,Integrative Freshwater Ecology Group, Centre d'Estudis Avançats de Blanes, CSIC, 17300 Blanes, Spain
| | - Lluís Zamora
- Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| | - Anna Vila-Gispert
- Institute of Aquatic Ecology, University of Girona, 17003 Girona, Spain
| |
Collapse
|
52
|
Kraskura K, Nelson JA. Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass ( Morone saxatilis). J Exp Biol 2020; 223:jeb217125. [PMID: 32098876 DOI: 10.1242/jeb.217125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
Abstract
Juvenile striped bass residing in Chesapeake Bay are likely to encounter hypoxia that could affect their metabolism and performance. The ecological success of this economically valuable species may depend on their ability to tolerate hypoxia and perform fitness-dependent activities in hypoxic waters. We tested whether there is a link between hypoxia tolerance (HT) and oxygen consumption rate (ṀO2 ) of juvenile striped bass measured while swimming in normoxic and hypoxic water, and to identify the interindividual variation and repeatability of these measurements. HT (loss of equilibrium) of fish (N=18) was measured twice collectively, 11 weeks apart, between which ṀO2 was measured individually for each fish while swimming in low flow (10.2 cm s-1) and high flow (∼67% of critical swimming speed, Ucrit) under normoxia and hypoxia. Both HT and ṀO2 varied substantially among individuals. HT increased across 11 weeks while the rank order of individual HT was significantly repeatable. Similarly, ṀO2 increased in fish swimming at high flow in a repeatable fashion, but only within a given level of oxygenation. ṀO2 was significantly lower when fish were swimming against high flow under hypoxia. There were no clear relationships between HT and ṀO2 while fish were swimming under any conditions. Only the magnitude of increase in HT over 11 weeks and an individual's ṀO2 under low flow were correlated. The results suggest that responses to the interacting stressors of hypoxia and exercise vary among individuals, and that HT and change in HT are not simple functions of aerobic metabolic rate.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jay A Nelson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
53
|
Damsgaard C, Baliga VB, Bates E, Burggren W, McKenzie DJ, Taylor E, Wright PA. Evolutionary and cardio-respiratory physiology of air-breathing and amphibious fishes. Acta Physiol (Oxf) 2020; 228:e13406. [PMID: 31630483 DOI: 10.1111/apha.13406] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 10/17/2019] [Indexed: 12/24/2022]
Abstract
Air-breathing and amphibious fishes are essential study organisms to shed insight into the required physiological shifts that supported the full transition from aquatic water-breathing fishes to terrestrial air-breathing tetrapods. While the origin of air-breathing in the evolutionary history of the tetrapods has received considerable focus, much less is known about the evolutionary physiology of air-breathing among fishes. This review summarizes recent advances within the field with specific emphasis on the cardiorespiratory regulation associated with air-breathing and terrestrial excursions, and how respiratory physiology of these living transitional forms are affected by development and personality. Finally, we provide a detailed and re-evaluated model of the evolution of air-breathing among fishes that serves as a framework for addressing new questions on the cardiorespiratory changes associated with it. This review highlights the importance of combining detailed studies on piscine air-breathing model species with comparative multi-species studies, to add an additional dimension to our understanding of the evolutionary physiology of air-breathing in vertebrates.
Collapse
Affiliation(s)
| | - Vikram B. Baliga
- Department of Zoology University of British Columbia Vancouver BC Canada
| | - Eric Bates
- Derailleur Interactive Vancouver BC Canada
| | - Warren Burggren
- Department of Biological Sciences University of North Texas Denton TX USA
| | - David J. McKenzie
- UMR Marbec, CNRS, IRD, Ifremer Université Montpellier Montpellier France
| | - Edwin Taylor
- School of Biosciences University of Birmingham Birmingham UK
| | | |
Collapse
|
54
|
Duncan MI, James NC, Potts WM, Bates AE. Different drivers, common mechanism; the distribution of a reef fish is restricted by local-scale oxygen and temperature constraints on aerobic metabolism. CONSERVATION PHYSIOLOGY 2020; 8:coaa090. [PMID: 33654546 PMCID: PMC7904075 DOI: 10.1093/conphys/coaa090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 05/02/2023]
Abstract
The distributions of ectothermic marine organisms are limited to temperature ranges and oxygen conditions that support aerobic respiration, quantified within the metabolic index (ϕ) as the ratio of oxygen supply to metabolic oxygen demand. However, the utility of ϕ at local scales and across heterogenous environments is unknown; yet, these scales are often where actionable management decisions are made. Here, we test if ϕ can delimit the entire distribution of marine organisms when calibrated across an appropriate temperature range and at local scales (~10 km) using the endemic reef fish, Chrysoblephus laticeps, which is found in the highly heterogenous temperature and oxygen environment along the South African coastal zone, as a model species. In laboratory experiments, we find a bidirectional (at 12°C) hypoxia tolerance response across the temperature range tested (8 to 24°C), permitting a piecewise calibration of ϕ. We then project this calibrated ϕ model through temperature and oxygen data from a high spatial resolution (11 to 13 km) ocean model for the periods 2005 to 2009 and 2095 to 2099 to quantify various magnitudes of ϕ across space and time paired with complementary C. laticeps occurrence points. Using random forest species distribution models, we quantify a critical ϕ value of 2.78 below which C. laticeps cannot persist and predict current and future distributions of C. laticeps in line with already observed distribution shifts of other South African marine species. Overall, we find that C. laticeps' distribution is limited by increasing temperatures towards its warm edge but by low oxygen availability towards its cool edge, which is captured within ϕ at fine scales and across heterogenous oxygen and temperature combinations. Our results support the application of ϕ for generating local- and regional-scale predictions of climate change effects on organisms that can inform local conservation management decisions.
Collapse
Affiliation(s)
- Murray I Duncan
- Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred street, Makhanda, 6140, South Africa
- South African Institute for Aquatic Biodiversity, 11 Somerset street, Makhanda, 6139, South Africa
- Corresponding author: Department of Geological Sciences, Stanford University, Stanford, 94305, USA.
| | - Nicola C James
- Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred street, Makhanda, 6140, South Africa
- South African Institute for Aquatic Biodiversity, 11 Somerset street, Makhanda, 6139, South Africa
| | - Warren M Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred street, Makhanda, 6140, South Africa
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL, A1C 5S7, Canada
| |
Collapse
|
55
|
Hepditch SLJ, Tessier LR, Wilson JM, Birceanu O, O’Connor LM, Wilkie MP. Mitigation of lampricide toxicity to juvenile lake sturgeon: the importance of water alkalinity and life stage. CONSERVATION PHYSIOLOGY 2019; 7:coz089. [PMID: 31832194 PMCID: PMC6900748 DOI: 10.1093/conphys/coz089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 05/25/2023]
Abstract
The pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), is used to control invasive sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes. Applied to infested tributaries, it is most toxic to larval sea lamprey, which have a low capacity to detoxify TFM. However, TFM can be toxic to lake sturgeon (Acipenser fulvescens), whose populations are at risk throughout the basin. They are most vulnerable to TFM in early life stages, with the greatest risk of non-target mortality occurring in waters with high alkalinity. We quantified TFM toxicity and used radio-labelled TFM (14C-TFM) to measure TFM uptake rates in lake sturgeon in waters of different pH and alkalinity. Regardless of pH or alkalinity, TFM uptake was 2-3-fold higher in young-of-the-year (YOY) than in age 1-year-plus (1+) sturgeon, likely due to higher mass-specific metabolic rates in the smaller YOY fish. As expected, TFM uptake was highest at lower (pH 6.5) versus higher (pH 9.0) pH, indicating that it is taken up across the gills by diffusion in its unionized form. Uptake decreased as alkalinity increased from low (~50 mg L-1 as CaCO3) to moderate alkalinity (~150 mg L-1 as CaCO3), before plateauing at high alkalinity (~250 mg L-1 as CaCO3). Toxicity curves revealed that the 12-h LC50 and 12-h LC99.9 of TFM to lake sturgeon were in fact higher (less toxic) than in sea lamprey, regardless of alkalinity. However, in actual treatments, 1.3-1.5 times the minimum lethal TFM concentration (MLC = LC99.9) to lamprey is applied to maximize mortality, disproportionately amplifying TFM toxicity to sturgeon at higher alkalinities. We conclude that limiting TFM treatments to late summer/early fall in waters of moderate-high alkalinity, when lake sturgeon are larger with lower rates of TFM uptake, would mitigate non-target TFM effects and help conserve populations of these ancient, culturally important fishes.
Collapse
Affiliation(s)
- Scott L J Hepditch
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Laura R Tessier
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Jonathan M Wilson
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Oana Birceanu
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Lisa M O’Connor
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 1219 Queen Street East, Sault Ste. Marie, ON P6A 2E5, Canada
| | - Michael P Wilkie
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
56
|
Jerde CL, Kraskura K, Eliason EJ, Csik SR, Stier AC, Taper ML. Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. Front Physiol 2019; 10:1166. [PMID: 31616308 PMCID: PMC6763608 DOI: 10.3389/fphys.2019.01166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
As an example of applying the evidential approach to statistical inference, we address one of the longest standing controversies in ecology, the evidence for, or against, a universal metabolic scaling relationship between metabolic rate and body mass. Using fish as our study taxa, we curated 25 studies with measurements of standard metabolic rate, temperature, and mass, with 55 independent trials and across 16 fish species and confronted this data with flexible random effects models. To quantify the body mass - metabolic rate relationship, we perform model selection using the Schwarz Information Criteria (ΔSIC), an established evidence function. Further, we formulate and justify the use of ΔSIC intervals to delineate the values of the metabolic scaling relationship that should be retained for further consideration. We found strong evidence for a metabolic scaling coefficient of 0.89 with a ΔSIC interval spanning 0.82 to 0.99, implying that mechanistically derived coefficients of 0.67, 0.75, and 1, are not supported by the data. Model selection supports the use of a random intercepts and random slopes by species, consistent with the idea that other factors, such as taxonomy or ecological or lifestyle characteristics, may be critical for discerning the underlying process giving rise to the data. The evidentialist framework applied here, allows for further refinement given additional data and more complex models.
Collapse
Affiliation(s)
- Christopher L. Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Erika J. Eliason
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Samantha R. Csik
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark L. Taper
- Department of Ecology, Montana State University, Bozeman, MT, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
57
|
Hvas M, Oppedal F. Influence of experimental set-up and methodology for measurements of metabolic rates and critical swimming speed in Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2019; 95:893-902. [PMID: 31265133 DOI: 10.1111/jfb.14087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
In this study, swim-tunnel respirometry was performed on Atlantic salmon Salmo salar post-smolts in a 90 l respirometer on individuals and compared with groups or individuals of similar sizes tested in a 1905 l respirometer, to determine if differences between set-ups and protocols exist. Standard metabolic rate (SMR) derived from the lowest oxygen uptake rate cycles over a 20 h period was statistically similar to SMR derived from back extrapolating to zero swim speed. However, maximum metabolic rate (MMR) estimates varied significantly between swimming at maximum speed, following an exhaustive chase protocol and during confinement stress. Most notably, the mean (±SE) MMR was 511 ± 15 mg O2 kg-1 h-1 in the swim test which was 52% higher compared with 337 ± 9 mg O2 kg-1 in the chase protocol, showing that the latter approach causes a substantial underestimation. Performing group respirometry in the larger swim tunnel provided statistically similar estimates of SMR and MMR as for individual fish tested in the smaller tunnel. While we hypothesised a larger swim section and swimming in groups would improve swimming performance, Ucrit was statistically similar between both set-ups and statistically similar between swimming alone v. swimming in groups in the larger set-up, suggesting that this species does not benefit hydrodynamically from swimming in a school in these conditions. Different methods and set-ups have their own respective limitations and advantages depending on the questions being addressed, the time available, the number of replicates required and if supplementary samplings such as blood or gill tissues are needed. Hence, method choice should be carefully considered when planning experiments and when comparing previous studies.
Collapse
Affiliation(s)
- Malthe Hvas
- Research Group of Animal Welfare, Institute of Marine Research, Matredal, Norway
| | - Frode Oppedal
- Research Group of Animal Welfare, Institute of Marine Research, Matredal, Norway
| |
Collapse
|
58
|
Exploitation may influence the climate resilience of fish populations through removing high performance metabolic phenotypes. Sci Rep 2019; 9:11437. [PMID: 31391481 PMCID: PMC6685998 DOI: 10.1038/s41598-019-47395-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022] Open
Abstract
Physiological rates and processes underpin the relationships between ectothermic organisms, such as fish, and their environment. The response and persistence of fish populations in an increasingly variable ocean is dependent on the distribution and diversity of physiological phenotypes. Growing evidence suggests that fisheries exploitation can selectively target certain physiological and behavioural phenotypes, which may shift exploited populations to altered physiological states. Here we test if commercial fisheries have the potential to do this in a “natural laboratory” along the South African coast. We compare metabolic traits of exploited and protected populations of the fish species, Chrysoblephus laticeps, which is a major component of the South African hook and line fishery. We find that high-performance aerobic scope phenotypes are reduced in the fished population. The most likely mechanism for this finding is a positive relationship between aerobic scope and capture vulnerability in passive-gear fisheries. Our results further highlight the selective nature of capture-fisheries and suggest that exploitation has the capacity to alter climate responses of fish populations on a physiological level. Our finding also implicates how Marine Protected Areas, through harbouring individuals with a greater diversity of physiological traits, may provide greater fish response diversity to environmental variability.
Collapse
|
59
|
Temperature and oxygen related ecophysiological traits of snow trout (Schizothorax richardsonii) are sensitive to seasonal changes in a Himalayan stream environment. J Therm Biol 2019; 83:22-29. [DOI: 10.1016/j.jtherbio.2019.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 01/31/2023]
|
60
|
Delahaut V, Daelemans O, Sinha AK, De Boeck G, Bervoets L. A multibiomarker approach for evaluating environmental contamination: Common carp (Cyprinus carpio) transplanted along a gradient of metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:481-492. [PMID: 30884270 DOI: 10.1016/j.scitotenv.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/12/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Environmental monitoring and risk assessment approaches which include a more holistic view on the effects of pollutants on biota are increasingly sought by regulators and policy makers. Therefore, caged carp juveniles (Cyprinus carpio) were transplanted for 7 weeks along a known Cd and Zn pollution gradient. Metal (Cu, Cd and Zn) accumulation in gill and liver tissue and effect biomarkers (growth, condition factor (CF), hepatosomatic index (HSI), oxygen consumption, swimming capacity, Na+/K+-ATPase activity (NKA) and metallothionein (MT) levels) were compared. Up to 10-fold higher cadmium concentrations were measured in the gills of the fish at the most polluted locations compared to the laboratory control fish. Similarly, cadmium concentrations in liver tissues of field-exposed fish were significantly higher than those measured in laboratory control fish. Cu and Zn concentrations in the gills were not significantly different between field-exposed and control organisms, whereas higher levels in liver tissues were measured in carps deployed in some locations. Effects on liver MT levels were up to 10 times greater for organisms exposed to the field, whereas no clear effect of the metal exposure on NKA in the gill tissue was observed. A decrease in muscle glycogen stores was observed for all organisms deployed in the field, while liver glycogen levels decreased only in fish exposed to two of the 5 sites compared to the laboratory control fish. Additionally, significant drops in liver protein- and lipid stores were observed. No effect on oxygen consumption rates and swimming capacity was observed. The CF and HSI of caged fish reflected the pollution gradient in the river and considerable loss of weight was observed for fish transplanted in the most polluted site. Overall, this active biomonitoring study successfully revealed differences in metal accumulation, physiological and organismal endpoints as a direct consequence of field exposure.
Collapse
Affiliation(s)
- Vyshal Delahaut
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Oceanne Daelemans
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Amit Kumar Sinha
- University of Arkansas at Pine Bluff, Department of Aquaculture and Fisheries, 1200 North University Drive, Pine Bluff, AR 71601, United States of America
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lieven Bervoets
- University of Antwerp, Department of Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
61
|
Blom EL, Kvarnemo C, Dekhla I, Schöld S, Andersson MH, Svensson O, Amorim MCP. Continuous but not intermittent noise has a negative impact on mating success in a marine fish with paternal care. Sci Rep 2019; 9:5494. [PMID: 30940841 PMCID: PMC6445290 DOI: 10.1038/s41598-019-41786-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Anthropogenic underwater noise is a global pollutant of increasing concern but its impact on reproduction in fish is largely unknown. Hence, a better understanding of its consequences for this important link to fitness is crucial. Working in aquaria, we experimentally tested the impact of broadband noise exposure (added either continuously or intermittently), compared to a control, on the behaviour and reproductive success of the common goby (Pomatoschistus microps), a vocal fish with exclusive paternal care. Compared to the intermittent noise and control treatments, the continuous noise treatment increased latency to female nest inspection and spawning and decreased spawning probability. In contrast, many other female and male pre-spawning behaviours, and female ventilation rate (proxies for stress levels) did not differ among treatments. Therefore, it is likely that female spawning decisions were delayed by a reduced ability to assess male acoustic signals, rather than due to stress per se and that the silent periods in the intermittent noise treatment provided a respite where the females could assess the males. Taken together, we show that noise (of similar frequency range as anthropogenic boat noise) negatively affects reproductive success, particularly under a continuous noise exposure.
Collapse
Affiliation(s)
- Eva-Lotta Blom
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden.
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Box 460, SE-405 30, Gothenburg, Sweden
| | - Isabelle Dekhla
- Department of Marine Sciences, University of Gothenburg, Box 100, SE-405 30, Gothenburg, Sweden
| | - Sofie Schöld
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
- Swedish Meteorological and Hydrological Institute, Folkborgsvägen 17, SE-603 80, Norrköping, Sweden
| | | | - Ola Svensson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Box 460, SE-405 30, Gothenburg, Sweden
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - M Clara P Amorim
- MARE - Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
62
|
Ferreira MS, Wood CM, Harter TS, Dal Pont G, Val AL, Matthews PGD. Metabolic fuel use after feeding in the zebrafish ( Danio rerio): a respirometric analysis. ACTA ACUST UNITED AC 2019; 222:jeb.194217. [PMID: 30573666 DOI: 10.1242/jeb.194217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
We used respirometric theory and a new respirometry apparatus to assess, for the first time, the sequential oxidation of the major metabolic fuels during the post-prandial period (10 h) in adult zebrafish fed with commercial pellets (51% protein, 2.12% ration). Compared with a fasted group, fed fish presented peak increases of oxygen consumption (78%), and carbon dioxide (80%) and nitrogen excretion rates (338%) at 7-8 h, and rates remained elevated at 10 h. The respiratory quotient increased slightly (0.89 to 0.97) whereas the nitrogen quotient increased greatly (0.072 to 0.140), representing peak amino acid/protein usage (52%) at this time. After 48-h fasting, endogenous carbohydrate and lipid were the major fuels, but in the first few hours after feeding, carbohydrate oxidation increased greatly, fueling the first part of the post-prandial specific dynamic action, whereas increased protein/amino acid usage predominated from 6 h onwards. Excess dietary protein/amino acids were preferentially metabolized for energy production.
Collapse
Affiliation(s)
- Marcio S Ferreira
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Chris M Wood
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil.,Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Till S Harter
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Giorgi Dal Pont
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4.,Grupo Integrado de Aquicultura e Estudos Ambientais, Universidade Federal do Paraná (UFPR), 80.060-000 Curitiba, Brasil
| | - Adalberto L Val
- Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), 69.067-375 Manaus, Brasil
| | - Philip G D Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada V6T 1Z4
| |
Collapse
|
63
|
Morozov S, McCairns RJS, Merilä J. FishResp: R package and GUI application for analysis of aquatic respirometry data. CONSERVATION PHYSIOLOGY 2019; 7:coz003. [PMID: 30746152 PMCID: PMC6364290 DOI: 10.1093/conphys/coz003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Intermittent-flow respirometry is widely used to measure oxygen uptake rates and subsequently estimate aerobic metabolic rates of aquatic animals. However, the lack of a standard quality-control software to detect technical problems represents a potential impediment to comparisons across studies in the field of evolutionary and conservation physiology. Here, we introduce 'FishResp', a versatile R package and its graphical implementation for quality-control and filtering of raw respirometry data. Our goal is to provide a straightforward, cross-platform and free software to help improve the quality and comparability of metabolic rate estimates for reducing methodological fragmentation in the field of aquatic respirometry. FishResp accepts data from various respirometry systems, allows users to detect potential mechanical problems which can occur during oxygen uptake measurements (e.g. chamber leaking, poor water circulation), and offers six options to correct raw data for microbial oxygen consumption. The software performs filtering of raw data based on user criteria, and produces accurate and unbiased estimates of absolute and mass-specific metabolic rates. Using data from three-spined sticklebacks (Gasterosteus aculeatus) and Trinidadian guppies (Poecilia reticulata), we demonstrate the virtues of FishResp, highlighting the importance of detecting mechanical problems and correcting measurements for background respiration.
Collapse
Affiliation(s)
- Sergey Morozov
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - R J Scott McCairns
- ESE, Ecology and Ecosystem Health, INRA, Agrocampus Ouest, Rennes, France
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
64
|
Mandic M, Regan MD. Can variation among hypoxic environments explain why different fish species use different hypoxic survival strategies? ACTA ACUST UNITED AC 2018; 221:221/21/jeb161349. [PMID: 30381477 DOI: 10.1242/jeb.161349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In aquatic environments, hypoxia is a multi-dimensional stressor that can vary in O2 level (partial pressure of O2 in water, PwO2 ), rate of induction and duration. Natural hypoxic environments can therefore be very different from one another. For the many fish species that have evolved to cope with these different hypoxic environments, survival requires adjusting energy supply and demand pathways to maintain energy balance. The literature describes innumerable ways that fishes combine aerobic metabolism, anaerobic metabolism and metabolic rate depression (MRD) to accomplish this, but it is unknown whether the evolutionary paths leading to these different strategies are determined primarily by species' phylogenetic histories, genetic constraint or their native hypoxic environments. We explored this idea by devising a four-quadrant matrix that bins different aquatic hypoxic environments according to their duration and PwO2 characteristics. We then systematically mined the literature for well-studied species native to environments within each quadrant, and, for each of 10 case studies, described the species' total hypoxic response (THR), defined as its hypoxia-induced combination of sustained aerobic metabolism, enhanced anaerobic metabolism and MRD, encompassing also the mechanisms underlying these metabolic modes. Our analysis revealed that fishes use a wide range of THRs, but that distantly related species from environments within the same matrix quadrant have converged on similar THRs. For example, environments of moderately hypoxic PwO2 favoured predominantly aerobic THRs, whereas environments of severely hypoxic PwO2 favoured MRD. Capacity for aerial emergence as well as predation pressure (aquatic and aerial) also contributed to these responses, in addition to other biotic and abiotic factors. Generally, it appears that the particular type of hypoxia experienced by a fish plays a major role in shaping its particular THR.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Matthew D Regan
- Comparative Biosciences Department, University of Wisconsin-Madison, Madison, WI 35706, USA
| |
Collapse
|
65
|
Nyboer EA, Chapman LJ. Cardiac plasticity influences aerobic performance and thermal tolerance in a tropical, freshwater fish at elevated temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.178087. [PMID: 29895683 DOI: 10.1242/jeb.178087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
Abstract
Fishes faced with novel thermal conditions often modify physiological functioning to compensate for elevated temperatures. This physiological plasticity (thermal acclimation) has been shown to improve metabolic performance and extend thermal limits in many species. Adjustments in cardiorespiratory function are often invoked as mechanisms underlying thermal plasticity because limitations in oxygen supply have been predicted to define thermal optima in fishes; however, few studies have explicitly linked cardiorespiratory plasticity to metabolic compensation. Here, we quantified thermal acclimation capacity in the commercially harvested Nile perch (Lates niloticus) of East Africa, and investigated mechanisms underlying observed changes. We reared juvenile Nile perch for 3 months under two temperature regimes, and then measured a series of metabolic traits (e.g. aerobic scope) and critical thermal maximum (CTmax) upon acute exposure to a range of experimental temperatures. We also measured morphological traits of heart ventricles, gills and brains to identify potential mechanisms for compensation. We found that long-term (3 month) exposure to elevated temperature induced compensation in upper thermal tolerance (CTmax) and metabolic performance (standard and maximum metabolic rate, and aerobic scope), and induced cardiac remodeling in Nile perch. Furthermore, variation in heart morphology influenced variations in metabolic function and thermal tolerance. These results indicate that plastic changes enacted over longer exposures lead to differences in metabolic flexibility when organisms are acutely exposed to temperature variation. Furthermore, we established functional links between cardiac plasticity, metabolic performance and thermal tolerance, providing evidence that plasticity in cardiac capacity may be one mechanism for coping with climate change.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Lauren J Chapman
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
66
|
Tessier LR, Long TAF, Wilkie MP. Influence of body size, metabolic rate and life history stage on the uptake and excretion of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) by invasive sea lampreys (Petromyzon marinus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:27-36. [PMID: 29132032 DOI: 10.1016/j.aquatox.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Invasive sea lamprey (Petromyzon marinus) are controlled in the Great Lakes using the lampricide 3-trifluoromethyl-4-nitrophenol (TFM), which is applied to streams infested with larval lamprey. However, lamprey that survive treatments (residuals) remain a challenge because they may subsequently undergo metamorphosis into parasitic juvenile animals that migrate downstream to the Great Lakes, where they feed on important sport and commercial fishes. The goal of this study was to determine if body size and life stage could potentially influence sea lamprey tolerance to TFM by influencing patterns of TFM uptake and elimination. Because mass specific rates of oxygen consumption (M˙O2) are lower in larger compared to smaller lamprey, we predicted that TFM uptake would be negatively correlated to body size, suggesting that large larvae would be more tolerant to TFM exposure. Accordingly, TFM uptake and M˙O2 were measured in larvae ranging in size from 0.2-4.2g using radio-labelled TFM (14C-TFM) and static respirometry. Both were inversely proportional to wet mass (M), and could be described usingthe allometric power relationship: Y=aMb, in which M˙O2=1.86M0.53 and TFM Uptake=7.24M0.34. We also predicted that body size would extend to rates of TFM elimination, which was measured following the administration of 14C-TFM (via intraperitoneal injection). However, there were no differences in the half-lives of elimination of TFM (T 1/2-TFM). There were also no differences in M˙O2 or TFM uptake amongst size-matched larval, metamorphosing (stages 6-7), or post-metamorphic (juvenile) sea lamprey. However, the T1/2-TFM was significantly lower in larval than post-metamorphic lamprey (juvenile), indicating the larval lamprey cleared TFM more efficiently than juvenile lamprey. We conclude that larger larval sea lamprey are more likely to survive TFM treatments suggesting that body size might be an important variable to consider when treating streams with TFM to control these invasive species.
Collapse
Affiliation(s)
- Laura R Tessier
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada
| | - Tristan A F Long
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology and Laurier Institute for Water Science, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
67
|
Flynn EE, Todgham AE. Thermal windows and metabolic performance curves in a developing Antarctic fish. J Comp Physiol B 2017; 188:271-282. [PMID: 28988313 DOI: 10.1007/s00360-017-1124-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
For ectotherms, temperature modifies the rate of physiological function across a temperature tolerance window depending on thermal history, ontogeny, and evolutionary history. Some adult Antarctic fishes, with comparatively narrow thermal windows, exhibit thermal plasticity in standard metabolic rate; however, little is known about the shape or breadth of thermal performance curves of earlier life stages of Antarctic fishes. We tested the effects of acute warming (- 1 to 8 °C) and temperature acclimation (2 weeks at - 1, 2, 4 °C) on survival and standard metabolic rate in early embryos of the dragonfish Gymnodraco acuticeps from McMurdo Sound, Ross Island, Antarctica. Contrary to predictions, embryos acclimated to warmer temperatures did not experience greater mortality and nearly all embryos survived acute warming to 8 °C. Metabolic performance curve height and shape were both significantly altered after 2 weeks of development at - 1 °C, with further increase in curve height, but not alteration of shape, with warm temperature acclimation. Overall metabolic rate temperature sensitivity (Q 10) from - 1 to 8 °C varied from 2.6 to 3.6, with the greatest thermal sensitivity exhibited by embryos at earlier developmental stages. Interclutch variation in metabolic rates, mass, and development of simultaneously collected embryos was also documented. Taken together, metabolic performance curves provide insight into the costs of early development under warming temperatures, with the potential for thermal sensitivity to be modified by dragonfish phenology and magnitude of seasonal changes in temperature.
Collapse
Affiliation(s)
- Erin E Flynn
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
68
|
Lefevre S, McKenzie DJ, Nilsson GE. Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. GLOBAL CHANGE BIOLOGY 2017; 23:3449-3459. [PMID: 28168760 DOI: 10.1111/gcb.13652] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/06/2023]
Abstract
Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of 'maintenance'. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass-specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindernveien 31, Postbox 1066 Blindern, Oslo, NO-0316, Norway
| | - David J McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR 9190 MARBEC (CNRS, IRD, IFREMER, UM), Place E. Bataillon cc 093, 34095, Montpellier, France
| | - Göran E Nilsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindernveien 31, Postbox 1066 Blindern, Oslo, NO-0316, Norway
| |
Collapse
|
69
|
Norin T, Clark TD. Reply to Zhang & Gilbert (2017): Comment on 'Measurement and relevance of maximum metabolic rate in fishes by Norin & Clark (2016)'. JOURNAL OF FISH BIOLOGY 2017; 91:403-408. [PMID: 28776704 DOI: 10.1111/jfb.13353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Affiliation(s)
- T Norin
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, Glasgow G12 8QQ, U.K
| | - T D Clark
- University of Tasmania, Hobart, TAS 7000, Australia
- CSIRO Agriculture and Food, Hobart, TAS, Australia
| |
Collapse
|
70
|
Zhang Y, Gilbert MJH. Comment on 'Measurement and relevance of maximum metabolic rate in fishes by Norin & Clark (2016)'. JOURNAL OF FISH BIOLOGY 2017; 91:397-402. [PMID: 28776701 DOI: 10.1111/jfb.13291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 02/01/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Y Zhang
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - M J H Gilbert
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
71
|
Nadler LE, Killen SS, McCormick MI, Watson SA, Munday PL. Effect of elevated carbon dioxide on shoal familiarity and metabolism in a coral reef fish. CONSERVATION PHYSIOLOGY 2016; 4:cow052. [PMID: 27933164 PMCID: PMC5142050 DOI: 10.1093/conphys/cow052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/02/2016] [Accepted: 10/14/2016] [Indexed: 05/30/2023]
Abstract
Atmospheric CO2 is expected to more than double by the end of the century. The resulting changes in ocean chemistry will affect the behaviour, sensory systems and physiology of a range of fish species. Although a number of past studies have examined effects of CO2 in gregarious fishes, most have assessed individuals in social isolation, which can alter individual behaviour and metabolism in social species. Within social groups, a learned familiarity can develop following a prolonged period of interaction between individuals, with fishes preferentially associating with familiar conspecifics because of benefits such as improved social learning and greater foraging opportunities. However, social recognition occurs through detection of shoal-mate cues; hence, it may be disrupted by near-future CO2 conditions. In the present study, we examined the influence of elevated CO2 on shoal familiarity and the metabolic benefits of group living in the gregarious damselfish species the blue-green puller (Chromis viridis). Shoals were acclimated to one of three nominal CO2 treatments: control (450 µatm), mid-CO2 (750 µatm) or high-CO2 (1000 µatm). After a 4-7 day acclimation period, familiarity was examined using a choice test, in which individuals were given the choice to associate with familiar shoal-mates or unfamiliar conspecifics. In control conditions, individuals preferentially associated with familiar shoal-mates. However, this association was lost in both elevated-CO2 treatments. Elevated CO2 did not impact the calming effect of shoaling on metabolism, as measured using an intermittent-flow respirometry methodology for social species following a 17-20 day acclimation period to CO2 treatment. In all CO2 treatments, individuals exhibited a significantly lower metabolic rate when measured in a shoal vs. alone, highlighting the complexity of shoal dynamics and the processes that influence the benefits of shoaling.
Collapse
Affiliation(s)
- Lauren E. Nadler
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mark I. McCormick
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
72
|
Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P crit). CONSERVATION PHYSIOLOGY 2016; 4:cow012. [PMID: 27293760 PMCID: PMC4849809 DOI: 10.1093/conphys/cow012] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 05/19/2023]
Abstract
Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (P crit) has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of P crit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining P crit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on P crit, including temperature, CO2, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with P crit; 20% of variation in the P crit data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO2 within a closed respirometer during the measurement of P crit. Modelling suggests that the final partial pressure of CO2 reached can vary from 650 to 3500 µatm depending on the ambient pH and salinity, with potentially major effects on blood acid-base balance and P crit itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management.
Collapse
Affiliation(s)
- Nicholas J Rogers
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Mauricio A Urbina
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Erin E Reardon
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - David J McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation (Marbec), UMR 9190 CNRS-Université Montpellier-Ifremer-IRD, Université Montpellier, Place Eugène Bataillon, Montpellier cedex 5 34095, France
| | - Rod W Wilson
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
73
|
Palacios MM, Killen SS, Nadler LE, White JR, McCormick MI. Top predators negate the effect of mesopredators on prey physiology. J Anim Ecol 2016; 85:1078-86. [PMID: 27113316 PMCID: PMC4999042 DOI: 10.1111/1365-2656.12523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/12/2016] [Indexed: 11/28/2022]
Abstract
Predation theory and empirical evidence suggest that top predators benefit the survival of resource prey through the suppression of mesopredators. However, whether such behavioural suppression can also affect the physiology of resource prey has yet to be examined. Using a three-tier reef fish food web and intermittent-flow respirometry, our study examined changes in the metabolic rate of resource prey exposed to combinations of mesopredator and top predator cues. Under experimental conditions, the mesopredator (dottyback, Pseudochromis fuscus) continuously foraged and attacked resource prey (juveniles of the damselfish Pomacentrus amboinensis) triggering an increase in prey O2 uptake by 38 ± 12·9% (mean ± SE). The visual stimulus of a top predator (coral trout, Plectropomus leopardus) restricted the foraging activity of the mesopredator, indirectly allowing resource prey to minimize stress and maintain routine O2 uptake. Although not as strong as the effect of the top predator, the sight of a large non-predator species (thicklip wrasse, Hemigymnus melapterus) also reduced the impact of the mesopredator on prey metabolic rate. We conclude that lower trophic-level species can benefit physiologically from the presence of top predators through the behavioural suppression that top predators impose on mesopredators. By minimizing the energy spent on mesopredator avoidance and the associated stress response to mesopredator attacks, prey may be able to invest more energy in foraging and growth, highlighting the importance of the indirect, non-consumptive effects of top predators in marine food webs.
Collapse
Affiliation(s)
- Maria M Palacios
- ARC Centre of Excellence for Coral Reef Studies and College of Marine & Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies and College of Marine & Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - James R White
- ARC Centre of Excellence for Coral Reef Studies and College of Marine & Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and College of Marine & Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
74
|
Chabot D, McKenzie DJ, Craig JF. Metabolic rate in fishes: definitions, methods and significance for conservation physiology. JOURNAL OF FISH BIOLOGY 2016; 88:1-9. [PMID: 26768969 DOI: 10.1111/jfb.12873] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
75
|
Regan MD, Gill I, Richards JG. Calorespirometry reveals that goldfish prioritize aerobic metabolism over metabolic rate depression in all but near-anoxic environments. J Exp Biol 2016; 220:564-572. [DOI: 10.1242/jeb.145169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
Metabolic rate depression (MRD) has long been proposed as the key metabolic strategy of hypoxic survival, but surprisingly the effects of changes in hypoxic O2 tensions (PwO2) on MRD are largely unexplored. We simultaneously measured the O2 consumption rate (ṀO2) and metabolic heat of goldfish using calorespirometry to test the hypothesis that MRD is employed at hypoxic PwO2s and initiated just below Pcrit, the PwO2 below which ṀO2 is forced to progressively decline as the fish oxyconforms to decreasing PwO2. Specifically, we used closed-chamber and flow-through calorespirometry together with terminal sampling experiments to examine the effects of PwO2 and time on ṀO2, metabolic heat and anaerobic metabolism (lactate and ethanol production). The closed-chamber and flow-through experiments yielded slightly different results. Under closed-chamber conditions with a continually decreasing PwO2, goldfish showed a Pcrit of 3.0±0.3 kPa and metabolic heat production was only depressed at PwO2 between 0 and 0.67 kPa. Under flow-through conditions with PwO2 held at a variety of oxygen tensions for 1 and 4 h, goldfish also initiated MRD between 0 and 0.67 kPa but maintained ṀO2 to 0.67 kPa, indicating that Pcrit is at or below this PwO2. Anaerobic metabolism was strongly activated at PwO2 ≤1.3 kPa, but only used within the first hour at 1.3 and 0.67 kPa as anaerobic end-products did not accumulate between 1 and 4 h exposure. Taken together, it appears that goldfish reserve MRD for near-anoxia, supporting routine metabolic rate at sub-Pcrit PwO2s with the help of anaerobic glycolysis in the closed-chamber experiments, and aerobically after an initial (<1 h) activation of anaerobic metabolism in the flow-through experiments, even at 0.67 kPa PwO2.
Collapse
Affiliation(s)
- Matthew D. Regan
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Ivan Gill
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey G. Richards
- Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|