51
|
Nkhoma SC, Banda RL, Khoswe S, Dzoole-Mwale TJ, Ward SA. Intra-host dynamics of co-infecting parasite genotypes in asymptomatic malaria patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:414-424. [PMID: 30145390 PMCID: PMC6219893 DOI: 10.1016/j.meegid.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Malaria-infected individuals often harbor mixtures of genetically distinct parasite genotypes. We studied intra-host dynamics of parasite genotypes co-infecting asymptomatic adults in an area of intense malaria transmission in Chikhwawa, Malawi. Serial blood samples (5 ml) were collected over seven consecutive days from 25 adults with asymptomatic Plasmodium falciparum malaria and analyzed to determine whether a single peripheral blood sample accurately captures within-host parasite diversity. Blood samples from three of the participants were also analyzed by limiting dilution cloning and SNP genotyping of the parasite clones isolated to examine both the number and relatedness of co-infecting parasite haplotypes. We observed rapid turnover of co-infecting parasite genotypes in 88% of the individuals sampled (n = 22) such that the genetic composition of parasites infecting these individuals changed dramatically over the course of seven days of follow up. Nineteen of the 25 individuals sampled (76%) carried multiple parasite genotypes at baseline. Analysis of serial blood samples from three of the individuals revealed that they harbored 6, 12 and 17 distinct parasite haplotypes respectively. Approximately 70% of parasite haplotypes recovered from the three extensively sampled individuals were unrelated (proportion of shared alleles <83.3%) and were deemed to have primarily arisen from superinfection (inoculation of unrelated parasite haplotypes through multiple mosquito bites). The rest were related at the half-sib level or greater and were deemed to have been inoculated into individual human hosts via parasite co-transmission from single mosquito bites. These findings add further to the growing weight of evidence indicating that a single blood sample poorly captures within-host parasite diversity and underscore the importance of repeated blood sampling to accurately capture within-host parasite ecology. Our data also demonstrate a more pronounced role for parasite co-transmission in generating within-host parasite diversity in high transmission settings than previously assumed. Taken together, these findings have important implications for understanding the evolution of drug resistance, malaria transmission, parasite virulence, allocation of gametocyte sex ratios and acquisition of malaria immunity.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Wellcome Trust-Liverpool-Glasgow Centre for Global Health Research, 70 Pembroke Place, Liverpool L69 3GF, UK.
| | - Rachel L Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stanley Khoswe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tamika J Dzoole-Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
52
|
Mohammed H, Kassa M, Mekete K, Assefa A, Taye G, Commons RJ. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar J 2018; 17:386. [PMID: 30359280 PMCID: PMC6203214 DOI: 10.1186/s12936-018-2540-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022] Open
Abstract
Background Determination of the genetic diversity of malaria parasites can inform the intensity of transmission and identify potential deficiencies in malaria control programmes. This study was conducted to characterize the genetic diversity and allele frequencies of Plasmodium falciparum in Northwest Ethiopia along the Eritrea and Sudan border. Methods A total of 90 isolates from patients presenting to the local health centre with uncomplicated P. falciparum were collected from October 2014 to January 2015. DNA was extracted and the polymorphic regions of the msp-1, msp-2 and glurp loci were genotyped by nested polymerase chain reactions followed by gel electrophoresis for fragment analysis. Results Allelic variation in msp-1, msp-2 and glurp were identified in 90 blood samples. A total of 34 msp alleles (12 for msp-1 and 22 for msp-2) were detected. For msp-1 97.8% (88/90), msp-2 82.2% (74/90) and glurp 46.7% (42/90) were detected. In msp-1, MAD20 was the predominant allelic family detected in 47.7% (42/88) of the isolates followed by RO33 and K1. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Nine glurp RII region genotypes were identified. Seventy percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 2.6 (95% CI 2.25–2.97). The heterozygosity index was 0.82, 0.62 and 0.20 for msp-1, msp-2 and glurp, respectively. There was no significant association between multiplicity of infection and age or parasite density. Conclusions There was a high degree of genetic diversity with multiple clones in P. falciparum isolates from Northwest Ethiopia suggesting that there is a need for improved malaria control efforts in this region. Electronic supplementary material The online version of this article (10.1186/s12936-018-2540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein Mohammed
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Moges Kassa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kalkidan Mekete
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girum Taye
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
53
|
Koepfli C, Waltmann A, Ome-Kaius M, Robinson LJ, Mueller I. Multiplicity of Infection Is a Poor Predictor of Village-Level Plasmodium vivax and P. falciparum Population Prevalence in the Southwest Pacific. Open Forum Infect Dis 2018; 5:ofy240. [PMID: 30397622 PMCID: PMC6210381 DOI: 10.1093/ofid/ofy240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Across 8101 individuals in 46 villages, the proportion of Plasmodium spp. multiple clone infections (0%–53.8%) did not reflect prevalence by quantitative polymerase chain reaction (qPCR; 1.9%–38.4%), except for P. vivax in Solomon Islands (P < .001). Thus this parameter was not informative to identify transmission foci. In contrast, prevalence by microscopy and qPCR correlated well.
Collapse
Affiliation(s)
- Cristian Koepfli
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,University of Notre Dame, Department of Biological Sciences, Eck Institute for Global Health, Notre Dame, USA
| | - Andreea Waltmann
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Maria Ome-Kaius
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J Robinson
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Burnet Institute, Melbourne, Australia
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
54
|
Trevino SG, Nkhoma SC, Nair S, Daniel BJ, Moncada K, Khoswe S, Banda RL, Nosten F, Cheeseman IH. High-Resolution Single-Cell Sequencing of Malaria Parasites. Genome Biol Evol 2018; 9:3373-3383. [PMID: 29220419 PMCID: PMC5737330 DOI: 10.1093/gbe/evx256] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
Single-cell genomics is a powerful tool for determining the genetic architecture of complex communities of unicellular organisms. In areas of high transmission, malaria patients are often challenged by the activities of multiple Plasmodium falciparum lineages, which can potentiate pathology, spread drug resistance loci, and also complicate most genetic analysis. Single-cell sequencing of P. falciparum would be key to understanding infection complexity, though efforts are hampered by the extreme nucleotide composition of its genome (∼80% AT-rich). To counter the low coverage achieved in previous studies, we targeted DNA-rich late-stage parasites by Fluorescence-Activated Cell Sorting and whole genome sequencing. Our method routinely generates accurate, near-complete capture of the 23 Mb P. falciparum genome (mean breadth of coverage 90.7%) at high efficiency. Data from 48 single-cell genomes derived from a polyclonal infection sampled in Chikhwawa, Malawi allowed for unambiguous determination of haplotype diversity and recent meiotic events, information that will aid public health efforts.
Collapse
Affiliation(s)
- Simon G Trevino
- Genetics Department, Texas Biomedical Research Institute, San Antonio, Texas
| | - Standwell C Nkhoma
- Malawi-Wellcome-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre, Malawi.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, United Kingdom
| | - Shalini Nair
- Genetics Department, Texas Biomedical Research Institute, San Antonio, Texas
| | - Benjamin J Daniel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Karla Moncada
- University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Stanley Khoswe
- Malawi-Wellcome-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre, Malawi
| | - Rachel L Banda
- Malawi-Wellcome-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre, Malawi
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand.,Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, United Kingdom
| | - Ian H Cheeseman
- Genetics Department, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
55
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
56
|
Awad H, Al-Hamidhi S, El Hussein ARM, Yousif YMZ, Taha KM, Salih DA, Weir W, Babiker HA. Theileria lestoquardi in Sudan is highly diverse and genetically distinct from that in Oman. INFECTION GENETICS AND EVOLUTION 2018; 62:46-52. [PMID: 29660557 DOI: 10.1016/j.meegid.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/17/2022]
Abstract
Malignant ovine theileriosis is a severe tick-borne protozoan disease of sheep and other small ruminants which is widespread in sub-Saharan Africa and the Middle East. The disease is of considerable economic importance in Sudan as the export of livestock provides a major contribution to the gross domestic product of this country. Molecular surveys have demonstrated a high prevalence of sub-clinical infections of Theileria lestoquardi, the causative agent, among small ruminants. No information is currently available on the extent of genetic diversity and genetic exchange among parasites in different areas of the country. The present study used a panel of T. lestoquardi specific micro- and mini-satellite genetic markers to assess diversity of parasites in Sudan (Africa) and compared it to that of the parasite population in Oman (Asia). A moderate level of genetic diversity was observed among parasites in Sudan, similar to that previously documented among parasites in Oman. However, a higher level of mixed-genotype infection was identified in Sudanese animals compared to Omani animals, consistent with a higher rate of tick transmission. In addition, the T. lestoquardi genotypes detected in these two countries form genetically distinct groups. The results of this work highlight the need for analysis of T. lestoquardi populations in other endemic areas in the region to inform on novel approaches for controlling malignant theileriosis.
Collapse
Affiliation(s)
- Hoyam Awad
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Al-Khod, Oman
| | - Salama Al-Hamidhi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Al-Khod, Oman
| | | | | | - Khalid M Taha
- Animal Resources Research Corporation Khartoum, Sudan
| | - Dia A Salih
- Animal Resources Research Corporation Khartoum, Sudan
| | - William Weir
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Hamza A Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Al-Khod, Oman; Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
57
|
Mita T, Hombhanje F, Takahashi N, Sekihara M, Yamauchi M, Tsukahara T, Kaneko A, Endo H, Ohashi J. Rapid selection of sulphadoxine-resistant Plasmodium falciparum and its effect on within-population genetic diversity in Papua New Guinea. Sci Rep 2018; 8:5565. [PMID: 29615786 PMCID: PMC5882878 DOI: 10.1038/s41598-018-23811-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of the human malarial parasite Plasmodium falciparum to adapt to environmental changes depends considerably on its ability to maintain within-population genetic variation. Strong selection, consequent to widespread antimalarial drug usage, occasionally elicits a rapid expansion of drug-resistant isolates, which can act as founders. To investigate whether this phenomenon induces a loss of within-population genetic variation, we performed a population genetic analysis on 302 P. falciparum cases detected during two cross-sectional surveys in 2002/2003, just after the official introduction of sulphadoxine/pyrimethamine as a first-line treatment, and again in 2010/2011, in highly endemic areas in Papua New Guinea. We found that a single-origin sulphadoxine-resistant parasite isolate rapidly increased from 0% in 2002/2003 to 54% in 2010 and 84% in 2011. However, a considerable number of pairs exhibited random associations among 10 neutral microsatellite markers located in various chromosomes, suggesting that outcrossing effectively reduced non-random associations, albeit at a low average multiplicity of infection (1.35–1.52). Within-population genetic diversity was maintained throughout the study period. This indicates that the parasites maintained within-population variation, even after a clonal expansion of drug-resistant parasites. Outcrossing played a role in the preservation of within-population genetic diversity despite low levels of multiplicity of infection.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Francis Hombhanje
- Centre for Health Research & Diagnostics, Divine Word University, Nabasa Road, P.O. Box 483, Madang, Papua New Guinea
| | - Nobuyuki Takahashi
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Takahiro Tsukahara
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Parasitology, Osaka City University Graduate School of Medicine, Asahi-cho 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
58
|
Ndong Ngomo J, M’Bondoukwe N, Yavo W, Bongho Mavoungou L, Bouyou-Akotet M, Mawili-Mboumba D. Spatial and temporal distribution of Pfmsp1 and Pfmsp2 alleles and genetic profile change of Plasmodium falciparum populations in Gabon. Acta Trop 2018; 178:27-33. [PMID: 28993182 DOI: 10.1016/j.actatropica.2017.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022]
Abstract
Plasmodium population dynamics analysis may help to assess the impact of malaria control strategies deployment. In Gabon, new strategies have been introduced, but malaria is still a public health problem marked by a rebound of the prevalence in 2011. The aim of the study was to investigate the spatial and temporal distribution of P. falciparum strains in different areas in Gabon during a period of malaria transmission transition, between 2008 and 2011. A total of 109P. falciparum isolates were genotyped using nested-PCR of Pfmsp1 and Pfmsp2 genes. 3D7, FC27 and K1 allele frequencies were comparable between sites (p=0.9); those of Ro33 (93.6%; 44/47) and Mad20 (60%; 12/20) were significantly higher in isolates from Oyem (p<0.01) and Port-Gentil (p=0.02), respectively. The frequency of multiples infections (77%) and the complexity of infection (2.66±1.44) were the highest at Oyem. Pfmsp1 gene analysis highlighted a trend of a decreasing frequency of K1 family, in Libreville and Oyem between 2008 and 2011; while that of Ro33 (p<0.01) and Mad20 (p<0.01) increased. The prevalence of multiple infections was comparable between both periods in each site: 42.2% vs 47.6% (p=0.6) in Libreville and 57.7% vs 61.7% in Oyem (p=0.8). In contrast, in 2011, the COI tends to be higher in Libreville and did not vary in Oyem. These data confirm an extended genetic diversity of P. falciparum isolates over time and according to geographic location in Gabon. Nevertheless, the impact of the deployment of malaria control strategies on the parasites genetic profile is not clearly established here.
Collapse
|
59
|
Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific. PLoS Negl Trop Dis 2018; 12:e0006146. [PMID: 29373596 PMCID: PMC5802943 DOI: 10.1371/journal.pntd.0006146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/07/2018] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. Plasmodium vivax is a major human malaria parasite, common in endemic areas outside sub-Saharan Africa, and more difficult to control than other malaria parasite species. The distinct lifecycle biology of P. vivax is thought to contribute to its more stable and efficient transmission allowing the maintenance of high diversity and potentially, gene flow. Independent studies are therefore needed to understand how P. vivax populations respond to changing transmission levels, in order to inform malaria control and elimination efforts. Here we have determined parasite population genetic structure in three countries of the Southwest Pacific, an island chain with a natural west to east decline in transmission intensity (Papua New Guinea > Solomon Islands > Vanuatu). With declining transmission, P. vivax populations experience only a modest decline in diversity but a significant increase in multilocus linkage disequilibrium and population structure, indicating that parasite populations become more inbred and begin to fragment into clustered foci. Analysis of two time points in one study area (Tetere, Solomon Islands) also show similar changes in association with intensifying malaria control. The results indicate that with long term sustained malaria control P. vivax populations will eventually fracture into population clusters that could be targeted for elimination.
Collapse
|
60
|
Verity R, Hathaway NJ, Waltmann A, Doctor SM, Watson OJ, Patel JC, Mwandagalirwa K, Tshefu AK, Bailey JA, Ghani AC, Juliano JJ, Meshnick SR. Plasmodium falciparum genetic variation of var2csa in the Democratic Republic of the Congo. Malar J 2018; 17:46. [PMID: 29361940 PMCID: PMC5782373 DOI: 10.1186/s12936-018-2193-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Democratic Republic of the Congo (DRC) bears a high burden of malaria, which is exacerbated in pregnant women. The VAR2CSA protein plays a crucial role in pregnancy-associated malaria (PAM), and hence quantifying diversity at the var2csa locus in the DRC is important in understanding the basic epidemiology of PAM, and in developing a robust vaccine against PAM. METHODS Samples were taken from the 2013-14 Demographic and Health Survey conducted in the DRC, focusing on children under 5 years of age. A short subregion of the var2csa gene was sequenced in 115 spatial clusters, giving country-wide estimates of sequence polymorphism and spatial population structure. RESULTS Results indicate that var2csa is highly polymorphic, and that diversity is being maintained through balancing selection, however, there is no clear signal of phylogenetic or geographic structure to this diversity. Linear modelling demonstrates that the number of var2csa variants in a cluster correlates directly with cluster prevalence, but not with other epidemiological factors such as urbanicity. CONCLUSIONS Results suggest that the DRC fits within the global pattern of high var2csa diversity and little genetic differentiation between regions. A broad multivalent VAR2CSA vaccine candidate could benefit from targeting stable regions and common variants to address the substantial genetic diversity.
Collapse
Affiliation(s)
- Robert Verity
- Medical Research Council Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - Andreea Waltmann
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Stephanie M Doctor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Oliver J Watson
- Medical Research Council Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Jaymin C Patel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Kashamuka Mwandagalirwa
- Kinshasa School of Public Health, Hôpital General Provincial de Reference de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Antoinette K Tshefu
- Community Health, Kinshasa School of Public Health, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - Azra C Ghani
- Medical Research Council Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, 27599, USA
- Curriculum in Genetics and Microbiology, University of North Carolina at Chapel Hill, 321 South Columbia Street, Chapel Hill, NC, 27516, USA
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
61
|
Modeling the genetic relatedness of Plasmodium falciparum parasites following meiotic recombination and cotransmission. PLoS Comput Biol 2018; 14:e1005923. [PMID: 29315306 PMCID: PMC5777656 DOI: 10.1371/journal.pcbi.1005923] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/22/2018] [Accepted: 12/12/2017] [Indexed: 11/26/2022] Open
Abstract
Unlike in most pathogens, multiple-strain (polygenomic) infections of P. falciparum are frequently composed of genetic siblings. These genetic siblings are the result of sexual reproduction and can coinfect the same host when cotransmitted by the same mosquito. The degree with which coinfecting strains are related varies among infections and populations. Because sexual recombination occurs within the mosquito, the relatedness of cotransmitted strains could depend on transmission dynamics, but little is actually known of the factors that influence the relatedness of cotransmitted strains. Part of the uncertainty stems from an incomplete understanding of how within-host and within-vector dynamics affect cotransmission. Cotransmission is difficult to examine experimentally but can be explored using a computational model. We developed a malaria transmission model that simulates sexual reproduction in order to understand what determines the relatedness of cotransmitted strains. This study highlights how the relatedness of cotransmitted strains depends on both within-host and within-vector dynamics including the complexity of infection. We also used our transmission model to analyze the genetic relatedness of polygenomic infections following a series of multiple transmission events and examined the effects of superinfection. Understanding the factors that influence the relatedness of cotransmitted strains could lead to a better understanding of the population-genetic correlates of transmission and therefore be important for public health. Genomic studies of P. falciparum reveal that multi-strain infections can include genetically related strains. P. falciparum must reproduce sexually in the mosquito vector. One consequence of sexual reproduction is that parasites cotransmitted by the same mosquito are related to one another. The degree of genetic relatedness of these parasites can be as great as that of full-siblings. However, our understanding of the cotransmission process is incomplete, and little is known of the role of cotransmission in influencing population genomic processes. To help bridge this gap, we developed a simulation model to determine which of the steps involved in transmission have the greatest impact on the relatedness of parasites cotransmitted by a mosquito vector. The primary goal of this study is to characterize the outcomes of cotransmission following single or multiple transmission events. Our model yields new insights into the cotransmission process, which we believe will be useful for understanding the results from more complicated population models and epidemiological conditions. Such an understanding is important for the use of population genomics to inform public health decisions as well as for understanding of parasite evolution.
Collapse
|
62
|
Miller RH, Hathaway NJ, Kharabora O, Mwandagalirwa K, Tshefu A, Meshnick SR, Taylor SM, Juliano JJ, Stewart VA, Bailey JA. A deep sequencing approach to estimate Plasmodium falciparum complexity of infection (COI) and explore apical membrane antigen 1 diversity. Malar J 2017; 16:490. [PMID: 29246158 PMCID: PMC5732508 DOI: 10.1186/s12936-017-2137-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplotypes identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and Mali. RESULTS A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between parasite populations in the DRC and Mali. CONCLUSIONS Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse markers under balancing selection may perform well for understanding COI, they may offer little geographic or temporal discrimination between parasite populations.
Collapse
Affiliation(s)
- Robin H Miller
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA
| | - Oksana Kharabora
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Kashamuka Mwandagalirwa
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Antoinette Tshefu
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Steven R Meshnick
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University Medical Center, 303 Research Drive, Durham, NC, USA
| | - Jonathan J Juliano
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - V Ann Stewart
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA.
| |
Collapse
|
63
|
Pava Z, Handayuni I, Trianty L, Utami RAS, Tirta YK, Puspitasari AM, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey N, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Passively versus Actively Detected Malaria: Similar Genetic Diversity but Different Complexity of Infection. Am J Trop Med Hyg 2017; 97:1788-1796. [PMID: 29016343 PMCID: PMC5790166 DOI: 10.4269/ajtmh.17-0364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The surveillance of malaria is generally undertaken on the assumption that samples passively collected at health facilities are comparable to or representative of the broader Plasmodium reservoir circulating in the community. Further characterization and comparability of the hidden asymptomatic parasite reservoir are needed to inform on the potential impact of sampling bias. This study explores the impact of sampling strategy on molecular surveillance by comparing the genetic make-up of Plasmodium falciparum and Plasmodium vivax isolates collected by passive versus active case detection. Sympatric isolates of P. falciparum and P. vivax were collected from a large community survey and ongoing clinical surveillance studies undertaken in the hypomesoendemic setting of Mimika District (Papua, Indonesia). Plasmodium falciparum isolates were genotyped at nine microsatellite loci and P. vivax at eight loci. Measures of diversity and differentiation were used to compare different patient and parasitological sample groups. The results demonstrated that passively detected cases (symptomatic) had comparable population diversity to those circulating in the community (asymptomatic) in both species. In addition, asymptomatic patent infections were as diverse as subpatent infections. However, a significant difference in multiplicity of infection (MOI) and percentage of polyclonal infections was observed between actively and passively detected P. vivax cases (mean MOI: 1.7 ± 0.7 versus 1.4 ± 1.4, respectively; P = 0.001). The study findings infer that, in hypomesoendemic settings, passive sampling is appropriate for molecular parasite surveillance strategies using the predominant clone in any given infection; however, the findings suggest caution when analyzing complexity of infection. Further evaluation is required in other endemic settings.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia;,Maternal and Child Health and Reproductive Health, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Nicholas Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia;,Maternal and Child Health and Reproductive Health, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia;,Address correspondence to Sarah Auburn, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin, NT 0811, Australia. E-mail:
| |
Collapse
|
64
|
malERA: An updated research agenda for characterising the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med 2017; 14:e1002452. [PMID: 29190279 PMCID: PMC5708619 DOI: 10.1371/journal.pmed.1002452] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This paper summarises key advances in defining the infectious reservoir for malaria and the measurement of transmission for research and programmatic use since the Malaria Eradication Research Agenda (malERA) publication in 2011. Rapid and effective progress towards elimination requires an improved understanding of the sources of transmission as well as those at risk of infection. Characterising the transmission reservoir in different settings will enable the most appropriate choice, delivery, and evaluation of interventions. Since 2011, progress has been made in a number of areas. The extent of submicroscopic and asymptomatic infections is better understood, as are the biological parameters governing transmission of sexual stage parasites. Limitations of existing transmission measures have been documented, and proof-of-concept has been established for new innovative serological and molecular methods to better characterise transmission. Finally, there now exists a concerted effort towards the use of ensemble datasets across the spectrum of metrics, from passive and active sources, to develop more accurate risk maps of transmission. These can be used to better target interventions and effectively monitor progress toward elimination. The success of interventions depends not only on the level of endemicity but also on how rapidly or recently an area has undergone changes in transmission. Improved understanding of the biology of mosquito-human and human-mosquito transmission is needed particularly in low-endemic settings, where heterogeneity of infection is pronounced and local vector ecology is variable. New and improved measures of transmission need to be operationally feasible for the malaria programmes. Outputs from these research priorities should allow the development of a set of approaches (applicable to both research and control programmes) that address the unique challenges of measuring and monitoring transmission in near-elimination settings and defining the absence of transmission.
Collapse
|
65
|
Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC, Sriprawat K, Pyae Phyo A, Nosten F, Neafsey DE, Buckee CO. Quantifying connectivity between local Plasmodium falciparum malaria parasite populations using identity by descent. PLoS Genet 2017; 13:e1007065. [PMID: 29077712 PMCID: PMC5678785 DOI: 10.1371/journal.pgen.1007065] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/08/2017] [Accepted: 10/10/2017] [Indexed: 01/18/2023] Open
Abstract
With the rapidly increasing abundance and accessibility of genomic data, there is a growing interest in using population genetic approaches to characterize fine-scale dispersal of organisms, providing insight into biological processes across a broad range of fields including ecology, evolution and epidemiology. For sexually recombining haploid organisms such as the human malaria parasite P. falciparum, however, there have been no systematic assessments of the type of data and methods required to resolve fine scale connectivity. This analytical gap hinders the use of genomics for understanding local transmission patterns, a crucial goal for policy makers charged with eliminating this important human pathogen. Here we use data collected from four clinics with a catchment area spanning approximately 120 km of the Thai-Myanmar border to compare the ability of divergence (FST) and relatedness based on identity by descent (IBD) to resolve spatial connectivity between malaria parasites collected from proximal clinics. We found no relationship between inter-clinic distance and FST, likely due to sampling of highly related parasites within clinics, but a significant decline in IBD-based relatedness with increasing inter-clinic distance. This association was contingent upon the data set type and size. We estimated that approximately 147 single-infection whole genome sequenced parasite samples or 222 single-infection parasite samples genotyped at 93 single nucleotide polymorphisms (SNPs) were sufficient to recover a robust spatial trend estimate at this scale. In summary, surveillance efforts cannot rely on classical measures of genetic divergence to measure P. falciparum transmission on a local scale. Given adequate sampling, IBD-based relatedness provides a useful alternative, and robust trends can be obtained from parasite samples genotyped at approximately 100 SNPs.
Collapse
Affiliation(s)
- Aimee R. Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Stephen F. Schaffner
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Gustavo C. Cerqueira
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Standwell C. Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Old Road campus, Oxford, United Kingdom
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
66
|
Ataíde R, Powell R, Moore K, McLean A, Phyo AP, Nair S, White M, Anderson TJ, Beeson JG, Simpson JA, Nosten F, Fowkes FJI. Declining Transmission and Immunity to Malaria and Emerging Artemisinin Resistance in Thailand: A Longitudinal Study. J Infect Dis 2017; 216:723-731. [PMID: 28934435 PMCID: PMC5853569 DOI: 10.1093/infdis/jix371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Reductions in malaria transmission decrease naturally acquired immunity, which may influence the emergence of Plasmodium falciparum artemisinin-resistant phenotypes and genotypes over time. Methods Antibodies specific for P. falciparum antigens were determined in uncomplicated hyperparasitemic malaria patients over a 10-year period of declining malaria transmission and emerging artemisinin resistance in northwestern Thailand. We investigated the association between antibody levels and both parasite clearance time (PCt½) and artemisinin resistance–associated kelch13 genotypes over time. Results Immunity to P. falciparum declined prior to 2004, preceding the emergence of artemisinin resistance-associated genotypes and phenotypes (maximum mean change in antibody level per year: anti-MSP142 = −0.17; 95% confidence interval [CI] = −.31 to −.04; P = .01). In this period of declining immunity, and in the absence of kelch13 mutations, PCt½ increased. Between 2007 and 2011, levels of antibodies fluctuated, and higher antibody levels were associated with faster PCt½ (maximum yearly change in PCt½, in hours: EBA140rII = −0.39; 95% CI = −.61 to −.17; P < .001). Conclusions Understanding the impact of changing transmission and immunity on the emergence of artemisinin resistance is important particularly as increased malaria control and elimination activities may enhance immunological conditions for the expansion of artemisinin-resistant P. falciparum.
Collapse
Affiliation(s)
| | | | | | | | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot,Thailand
| | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio
| | - Marina White
- Texas Biomedical Research Institute, San Antonio
| | | | | | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research, University of Oxford, United Kingdom
| | - Freya J I Fowkes
- Disease Elimination Program, Burnet Institute.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne.,Department of Epidemiology and Preventive Medicine, Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
67
|
Malaria Epidemiology at the Clone Level. Trends Parasitol 2017; 33:974-985. [PMID: 28966050 DOI: 10.1016/j.pt.2017.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Genotyping to distinguish between parasite clones is nowadays a standard in many molecular epidemiological studies of malaria. It has become crucial in drug trials and to follow individual clones in epidemiological studies, and to understand how drug resistance emerges and spreads. Here, we review the applications of the increasingly available genotyping tools and whole-genome sequencing data, and argue for a better integration of population genetics findings into malaria-control strategies.
Collapse
|
68
|
Neafsey DE, Volkman SK. Malaria Genomics in the Era of Eradication. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025544. [PMID: 28389516 DOI: 10.1101/cshperspect.a025544] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first reference genome assembly for the Plasmodium falciparum malaria parasite was completed over a decade ago, and the impact of this and other genomic resources on malaria research has been significant. Genomic resources for other malaria parasites are being established, even as P. falciparum continues to be the focus of development of new genomic methods and applications. Here we review the impact and applications of genomic data on malaria research, and discuss future needs and directions as genomic data generation becomes less expensive and more decentralized. Specifically, we focus on how population genomic strategies can be utilized to advance the malaria eradication agenda.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Sarah K Volkman
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,Infectious Disease Initiative, Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142.,School of Nursing and Health Sciences, Simmons College, Boston, MA 02115
| |
Collapse
|
69
|
Susi H, Laine AL. Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild. Evolution 2017; 71:2110-2119. [PMID: 28608539 DOI: 10.1111/evo.13290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/23/2017] [Indexed: 12/24/2022]
Abstract
Coinfection, whereby the same host is infected by more than one pathogen strain, may favor faster host exploitation rates as strains compete for the same limited resources. Hence, coinfection is expected to have major consequences for pathogen evolution, virulence, and epidemiology. Theory predicts genetic variation in host resistance and pathogen infectivity to play a key role in how coinfections are formed. The limited number of studies available has demonstrated coinfection to be a common phenomenon, but little is known about how coinfection varies in space, and what its determinants are. Our aim is to understand how variation in host resistance and pathogen infectivity and aggressiveness contribute to how coinfections are formed in the interaction between fungal pathogen Podosphaera plantaginis and Plantago lanceolata. Our phenotyping study reveals that more aggressive strains are more likely to form coinfections than less aggressive strains in the natural populations. In the natural populations most of the variation in coinfection is found at the individual plant level, and results from a common garden study confirm the prevalence of coinfection to vary significantly among host genotypes. These results show that genetic variation in both the host and pathogen populations are key determinants of coinfection in the wild.
Collapse
Affiliation(s)
- Hanna Susi
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1),, FI-00014, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1),, FI-00014, Finland
| |
Collapse
|
70
|
Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, Ashley EA, Melnikov A, Rogov P, Birren BW, Nosten F, Anderson TJC, Neafsey DE. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 2017; 18:78. [PMID: 28454557 PMCID: PMC5410087 DOI: 10.1186/s13059-017-1204-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Background Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We used longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to artemisinin or partner drug resistance. We retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, over the period of a rapid increase in the emergence of artemisinin resistance (2001–2014). Results We evaluate statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance increase in frequency over this period. After Kelch13-C580Y, the strongest temporal change is seen at a SNP in phosphatidylinositol 4-kinase, which is involved in a pathway recently implicated in artemisinin resistance. Furthermore, other loci exhibit strong temporal signatures which warrant further investigation for involvement in artemisinin resistance evolution. Through genome-wide association analysis we identify a variant in a kelch domain-containing gene on chromosome 10 that may epistatically modulate artemisinin resistance. Conclusions This analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated gene loci to improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with artemisinin-resistant parasites may yield new molecular markers for resistance surveillance, which may be useful in efforts to reduce the emergence or spread of artemisinin resistance in African parasite populations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1204-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ian H Cheeseman
- Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | | | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | | | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol University, Mae Sot, Thailand
| | - Elizabeth A Ashley
- Shoklo Malaria Research Unit, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Peter Rogov
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Bruce W Birren
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
71
|
Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, Siba PM, Mueller I, Barry AE. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. Am J Trop Med Hyg 2017; 96:630-641. [PMID: 28070005 DOI: 10.4269/ajtmh.16-0716] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3: 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - G L Abby Harrison
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mita Hapsari Hazairin
- Department of Epidemiology and Preventative Medicine, Monash University, Clayton, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Céline Barnadas
- Statens Serum Institut, Copenhagen, Denmark.,European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Institut Pasteur, Paris, France.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alyssa E Barry
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
72
|
Duffy CW, Ba H, Assefa S, Ahouidi AD, Deh YB, Tandia A, Kirsebom FCM, Kwiatkowski DP, Conway DJ. Population genetic structure and adaptation of malaria parasites on the edge of endemic distribution. Mol Ecol 2017; 26:2880-2894. [PMID: 28214367 PMCID: PMC5485074 DOI: 10.1111/mec.14066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 01/29/2023]
Abstract
To determine whether the major human malaria parasite Plasmodium falciparum exhibits fragmented population structure or local adaptation at the northern limit of its African distribution where the dry Sahel zone meets the Sahara, samples were collected from diverse locations within Mauritania over a range of ~1000 km. Microsatellite genotypes were obtained for 203 clinical infection samples from eight locations, and Illumina paired‐end sequences were obtained to yield high coverage genomewide single nucleotide polymorphism (SNP) data for 65 clinical infection samples from four locations. Most infections contained single parasite genotypes, reflecting low rates of transmission and superinfection locally, in contrast to the situation seen in population samples from countries further south. A minority of infections shared related or identical genotypes locally, indicating some repeated transmission of parasite clones without recombination. This caused some multilocus linkage disequilibrium and local divergence, but aside from the effect of repeated genotypes there was minimal differentiation between locations. Several chromosomal regions had elevated integrated haplotype scores (|iHS|) indicating recent selection, including those containing drug resistance genes. A genomewide FST scan comparison with previous sequence data from an area in West Africa with higher infection endemicity indicates that regional gene flow prevents genetic isolation, but revealed allele frequency differentiation at three drug resistance loci and an erythrocyte invasion ligand gene. Contrast of extended haplotype signatures revealed none to be unique to Mauritania. Discrete foci of infection on the edge of the Sahara are genetically highly connected to the wider continental parasite population, and local elimination would be difficult to achieve without very substantial reduction in malaria throughout the region.
Collapse
Affiliation(s)
- Craig W Duffy
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Hampate Ba
- Institut National de Recherche en Sante Publique, Nouakchott, Mauritania
| | - Samuel Assefa
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Ambroise D Ahouidi
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Yacine B Deh
- Institut National de Recherche en Sante Publique, Nouakchott, Mauritania
| | - Abderahmane Tandia
- Institut National de Recherche en Sante Publique, Nouakchott, Mauritania
| | - Freja C M Kirsebom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | | | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| |
Collapse
|
73
|
Wong W, Griggs AD, Daniels RF, Schaffner SF, Ndiaye D, Bei AK, Deme AB, MacInnis B, Volkman SK, Hartl DL, Neafsey DE, Wirth DF. Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in Thiès, Senegal. Genome Med 2017; 9:5. [PMID: 28118860 PMCID: PMC5260019 DOI: 10.1186/s13073-017-0398-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background As public health interventions drive parasite populations to elimination, genetic epidemiology models that incorporate population genomics can be powerful tools for evaluating the effectiveness of continued intervention. However, current genetic epidemiology models may not accurately simulate the population genetic profile of parasite populations, particularly with regard to polygenomic (multi-strain) infections. Current epidemiology models simulate polygenomic infections via superinfection (multiple mosquito bites), despite growing evidence that cotransmission (a single mosquito bite) may contribute to polygenomic infections. Methods Here, we quantified the relatedness of strains within 31 polygenomic infections collected from patients in Thiès, Senegal using a hidden Markov model to measure the proportion of the genome that is inferred to be identical by descent. Results We found that polygenomic infections can be composed of highly related parasites and that superinfection models drastically underestimate the relatedness of strains within polygenomic infections. Conclusions Our findings suggest that cotransmission is a major contributor to polygenomic infections in Thiès, Senegal. The incorporation of cotransmission into existing genetic epidemiology models may enhance our ability to characterize and predict changes in population structure associated with reduced transmission intensities and the emergence of important phenotypes like drug resistance that threaten to undermine malaria elimination activities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0398-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA
| | | | - Daouda Ndiaye
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy K Bei
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA.,School of Nursing and Health Sciences, Simmons College, Boston, MA, 02115, USA
| | - Daniel L Hartl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA. .,Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
74
|
Chang HH, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, Dorsey G, Murphy M, Neafsey DE, Jeffreys AE, Hubbart C, Rockett KA, Amato R, Kwiatkowski DP, Buckee CO, Greenhouse B. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput Biol 2017; 13:e1005348. [PMID: 28125584 PMCID: PMC5300274 DOI: 10.1371/journal.pcbi.1005348] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/09/2017] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Colin J. Worby
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Adoke Yeka
- Makerere University School of Public Health, College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Daniel E. Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts, United States
| | - Anna E. Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
75
|
Rice BL, Golden CD, Anjaranirina EJG, Botelho CM, Volkman SK, Hartl DL. Genetic evidence that the Makira region in northeastern Madagascar is a hotspot of malaria transmission. Malar J 2016; 15:596. [PMID: 27998292 PMCID: PMC5175380 DOI: 10.1186/s12936-016-1644-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Encouraging advances in the control of Plasmodium falciparum malaria have been observed across much of Africa in the past decade. However, regions of high relative prevalence and transmission that remain unaddressed or unrecognized provide a threat to this progress. Difficulties in identifying such localized hotspots include inadequate surveillance, especially in remote regions, and the cost and labor needed to produce direct estimates of transmission. Genetic data can provide a much-needed alternative to such empirical estimates, as the pattern of genetic variation within malaria parasite populations is indicative of the level of local transmission. Here, genetic data were used to provide the first empirical estimates of P. falciparum malaria prevalence and transmission dynamics for the rural, remote Makira region of northeastern Madagascar. METHODS Longitudinal surveys of a cohort of 698 total individuals (both sexes, 0-74 years of age) were performed in two communities bordering the Makira Natural Park protected area. Rapid diagnostic tests, with confirmation by molecular methods, were used to estimate P. falciparum prevalence at three seasonal time points separated by 4-month intervals. Genomic loci in a panel of polymorphic, putatively neutral markers were genotyped for 94 P. falciparum infections and used to characterize genetic parameters known to correlate with transmission levels. RESULTS Overall, 27.8% of individuals tested positive for P. falciparum over the 10-month course of the study, a rate approximately sevenfold higher than the countrywide average for Madagascar. Among those P. falciparum infections, a high level of genotypic diversity and a high frequency of polygenomic infections (68.1%) were observed, providing a pattern consistent with high and stable transmission. CONCLUSIONS Prevalence and genetic diversity data indicate that the Makira region is a hotspot of P. falciparum transmission in Madagascar. This suggests that the area should be highlighted for future interventions and that additional areas of high transmission may be present in ecologically similar regions nearby.
Collapse
Affiliation(s)
- Benjamin L. Rice
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Christopher D. Golden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Harvard University Center for the Environment, Cambridge, MA USA
- Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
| | | | | | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
76
|
Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci U S A 2016; 113:E8096-E8105. [PMID: 27911780 DOI: 10.1073/pnas.1608828113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P vivax and 80 P falciparum isolates collected between 2009 and 2013. We found that although P falciparum has undergone population fracturing, the coendemic P vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P falciparum, P vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P vivax and P falciparum parasites. Although population substructuring in P falciparum has resulted in clonal outgrowths of resistant parasites, P vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P vivax and achieve malaria elimination.
Collapse
|
77
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
78
|
Volkman SK, Herman J, Lukens AK, Hartl DL. Genome-Wide Association Studies of Drug-Resistance Determinants. Trends Parasitol 2016; 33:214-230. [PMID: 28179098 DOI: 10.1016/j.pt.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance.
Collapse
Affiliation(s)
- Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Simmons College, School of Nursing and Health Science, Boston, MA, USA.
| | - Jonathan Herman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Amanda K Lukens
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA
| | - Daniel L Hartl
- The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, USA
| |
Collapse
|
79
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
80
|
Anderson TJC, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, McGready R, Ashley E, Pyae Phyo A, White NJ, Nosten F. Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites. Mol Biol Evol 2016; 34:131-144. [PMID: 28025270 PMCID: PMC5216669 DOI: 10.1093/molbev/msw228] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple kelch13 alleles conferring artemisinin resistance (ART-R) are currently spreading through Southeast Asian malaria parasite populations, providing a unique opportunity to observe an ongoing soft selective sweep, investigate why resistance alleles have evolved multiple times and determine fundamental population genetic parameters for Plasmodium. We sequenced kelch13 (n = 1,876), genotyped 75 flanking SNPs, and measured clearance rate (n = 3,552) in parasite infections from Western Thailand (2001–2014). We describe 32 independent coding mutations including common mutations outside the kelch13 propeller associated with significant reductions in clearance rate. Mutations were first observed in 2003 and rose to 90% by 2014, consistent with a selection coefficient of ∼0.079. ART-R allele diversity rose until 2012 and then dropped as one allele (C580Y) spread to high frequency. The frequency with which adaptive alleles arise is determined by the rate of mutation and the population size. Two factors drive this soft sweep: (1) multiple kelch13 amino-acid mutations confer resistance providing a large mutational target—we estimate the target is 87–163 bp. (2) The population mutation parameter (Θ = 2Neμ) can be estimated from the frequency distribution of ART-R alleles and is ∼5.69, suggesting that short term effective population size is 88 thousand to 1.2 million. This is 52–705 times greater than Ne estimated from fluctuation in allele frequencies, suggesting that we have previously underestimated the capacity for adaptive evolution in Plasmodium. Our central conclusions are that retrospective studies may underestimate the complexity of selective events and the Ne relevant for adaptation for malaria is considerably higher than previously estimated.
Collapse
Affiliation(s)
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Ian H Cheeseman
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Standwell Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Fatma Bilgic
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
81
|
Dynamic changes of Plasmodium vivax population structure in South Korea. INFECTION GENETICS AND EVOLUTION 2016; 45:90-94. [PMID: 27562334 DOI: 10.1016/j.meegid.2016.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 07/18/2016] [Accepted: 08/20/2016] [Indexed: 11/22/2022]
Abstract
The vivax malaria epidemic has persisted in South Korea since its reemergence in 1993. Although there has been a significant decrease in the number of malaria cases in recent years, vivax malaria is still a major public health concern. To gain in-depth insight into the genetic makeup of Korean Plasmodium vivax, we analyzed polymorphic patterns of two major antigens, merozoite surface protein-1 (MSP-1) and MSP-3α, in 255 Korean P. vivax isolates collected over an extended period from 1998 to 2013. Combinational genetic analysis of polymorphic patterns of MSP-1 and MSP-3α in the isolates suggests that the P. vivax population in South Korea has been diversifying rapidly, with the appearance of parasites with new genotypes, despite the recent reduction of disease incidence. These results highlight the importance of molecular epidemiological investigations to supervise the genetic variation of the parasite in South Korea.
Collapse
|
82
|
Nabet C, Doumbo S, Jeddi F, Konaté S, Manciulli T, Fofana B, L'Ollivier C, Camara A, Moore S, Ranque S, Théra MA, Doumbo OK, Piarroux R. Genetic diversity of Plasmodium falciparum in human malaria cases in Mali. Malar J 2016; 15:353. [PMID: 27401016 PMCID: PMC4940954 DOI: 10.1186/s12936-016-1397-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/15/2016] [Indexed: 11/25/2022] Open
Abstract
Background In Mali, Plasmodium falciparum malaria is highly endemic and remains stable despite the implementation of various malaria control measures. Understanding P. falciparum population structure variations across the country could provide new insights to guide malaria control programmes. In this study, P. falciparum genetic diversity and population structure in regions of varying patterns of malaria transmission in Mali were analysed. Methods A total of 648 blood isolates adsorbed onto filter papers during population surveillance surveys (December 2012–March 2013, October 2013) in four distinct sites of Mali were screened for the presence of P. falciparum via quantitative PCR (qPCR). Multiple loci variable number of tandem repeats analysis (MLVA) using eight microsatellite markers was then performed on positive qPCR samples. Complete genotypes were then analysed for genetic diversity, genetic differentiation and linkage disequilibrium. Results Of 156 qPCR-positive samples, complete genotyping of 112 samples was achieved. The parasite populations displayed high genetic diversity (mean He = 0.77), which was consistent with a high level of malaria transmission in Mali. Genetic differentiation was low (FST < 0.02), even between sites located approximately 900 km apart, thereby illustrating marked gene flux amongst parasite populations. The lack of linkage disequilibrium further revealed an absence of local clonal expansion, which was corroborated by the genotype relationship results. In contrast to the stable genetic diversity level observed throughout the country, mean multiplicity of infection increased from north to south (from 1.4 to 2.06) and paralleled malaria transmission levels observed locally. Conclusions In Mali, the high level of genetic diversity and the pronounced gene flux amongst P. falciparum populations may represent an obstacle to control malaria. Indeed, results suggest that parasite populations are polymorphic enough to adapt to their host and to counteract interventions, such as anti-malarial vaccination. Additionally, the panmictic parasite population structure imply that resistance traits may disseminate freely from one area to another, making control measures performed at a local level ineffective. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1397-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cécile Nabet
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France.
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Fakhri Jeddi
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Salimata Konaté
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Tommaso Manciulli
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, Division of Infectious and Tropical Diseases and Hepatology, University of Pavia, Pavia, Italy
| | - Bakary Fofana
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Coralie L'Ollivier
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Aminata Camara
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Sandra Moore
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Stéphane Ranque
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| | - Mahamadou A Théra
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Renaud Piarroux
- UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France
| |
Collapse
|
83
|
Phyo AP, Ashley EA, Anderson TJC, Bozdech Z, Carrara VI, Sriprawat K, Nair S, White MM, Dziekan J, Ling C, Proux S, Konghahong K, Jeeyapant A, Woodrow CJ, Imwong M, McGready R, Lwin KM, Day NPJ, White NJ, Nosten F. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai-Myanmar Border (2003-2013): The Role of Parasite Genetic Factors. Clin Infect Dis 2016; 63:784-791. [PMID: 27313266 PMCID: PMC4996140 DOI: 10.1093/cid/ciw388] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. METHODS Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. RESULTS Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. CONCLUSIONS The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Elizabeth A Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tim J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Zbynek Bozdech
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Marina McDew White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio; and
| | - Jerzy Dziekan
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kamonchanok Konghahong
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Atthanee Jeeyapant
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
84
|
Murray L, Mobegi VA, Duffy CW, Assefa SA, Kwiatkowski DP, Laman E, Loua KM, Conway DJ. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections. Malar J 2016; 15:275. [PMID: 27176827 PMCID: PMC4865991 DOI: 10.1186/s12936-016-1324-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. Methods PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (Fws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. Results As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide Fws fixation index (r = −0.88, P < 0.001). However, the microsatellite analysis revealed that most isolates contained mixed genotypes, even those that had no detectable genome sequence heterogeneity. Random sampling of different numbers of SNPs showed that an Fws index derived from ten or more SNPs with minor allele frequencies of >10 % had high correlation (r > 0.90) with the index derived using all SNPs. Conclusions Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (Fws). Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1324-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Victor A Mobegi
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.,Medical Research Council Unit, Fajara, Atlantic Road, Banjul, Gambia
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Samuel A Assefa
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | | | - Eugene Laman
- National Institute of Public Health, Conakry, Republic of Guinea
| | - Kovana M Loua
- National Institute of Public Health, Conakry, Republic of Guinea
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.
| |
Collapse
|
85
|
Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, Jelip J, Rundi C, Imwong M, Mudin RN, Abdullah NR. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS One 2016; 11:e0152415. [PMID: 27023787 PMCID: PMC4811561 DOI: 10.1371/journal.pone.0152415] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
Collapse
Affiliation(s)
| | - Umi Rubiah Sastu
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Abass Abdul-Karim
- Zonal Public Health Laboratory, Tamale Teaching Hospital, Tamale, Northern Region, Ghana, West Africa
| | - Amirrudin Muhammad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Prem Kumar Muniandy
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Christina Rundi
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Noor Rain Abdullah
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
86
|
Friedrich LR, Popovici J, Kim S, Dysoley L, Zimmerman PA, Menard D, Serre D. Complexity of Infection and Genetic Diversity in Cambodian Plasmodium vivax. PLoS Negl Trop Dis 2016; 10:e0004526. [PMID: 27018585 PMCID: PMC4809505 DOI: 10.1371/journal.pntd.0004526] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods. METHODOLOGY/PRINCIPAL FINDINGS We developed a sequencing-based assay to simultaneously genotype more than 100 SNPs and applied this approach to ~500 P. vivax-infected individuals recruited across nine locations in Cambodia between 2004 and 2013. Our analyses showed that the vast majority of infections are polyclonal (92%) and that P. vivax displays high genetic diversity in Cambodia without apparent geographic stratification. Interestingly, our analyses also revealed that the proportion of monoclonal infections significantly increased between 2004 and 2013, possibly suggesting that malaria control strategies in Cambodia may be successfully affecting the parasite population. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites.
Collapse
Affiliation(s)
- Lindsey R. Friedrich
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jean Popovici
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lek Dysoley
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Didier Menard
- Unite d’Epidemiologie Moleculaire, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
87
|
O'Loughlin SM, Magesa SM, Mbogo C, Mosha F, Midega J, Burt A. Genomic signatures of population decline in the malaria mosquito Anopheles gambiae. Malar J 2016; 15:182. [PMID: 27013475 PMCID: PMC4806450 DOI: 10.1186/s12936-016-1214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/05/2016] [Indexed: 01/15/2023] Open
Abstract
Background Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. Methods To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima’s D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. Results In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100–1000 times further, and ρ is 100–1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. Conclusions These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1214-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha M O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK.
| | - Stephen M Magesa
- NIMR Amani Research Centre, P.O. Box 81, Muheza, Tanzania.,Global Health Division, RTI International, Dar es Salaam, Tanzania
| | - Charles Mbogo
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya.,Malaria Public Health Department, Centre for Geographic Medicine, KEMRI-Wellcome Trust Research Programme, Kenyatta National Hospital Grounds, P.O. Box 43640-00100, Nairobi, Kenya
| | - Franklin Mosha
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Janet Midega
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, P.O. Box 428, Kilifi, Kenya.,Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.,Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| |
Collapse
|
88
|
Microsatellite Genotyping of Plasmodium vivax Isolates from Pregnant Women in Four Malaria Endemic Countries. PLoS One 2016; 11:e0152447. [PMID: 27011010 PMCID: PMC4807005 DOI: 10.1371/journal.pone.0152447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied.
Collapse
|
89
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|
90
|
Gerardin J, Bever CA, Hamainza B, Miller JM, Eckhoff PA, Wenger EA. Optimal Population-Level Infection Detection Strategies for Malaria Control and Elimination in a Spatial Model of Malaria Transmission. PLoS Comput Biol 2016; 12:e1004707. [PMID: 26764905 PMCID: PMC4713231 DOI: 10.1371/journal.pcbi.1004707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/15/2015] [Indexed: 11/18/2022] Open
Abstract
Mass campaigns with antimalarial drugs are potentially a powerful tool for local elimination of malaria, yet current diagnostic technologies are insufficiently sensitive to identify all individuals who harbor infections. At the same time, overtreatment of uninfected individuals increases the risk of accelerating emergence of drug resistance and losing community acceptance. Local heterogeneity in transmission intensity may allow campaign strategies that respond to index cases to successfully target subpatent infections while simultaneously limiting overtreatment. While selective targeting of hotspots of transmission has been proposed as a strategy for malaria control, such targeting has not been tested in the context of malaria elimination. Using household locations, demographics, and prevalence data from a survey of four health facility catchment areas in southern Zambia and an agent-based model of malaria transmission and immunity acquisition, a transmission intensity was fit to each household based on neighborhood age-dependent malaria prevalence. A set of individual infection trajectories was constructed for every household in each catchment area, accounting for heterogeneous exposure and immunity. Various campaign strategies—mass drug administration, mass screen and treat, focal mass drug administration, snowball reactive case detection, pooled sampling, and a hypothetical serological diagnostic—were simulated and evaluated for performance at finding infections, minimizing overtreatment, reducing clinical case counts, and interrupting transmission. For malaria control, presumptive treatment leads to substantial overtreatment without additional morbidity reduction under all but the highest transmission conditions. Compared with untargeted approaches, selective targeting of hotspots with drug campaigns is an ineffective tool for elimination due to limited sensitivity of available field diagnostics. Serological diagnosis is potentially an effective tool for malaria elimination but requires higher coverage to achieve similar results to mass distribution of presumptive treatment. Millions of people worldwide live at risk for malaria, a parasitic infectious disease transmitted by mosquitoes. Great progress has been made in reducing malaria burden in recent years, and many regions are now devising strategies for elimination. One way to eliminate malaria is to deplete the reservoir of parasites in human hosts by treating large groups of people with antimalarial drugs. However, current field diagnostics are not sensitive enough to correctly identify all infected individuals. Presumptively administering antimalarial drugs to whole populations will effectively clear infections but can also lead to substantial overtreatment and encourage the evolution of drug resistance in parasites. We might be able to predict which individuals who test negative are actually infected based on whether their household members and neighbors are testing positive. Using a mathematical model of malaria immunity acquisition and a spatial dataset of malaria prevalence in southern Zambia, we simulate strategies of identifying infected individuals and compare each strategy’s ability to deplete the infectious reservoir and avoid overtreatment. We make different recommendations for optimal strategies depending on a region’s malaria prevalence.
Collapse
Affiliation(s)
- Jaline Gerardin
- Institute for Disease Modeling, Bellevue, Washington, United States of America
- * E-mail:
| | - Caitlin A. Bever
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| | | | - John M. Miller
- PATH Malaria Control and Elimination Partnership in Africa (MACEPA), Lusaka, Zambia
| | - Philip A. Eckhoff
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| | - Edward A. Wenger
- Institute for Disease Modeling, Bellevue, Washington, United States of America
| |
Collapse
|
91
|
Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers. PLoS One 2015; 10:e0140416. [PMID: 26462203 PMCID: PMC4604141 DOI: 10.1371/journal.pone.0140416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/26/2015] [Indexed: 11/19/2022] Open
Abstract
Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci). For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%), moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61), low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis), and moderate linkage disequilibrium (ISA = 0.05, P<0.0001). In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti’s P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data.
Collapse
|
92
|
Chenet SM, Taylor JE, Blair S, Zuluaga L, Escalante AA. Longitudinal analysis of Plasmodium falciparum genetic variation in Turbo, Colombia: implications for malaria control and elimination. Malar J 2015; 14:363. [PMID: 26395166 PMCID: PMC4578328 DOI: 10.1186/s12936-015-0887-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022] Open
Abstract
Background Malaria programmes estimate changes in prevalence to evaluate their efficacy. In this study, parasite genetic data was used to explore how the demography of the parasite population can inform about the processes driving variation in prevalence. In particular, how changes in treatment and population movement have affected malaria prevalence in an area with seasonal malaria. Methods Samples of Plasmodium falciparum collected over 8 years from a population in Turbo, Colombia were genotyped at nine microsatellite loci and three drug-resistance loci. These data were analysed using several population genetic methods to detect changes in parasite genetic diversity and population structure. In addition, a coalescent-based method was used to estimate substitution rates at the microsatellite loci. Results The estimated mean microsatellite substitution rates varied between 5.35 × 10−3 and 3.77 × 10−2 substitutions/locus/month. Cluster analysis identified six distinct parasite clusters, five of which persisted for the full duration of the study. However, the frequencies of the clusters varied significantly between years, consistent with a small effective population size. Conclusions Malaria control programmes can detect re-introductions and changes in transmission using rapidly evolving microsatellite loci. In this population, the steadily decreasing diversity and the relatively constant effective population size suggest that an increase in malaria prevalence from 2004 to 2007 was primarily driven by local rather than imported cases. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0887-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stella M Chenet
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jesse E Taylor
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA.
| | - Silvia Blair
- Malaria Group, Universidad de Antioquia, Medellín, Colombia.
| | - Lina Zuluaga
- Malaria Group, Universidad de Antioquia, Medellín, Colombia.
| | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
93
|
Escalante AA, Ferreira MU, Vinetz JM, Volkman SK, Cui L, Gamboa D, Krogstad DJ, Barry AE, Carlton JM, van Eijk AM, Pradhan K, Mueller I, Greenhouse B, Andreina Pacheco M, Vallejo AF, Herrera S, Felger I. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network. Am J Trop Med Hyg 2015; 93:79-86. [PMID: 26259945 PMCID: PMC4574277 DOI: 10.4269/ajtmh.15-0005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/15/2015] [Indexed: 01/31/2023] Open
Abstract
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts.
Collapse
Affiliation(s)
- Ananias A. Escalante
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | - Marcelo U. Ferreira
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ingrid Felger
- *Address correspondence to Ananias A. Escalante, Institute for Genomics and Evolutionary Medicine, Temple University, SERC Building, 1925 N. 12th Street Philadelphia, PA 19122-1801, E-mail: or Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1374 - Edifício Biomédicas II, São Paulo, Brazil CEP CEP 05508-900, E-mail: or Ingrid Felger, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland, E-mail:
| |
Collapse
|
94
|
Bakhiet AM, Abdel-Muhsin AMA, Elzaki SEG, Al-Hashami Z, Albarwani HS, AlQamashoui BA, Al-Hamidhi S, Idris MA, Elagib AA, Beja-Pereira A, Babiker HA. Plasmodium falciparum population structure in Sudan post artemisinin-based combination therapy. Acta Trop 2015; 148:97-104. [PMID: 25913735 DOI: 10.1016/j.actatropica.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Over the past decade, Sudan has stepped up malaria control backed by WHO, and this has resulted in significant reduction in parasite rate, malaria morbidity and mortality. The present study analyzed Plasmodium falciparum parasites in four geographical separated areas, to examine whether the success in malaria control following the use of artemisinin-based combination therapy (ACT) has disrupted the population structure and evolution of the parasite. We examined 319 P. falciparum isolates collected between October 2009 and October 2012 in four different areas in Sudan (Jazira [central Sudan], Southern Darfur [western Sudan], Upper Nile [southern Sudan] and Kasala [eastern Sudan]). Twelve microsatellites were analyzed for allelic diversity, multi-locus haplotype and inter-population differentiation. Level of diversity was compared to that detected for three of the above microsatellites among P. falciparum parasites in central and eastern Sudan in 1999, prior to introduction of ACT. Diversity at each locus (unbiased heterozygosity [H]) was high in all areas (Jazira, H=0.67), (Southern Darfur, H=0.71), (Upper Nile, H=0.71), and (Kasala, H=0.63). Microsatellites were distributed widely and private alleles, detected in a single population, were rare. The extent of diversity in the above sites was similar to that seen, in 1999, in central (Khartoum, H=0.73) and eastern Sudan (Gedaref, H=0.75). Significant Linkage disequilibrium (LD) was observed between the microsatellites in all populations. Pairwise FST analysis revealed that parasites in the four areas could be considered as one population. However, the parasites in Sudan clustered away from parasites in West Africa and the Arabian Peninsula. Despite marked reduction in malaria risk in Sudan, the extent of diversity and parasite genetic structure are indicative of a large population size. Further considerable reduction in transmission would be needed before fragmented sub-population can be seen. In addition, the large divergence of P. falciparum in Sudan from West Africa and Arabian Peninsula populations may result from differential evolutionary pressures acting at the population level, which shall be considered in eradication plans.
Collapse
|
95
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
96
|
Affiliation(s)
- Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA 94143;
| | - David L Smith
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, MD 20850; and Spatial Ecology and Epidemiology Group, Department of Zoology, Oxford University, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
97
|
Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A 2015; 112:7067-72. [PMID: 25941365 DOI: 10.1073/pnas.1505691112] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To study the effects of malaria-control interventions on parasite population genomics, we examined a set of 1,007 samples of the malaria parasite Plasmodium falciparum collected in Thiès, Senegal between 2006 and 2013. The parasite samples were genotyped using a molecular barcode of 24 SNPs. About 35% of the samples grouped into subsets with identical barcodes, varying in size by year and sometimes persisting across years. The barcodes also formed networks of related groups. Analysis of 164 completely sequenced parasites revealed extensive sharing of genomic regions. In at least two cases we found first-generation recombinant offspring of parents whose genomes are similar or identical to genomes also present in the sample. An epidemiological model that tracks parasite genotypes can reproduce the observed pattern of barcode subsets. Quantification of likelihoods in the model strongly suggests a reduction of transmission from 2006-2010 with a significant rebound in 2012-2013. The reduced transmission and rebound were confirmed directly by incidence data from Thiès. These findings imply that intensive intervention to control malaria results in rapid and dramatic changes in parasite population genomics. The results also suggest that genomics combined with epidemiological modeling may afford prompt, continuous, and cost-effective tracking of progress toward malaria elimination.
Collapse
|
98
|
Daniels RF, Rice BL, Daniels NM, Volkman SK, Hartl DL. The utility of genomic data for Plasmodium vivax population surveillance. Pathog Glob Health 2015; 109:153-61. [PMID: 25892032 DOI: 10.1179/2047773215y.0000000014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetic polymorphisms identified from genomic sequencing can be used to track changes in parasite populations through time. Such tracking is particularly informative when applying control strategies and evaluating their effectiveness. Using genomic approaches may also enable improved ability to categorise populations and to stratify them according to the likely effectiveness of intervention. Clinical applications of genomic approaches also allow relapses to be classified according to reinfection or recrudescence. These tools can be used not only to assess the effectiveness of malaria interventions but also to appraise the strategies for malaria elimination.
Collapse
|
99
|
Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. ADVANCES IN PARASITOLOGY 2015; 87:293-327. [PMID: 25765198 DOI: 10.1016/bs.apar.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As national governments scale up mass drug administration (MDA) programs aimed to combat neglected tropical diseases (NTDs), novel selection pressures on these parasites increase. To understand how parasite populations are affected by MDA and how to maximize the success of control programmes, it is imperative for epidemiological, molecular and mathematical modelling approaches to be combined. Modelling of parasite population genetic and genomic structure, particularly of the NTDs, has been limited through the availability of only a few molecular markers to date. The landscape of infectious disease research is being dramatically reshaped by next-generation sequencing technologies and our understanding of how repeated selective pressures are shaping parasite populations is radically altering. Genomics can provide high-resolution data on parasite population structure, and identify how loci may contribute to key phenotypes such as virulence and/or drug resistance. We discuss the incorporation of genetic and genomic data, focussing on the recently sequenced Schistosoma spp., into novel mathematical transmission models to inform our understanding of the impact of MDA and other control methods. We summarize what is known to date, the models that exist and how population genetics has given us an understanding of the effects of MDA on the parasites. We consider how genetic and genomic data have the potential to shape future research, highlighting key areas where data are lacking, and how future molecular epidemiology knowledge can aid understanding of transmission dynamics and the effects of MDA, ultimately informing public health policy makers of the best interventions for NTDs.
Collapse
|
100
|
Sisya TJ, Kamn'gona RM, Vareta JA, Fulakeza JM, Mukaka MFJ, Seydel KB, Laufer MK, Taylor TE, Nkhoma SC. Subtle changes in Plasmodium falciparum infection complexity following enhanced intervention in Malawi. Acta Trop 2015; 142:108-14. [PMID: 25460345 PMCID: PMC4296692 DOI: 10.1016/j.actatropica.2014.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/25/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
We examined impact of intense malaria control on parasite genetic structure in Malawi. Malaria infections sampled before and after intense control were genotyped at 24 SNPs. Despite intense control efforts, parasite genetic diversity was unchanged over time. Only the mean number of heterozygous SNPs within infections showed change over time. Findings suggest minimal or no change in malaria transmission despite intense control.
With support from the Global Fund, the United States President's Malaria Initiative (PMI) and other cooperating partners, Malawi is implementing a comprehensive malaria control programme involving indoor residual spraying in targeted districts, universal coverage with insecticide-treated bed nets, use of rapid diagnostic tests to confirm the clinical diagnosis of malaria and use of the highly effective artemisinin-based combination therapy, artemether-lumefantrine (AL), as the first-line treatment for malaria. We genotyped 24 genome-wide single nucleotide polymorphisms (SNPs) in Plasmodium falciparum infections (n = 316) sampled from a single location in Malawi before (2006 and 2007) and after enhanced intervention (2008 and 2012). The SNP data generated were used to examine temporal changes in the proportion of multiple-genotype infections (MIs), mean number of heterozygous SNPs within MIs, parasite genetic diversity (expected heterozygosity and genotypic richness), multilocus linkage disequilibrium and effective population size (Ne). While the proportion of MIs, expected heterozygosity, genotypic richness, multilocus linkage disequilibrium and Ne were unchanged over time, the mean number (±standard deviation) of heterozygous SNPs within MIs decreased significantly (p = 0.01) from 9(±1) in 2006 to 7(±1) in 2012. These findings indicate that the genetic diversity of P. falciparum malaria parasites in this area remains high, suggesting that only subtle gains, if any, have been made in reducing malaria transmission. Continued surveillance is required to evaluate the impact of malaria control interventions in this area and the rest of Malawi, and to better target control interventions.
Collapse
Affiliation(s)
- Tamika J Sisya
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Raphael M Kamn'gona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Jimmy A Vareta
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Joseph M Fulakeza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mavuto F J Mukaka
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Karl B Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Miriam K Laufer
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terrie E Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, UK.
| |
Collapse
|