51
|
Brummelte S, Galea LAM. Postpartum depression: Etiology, treatment and consequences for maternal care. Horm Behav 2016; 77:153-66. [PMID: 26319224 DOI: 10.1016/j.yhbeh.2015.08.008] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/18/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023]
Abstract
This article is part of a Special Issue "Parental Care". Pregnancy and postpartum are associated with dramatic alterations in steroid and peptide hormones which alter the mothers' hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes. Dysregulations in these endocrine axes are related to mood disorders and as such it should not come as a major surprise that pregnancy and the postpartum period can have profound effects on maternal mood. Indeed, pregnancy and postpartum are associated with an increased risk for developing depressive symptoms in women. Postpartum depression affects approximately 10-15% of women and impairs mother-infant interactions that in turn are important for child development. Maternal attachment, sensitivity and parenting style are essential for a healthy maturation of an infant's social, cognitive and behavioral skills and depressed mothers often display less attachment, sensitivity and more harsh or disrupted parenting behaviors, which may contribute to reports of adverse child outcomes in children of depressed mothers. Here we review, in honor of the "father of motherhood", Jay Rosenblatt, the literature on postnatal depression in the mother and its effect on mother-infant interactions. We will cover clinical and pre-clinical findings highlighting putative neurobiological mechanisms underlying postpartum depression and how they relate to maternal behaviors and infant outcome. We also review animal models that investigate the neurobiology of maternal mood and disrupted maternal care. In particular, we discuss the implications of endogenous and exogenous manipulations of glucocorticoids on maternal care and mood. Lastly we discuss interventions during gestation and postpartum that may improve maternal symptoms and behavior and thus may alter developmental outcome of the offspring.
Collapse
Affiliation(s)
| | - Liisa A M Galea
- Dept. of Psychology, Graduate Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
52
|
Pereira M, Ferreira A. Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Horm Behav 2016; 77:72-85. [PMID: 26296592 DOI: 10.1016/j.yhbeh.2015.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Parental Care". Becoming a parent is arguably the most profound transforming experience in life. It is also inherently very emotionally and physically demanding, such that the reciprocal interaction with the young changes the brain and behavior of the parents. In this review, we examine the neurobiological mechanisms of parenting primarily discussing recent research findings in rodents and primates, especially humans. We argue that it is essential to consider parenting within a conceptual framework that recognizes the dynamics of the reciprocal mother-young relationship, including both the complexity and neuroplasticity of its underlying mechanisms. Converging research suggests that the concerted activity of a distributed network of subcortical and cortical brain structures regulates different key aspects of parenting, including the sensory analysis of infant stimuli as well as motivational, affective and cognitive processes. The interplay among these processes depends on the action of various neurotransmitters and hormones that modulate the timely and coordinated execution of caregiving responses of the maternal circuitry exquisitely attuned to the young's affect, needs and developmental stage. We conclude with a summary and a set of questions that may guide future research.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, USA.
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
53
|
Jonas W, Woodside B. Physiological mechanisms, behavioral and psychological factors influencing the transfer of milk from mothers to their young. Horm Behav 2016; 77:167-81. [PMID: 26232032 DOI: 10.1016/j.yhbeh.2015.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
This article is part of a Special Issue "Parental Care".Producing milk to support the growth of their young is a central element of maternal care in mammals. In spite of the facts that ecological constraints influence nursing frequency, length of time until weaning and the composition of milk, there is considerable similarity in the anatomy and physiology of milk production and delivery across mammalian species. Here we provide an overview of cross species variation in nursing patterns and milk composition as well as the mechanisms underlying mammary gland development, milk production and letdown. Not all women breastfeed their infants, thus in later sections we review studies of factors that facilitate or impede the initiation and duration of breastfeeding. The results of these investigations suggest that the decisions to initiate and maintain breastfeeding are influenced by an array of personal, social and biological factors. Finally, studies comparing the development of breastfed and formula fed infants as well as those investigating associations between breastfeeding, maternal health and mother/infant interaction are reviewed. Leading health agencies including the World Health Organization and CDC advocate breastfeeding for at least the first 6months postpartum. To achieve these rates will require not only institutional support but also a focus on individual mother/infant dyads and their experience.
Collapse
Affiliation(s)
- Wibke Jonas
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Fraser Mustard Institute of Human Development, University of Toronto, Toronto, Canada
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
54
|
Reproductive experiential regulation of cognitive and emotional resilience. Neurosci Biobehav Rev 2015; 58:92-106. [DOI: 10.1016/j.neubiorev.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
|
55
|
Lonstein JS, Lévy F, Fleming AS. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 2015; 73:156-85. [PMID: 26122301 PMCID: PMC4546863 DOI: 10.1016/j.yhbeh.2015.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Frédéric Lévy
- Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours IFCE, Nouzilly 37380, France.
| | - Alison S Fleming
- Fraser Mustard Institute for Human Development, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
56
|
Meinlschmidt G, Tegethoff M. How Life Before Birth Affects Human Health and What We Can Do About It. EUROPEAN PSYCHOLOGIST 2015. [DOI: 10.1027/1016-9040/a000233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gunther Meinlschmidt
- Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel, Switzerland
- Faculty of Medicine, Ruhr University Bochum, Germany
| | - Marion Tegethoff
- Division of Clinical Psychology and Psychiatry, Department of Psychology, University of Basel, Switzerland
| |
Collapse
|
57
|
Zhao C, Gammie SC. Metabotropic glutamate receptor 3 is downregulated and its expression is shifted from neurons to astrocytes in the mouse lateral septum during the postpartum period. J Histochem Cytochem 2015; 63:417-26. [PMID: 25739438 DOI: 10.1369/0022155415578283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
The inhibitory metabotropic glutamate receptor 3 (mGluR3) plays diverse and complex roles in brain function, including synaptic plasticity and neurotransmission. We recently found that mGluR3 is downregulated in the lateral septum (LS) of postpartum females using microarray and qPCR analysis. In this study, we used double fluorescence immunohistochemical approaches to characterize mGluR3 changes in LS of the postpartum brain. The number of mGluR3-immunoractive cells was significantly reduced in the dorsal (LSD) and intermediate (LSI) but not ventral (LSV) parts of the LS in postpartum versus virgin females. mGluR3 immunoreactivity in the LS was found predominantly in neurons (~70%), with a smaller portion (~20%-30%) in astrocytes. Colocalization analysis revealed a reduced mGluR3 expression in neurons but an increased astrocytic localization in postpartum LSI. This change in the pattern of expression suggests that mGluR3 expression is shifted from neurons to astrocytes in postpartum LS, and the decrease in mGluR3 is neuron-specific. Because mGluR3 is inhibitory and negatively regulates glutamate and GABA release, decreases in neuronal expression would increase glutamate and GABA signaling. Given our recent finding that ~90% of LS neurons are GABAergic, the present data suggest that decreases in mGluR3 are a mechanism for elevated GABA in LS in the postpartum state.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin (CZ, SCG)
| | - Stephen C Gammie
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin (CZ, SCG),Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin (SCG)
| |
Collapse
|
58
|
Glutamate, GABA, and glutamine are synchronously upregulated in the mouse lateral septum during the postpartum period. Brain Res 2014; 1591:53-62. [PMID: 25451092 DOI: 10.1016/j.brainres.2014.10.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
Abstract
Dramatic structural and functional remodeling occurs in the postpartum brain for the establishment of maternal care, which is essential for the growth and development of young offspring. Glutamate and GABA signaling are critically important in modulating multiple behavioral performances. Large scale signaling changes occur in the postpartum brain, but it is still not clear to what extent the neurotransmitters glutamate and GABA change and whether the ratio of glutamate/GABA remains balanced. In this study, we examined the glutamate/GABA-glutamine cycle in the lateral septum (LS) of postpartum female mice. In postpartum females (relative to virgins), tissue levels of glutamate and GABA were elevated in LS and increased mRNA was found for the respective enzymes producing glutamate and GABA, glutaminase (Gls) and glutamate decarboxylase 1 and 2 (Gad1 and Gad2). The common precursor, glutamine, was elevated as was the enzyme that produces it, glutamate-ammonia ligase (Glul). Additionally, glutamate, GABA, and glutamine were positively correlated and the glutamate/GABA ratio was almost identical in the postpartum and virgin females. Collectively, these findings indicate that glutamate and GABA signaling are increased and that the ratio of glutamate/GABA is well balanced in the maternal LS. The postpartum brain may provide a useful model system for understanding how glutamate and GABA are linked despite large signaling changes. Given that some mental health disorders, including depression and schizophrenia display dysregulated glutamate/GABA ratio, and there is increased vulnerability to mental disorders in mothers, it is possible that these postpartum disorders emerge when glutamate and GABA changes are not properly coordinated.
Collapse
|
59
|
Bosch OJ, Slattery DA, Neumann ID. The 5th parental brain conference. J Neuroendocrinol 2014; 26:625-6. [PMID: 25074685 DOI: 10.1111/jne.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|
60
|
Galea LA, Leuner B, Slattery DA. Hippocampal plasticity during the peripartum period: influence of sex steroids, stress and ageing. J Neuroendocrinol 2014; 26:641-8. [PMID: 25039797 PMCID: PMC4170229 DOI: 10.1111/jne.12177] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022]
Abstract
The peripartum period is accompanied by dramatic changes in hormones and a host of new behaviours in response to experience with offspring. Both maternal experience and maternal hormones can have a significant impact upon the brain and behaviour. This review outlines recent studies demonstrating modifications in hippocampal plasticity across the peripartum period, as well as the putative hormonal mechanisms underlying these changes and their modulation by stress. In addition, the impact of reproductive experience upon the ageing hippocampus is discussed. Finally, we consider how these changes in hippocampal structure may play a role in postpartum cognitive function and mood disorders, as well as age-related cognitive decline.
Collapse
Affiliation(s)
- Liisa A.M. Galea
- Department of Psychology, The University of British Columbia, Vancouver, BC, CANADA
| | - Benedetta Leuner
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH, USA
| | - David A. Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
61
|
Moses-Kolko EL, Horner MS, Phillips ML, Hipwell AE, Swain JE. In search of neural endophenotypes of postpartum psychopathology and disrupted maternal caregiving. J Neuroendocrinol 2014; 26:665-84. [PMID: 25059408 PMCID: PMC4353923 DOI: 10.1111/jne.12183] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022]
Abstract
This is a selective review that provides the context for the study of perinatal affective disorder mechanisms and outlines directions for future research. We integrate existing literature along neural networks of interest for affective disorders and maternal caregiving: (i) the salience/fear network; (ii) the executive network; (iii) the reward/social attachment network; and (iv) the default mode network. Extant salience/fear network research reveals disparate responses and corticolimbic coupling to various stimuli based upon a predominantly depressive versus anxious (post-traumatic stress disorder) clinical phenotype. Executive network and default mode connectivity abnormalities have been described in postpartum depression (PPD), although studies are very limited in these domains. Reward/social attachment studies confirm a robust ventral striatal response to infant stimuli, including cry and happy infant faces, which is diminished in depressed, insecurely attached and substance-using mothers. The adverse parenting experiences received and the attachment insecurity of current mothers are factors that are associated with a diminution in infant stimulus-related neural activity similar to that in PPD, and raise the need for additional studies that integrate mood and attachment concepts in larger study samples. Several studies examining functional connectivity in resting state and emotional activation functional magnetic resonance imaging paradigms have revealed attenuated corticolimbic connectivity, which remains an important outcome that requires dissection with increasing precision to better define neural treatment targets. Methodological progress is expected in the coming years in terms of refining clinical phenotypes of interest and experimental paradigms, as well as enlarging samples to facilitate the examination of multiple constructs. Functional imaging promises to determine neural mechanisms underlying maternal psychopathology and impaired caregiving, such that earlier and more precise detection of abnormalities will be possible. Ultimately, the discovery of such mechanisms will promote the refinement of treatment approaches toward maternal affective disturbance, parenting behaviours and the augmentation of parenting resiliency.
Collapse
Affiliation(s)
- E L Moses-Kolko
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
62
|
Dobolyi A, Grattan DR, Stolzenberg DS. Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 2014; 26:627-40. [PMID: 25059569 DOI: 10.1111/jne.12185] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022]
Abstract
The preoptic area is a well-established centre for the control of maternal behaviour. An intact medial preoptic area (mPOA) is required for maternal responsiveness because lesion of the area abolishes maternal behaviours. Although hormonal changes in the peripartum period contribute to the initiation of maternal responsiveness, inputs from pups are required for its maintenance. Neurones are activated in different parts of the mPOA in response to pup exposure. In the present review, we summarise the potential inputs to the mPOA of rodent dams from the litter that can activate mPOA neurones. The roles of potential indirect effects through increased prolactin levels, as well as neuronal inputs to the preoptic area, are described. Recent results on the pathway mediating the effects of suckling to the mPOA suggest that neurones containing the neuropeptide tuberoinfundibular peptide of 39 residues in the posterior thalamus are candidates for conveying the suckling information to the mPOA. Although the molecular mechanism through which these inputs alter mPOA neurones to support the maintenance of maternal responding is not yet known, altered gene expression is a likely candidate. Here, we summarise gene expression changes in the mPOA that have been linked to maternal behaviour and explore the idea that chromatin remodelling during mother-infant interactions mediates the long-term alterations in gene expression that sustain maternal responding.
Collapse
Affiliation(s)
- A Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, NAP-Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|