51
|
Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 2019; 94:135-155. [PMID: 29971903 PMCID: PMC6378405 DOI: 10.1111/brv.12440] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| | - Chris Bass
- Department of BiosciencesUniversity of Exeter, Penryn CampusCornwallTR10 9FEU.K.
| | - Andrea Dixon
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
- Department of Plant BiologyUniversity of GeorgiaAthensGA 30602U.S.A.
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| |
Collapse
|
52
|
Haenel Q, Roesti M, Moser D, MacColl ADC, Berner D. Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evol Lett 2019; 3:28-42. [PMID: 30788140 PMCID: PMC6369934 DOI: 10.1002/evl3.99] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/19/2022] Open
Abstract
Genomic studies of parallel (or convergent) evolution often compare multiple populations diverged into two ecologically different habitats to search for loci repeatedly involved in adaptation. Because the shared ancestor of these populations is generally unavailable, the source of the alleles at adaptation loci, and the direction in which their frequencies were shifted during evolution, remain elusive. To shed light on these issues, we here use multiple populations of threespine stickleback fish adapted to two different types of derived freshwater habitats-basic and acidic lakes on the island of North Uist, Outer Hebrides, Scotland-and the present-day proxy of their marine ancestor. In a first step, we combine genome-wide pooled sequencing and targeted individual-level sequencing to demonstrate that ecological and phenotypic parallelism in basic-acidic divergence is reflected by genomic parallelism in dozens of genome regions. Exploiting data from the ancestor, we next show that the acidic populations, residing in ecologically more extreme derived habitats, have adapted by accumulating alleles rare in the ancestor, whereas the basic populations have retained alleles common in the ancestor. Genomic responses to selection are thus predictable from the ecological difference of each derived habitat type from the ancestral one. This asymmetric sorting of standing genetic variation at loci important to basic-acidic divergence has further resulted in more numerous selective sweeps in the acidic populations. Finally, our data suggest that the maintenance in marine fish of standing variation important to adaptive basic-acidic differentiation does not require extensive hybridization between the marine and freshwater populations. Overall, our study reveals striking genome-wide determinism in both the loci involved in parallel divergence, and in the direction in which alleles at these loci have been selected.
Collapse
Affiliation(s)
- Quiterie Haenel
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
| | - Marius Roesti
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
- Biodiversity Research Centre and Zoology DepartmentUniversity of British ColumbiaVancouverBritish ColumbiaV6T 1Z4Canada
- Current address: Institute of Ecology and EvolutionUniversity of Bern3012 BernSwitzerland
| | - Dario Moser
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
- Current address: Jagd‐ und Fischereiverwaltung Thurgau8510 FrauenfeldSwitzerland
| | | | - Daniel Berner
- Department of Environmental Sciences, ZoologyUniversity of Basel4051 BaselSwitzerland
| |
Collapse
|
53
|
Miller SE, Roesti M, Schluter D. A Single Interacting Species Leads to Widespread Parallel Evolution of the Stickleback Genome. Curr Biol 2019; 29:530-537.e6. [PMID: 30686736 DOI: 10.1016/j.cub.2018.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 11/07/2018] [Accepted: 12/24/2018] [Indexed: 11/26/2022]
Abstract
Biotic interactions are potent, widespread causes of natural selection and divergent phenotypic evolution and can lead to genetic differentiation with gene flow among wild populations ("isolation by ecology") [1-4]. Biotic selection has been predicted to act on more genes than abiotic selection thereby driving greater adaptation [5]. However, difficulties in isolating the genome-wide effect of single biotic agents of selection have limited our ability to identify and quantify the number and type of genetic regions responding to biotic selection [6-9]. We identified geographically interspersed lakes in which threespine stickleback fish (Gasterosteus aculeatus) have repeatedly adapted to the presence or absence of a single member of the ecological community, prickly sculpin (Cottus asper), a fish that is both a competitor and a predator of the stickleback [10]. Whole-genome sequencing revealed that sculpin presence or absence accounted for the majority of genetic divergence among stickleback populations, more so than geography. The major axis of genomic variation within and between the two lake types was correlated with multiple traits, indicating parallel natural selection across a gradient of biotic environments. A large proportion of the genome-about 1.8%, encompassing more than 600 genes-differentiated stickleback from the two biotic environments. Divergence occurred in 141 discrete genomic clumps located mainly in regions of low recombination, suggesting that genes brought to lakes by the colonizing ancestral population often evolved together in linked blocks. Strong selection and a wealth of standing genetic variation explain how a single member of the biotic community can have such a rapid and profound evolutionary impact.
Collapse
Affiliation(s)
- Sara E Miller
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dolph Schluter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
54
|
Doellman MM, Egan SP, Ragland GJ, Meyers PJ, Hood GR, Powell THQ, Lazorchak P, Hahn DA, Berlocher SH, Nosil P, Feder JL. Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies. Ecol Evol 2019; 9:393-409. [PMID: 30680122 PMCID: PMC6342182 DOI: 10.1002/ece3.4758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.
Collapse
Affiliation(s)
| | - Scott P. Egan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Advanced Diagnostics and Therapeutics InitiativeUniversity of Notre DameNotre DameIndiana
- Department of BiosciencesRice UniversityHoustonTexas
| | - Gregory J. Ragland
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndiana
- Department of Integrative BiologyUniversity of Colorado–DenverDenverColorado
| | - Peter J. Meyers
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
| | - Glen R. Hood
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Biological SciencesWayne State UniversityDetroitMichigan
| | - Thomas H. Q. Powell
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Biological SciencesState University of New York–BinghamtonBinghamtonNew York
| | - Peter Lazorchak
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Computer ScienceJohns Hopkins UniversityBaltimoreMaryland
| | - Daniel A. Hahn
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFlorida
| | - Stewart H. Berlocher
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Patrik Nosil
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Jeffrey L. Feder
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Advanced Diagnostics and Therapeutics InitiativeUniversity of Notre DameNotre DameIndiana
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndiana
| |
Collapse
|
55
|
Hohenlohe PA, Magalhaes IS. The Population Genomics of Parallel Adaptation: Lessons from Threespine Stickleback. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2019_67] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Cortés AJ, Skeen P, Blair MW, Chacón-Sánchez MI. Does the Genomic Landscape of Species Divergence in Phaseolus Beans Coerce Parallel Signatures of Adaptation and Domestication? FRONTIERS IN PLANT SCIENCE 2018; 9:1816. [PMID: 30619396 PMCID: PMC6306030 DOI: 10.3389/fpls.2018.01816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/22/2018] [Indexed: 05/10/2023]
Abstract
Exploring the genomic architecture of species and populations divergence aids understanding how lineages evolve and adapt, and ultimately can show the repeatability of evolutionary processes. Yet, the genomic signatures associated with divergence are still relatively unexplored, leading to a knowledge gap on whether species divergence ultimately differs in its genetic architecture from divergence at other spatial scales (i.e., populations, ecotypes). Our goal in this research was to determine whether genomic islands of speciation are more prone to harbor within-species differentiation due to genomic features, suppressed recombination, smaller effective population size or increased drift, across repeated hierarchically nested levels of divergence. We used two species of Phaseolus beans with strong genepool and population sub-structure produced by multiple independent domestications each especially in Andean and Mesoamerican / Middle American geographies. We genotyped 22,531 GBS-derived SNP markers in 209 individuals of wild and cultivated Phaseolus vulgaris and Phaseolus lunatus. We identified six regions for species-associated divergence. Out of these divergence peaks, 21% were recovered in the four within-species between-genepool comparisons and in the five within-genepool wild-cultivated comparisons (some of the latter did retrieve genuine signatures of the well described multiple domestication syndromes). However, genomic regions with overall high relative differentiation (measured by FST) coincided with regions of low SNP density and regions of elevated delta divergence between-genepools (ΔDiv), independent of the scale of divergence. The divergence in chromosome Pv10 further coincided with a between-species pericentric inversion. These convergences suggest that shared variants are being recurrently fixed at replicated regions of the genome, and in a similar manner across different hierarchically nested levels of divergence, likely as result of genomic features that make certain regions more prone to accumulate islands of speciation and within-species divergence. In summary, neighboring signatures of speciation, adaptation and domestication in Phaseolus beans are influenced by ubiquitous genomic constrains, which may continue to fortuitously shape genomic differentiation at various others scales of divergence.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia) – Centro de Investigación La Selva, Rionegro, Colombia
- Universidad Nacional de Colombia – Sede Medellín, Facultad de Ciencias Agrarias – Departamento de Ciencias
Forestales, Medellín, Colombia
| | - Paola Skeen
- Universidad Nacional de Colombia – Bogotá, Facultad de Ciencias Agrarias – Departamento de Agronomía, Bogotá, Colombia
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Matthew W. Blair
- Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States
| | - María I. Chacón-Sánchez
- Universidad Nacional de Colombia – Bogotá, Facultad de Ciencias Agrarias – Departamento de Agronomía, Bogotá, Colombia
| |
Collapse
|
57
|
Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono TJY, Bilandžija H, Borowsky R, Espinasa L, O'Quin K, Ornelas-García CP, Yoshizawa M, Carlson B, Maldonado E, Gross JB, Cartwright RA, Rohner N, Warren WC, McGaugh SE. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol 2018; 27:4397-4416. [PMID: 30252986 PMCID: PMC6261294 DOI: 10.1111/mec.14877] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.
Collapse
Affiliation(s)
- Adam Herman
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yaniv Brandvain
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - James Weagley
- Ecology, Evolution, and Behavior, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York
| | - Kelly O'Quin
- Department of Biology, Centre College, Danville, Kentucky
| | - Claudia P Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Brian Carlson
- Department of Biology, College of Wooster, Wooster, Ohio
| | - Ernesto Maldonado
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St Louis, Missouri
| | - Suzanne E McGaugh
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
58
|
Liu S, Ferchaud AL, Grønkjaer P, Nygaard R, Hansen MM. Genomic parallelism and lack thereof in contrasting systems of three-spined sticklebacks. Mol Ecol 2018; 27:4725-4743. [DOI: 10.1111/mec.14782] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Shenglin Liu
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - Anne-Laure Ferchaud
- Département de Biologie; Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Peter Grønkjaer
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - Rasmus Nygaard
- Greenland Institute of Natural Resources; Nuuk Greenland
| | | |
Collapse
|
59
|
Bassham S, Catchen J, Lescak E, von Hippel FA, Cresko WA. Repeated Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in Stickleback. Genetics 2018; 209:921-939. [PMID: 29794240 PMCID: PMC6028257 DOI: 10.1534/genetics.117.300610] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Heterogeneous genetic divergence can accumulate across the genome when populations adapt to different habitats while still exchanging alleles. How long does diversification take and how much of the genome is affected? When divergence occurs in parallel from standing genetic variation, how often are the same haplotypes involved? We explore these questions using restriction site-associated DNA sequencing genotyping data and show that broad-scale genomic repatterning, fueled by copious standing variation, can emerge in just dozens of generations in replicate natural populations of threespine stickleback fish (Gasterosteus aculeatus). After the catastrophic 1964 Alaskan earthquake, marine stickleback colonized newly created ponds on seismically uplifted islands. We find that freshwater fish in these young ponds differ from their marine ancestors across the same genomic segments previously shown to have diverged in much older lake populations. Outside of these core divergent regions the genome shows no population structure across the ocean-freshwater divide, consistent with strong local selection acting in alternative environments on stickleback populations still connected by significant gene flow. Reinforcing this inference, a majority of divergent haplotypes that are at high frequency in ponds are detectable in the sea, even across great geographic distances. Building upon previous population genomics work in this model species, our data suggest that a long history of divergent selection and gene flow among stickleback populations in oceanic and freshwater habitats has maintained polymorphisms of alternatively adapted DNA sequences that facilitate parallel evolution.
Collapse
Affiliation(s)
- Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| | - Julian Catchen
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Illinois 61801
| | - Emily Lescak
- Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508
- College of Fisheries and Ocean Science, University of Alaska Fairbanks, Alaska 99775
| | - Frank A von Hippel
- Department of Biological Sciences , Northern Arizona University, Flagstaff, Arizona 86011
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona 86011
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
60
|
Roesti M. Varied Genomic Responses to Maladaptive Gene Flow and Their Evidence. Genes (Basel) 2018; 9:E298. [PMID: 29899287 PMCID: PMC6027369 DOI: 10.3390/genes9060298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/02/2022] Open
Abstract
Adaptation to a local environment often occurs in the face of maladaptive gene flow. In this perspective, I discuss several ideas on how a genome may respond to maladaptive gene flow during adaptation. On the one hand, selection can build clusters of locally adaptive alleles at fortuitously co-localized loci within a genome, thereby facilitating local adaptation with gene flow ('allele-only clustering'). On the other hand, the selective pressure to link adaptive alleles may drive co-localization of the actual loci relevant for local adaptation within a genome through structural genome changes or an evolving intra-genomic crossover rate ('locus clustering'). While the expected outcome is, in both cases, a higher frequency of locally adaptive alleles in some genome regions than others, the molecular units evolving in response to gene flow differ (i.e., alleles versus loci). I argue that, although making this distinction is important, we commonly lack the critical empirical evidence to do so. This is mainly because many current approaches are biased towards detecting local adaptation in genome regions with low crossover rates. The importance of low-crossover genome regions for adaptation with gene flow, such as in co-localizing relevant loci within a genome, thus remains unclear. Future empirical investigations should address these questions by making use of comparative genomics, where multiple de novo genome assemblies from species evolved under different degrees of genetic exchange are compared. This research promises to advance our understanding of how a genome adapts to maladaptive gene flow, thereby promoting adaptive divergence and reproductive isolation.
Collapse
Affiliation(s)
- Marius Roesti
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
61
|
Ravinet M. Notes from a snail island: Littorinid evolution and adaptation. Mol Ecol 2018; 27:2781-2789. [PMID: 29802775 DOI: 10.1111/mec.14730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
The most successful study systems are built on a foundation of decades of research on the basic biology, ecology and life history of the organisms in question. Combined with new technologies, this can provide a formidable means to address important issues in evolutionary biology and molecular ecology. Littorinid marine snails are a good example of this, with a rich literature on their taxonomy, speciation, thermal tolerance and behavioural adaptations. In August 2017, an international meeting on Littorinid evolution was held at the Tjärnö Marine Research Laboratory in Western Sweden. In this meeting review, I provide a summary of some of the exciting work on parallel evolution, sexual selection and adaptation to environmental stress presented there. I argue that newly available genomic resources present an opportunity for integrating the traditionally divergent fields of speciation and environmental adaptation in Littorinid research.
Collapse
Affiliation(s)
- Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
62
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
63
|
Nelson TC, Cresko WA. Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evol Lett 2018; 2:9-21. [PMID: 30283661 PMCID: PMC6121857 DOI: 10.1002/evl3.37] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Adaptation in the wild often involves standing genetic variation (SGV), which allows rapid responses to selection on ecological timescales. However, we still know little about how the evolutionary histories and genomic distributions of SGV influence local adaptation in natural populations. Here, we address this knowledge gap using the threespine stickleback fish (Gasterosteus aculeatus) as a model. We extend restriction site-associated DNA sequencing (RAD-seq) to produce phased haplotypes approaching 700 base pairs (bp) in length at each of over 50,000 loci across the stickleback genome. Parallel adaptation in two geographically isolated freshwater pond populations consistently involved fixation of haplotypes that are identical-by-descent. In these same genomic regions, sequence divergence between marine and freshwater stickleback, as measured by dXY , reaches tenfold higher than background levels and genomic variation is structured into distinct marine and freshwater haplogroups. By combining this dataset with a de novo genome assembly of a related species, the ninespine stickleback (Pungitius pungitius), we find that this habitat-associated divergent variation averages six million years old, nearly twice the genome-wide average. The genomic variation that is involved in recent and rapid local adaptation in stickleback has therefore been evolving throughout the 15-million-year history since the two species lineages split. This long history of genomic divergence has maintained large genomic regions of ancient ancestry that include multiple chromosomal inversions and extensive linked variation. These discoveries of ancient genetic variation spread broadly across the genome in stickleback demonstrate how selection on ecological timescales is a result of genome evolution over geological timescales, and vice versa.
Collapse
Affiliation(s)
- Thomas C Nelson
- Institute of Ecology and Evolution University of Oregon Eugene, Oregon 97403.,Current Address: Division of Biological Sciences University of Montana Missoula, Montana 59812
| | - William A Cresko
- Institute of Ecology and Evolution University of Oregon Eugene, Oregon 97403
| |
Collapse
|
64
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
65
|
Berner D, Roesti M. Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate. Mol Ecol 2017; 26:6351-6369. [PMID: 28994152 DOI: 10.1111/mec.14373] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.
Collapse
Affiliation(s)
- Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
66
|
Currey MC, Bassham S, Perry S, Cresko WA. Developmental timing differences underlie armor loss across threespine stickleback populations. Evol Dev 2017; 19:231-243. [PMID: 29115024 DOI: 10.1111/ede.12242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Comparing ontogenetic patterns within a well-described evolutionary context aids in inferring mechanisms of change, including heterochronies or deletion of developmental pathways. Because selection acts on phenotypes throughout ontogeny, any within-taxon developmental variation has implications for evolvability. We compare ontogenetic order and timing of locomotion and defensive traits in three populations of threespine stickleback that have evolutionarily divergent adult forms. This analysis adds to the growing understanding of developmental genetic mechanisms of adaptive change in this evolutionary model species by delineating when chondrogenesis and osteogenesis in two derived populations begin to deviate from the developmental pattern in their immediate ancestors. We found that differences in adult defensive morphologies arise through abolished or delayed initiation of these traits rather than via an overall heterochronic shift, that intra-population ontogenetic variation is increased for some derived traits, and that altered armor developmental timing differentiates the derived populations from each other despite parallels in adult lateral plate armor phenotypes. We found that changes in ossified elements of the pelvic armor are linked to delayed and incomplete development of an early-forming pelvic cartilage, and that this disruption likely presages the variable pelvic vestiges documented in many derived populations.
Collapse
Affiliation(s)
- Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Stephen Perry
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| |
Collapse
|
67
|
Distinguishing Among Modes of Convergent Adaptation Using Population Genomic Data. Genetics 2017; 207:1591-1619. [PMID: 29046403 DOI: 10.1534/genetics.117.300417] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/30/2017] [Indexed: 11/18/2022] Open
Abstract
Geographically separated populations can convergently adapt to the same selection pressure. Convergent evolution at the level of a gene may arise via three distinct modes. The selected alleles can (1) have multiple independent mutational origins, (2) be shared due to shared ancestral standing variation, or (3) spread throughout subpopulations via gene flow. We present a model-based, statistical approach that utilizes genomic data to detect cases of convergent adaptation at the genetic level, identify the loci involved and distinguish among these modes. To understand the impact of convergent positive selection on neutral diversity at linked loci, we make use of the fact that hitchhiking can be modeled as an increase in the variance in neutral allele frequencies around a selected site within a population. We build on coalescent theory to show how shared hitchhiking events between subpopulations act to increase covariance in allele frequencies between subpopulations at loci near the selected site, and extend this theory under different models of migration and selection on the same standing variation. We incorporate this hitchhiking effect into a multivariate normal model of allele frequencies that also accounts for population structure. Based on this theory, we present a composite-likelihood-based approach that utilizes genomic data to identify loci involved in convergence, and distinguishes among alternate modes of convergent adaptation. We illustrate our method on genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate the adaptation for copper toxicity tolerance in two populations of the common yellow monkey flower, Mimulus guttatus We show that selection has occurred on an allele that has been standing in these populations prior to the onset of copper mining in this region. Lastly, we apply our method to data from four populations of the killifish, Fundulus heteroclitus, that show very rapid convergent adaptation for tolerance to industrial pollutants. Here, we identify a single locus at which both independent mutation events and selection on an allele shared via gene flow, either slightly before or during selection, play a role in adaptation across the species' range.
Collapse
|
68
|
Veale AJ, Russello MA. Genomic Changes Associated with Reproductive and Migratory Ecotypes in Sockeye Salmon (Oncorhynchus nerka). Genome Biol Evol 2017; 9:2921-2939. [PMID: 29045601 PMCID: PMC5737441 DOI: 10.1093/gbe/evx215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management.
Collapse
Affiliation(s)
- Andrew J. Veale
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
- Present address: Department of Environmental and Animal Sciences, Unitec, 139 Carrington Rd, Auckland, New Zealand
| | - Michael A. Russello
- Department of Biology, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
69
|
Pallarés S, Arribas P, Bilton DT, Millán A, Velasco J, Ribera I. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles. Mol Ecol 2017; 26:5614-5628. [PMID: 28833872 DOI: 10.1111/mec.14334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Ecology and Hydrology, Facultad de Biología, University of Murcia, Murcia, Spain
| | - Paula Arribas
- Island Ecology and Evolution Research Group, IPNA-CSIC, Santa Cruz de Tenerife, Spain
| | - David T Bilton
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, Plymouth University, Plymouth, UK
| | - Andrés Millán
- Department of Ecology and Hydrology, Facultad de Biología, University of Murcia, Murcia, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, Facultad de Biología, University of Murcia, Murcia, Spain
| | - Ignacio Ribera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
70
|
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 2017; 30:1450-1477. [DOI: 10.1111/jeb.13047] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Ravinet
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
- National Institute of Genetics; Mishima Shizuoka Japan
| | - R. Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO, Laboratório Associado; Universidade do Porto; Vairão Portugal
- Department of Experimental and Health Sciences; IBE, Institute of Evolutionary Biology (CSIC-UPF); Pompeu Fabra University; Barcelona Spain
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - R. K. Butlin
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- Department of Marine Sciences; Centre for Marine Evolutionary Biology; University of Gothenburg; Gothenburg Sweden
| | - J. Galindo
- Department of Biochemistry, Genetics and Immunology; University of Vigo; Vigo Spain
| | - N. Bierne
- CNRS; Université Montpellier; ISEM; Station Marine Sète France
| | - M. Rafajlović
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | | | - B. Mehlig
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | - A. M. Westram
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
71
|
Elmer KR. Barrier loci and progress towards evolutionary generalities. J Evol Biol 2017; 30:1491-1493. [DOI: 10.1111/jeb.13104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Affiliation(s)
- K. R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine; College of Medical, Veterinary & Life Sciences; University of Glasgow, Glasgow UK
| |
Collapse
|
72
|
Southcott L, Kronforst MR. A neutral view of the evolving genomic architecture of speciation. Ecol Evol 2017; 7:6358-6366. [PMID: 28861239 PMCID: PMC5574762 DOI: 10.1002/ece3.3190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 11/18/2022] Open
Abstract
Analyses of genomewide polymorphism data have begun to shed light on speciation and adaptation. Genome scans to identify regions of the genome that are unusually different between populations or species, possibly due to divergent natural or sexual selection, are widespread in speciation genomics. Theoretical and empirical work suggests that such outlier regions may grow faster than linearly during speciation with gene flow due to a rapid transition between low and high reproductive isolation. We investigate whether this pattern could be attributed to neutral processes by simulating genomes under neutral evolution with varying amounts and timing of gene flow. Under both neutral evolution and divergent selection, simulations with little or no gene flow, or with a long allopatric period after its cessation, resulted in faster than linear growth of the proportion of the genome lying in outlier regions. Without selection, higher recent gene flow erased differentiation; with divergent selection, these same scenarios produced nonlinear growth to a plateau. Our results suggest that, given a history of gene flow, the growth of the divergent genome is informative about selection during divergence, but that in many scenarios, this pattern does not easily distinguish neutral and non-neutral processes during speciation with gene flow.
Collapse
Affiliation(s)
- Laura Southcott
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
| | - Marcus R. Kronforst
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
- Department of Ecology and EvolutionUniversity of ChicagoChicagoILUSA
| |
Collapse
|
73
|
Pujolar JM, Ferchaud AL, Bekkevold D, Hansen MM. Non-parallel divergence across freshwater and marine three-spined stickleback Gasterosteus aculeatus populations. JOURNAL OF FISH BIOLOGY 2017; 91:175-194. [PMID: 28516498 DOI: 10.1111/jfb.13336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
This work investigated whether multiple freshwater populations of three-spined stickleback Gasterosteus aculeatus in different freshwater catchments in the Jutland Peninsula, Denmark, derived from the same marine populations show repeated adaptive responses. A total of 327 G. aculeatus collected at 13 sampling locations were screened for genetic variation using a combination of 70 genes putatively under selection and 26 neutral genes along with a marker linked to the ectodysplasin gene (eda), which is strongly correlated with plate armour morphs in the species. A highly significant genetic differentiation was found that was higher among different freshwater samples than between marine-freshwater samples. Tests for selection between marine and freshwater populations showed a very low degree of parallelism and no single nucleotide polymorphism was detected as outlier in all freshwater-marine pairwise comparisons, including the eda. This suggests that G. aculeatus is not necessarily the prime example of parallel local adaptation suggested in much of the literature and that important exceptions exist (i.e. the Jutland Peninsula). While marine populations in the results described here showed a high phenotype-genotype correlation at eda, a low association was found for most of the freshwater populations. The most extreme case was found in the freshwater Lake Hald where all low-plated phenotypes were either homozygotes for the allele supposed to be associated with completely plated morphs or heterozygotes, but none were homozygotes for the putative low-plated allele. Re-examination of data from seven G. aculeatus studies agrees in showing a high but partial association between phenotype-genotype at eda in G. aculeatus freshwater populations and that mismatches occur everywhere in the European regions studied (higher in some areas, i.e. Denmark). This is independent of the eda marker used.
Collapse
Affiliation(s)
- J M Pujolar
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
| | - A L Ferchaud
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
- Département de Bioscience, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, G1V 0A6, Canada
| | - D Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, DK-8600, Silkeborg, Denmark
| | - M M Hansen
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
74
|
Veale AJ, Russello MA. An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Sci Rep 2017; 7:1747. [PMID: 28496186 PMCID: PMC5431894 DOI: 10.1038/s41598-017-01890-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Study of parallel (or convergent) phenotypic evolution can provide important insights into processes driving sympatric, ecologically-mediated divergence and speciation, as ecotype pairs may provide a biological replicate of the underlying signals and mechanisms. Here, we provide evidence for a selective sweep creating an island of divergence associated with reproductive behavior in sockeye salmon (Oncorhynchus nerka), identifying a series of linked single nucleotide polymorphisms across a ~22,733 basepair region spanning the leucine-rich repeat-containing protein 9 gene exhibiting signatures of divergent selection associated with stream- and shore-spawning in both anadromous and resident forms across their pan-Pacific distribution. This divergence likely occurred ~3.8 Mya (95% HPD = 2.1–6.03 Mya), after sockeye separated from pink (O. gorbuscha) and chum (O. keta) salmon, but prior to the Pleistocene glaciations. Our results suggest recurrent evolution of reproductive ecotypes across the native range of O. nerka is at least partially associated with divergent selection of pre-existing genetic variation within or linked to this region. As sockeye salmon are unique among Pacific salmonids in their flexibility to spawn in lake-shore benthic environments, this region provides great promise for continued investigation of the genomic basis of O. nerka life history evolution, and, more broadly, for increasing our understanding of the heritable basis of adaptation of complex traits in novel environments.
Collapse
Affiliation(s)
- Andrew J Veale
- Department of Biology, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Michael A Russello
- Department of Biology, The University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada.
| |
Collapse
|
75
|
Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P. Predicting Responses to Contemporary Environmental Change Using Evolutionary Response Architectures. Am Nat 2017; 189:463-473. [DOI: 10.1086/691233] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
76
|
Van Doren BM, Campagna L, Helm B, Illera JC, Lovette IJ, Liedvogel M. Correlated patterns of genetic diversity and differentiation across an avian family. Mol Ecol 2017; 26:3982-3997. [PMID: 28256062 DOI: 10.1111/mec.14083] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole-genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.
Collapse
Affiliation(s)
- Benjamin M Van Doren
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Leonardo Campagna
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Barbara Helm
- Animal Health and Comparative Medicine, Institute of Biodiversity, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Campus of Mieres, Research Building, 5th Floor, c/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Asturias, Spain
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Miriam Liedvogel
- Max Planck Institute for Evolutionary Biology, AG Behavioural Genomics, August-Thienemann-Str. 2, 24306, Plön, Germany
| |
Collapse
|
77
|
Vijay N. Digest: Why are there no ring species?*. Evolution 2017; 71:501-502. [DOI: 10.1111/evo.13162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
|
78
|
Genomic Trajectories to Desiccation Resistance: Convergence and Divergence Among Replicate Selected Drosophila Lines. Genetics 2016; 205:871-890. [PMID: 28007884 DOI: 10.1534/genetics.116.187104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance-a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52-0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic.
Collapse
|
79
|
Pearse DE. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. JOURNAL OF FISH BIOLOGY 2016; 89:2697-2716. [PMID: 27723095 DOI: 10.1111/jfb.13168] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago.
Collapse
Affiliation(s)
- D E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA, 95060, U.S.A
| |
Collapse
|
80
|
MacPherson A, Nuismer SL. The probability of parallel genetic evolution from standing genetic variation. J Evol Biol 2016; 30:326-337. [DOI: 10.1111/jeb.13006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/15/2023]
Affiliation(s)
- A. MacPherson
- Program of Bioinformatics and Computational Biology University of Idaho Moscow ID USA
- Department of Zoology University of British Columbia Vancouver BC Canada
| | - S. L. Nuismer
- Program of Bioinformatics and Computational Biology University of Idaho Moscow ID USA
- Department of Biological Sciences University of Idaho Moscow ID USA
| |
Collapse
|
81
|
|
82
|
Liu S, Hansen MM, Jacobsen MW. Region-wide and ecotype-specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences. Mol Ecol 2016; 25:5187-5202. [PMID: 27569902 DOI: 10.1111/mec.13827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 02/04/2023]
Abstract
We analysed 81 whole genome sequences of threespine sticklebacks from Pacific North America, Greenland and Northern Europe, representing 16 populations. Principal component analysis of nuclear SNPs grouped populations according to geographical location, with Pacific populations being more divergent from each other relative to European and Greenlandic populations. Analysis of mitogenome sequences showed Northern European populations to represent a single phylogeographical lineage, whereas Greenlandic and particularly Pacific populations showed admixture between lineages. We estimated demographic history using a genomewide coalescence with recombination approach. The Pacific populations showed gradual population expansion starting >100 Kya, possibly reflecting persistence in cryptic refuges near the present distributional range, although we do not rule out possible influence of ancient admixture. Sharp population declines ca. 14-15 Kya were suggested to reflect founding of freshwater populations by marine ancestors. In Greenland and Northern Europe, demographic expansion started ca. 20-25 Kya coinciding with the end of the Last Glacial Maximum. In both regions, marine and freshwater populations started to show different demographic trajectories ca. 8-9 Kya, suggesting that this was the time of recolonization. In Northern Europe, this estimate was surprisingly late, but found support in subfossil evidence for presence of several freshwater fish species but not sticklebacks 12 Kya. The results demonstrate distinctly different demographic histories across geographical regions with potential consequences for adaptive processes. They also provide empirical support for previous assumptions about freshwater populations being founded independently from large, coherent marine populations, a key element in the Transporter Hypothesis invoked to explain the widespread occurrence of parallel evolution across freshwater stickleback populations.
Collapse
Affiliation(s)
- Shenglin Liu
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark.
| | - Magnus W Jacobsen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| |
Collapse
|
83
|
Christe C, Stölting KN, Paris M, Fraїsse C, Bierne N, Lexer C. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol 2016; 26:59-76. [PMID: 27447453 DOI: 10.1111/mec.13765] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Speciation often involves repeated episodes of genetic contact between divergent populations before reproductive isolation (RI) is complete. Whole-genome sequencing (WGS) holds great promise for unravelling the genomic bases of speciation. We have studied two ecologically divergent, hybridizing species of the 'model tree' genus Populus (poplars, aspens, cottonwoods), Populus alba and P. tremula, using >8.6 million single nucleotide polymorphisms (SNPs) from WGS of population pools. We used the genomic data to (i) scan these species' genomes for regions of elevated and reduced divergence, (ii) assess key aspects of their joint demographic history based on genomewide site frequency spectra (SFS) and (iii) infer the potential roles of adaptive and deleterious coding mutations in shaping the genomic landscape of divergence. We identified numerous small, unevenly distributed genome regions without fixed polymorphisms despite high overall genomic differentiation. The joint SFS was best explained by ancient and repeated gene flow and allowed pinpointing candidate interspecific migrant tracts. The direction of selection (DoS) differed between genes in putative migrant tracts and the remainder of the genome, thus indicating the potential roles of adaptive divergence and segregating deleterious mutations on the evolution and breakdown of RI. Genes affected by positive selection during divergence were enriched for several functionally interesting groups, including well-known candidate 'speciation genes' involved in plant innate immunity. Our results suggest that adaptive divergence affects RI in these hybridizing species mainly through intrinsic and demographic processes. Integrating genomic with molecular data holds great promise for revealing the effects of particular genetic pathways on speciation.
Collapse
Affiliation(s)
- Camille Christe
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Kai N Stölting
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Christelle Fraїsse
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| |
Collapse
|
84
|
Gante HF, Matschiner M, Malmstrøm M, Jakobsen KS, Jentoft S, Salzburger W. Genomics of speciation and introgression in Princess cichlid fishes from Lake Tanganyika. Mol Ecol 2016; 25:6143-6161. [DOI: 10.1111/mec.13767] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/30/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Hugo F. Gante
- Zoological Institute University of Basel Vesalgasse 1 4051 Basel Switzerland
| | - Michael Matschiner
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| | - Martin Malmstrøm
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| | - Kjetill S. Jakobsen
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| | - Sissel Jentoft
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
- Department of Natural Sciences University of Agder 4604 Kristiansand Norway
| | - Walter Salzburger
- Zoological Institute University of Basel Vesalgasse 1 4051 Basel Switzerland
- Department of Biosciences CEES (Centre for Ecological and Evolutionary Synthesis) University of Oslo 0316 Oslo Norway
| |
Collapse
|
85
|
Rougemont Q, Gagnaire PA, Perrier C, Genthon C, Besnard AL, Launey S, Evanno G. Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 2016; 26:142-162. [PMID: 27105132 DOI: 10.1111/mec.13664] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Understanding the evolutionary mechanisms generating parallel genomic divergence patterns among replicate ecotype pairs remains an important challenge in speciation research. We investigated the genomic divergence between the anadromous parasitic river lamprey (Lampetra fluviatilis) and the freshwater-resident nonparasitic brook lamprey (Lampetra planeri) in nine population pairs displaying variable levels of geographic connectivity. We genotyped 338 individuals with RAD sequencing and inferred the demographic divergence history of each population pair using a diffusion approximation method. Divergence patterns in geographically connected population pairs were better explained by introgression after secondary contact, whereas disconnected population pairs have retained a signal of ancient migration. In all ecotype pairs, models accounting for differential introgression among loci outperformed homogeneous migration models. Generating neutral predictions from the inferred divergence scenarios to detect highly differentiated markers identified greater proportions of outliers in disconnected population pairs than in connected pairs. However, increased similarity in the most divergent genomic regions was found among connected ecotype pairs, indicating that gene flow was instrumental in generating parallelism at the molecular level. These results suggest that heterogeneous genomic differentiation and parallelism among replicate ecotype pairs have partly emerged through restricted introgression in genomic islands.
Collapse
Affiliation(s)
- Quentin Rougemont
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université de Montpellier, 2 Rue des Chantiers, F-34200, Sète, France
| | - Charles Perrier
- CEFE-CNRS, Centre D'Ecologie Fonctionnelle et Evolutive, Route de Mende, 34090, Montpellier, France
| | - Clémence Genthon
- Plateforme génomique INRA GenoToul Chemin de Borderouge - Auzeville, 31320, Castanet-Tolosan, France
| | - Anne-Laure Besnard
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Sophie Launey
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Guillaume Evanno
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| |
Collapse
|
86
|
Lange JD, Pool JE. A haplotype method detects diverse scenarios of local adaptation from genomic sequence variation. Mol Ecol 2016; 25:3081-100. [PMID: 27135633 DOI: 10.1111/mec.13671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 03/30/2016] [Accepted: 04/14/2016] [Indexed: 01/17/2023]
Abstract
Identifying genomic targets of population-specific positive selection is a major goal in several areas of basic and applied biology. However, it is unclear how often such selection should act on new mutations versus standing genetic variation or recurrent mutation, and furthermore, favoured alleles may either become fixed or remain variable in the population. Very few population genetic statistics are sensitive to all of these modes of selection. Here, we introduce and evaluate the Comparative Haplotype Identity statistic (χMD ), which assesses whether pairwise haplotype sharing at a locus in one population is unusually large compared with another population, relative to genomewide trends. Using simulations that emulate human and Drosophila genetic variation, we find that χMD is sensitive to a wide range of selection scenarios, and for some very challenging cases (e.g. partial soft sweeps), it outperforms other two-population statistics. We also find that, as with FST , our haplotype approach has the ability to detect surprisingly ancient selective sweeps. Particularly for the scenarios resembling human variation, we find that χMD outperforms other frequency- and haplotype-based statistics for soft and/or partial selective sweeps. Applying χMD and other between-population statistics to published population genomic data from D. melanogaster, we find both shared and unique genes and functional categories identified by each statistic. The broad utility and computational simplicity of χMD will make it an especially valuable tool in the search for genes targeted by local adaptation.
Collapse
Affiliation(s)
- Jeremy D Lange
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
87
|
Le Moan A, Gagnaire PA, Bonhomme F. Parallel genetic divergence among coastal-marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol Ecol 2016; 25:3187-202. [PMID: 27027737 DOI: 10.1111/mec.13627] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/28/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Ecophenotypic differentiation among replicate ecotype pairs within a species complex is often attributed to independent outcomes of parallel divergence driven by adaptation to similar environmental contrasts. However, the extent to which parallel phenotypic and genetic divergence patterns have emerged independently is increasingly questioned by population genomic studies. Here, we document the extent of genetic differentiation within and among two geographic replicates of the coastal and marine ecotypes of the European anchovy (Engraulis encrasicolus) gathered from Atlantic and Mediterranean locations. Using a genome-wide data set of RAD-derived SNPs, we show that habitat type (marine vs. coastal) is the most important component of genetic differentiation among populations of anchovy. By analysing the joint allele frequency spectrum of each coastal-marine ecotype pair, we show that genomic divergence patterns between ecotypes can be explained by a postglacial secondary contact following a long period of allopatric isolation (c. 300 kyrs). We found strong support for a model including heterogeneous migration among loci, suggesting that secondary gene flow has eroded past differentiation at different rates across the genome. Markers experiencing reduced introgression exhibited strongly correlated differentiation levels among Atlantic and Mediterranean regions. These results support that partial reproductive isolation and parallel genetic differentiation among replicate pairs of anchovy ecotypes are largely due to a common divergence history prior to secondary contact. They moreover provide comprehensive insights into the origin of a surprisingly strong fine-scale genetic structuring in a high gene flow marine fish, which should improve stock management and conservation actions.
Collapse
Affiliation(s)
- A Le Moan
- Université Montpellier 2, Place Eugène Bataillon, Montpellier, 34095, France.,ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| | - P-A Gagnaire
- Université Montpellier 2, Place Eugène Bataillon, Montpellier, 34095, France.,ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| | - F Bonhomme
- Université Montpellier 2, Place Eugène Bataillon, Montpellier, 34095, France.,ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète, 34200, France
| |
Collapse
|
88
|
Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene. Genetics 2016; 203:525-41. [PMID: 27017626 PMCID: PMC4858797 DOI: 10.1534/genetics.115.183285] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 11/18/2022] Open
Abstract
A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects.
Collapse
|
89
|
Yoshida K, Miyagi R, Mori S, Takahashi A, Makino T, Toyoda A, Fujiyama A, Kitano J. Whole-genome sequencing reveals small genomic regions of introgression in an introduced crater lake population of threespine stickleback. Ecol Evol 2016; 6:2190-204. [PMID: 27069575 PMCID: PMC4782248 DOI: 10.1002/ece3.2047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Invasive species pose a major threat to biological diversity. Although introduced populations often experience population bottlenecks, some invasive species are thought to be originated from hybridization between multiple populations or species, which can contribute to the maintenance of high genetic diversity. Recent advances in genome sequencing enable us to trace the evolutionary history of invasive species even at whole‐genome level and may help to identify the history of past hybridization that may be overlooked by traditional marker‐based analysis. Here, we conducted whole‐genome sequencing of eight threespine stickleback (Gasterosteus aculeatus) individuals, four from a recently introduced crater lake population and four of the putative source population. We found that both populations have several small genomic regions with high genetic diversity, which resulted from introgression from a closely related species (Gasterosteus nipponicus). The sizes of the regions were too small to be detected with traditional marker‐based analysis or even some reduced‐representation sequencing methods. Further amplicon sequencing revealed linkage disequilibrium around an introgression site, which suggests the possibility of selective sweep at the introgression site. Thus, interspecies introgression might predate introduction and increase genetic variation in the source population. Whole‐genome sequencing of even a small number of individuals can therefore provide higher resolution inference of history of introduced populations.
Collapse
Affiliation(s)
- Kohta Yoshida
- Division of Ecological Genetics Department of Population Genetics National Institute of Genetics Mishima Shizuoka Japan
| | - Ryutaro Miyagi
- Evolutionary Genetics Laboratory Department of Biological Sciences Tokyo Metropolitan University Hachioji Tokyo Japan
| | - Seiichi Mori
- Biological Laboratory Gifu-keizai University Ogaki Gifu Japan
| | - Aya Takahashi
- Evolutionary Genetics Laboratory Department of Biological Sciences Tokyo Metropolitan University Hachioji Tokyo Japan
| | - Takashi Makino
- Division of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory Center for Information Biology National Institute of Genetics Mishima Shizuoka Japan
| | - Asao Fujiyama
- Division of Ecology and Evolutionary Biology Graduate School of Life Sciences Tohoku University Sendai Miyagi Japan; Department of Genetics SOKENDAI (The Graduate University for Advanced Studies) Mishima Shizuoka Japan
| | - Jun Kitano
- Division of Ecological Genetics Department of Population Genetics National Institute of Genetics Mishima Shizuoka Japan; Department of Genetics SOKENDAI (The Graduate University for Advanced Studies) Mishima Shizuoka Japan
| |
Collapse
|
90
|
Kitano J, Mori S. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks. Genes Genet Syst 2016; 91:77-84. [DOI: 10.1266/ggs.15-00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jun Kitano
- Division of Ecological Genetics, National Institute of Genetics
| | | |
Collapse
|
91
|
Abstract
How rapidly can animal populations in the wild evolve when faced with sudden environmental shifts? Uplift during the 1964 Great Alaska Earthquake abruptly created freshwater ponds on multiple islands in Prince William Sound and the Gulf of Alaska. In the short time since the earthquake, the phenotypes of resident freshwater threespine stickleback fish on at least three of these islands have changed dramatically from their oceanic ancestors. To test the hypothesis that these freshwater populations were derived from oceanic ancestors only 50 y ago, we generated over 130,000 single-nucleotide polymorphism genotypes from more than 1,000 individuals using restriction site-associated DNA sequencing (RAD-seq). Population genomic analyses of these data support the hypothesis of recent and repeated, independent colonization of freshwater habitats by oceanic ancestors. We find evidence of recurrent gene flow between oceanic and freshwater ecotypes where they co-occur. Our data implicate natural selection in phenotypic diversification and support the hypothesis that the metapopulation organization of this species helps maintain a large pool of genetic variation that can be redeployed rapidly when oceanic stickleback colonize freshwater environments. We find that the freshwater populations, despite population genetic analyses clearly supporting their young age, have diverged phenotypically from oceanic ancestors to nearly the same extent as populations that were likely founded thousands of years ago. Our results support the intriguing hypothesis that most stickleback evolution in fresh water occurs within the first few decades after invasion of a novel environment.
Collapse
|
92
|
Matschiner M. Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics 2015; 32:1250-2. [DOI: 10.1093/bioinformatics/btv717] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/03/2015] [Indexed: 11/14/2022] Open
|
93
|
Gillespie RG. Island time and the interplay between ecology and evolution in species diversification. Evol Appl 2015; 9:53-73. [PMID: 27087839 PMCID: PMC4780372 DOI: 10.1111/eva.12302] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023] Open
Abstract
Research on the dynamics of biodiversity has progressed tremendously over recent years, although in two separate directions – ecological, to determine change over space at a given time, and evolutionary, to understand change over time. Integration of these approaches has remained elusive. Archipelagoes with a known geological chronology provide an opportunity to study ecological interactions over evolutionary time. Here, I focus on the Hawaiian archipelago and summarize the development of ecological and evolutionary research; I emphasize spiders because they have attributes allowing analysis of ecological affinities in concert with diversification. Within this framework, I highlight recent insights from the island chronosequence, in particular the importance of (i) selection and genetic drift in generating diversity; (ii) fusion and fission in fostering diversification; and (iii) variability upon which selection can act. Insights into biodiversity dynamics at the nexus of ecology and evolution are now achievable by integrating new tools, in particular (i) ecological metrics (interaction networks, maximum entropy inference) across the chronosequence to uncover community dynamics and (ii) genomic tools to understand contemporaneous microevolutionary change. The work can inform applications of invasion and restoration ecology by elucidating the importance of changes in abundances, interaction strengths, and rates of evolutionary response in shaping biodiversity.
Collapse
Affiliation(s)
- Rosemary G Gillespie
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| |
Collapse
|
94
|
Ferchaud AL, Hansen MM. The impact of selection, gene flow and demographic history on heterogeneous genomic divergence: three-spine sticklebacks in divergent environments. Mol Ecol 2015; 25:238-59. [DOI: 10.1111/mec.13399] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Anne-Laure Ferchaud
- Department of Bioscience; Aarhus University; Ny Munkegade 114-116 DK-8000 Aarhus C Denmark
| | - Michael M. Hansen
- Department of Bioscience; Aarhus University; Ny Munkegade 114-116 DK-8000 Aarhus C Denmark
| |
Collapse
|
95
|
The genomics of ecological vicariance in threespine stickleback fish. Nat Commun 2015; 6:8767. [PMID: 26556609 PMCID: PMC4659939 DOI: 10.1038/ncomms9767] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
Populations occurring in similar habitats and displaying similar phenotypes are increasingly used to explore parallel evolution at the molecular level. This generally ignores the possibility that parallel evolution can be mimicked by the fragmentation of an ancestral population followed by genetic exchange with ecologically different populations. Here we demonstrate such an ecological vicariance scenario in multiple stream populations of threespine stickleback fish divergent from a single adjacent lake population. On the basis of demographic and population genomic analyses, we infer the initial spread of a stream-adapted ancestor followed by the emergence of a lake-adapted population, that selective sweeps have occurred mainly in the lake population, that adaptive lake–stream divergence is maintained in the face of gene flow from the lake into the streams, and that this divergence involves major inversion polymorphisms also important to marine-freshwater stickleback divergence. Overall, our study highlights the need for a robust understanding of the demographic and selective history in evolutionary investigations. Threespine stickleback fish are adapted to lake and stream habitats in Central Europe. Here, the authors show colonization of a lake basin by a stream-adapted ancestor, followed by the emergence of a lake-adapted population in the face of gene flow across lake–stream boundaries.
Collapse
|
96
|
Welch JJ, Jiggins CD. Standing and flowing: the complex origins of adaptive variation. Mol Ecol 2015; 23:3935-7. [PMID: 25088550 DOI: 10.1111/mec.12859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 01/17/2023]
Abstract
A population faced with a new selection pressure can only adapt if appropriate genetic variation is available. This genetic variation might come from new mutations or from gene exchange with other populations or species, or it might already segregate in the population as standing genetic variation (which might itself have arisen from either mutation or gene flow). Understanding the relative importance of these sources of adaptive variation is a fundamental issue in evolutionary genetics (Orr & Betancourt ; Barrett & Schluter ; Gladyshev et al. ) and has practical implications for conservation, plant and animal breeding, biological control and infectious disease prevention (e.g. Robertson ; Soulé & Wilcox ; Prentis et al. ; Pennings ). In this issue of Molecular Ecology, Roesti et al. () make an important contribution to this longstanding debate.
Collapse
Affiliation(s)
- John J Welch
- Department of Genetics, University of Cambridge, Downing St., Cambridge, CB23EH, UK
| | | |
Collapse
|
97
|
Edwards SV, Shultz AJ, Campbell-Staton SC. Next-generation sequencing and the expanding domain of phylogeography. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a2.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Shane C. Campbell-Staton
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| |
Collapse
|
98
|
Hanson D, Barrett RDH, Hendry AP. Testing for parallel allochronic isolation in lake-stream stickleback. J Evol Biol 2015; 29:47-57. [DOI: 10.1111/jeb.12761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 01/17/2023]
Affiliation(s)
- D. Hanson
- Redpath Museum and Department of Biology; McGill University; Montreal QC Canada
| | - R. D. H. Barrett
- Redpath Museum and Department of Biology; McGill University; Montreal QC Canada
| | - A. P. Hendry
- Redpath Museum and Department of Biology; McGill University; Montreal QC Canada
| |
Collapse
|
99
|
Berg JJ, Coop G. A Coalescent Model for a Sweep of a Unique Standing Variant. Genetics 2015; 201:707-25. [PMID: 26311475 PMCID: PMC4596678 DOI: 10.1534/genetics.115.178962] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
The use of genetic polymorphism data to understand the dynamics of adaptation and identify the loci that are involved has become a major pursuit of modern evolutionary genetics. In addition to the classical "hard sweep" hitchhiking model, recent research has drawn attention to the fact that the dynamics of adaptation can play out in a variety of different ways and that the specific signatures left behind in population genetic data may depend somewhat strongly on these dynamics. One particular model for which a large number of empirical examples are already known is that in which a single derived mutation arises and drifts to some low frequency before an environmental change causes the allele to become beneficial and sweeps to fixation. Here, we pursue an analytical investigation of this model, bolstered and extended via simulation study. We use coalescent theory to develop an analytical approximation for the effect of a sweep from standing variation on the genealogy at the locus of the selected allele and sites tightly linked to it. We show that the distribution of haplotypes that the selected allele is present on at the time of the environmental change can be approximated by considering recombinant haplotypes as alleles in the infinite-alleles model. We show that this approximation can be leveraged to make accurate predictions regarding patterns of genetic polymorphism following such a sweep. We then use simulations to highlight which sources of haplotypic information are likely to be most useful in distinguishing this model from neutrality, as well as from other sweep models, such as the classic hard sweep and multiple-mutation soft sweeps. We find that in general, adaptation from a unique standing variant will likely be difficult to detect on the basis of genetic polymorphism data from a single population time point alone, and when it can be detected, it will be difficult to distinguish from other varieties of selective sweeps. Samples from multiple populations and/or time points have the potential to ease this difficulty.
Collapse
Affiliation(s)
- Jeremy J Berg
- Graduate Group in Population Biology, University of California, Davis, California 95616 Center for Population Biology, University of California, Davis, California 95616 Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California 95616 Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
100
|
Remington DL. Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins. Evolution 2015; 69:3025-38. [DOI: 10.1111/evo.12775] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 07/06/2015] [Accepted: 09/08/2015] [Indexed: 01/02/2023]
Affiliation(s)
- David L. Remington
- Department of Biology; University of North Carolina at Greensboro; Greensboro North Carolina 27402
| |
Collapse
|