51
|
Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes. Front Physiol 2019; 10:972. [PMID: 31427985 PMCID: PMC6688386 DOI: 10.3389/fphys.2019.00972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Olfaction is an essential sensory modality for insects and their olfactory environment is mostly made up of plant-emitted volatiles. The terrestrial vegetation produces an amazing diversity of volatile compounds, which are then transported, mixed, and degraded in the atmosphere. Each insect species expresses a set of olfactory receptors that bind part of the volatile compounds present in its habitat. Insect odorscapes are thus defined as species-specific olfactory spaces, dependent on the local habitat, and dynamic in time. Manipulations of pest-insect odorscapes are a promising approach to answer the strong demand for pesticide-free plant-protection strategies. Moreover, understanding their olfactory environment becomes a major concern in the context of global change and environmental stresses to insect populations. A considerable amount of information is available on the identity of volatiles mediating biotic interactions that involve insects. However, in the large body of research devoted to understanding how insects use olfaction to locate resources, an integrative vision of the olfactory environment has rarely been reached. This article aims to better apprehend the nature of the insect odorscape and its importance to insect behavioral ecology by reviewing the literature specific to different disciplines from plant ecophysiology to insect neuroethology. First, we discuss the determinants of odorscape composition, from the production of volatiles by plants (section "Plant Metabolism and Volatile Emissions") to their filtering during detection by the olfactory system of insects (section "Insect Olfaction: How Volatile Plant Compounds Are Encoded and Integrated by the Olfactory System"). We then summarize the physical and chemical processes by which volatile chemicals distribute in space (section "Transportation of Volatile Plant Compounds and Spatial Aspects of the Odorscape") and time (section "Temporal Aspects: The Dynamics of the Odorscape") in the atmosphere. The following sections consider the ecological importance of background odors in odorscapes and how insects adapt to their olfactory environment. Habitat provides an odor background and a sensory context that modulate the responses of insects to pheromones and other olfactory signals (section "Ecological Importance of Odorscapes"). In addition, insects do not respond inflexibly to single elements in their odorscape but integrate several components of their environment (section "Plasticity and Adaptation to Complex and Variable Odorscapes"). We finally discuss existing methods of odorscape manipulation for sustainable pest insect control and potential future developments in the context of agroecology (section "Odorscapes in Plant Protection and Agroecology").
Collapse
Affiliation(s)
- Lucie Conchou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Philippe Lucas
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Camille Meslin
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Magali Proffit
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, France
| | - Michel Renou
- INRA, Sorbonne Université, INRA, CNRS, UPEC, IRD, University P7, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
52
|
Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. J Chem Ecol 2019; 45:693-707. [DOI: 10.1007/s10886-019-01090-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
|
53
|
Mycorrhizae Alter Constitutive and Herbivore-Induced Volatile Emissions by Milkweeds. J Chem Ecol 2019; 45:610-625. [PMID: 31281942 DOI: 10.1007/s10886-019-01080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Plants use volatile organic compounds (VOCs) to cue natural enemies to their herbivore prey on plants. Simultaneously, herbivores utilize volatile cues to identify appropriate hosts. Despite extensive efforts to understand sources of variation in plant communication by VOCs, we lack an understanding of how ubiquitous belowground mutualists, such as arbuscular mycorrhizal fungi (AMF), influence plant VOC emissions. In a full factorial experiment, we subjected plants of two milkweed (Asclepias) species under three levels of AMF availability to damage by aphids (Aphis nerii). We then measured plant headspace volatiles and chemical defenses (cardenolides) and compared these to VOCs emitted and cardenolides produced by plants without herbivores. We found that AMF have plant species-specific effects on constitutive and aphid-induced VOC emissions. High AMF availability increased emissions of total VOCs, two green leaf volatiles (3-hexenyl acetate and hexyl acetate), and methyl salicylate in A. curassavica, but did not affect emissions in A. incarnata. In contrast, aphids consistently increased emissions of 6-methyl-5-hepten-2-one and benzeneacetaldehyde in both species, independent of AMF availability. Both high AMF availability and aphids alone suppressed emissions of individual terpenes. However, aphid damage on plants under high AMF availability increased, or did not affect, emissions of those terpenes. Lastly, aphid feeding suppressed cardenolide concentrations only in A. curassavica, and AMF did not affect cardenolides in either plant species. Our findings suggest that by altering milkweed VOC profiles, AMF may affect both herbivore performance and natural enemy attraction.
Collapse
|
54
|
Whitehead SR, Poveda K. Resource allocation trade-offs and the loss of chemical defences during apple domestication. ANNALS OF BOTANY 2019; 123:1029-1041. [PMID: 30770925 PMCID: PMC6589505 DOI: 10.1093/aob/mcz010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/17/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Most crops have been dramatically altered from their wild ancestors with the primary goal of increasing harvestable yield. A long-held hypothesis is that increased allocation to yield has reduced plant investment in defence and resulted in crops that are highly susceptible to pests. However, clear demonstrations of these trade-offs have been elusive due to the many selective pressures that occur concurrently during crop domestication. METHODS To provide a robust test of whether increased allocation to yield can alter plant investment in defence, this study examined fruit chemical defence traits and herbivore resistance across 52 wild and 56 domesticated genotypes of apples that vary >26-fold in fruit size. Ninety-six phenolic metabolites were quantified in apple skin, pulp and seeds, and resistance to the codling moth was assessed with a series of bioassays. KEY RESULTS The results show that wild apples have higher total phenolic concentrations and a higher diversity of metabolites than domesticated apples in skin, pulp and seeds. A negative phenotypic relationship between fruit size and phenolics indicates that this pattern is driven in part by allocation-based trade-offs between yield and defence. There were no clear differences in codling moth performance between wild and domesticated apples and no overall effects of total phenolic concentration on codling moth performance, but the results did show that codling moth resistance was increased in apples with higher phenolic diversity. The concentrations of a few individual compounds (primarily flavan-3-ols) also correlated with increased resistance, primarily driven by a reduction in pupal mass of female moths. CONCLUSIONS The negative phenotypic relationship between fruit size and phenolic content, observed across a large number of wild and domesticated genotypes, supports the hypothesis of yield-defence trade-offs in crops. However, the limited effects of phenolics on codling moth highlight the complexity of consequences that domestication has for plant-herbivore interactions. Continued studies of crop domestication can further our understanding of the multiple trade-offs involved in plant defence, while simultaneously leading to novel discoveries that can improve the sustainability of crop production.
Collapse
Affiliation(s)
- Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, USA
- Department of Entomology, Cornell University, Ithaca, USA
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, USA
| |
Collapse
|
55
|
Li T, Holst T, Michelsen A, Rinnan R. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. NATURE PLANTS 2019; 5:568-574. [PMID: 31182843 PMCID: PMC6561779 DOI: 10.1038/s41477-019-0439-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
Plant-emitted volatile organic compounds (VOCs) play fundamental roles in atmospheric chemistry and ecological processes by contributing to aerosol formation1 and mediating species interactions2. Rising temperatures and the associated shifts in vegetation composition have been shown to be the primary drivers of plant VOC emissions in Arctic ecosystems3. Although herbivorous insects also strongly alter plant VOC emissions2, no studies have addressed the impact of herbivory on plant VOC emissions in the Arctic. Here we show that warming dramatically increases the amount, and alters the blend, of VOCs released in response to herbivory. We observed that a tundra ecosystem subjected to warming, by open-top chambers, for 8 or 18 years showed a fourfold increase in leaf area eaten by insect herbivores. Herbivory by autumnal moth (Epirrita autumnata) larvae, and herbivory-mimicking methyl jasmonate application, on the widespread circumpolar dwarf birch (Betula nana) both substantially increased emissions of terpenoids. The long-term warming treatments and mimicked herbivory caused, on average, a two- and fourfold increase in monoterpene emissions, respectively. When combined, emissions increased 11-fold, revealing a strong synergy between warming and herbivory. The synergistic effect was even more pronounced for homoterpene emissions. These findings suggest that, in the rapidly warming Arctic, insect herbivory may be a primary determinant of VOC emissions during periods of active herbivore feeding.
Collapse
Affiliation(s)
- Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Holst
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Geography & Ecosystem Science, Lund University, Lund, Sweden
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
56
|
Moreira X, Abdala-Roberts L. Specificity and context-dependency of plant-plant communication in response to insect herbivory. CURRENT OPINION IN INSECT SCIENCE 2019; 32:15-21. [PMID: 31113626 DOI: 10.1016/j.cois.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/16/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
Over three decades of work on airborne plant communication have taught us that plants send, receive, and respond to volatile organic compounds (VOCs) emitted by conspecific as well as heterospecific neighbouring plants. Much of this research has focused on the consequences of plant-plant communication on resistance against herbivory, with studies showing that VOCs emitted by herbivore-damaged plants increase resistance of neighbouring undamaged plants. However, a key aspect that has received less attention concerns the ecological specificity and context-dependency of this phenomenon. Knowledge on this is crucial for assessing the ecological mechanisms that govern plant communication, determining its biological significance under natural conditions, as well as designing effective strategies for its application (e.g. in crop protection). Here we synthesize important advances from incipient work on the ecological specificity of plant communication according to three main aspects: plant-based specificity, herbivore-based specificity, and the influence of the abiotic context. We then provide some ideas for future research to improve our understanding of the specificity of plant communication and its ecological and evolutionary importance.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado, Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| |
Collapse
|
57
|
Ode PJ. Plant toxins and parasitoid trophic ecology. CURRENT OPINION IN INSECT SCIENCE 2019; 32:118-123. [PMID: 31113623 DOI: 10.1016/j.cois.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Parasitoids (parasitic wasps) are ubiquitous components of nearly all communities containing plant-insect herbivore associations. Plant toxin defenses against herbivores may also affect higher trophic levels by directly (e.g., plant toxins encountered in host hemolymph) or indirectly (e.g., plant toxins reduce host size/quality or alter the host's immunity against parasitoids). Yet, whether parasitoids structure plant-herbivore interactions remains relatively understudied. Nevertheless, recent meta-analyses and empirical work emphasize the importance of parasitoids in structuring interactions among lower trophic levels. Two promising areas of research are particularly ripe for future exploration: a) the potential for microbes to alter the interactions among plants, insect herbivores, and parasitoids, and b) the effects of climate change on phenological (mis)matches among trophic levels.
Collapse
Affiliation(s)
- Paul J Ode
- Department of Bioagricultural Sciences and Pest Management and the Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1177, United States.
| |
Collapse
|
58
|
Staudt M, Byron J, Piquemal K, Williams J. Compartment specific chiral pinene emissions identified in a Maritime pine forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1158-1166. [PMID: 30841390 DOI: 10.1016/j.scitotenv.2018.11.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
To track unknown sources and sinks of volatile organic compounds (VOCs) inside forest canopies we measured diel cycles of VOC exchanges in a temperate maritime forest at the branch, stem and ground level with special focus on the chiral signatures of pinenes. All compartments released day and night α- and β-pinene as major compounds. In addition, strong light dependent emissions of ocimene and linalool from branches occurred during hot summer days. In all compartments the overall emission strength of pinenes varied from day to day spanning 1 to 2 orders of magnitude. The highest pinene emissions from ground and stem were observed during high moisture conditions. Despite this variability stem emissions consistently expressed a different chiral composition than branch emissions, the former containing a much larger fraction of (-)-enantiomers than the latter. Pinene emissions from dead needle litter and soil were mostly enriched in (-)-enantiomers, while the chiral signatures of the ambient air inside the forest showed mostly intermediate levels compared to the emission signatures. These findings suggest that different organ-specific pinene producing enzymes exist in Maritime pine, and indicate that emissions from ground and stem compartments essentially contribute to the canopy VOC flux. Overall the results open new perspectives to explore chirality as a possible marker to recognize shifts in the contributions of different VOC sources present within forest ecosystems and to explain observed temporal changes in the chiral signature of pinenes in the atmosphere.
Collapse
Affiliation(s)
- Michael Staudt
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE Campus CNRS, 1919 Route de Mende, F-34293 Montpellier cedex 5, France.
| | - Joseph Byron
- Max-Planck-Institut für Chemie, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Karim Piquemal
- Centre d'Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE Campus CNRS, 1919 Route de Mende, F-34293 Montpellier cedex 5, France
| | - Jonathan Williams
- Max-Planck-Institut für Chemie, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| |
Collapse
|
59
|
Fabisch T, Gershenzon J, Unsicker SB. Specificity of Herbivore Defense Responses in a Woody Plant, Black Poplar (Populus nigra). J Chem Ecol 2019; 45:162-177. [PMID: 30788656 PMCID: PMC6469625 DOI: 10.1007/s10886-019-01050-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/08/2019] [Accepted: 01/21/2019] [Indexed: 11/25/2022]
Abstract
The specificity of woody plant defense responses to different attacking herbivores is poorly known. We investigated the responses of black poplar (Populus nigra) to leaf feeding by three lepidopteran species (Lymantria dispar, Laothoe populi and Amata mogadorensis) and two leaf beetle species (Phratora vulgatissima and Chrysomela populi). Of the direct defenses monitored, increases in trypsin protease inhibitor activity and the salicinoid salicin were triggered by herbivore damage, but this was not herbivore-specific. Moreover, the majority of leaf salicinoid content was present constitutively and not induced by herbivory. On the other hand, volatile emission profiles did vary among herbivore species, especially between coleopterans and lepidopterans. Monoterpenes and sesquiterpenes were induced in damaged and adjacent undamaged leaves, while the emission of green leaf volatiles, aromatic and nitrogen-containing compounds (known to attract herbivore enemies) was restricted to damaged leaves. In conclusion, indirect defenses appear to show more specific responses to attacking herbivores than direct defenses in this woody plant.
Collapse
Affiliation(s)
- Thomas Fabisch
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Sybille B Unsicker
- Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany.
| |
Collapse
|
60
|
Mechanisms of Resistance to Insect Herbivores in Isolated Breeding Lineages of Cucurbita pepo. J Chem Ecol 2019; 45:313-325. [DOI: 10.1007/s10886-019-01046-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/05/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
61
|
Pålsson J, Thöming G, Silva R, Porcel M, Dekker T, Tasin M. Recruiting on the Spot: A Biodegradable Formulation for Lacewings to Trigger Biological Control of Aphids. INSECTS 2019; 10:insects10010006. [PMID: 30621292 PMCID: PMC6358976 DOI: 10.3390/insects10010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/25/2018] [Accepted: 12/29/2018] [Indexed: 12/18/2022]
Abstract
Upon herbivory, plants release herbivore-induced plant volatiles (HIPVs), which induce chemical defenses in the plant as well as recruit natural enemies. However, whether synthetic HIPVs can be employed to enhance biological control in a cultivated crop in the field is yet to be explored. Here we show that a biodegradable formulation loaded with induced and food-signaling volatiles can selectively recruit the common green lacewing, Chrysoperla carnea, and reduce pest population under field conditions. In apple orchards, the new formulation attracted lacewing adults over a 4-week period, which correlated well with independent assessments of the longevity of the slow-release matrix measured through chemical analyses. In barley, lacewing eggs and larvae were significantly more abundant in treated plots, whereas a significant reduction of two aphid species was measured (98.9% and 93.6% of population reduction, for Sitobion avenae and Rhopalosiphum padi, respectively). Results show the potential for semiochemical-based targeted recruitment of lacewings to enhance biological control of aphids in a field setting. Further research should enhance selective recruitment by rewarding attracted natural enemies and by optimizing the application technique.
Collapse
Affiliation(s)
- Joakim Pålsson
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| | - Gunda Thöming
- NIBIO, Norwegian Institute of Bioeconomy Research, Postbox 115, NO-1431 Ås, Norway.
| | - Rodrigo Silva
- Isca Technologies Inc., 1230 Spring St., Riverside, CA 92507, USA.
| | - Mario Porcel
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| | - Marco Tasin
- Department of Plant Protection Biology, Swedish University of Agricultural Science, 230 53 Alnarp, Sweden.
| |
Collapse
|
62
|
Gowda JH, Palo RT, Udén P. Seasonal variation in the nutritional value of woody plants along a natural gradient in Eastern Africa. Afr J Ecol 2019. [DOI: 10.1111/aje.12583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Juan Haridas Gowda
- Laboratorio Ecotono, INIBIOMA CONICET‐Universidad Nacional del Comahue Bariloche Argentina
| | - R. Thomas Palo
- Department of Wildlife, Fish and Environmental Studies, Faculty of Forest SciencesSLU Umeå Sweden
| | - Peter Udén
- Department of Animal Health and Nutrition SLU Uppsala Sweden
| |
Collapse
|
63
|
De Lange ES, Salamanca J, Polashock J, Rodriguez-Saona C. Genotypic Variation and Phenotypic Plasticity in Gene Expression and Emissions of Herbivore-Induced Volatiles, and their Potential Tritrophic Implications, in Cranberries. J Chem Ecol 2019; 45:298-312. [PMID: 30607684 DOI: 10.1007/s10886-018-1043-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
Herbivorous insects are important problems in cranberry (Vaccinium macrocarpon Ait.) production. The use of chemical pesticides is common practice, but beneficial insects such as natural enemies of herbivores (e.g. predators and parasitoids) could be affected as well. Therefore, we studied the defensive mechanisms that cranberry plants use to combat pests, focusing on herbivore-induced plant volatiles (HIPVs), which can be used to recruit predators and parasitoids foraging for prey or hosts. Then, we used synthetic HIPVs to test the attraction of natural enemies. In a greenhouse, we assessed nine cranberry genotypes for expression of genes involved in HIPV biosynthesis and/or emission of HIPVs. In an experimental field, we assessed whether baiting traps with individual or combinations of HIPVs increased attractiveness to natural enemies. The results showed that different cranberry genotypes vary in their emission of monoterpenes and sesquiterpenes but not in their expression of two genes associated with terpene biosynthesis, α-humulene/β-caryophyllene synthase and (3S,6E)-nerolidol/R-linalool synthase. Induction with methyl jasmonate or herbivore (gypsy moth, Lymantria dispar L.) feeding increased the expression of these genes and emission of HIPVs. The HIPV methyl salicylate (MeSA), alone or in combination with other HIPVs, increased syrphid attraction by 6-fold in the field, while (Z)-3-hexenyl acetate and MeSA repelled ladybeetles and megaspilids, respectively. Linalool and β-caryophyllene elicited no behavioral responses of natural enemies. Elucidating the mechanisms of pest resistance, as well as experimentally augmenting plant defenses such as HIPVs, may contribute to the development of more sustainable pest management practices in crops, including cranberries.
Collapse
Affiliation(s)
- Elvira S De Lange
- Department of Entomology and Nematology, University of California Davis, 1 Shields Avenue, 367 Briggs Hall, Davis, CA, 95616, USA.
| | - Jordano Salamanca
- Escuela de Ciencias Agrícolas, Pecuarias y de Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | - James Polashock
- Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture-Agricultural Research Service, 125A Lake Oswego Road, Chatsworth, NJ, 08019, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ, 08019, USA
| |
Collapse
|
64
|
De Lange ES, Rodriguez-Saona C. Does enhanced nutrient availability increase volatile emissions in cranberry? PLANT SIGNALING & BEHAVIOR 2019; 14:1616517. [PMID: 31131703 PMCID: PMC6619975 DOI: 10.1080/15592324.2019.1616517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nutrient availability impacts plant indirect defenses, such as emissions of herbivore-induced plant volatiles (HIPVs) that attract natural enemies of herbivores. However, the effects are variable depending on the cropping system, and emissions may increase, decrease, or be not affected by nutrient availability. Here, we evaluated the effects of different fertilizer regimes, which varied nitrogen (N), phosphorus (P), and potassium (K) availability, on HIPV emissions in cranberry, Vaccinium macrocarpon Ait. Plants included six cranberry varieties that were subjected to four different fertilizer regimes and either noninduced or induced with methyl jasmonate (MeJA), an elicitor of HIPVs, in a 6 × 4 × 2 factorial design. Results show that enhanced NPK fertilizer applications increased total HIPV emissions in MeJA-treated cranberries, regardless of variety. This effect was due to an increase in plant fresh weight. Although the ecological effects of increased HIPV emissions need to be investigated, these findings may have implications for natural enemy manipulation in agro-ecosystems.
Collapse
Affiliation(s)
- Elvira S. De Lange
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
- CONTACT Elvira S. de Lange Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Cesar Rodriguez-Saona
- P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ, USA
| |
Collapse
|
65
|
Visakorpi K, Gripenberg S, Malhi Y, Bolas C, Oliveras I, Harris N, Rifai S, Riutta T. Small-scale indirect plant responses to insect herbivory could have major impacts on canopy photosynthesis and isoprene emission. THE NEW PHYTOLOGIST 2018; 220:799-810. [PMID: 30047151 DOI: 10.1111/nph.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/11/2018] [Indexed: 05/26/2023]
Abstract
Insect herbivores cause substantial changes in the leaves they attack, but their effects on the ecophysiology of neighbouring, nondamaged leaves have never been quantified in natural canopies. We studied how winter moth (Operophtera brumata), a common herbivore in temperate forests, affects the photosynthetic and isoprene emission rates of its host plant, the pedunculate oak (Quercus robur). Through a manipulative experiment, we measured leaves on shoots damaged by caterpillars or mechanically by cutting, or left completely intact. To quantify the effects at the canopy scale, we surveyed the extent and patterns of leaf area loss in the canopy. Herbivory reduced photosynthesis both in damaged leaves and in their intact neighbours. Isoprene emission rates significantly increased after mechanical leaf damage. When scaled up to canopy-level, herbivory reduced photosynthesis by 48 ± 10%. The indirect effects of herbivory on photosynthesis in undamaged leaves (40%) were much more important than the direct effects of leaf area loss (6%). If widespread across other plant-herbivore systems, these findings suggest that insect herbivory has major and previously underappreciated influences in modifying ecosystem carbon cycling, with potential effects on atmospheric chemistry.
Collapse
Affiliation(s)
- Kristiina Visakorpi
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Sofia Gripenberg
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Conor Bolas
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Imma Oliveras
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Neil Harris
- Centre for Atmospheric Informatics and Emissions Technology, Cranfield University, Cranfield, MK43 0AL, UK
| | - Sami Rifai
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| |
Collapse
|
66
|
Moreira X, Nell CS, Katsanis A, Rasmann S, Mooney KA. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae). THE NEW PHYTOLOGIST 2018; 220:703-713. [PMID: 27597176 DOI: 10.1111/nph.14164] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/20/2016] [Indexed: 05/24/2023]
Abstract
It is well known that plant damage by leaf-chewing herbivores can induce resistance in neighbouring plants. It is unknown whether such communication occurs in response to sap-feeding herbivores, whether communication is specific to herbivore identity, and the chemical basis of communication, including specificity. We carried out glasshouse experiments using the California-native shrub Baccharis salicifolia and two ecologically distinct aphid species (one a dietary generalist and the other a specialist) to test for specificity of plant-plant communication and to document the underlying volatile organic compounds (VOCs). We show specificity of plant-plant communication to herbivore identity, as each aphid-damaged plant only induced resistance in neighbours against the same aphid species. The amount and composition of induced VOCs were markedly different between plants attacked by the two aphid species, providing a putative chemical mechanism for this specificity. Furthermore, a synthetic blend of the five major aphid-induced VOCs (ethanone, limonene, methyl salicylate, myrcene, ocimene) triggered resistance in receiving plants of comparable magnitude to aphid damage of neighbours, and the effects of the blend exceeded those of individual compounds. This study significantly advances our understanding of plant-plant communication by demonstrating the importance of sap-feeding herbivores and herbivore identity, as well as the chemical basis for such effects.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, Pontevedra, Galicia, 36080, Spain
| | - Colleen S Nell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Angelos Katsanis
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
67
|
Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. THE NEW PHYTOLOGIST 2018; 220:726-738. [PMID: 28134434 DOI: 10.1111/nph.14428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/08/2016] [Indexed: 05/04/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.
Collapse
Affiliation(s)
- Holger Danner
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
| | - Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- European Biological Control Laboratory, USDA-ARS, CS 90013, Montferrier-sur-Lez, France
| | - Simona M Cristescu
- Life Science Trace Gas Facility, Institute for Molecules and Materials, Radboud University, 6500, GL Nijmegen, the Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, Jena, 07743, Germany
| |
Collapse
|
68
|
Sharifi R, Lee SM, Ryu CM. Microbe-induced plant volatiles. THE NEW PHYTOLOGIST 2018; 220:684-691. [PMID: 29266296 DOI: 10.1111/nph.14955] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/13/2017] [Indexed: 05/20/2023]
Abstract
Plants emit a plethora of volatile organic compounds in response to biotic and abiotic stresses. These compounds act as infochemicals for ecological communication in the phytobiome. This study reviews the role of microbe-induced plant volatiles (MIPVs) in plant-microbe interactions. MIPVs are affected by the taxonomic position of the microbe, the identity of the plant and the type of interaction. Plants also emit exclusive blends of volatiles in response to nonhost and host interactions, as well as to beneficial microbes and necrotrophic/biotrophic pathogens. These MIPVs directly inhibit pathogen growth and indirectly promote resistance/susceptibility to subsequent plant pathogen attack. Viruses and phloem-limiting bacteria modify plant volatiles to attract insect vectors. Susceptible plants can respond to MIPVs from resistant plants and become resistant. Recent advances in our understanding of the molecular mechanisms of MIPV synthesis in plants and how plant pathogen effectors manipulate their biosynthesis are discussed. This knowledge will help broaden our understanding of plant-microbe interactions and should facilitate the development of new emerging techniques for sustainable plant disease management.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 34141, South Korea
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, 6715685438, Iran
| | - Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 34141, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34242, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon, 34141, South Korea
- Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, 34242, South Korea
| |
Collapse
|
69
|
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K. Green leaf volatile production by plants: a meta-analysis. THE NEW PHYTOLOGIST 2018; 220:666-683. [PMID: 28665020 DOI: 10.1111/nph.14671] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
666 I. Introduction 667 II. Biosynthesis 667 III. Meta-analysis 669 IV. The type of stress influences the total amount of GLVs released 669 V. Herbivores can modulate the wound-induced release of GLVs 669 VI. Fungal infection greatly induces GLV production 672 VII. Monocots and eudicots respond differentially to different types of stress 673 VIII. The type of stress does not influence the proportion of GLVs per chemical class 673 IX. The type of stress does influence the isomeric ratio within each chemical class 674 X. GLVs: from signal perception to signal transduction 676 XI. GLVs influence the C/N metabolism 677 XII. Interaction with plant hormones 678 XIII. General conclusions and unanswered questions 678 Acknowledgements 679 References 679 SUMMARY: Plants respond to stress by releasing biogenic volatile organic compounds (BVOCs). Green leaf volatiles (GLVs), which are abundantly produced across the plant kingdom, comprise an important group within the BVOCs. They can repel or attract herbivores and their natural enemies; and they can induce plant defences or prime plants for enhanced defence against herbivores and pathogens and can have direct toxic effects on bacteria and fungi. Unlike other volatiles, GLVs are released almost instantly upon mechanical damage and (a)biotic stress and could thus function as an immediate and informative signal for many organisms in the plant's environment. We used a meta-analysis approach in which data from the literature on GLV production during biotic stress responses were compiled and interpreted. We identified that different types of attackers and feeding styles add a degree of complexity to the amount of emitted GLVs, compared with wounding alone. This meta-analysis illustrates that there is less variation in the GLV profile than we presumed, that pathogens induce more GLVs than insects and wounding, and that there are clear differences in GLV emission between monocots and dicots. Besides the meta-analysis, this review provides an update on recent insights into the perception and signalling of GLVs in plants.
Collapse
Affiliation(s)
- Maarten Ameye
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Silke Allmann
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Jan Verwaeren
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 94215, 1090 GE, Amsterdam, the Netherlands
| | - Kris Audenaert
- Department of Applied Bioscience, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, B-9000, Ghent, Belgium
| |
Collapse
|
70
|
Shlichta JG, Cuny MA, Hernandez-Cumplido J, Traine J, Benrey B. Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
71
|
Moreira X, Abdala-Roberts L, Gols R, Francisco M. Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Sci Rep 2018; 8:12678. [PMID: 30140028 PMCID: PMC6107632 DOI: 10.1038/s41598-018-31041-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 11/27/2022] Open
Abstract
Studies reporting domestication effects on plant defences have focused on constitutive, but not on induced defences. However, theory predicts a trade-off between constitutive (CD) and induced defences (ID), which intrinsically links both defensive strategies and argues for their joint consideration in plant domestications studies. We measured constitutive and induced glucosinolates in wild cabbage (Brassica oleracea ssp. oleracea) and two domesticated varieties (B. oleracea var. acephala and B. oleracea var. capitata) in which the leaves have been selected to grow larger. We also estimated leaf area (proxy of leaf size) to assess size-defence trade-offs and whether domestication effects on defences are indirect via selection for larger leaves. Both CD and ID were lower in domesticated than in wild cabbage and they were negatively correlated (i.e. traded off) in all of the cabbage lines studied. Reductions in CD were similar in magnitude for leaves and stems, and CD and leaf size were uncorrelated. We conclude that domestication of cabbage has reduced levels not only constitutive defences but also their inducibility, and that reductions in CD may span organs not targeted by breeding. This reduction in defences in domesticated cabbage is presumably the result of direct selection rather than indirect effects via trade-offs between size and defences.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, Mexico
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain.
| |
Collapse
|
72
|
Schuman MC, Baldwin IT. Field studies reveal functions of chemical mediators in plant interactions. Chem Soc Rev 2018; 47:5338-5353. [PMID: 29770376 DOI: 10.1039/c7cs00749c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plants are at the trophic base of most ecosystems, embedded in a rich network of ecological interactions in which they evolved. While their limited range and speed of motion precludes animal-typical behavior, plants are accomplished chemists, producing thousands of specialized metabolites which may function to convey information, or even to manipulate the physiology of other organisms. Plants' complex interactions and their underlying mechanisms are typically dissected within the controlled environments of growth chambers and glasshouses, but doing so introduces conditions alien to plants evolved in natural environments, such as being pot-bound, and receiving artificial light with a spectrum very different from sunlight. The mechanistic understanding gained from a reductionist approach provides the tools required to query and manipulate plant interactions in real-world settings. The few tests conducted in natural ecosystems and agricultural fields have highlighted the limitations of studying plant interactions only in artificial environments. Here, we focus on three examples of known or hypothesized chemical mediators of plants' interactions: the volatile phytohormone ethylene (ET), more complex plant volatile blends, and as-yet-unknown mediators transferred by common mycorrhizal networks (CMNs). We highlight how mechanistic knowledge has advanced research in all three areas, and the critical importance of field work if we are to put our understanding of chemical ecology on rigorous experimental and theoretical footing, and demonstrate function.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | | |
Collapse
|
73
|
High levels of abiotic noise in volatile organic compounds released by a desert perennial: implications for the evolution and ecology of airborne chemical communication. Oecologia 2018; 188:367-379. [DOI: 10.1007/s00442-018-4225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
|
74
|
McGale E, Diezel C, Schuman MC, Baldwin IT. Cry1Ac production is costly for native plants attacked by non-Cry1Ac-targeted herbivores in the field. THE NEW PHYTOLOGIST 2018; 219:714-727. [PMID: 29754424 DOI: 10.1111/nph.15207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 05/11/2023]
Abstract
Plants are the primary producers in most terrestrial ecosystems and have complex defense systems to protect their produce. Defense-deficient, high-yielding agricultural monocultures attract abundant nonhuman consumers, but are alternatively defended through pesticide application and genetic engineering to produce insecticidal proteins such as Cry1Ac (Bacillus thuringiensis). These approaches alter the balance between yield protection and maximization but have been poorly contextualized to known yield-defense trade-offs in wild plants. The native plant Nicotiana attenuata was used to compare yield benefits of plants transformed to be defenseless to those with a full suite of naturally evolved defenses, or additionally transformed to ectopically produce Cry1Ac. An insecticide treatment allowed us to examine yield under different herbivore loads in N. attenuata's native habitat. Cry1Ac, herbivore damage, and growth parameters were monitored throughout the season. Biomass and reproductive correlates were measured at season end. Non-Cry1Ac-targeted herbivores dominated on noninsecticide-treated plants, and increased the yield drag of Cry1Ac-producing plants in comparison with endogenously defended or undefended plants. Insecticide-sprayed Cry1Ac-producing plants lagged less in stalk height, shoot biomass, and flower production. In direct comparison with the endogenous defenses of a native plant, Cry1Ac production did not provide yield benefits for plants under observed herbivore loads in a field study.
Collapse
Affiliation(s)
- Erica McGale
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| | - Celia Diezel
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| | - Meredith C Schuman
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Jena, 07745, Thüringen, Germany
| |
Collapse
|
75
|
Mills NJ, Heimpel GE. Could increased understanding of foraging behavior help to predict the success of biological control? CURRENT OPINION IN INSECT SCIENCE 2018; 27:26-31. [PMID: 30025631 DOI: 10.1016/j.cois.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Importation biological control, the introduction of a specialist natural enemy from the region of origin of an invasive pest or weed, has been practiced for more than 100 years and has provided some iconic success stories, but also a number of failures. To improve both the success and safety of biological control in the future it is important to consider all opportunities that can help to transform biological control into a more predictive science. Once established, whether or not an imported natural enemy can reduce the abundance and distribution of an invasive host, likely depends on a suite of life history and behavioral traits that include phenological synchronization and foraging efficiency among many others. One key aspect of foraging efficiency is how individuals respond to the patchy distribution of hosts in a spatially fragmented environment when facing potential competition and predation risk. Another is what distributions of natural enemy foraging effort lead to the greatest temporal reduction in mean host density among patches. Here we explore the current theoretical framework for natural enemy foraging behavior and find some evidence that a weak resource dilution distribution of natural enemies among patches might be an important trait for improving the success of importation biological control.
Collapse
Affiliation(s)
- Nicholas J Mills
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94706-3114, USA.
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
76
|
Effects of Basal Defoliation on Wine Aromas: A Meta-Analysis. Molecules 2018; 23:molecules23040779. [PMID: 29597302 PMCID: PMC6017958 DOI: 10.3390/molecules23040779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023] Open
Abstract
Basal defoliation, as one of the most common viticulture management practices to modify fruit zone microclimates, has been widely applied aiming at improving wine quality. Wine aroma contributes greatly to wine quality, yet the effects of basal defoliation on wine aromas show discrepancies according to previous studies. This study is a meta-analysis performed to dissect the factors related to the influence of basal defoliation on volatile compounds in wine. Timing of basal defoliation plays an important role in the concentration of varietal aromas in wine. Pre-veraison defoliation induces an increase in β-damascenone and linalool as well as a reduction in 3-isobutyl-2-methoxypyrazine (IBMP). The effects of basal defoliation on certain volatile compounds relative to fermentation aromas in wine (1-hexanol, β-phenylethanol, 2-phenylethyl acetate, decanoic acid, and ethyl octanoate) depend on grape maturity. There are also other factors, such as cultivar and climate conditions, that might be responsible for the effect of basal defoliation on wine aromas. The concentrations of isobutanol, isoamyl alcohol, hexanoic acid, and octanoic acid as well as ethyl isobutyrate, ethyl hexanoate, ethyl isovalerate, and ethyl decanoate in wine are not markedly affected by basal defoliation. Due to limited studies included in this meta-analysis, more trials are needed to confirm the current findings.
Collapse
|
77
|
Rusman Q, Lucas‐Barbosa D, Poelman EH. Dealing with mutualists and antagonists: Specificity of plant‐mediated interactions between herbivores and flower visitors, and consequences for plant fitness. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University Wageningen The Netherlands
| |
Collapse
|
78
|
Gaillard MDP, Glauser G, Robert CAM, Turlings TCJ. Fine-tuning the 'plant domestication-reduced defense' hypothesis: specialist vs generalist herbivores. THE NEW PHYTOLOGIST 2018; 217:355-366. [PMID: 28877341 DOI: 10.1111/nph.14757] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/14/2017] [Indexed: 05/19/2023]
Abstract
Domesticated plants are assumed to have weakened chemical defenses. We argue, however, that artificial selection will have maintained defense traits against specialized herbivores that have coexisted with the crops throughout their domestication. We assessed the performance of eight species of insect herbivores from three feeding guilds on six European maize lines and six populations of their wild ancestor, teosinte. A metabolomics approach was used in an attempt to identify compounds responsible for observed differences in insect performance. Insects consistently performed better on maize than on teosinte. As hypothesized, this difference was greater for generalist herbivores that are normally not found on teosinte. We also found clear differences in defense metabolites among the different genotypes, but none that consistently correlated with differences in performance. Concentrations of benzoxazinoids, the main chemical defense in maize, tended to be higher in leaves of teosinte, but the reverse was true for the roots. It appears that chemical defenses that target specialized insects are still present at higher concentrations in cultivated maize than compounds that are more effective against generalists. These weakened broad-spectrum defenses in crops may explain the successes of novel pests.
Collapse
Affiliation(s)
- Mickaël D P Gaillard
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry (NPAC), University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Christelle A M Robert
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Institute of Plant Sciences, Section Biotic Interactions, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Ted C J Turlings
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| |
Collapse
|
79
|
Aartsma Y, Bianchi FJJA, van der Werf W, Poelman EH, Dicke M. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. THE NEW PHYTOLOGIST 2017; 216:1054-1063. [PMID: 28195346 PMCID: PMC6079636 DOI: 10.1111/nph.14475] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/14/2017] [Indexed: 05/19/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology.
Collapse
Affiliation(s)
- Yavanna Aartsma
- Farming Systems EcologyWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
- Laboratory of EntomologyWageningen UniversityPO Box 16Wageningen6700 AAthe Netherlands
- Centre for Crop Systems AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
| | | | - Wopke van der Werf
- Centre for Crop Systems AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityPO Box 16Wageningen6700 AAthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 16Wageningen6700 AAthe Netherlands
| |
Collapse
|
80
|
Cuny MAC, Shlichta GJ, Benrey B. The Large Seed Size of Domesticated Lima Beans Mitigates Intraspecific Competition among Seed Beetle Larvae. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
81
|
Vidal MC, Murphy SM. Bottom‐up vs. top‐down effects on terrestrial insect herbivores: a meta‐analysis. Ecol Lett 2017; 21:138-150. [DOI: 10.1111/ele.12874] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Mayra C. Vidal
- Department of Biological Sciences University of Denver Denver CO USA
| | - Shannon M. Murphy
- Department of Biological Sciences University of Denver Denver CO USA
| |
Collapse
|
82
|
Stenberg JA. A Conceptual Framework for Integrated Pest Management. TRENDS IN PLANT SCIENCE 2017; 22:759-769. [PMID: 28687452 DOI: 10.1016/j.tplants.2017.06.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 05/11/2023]
Abstract
The concept of integrated pest management (IPM) has been accepted and incorporated in public policies and regulations in the European Union and elsewhere, but a holistic science of IPM has not yet been developed. Hence, current IPM programs may often be considerably less efficient than the sum of separately applied individual crop protection actions. Thus, there is a clear need to formulate general principles for synergistically combining traditional and novel IPM actions to improve efforts to optimize plant protection solutions. This paper addresses this need by presenting a conceptual framework for a modern science of IPM. The framework may assist attempts to realize the full potential of IPM and reduce risks of deficiencies in the implementation of new policies and regulations.
Collapse
Affiliation(s)
- Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden.
| |
Collapse
|
83
|
Sobhy IS, Miyake A, Shinya T, Galis I. Oral Secretions Affect HIPVs Induced by Generalist (Mythimna loreyi) and Specialist (Parnara guttata) Herbivores in Rice. J Chem Ecol 2017; 43:929-943. [DOI: 10.1007/s10886-017-0882-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
|
84
|
Ponzio C, Papazian S, Albrectsen BR, Dicke M, Gols R. Dual herbivore attack and herbivore density affect metabolic profiles of Brassica nigra leaves. PLANT, CELL & ENVIRONMENT 2017; 40:1356-1367. [PMID: 28155236 DOI: 10.1111/pce.12926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 05/18/2023]
Abstract
Plant responses to dual herbivore attack are increasingly studied, but effects on the metabolome have largely been restricted to volatile metabolites and defence-related non-volatile metabolites. However, plants subjected to stress, such as herbivory, undergo major changes in both primary and secondary metabolism. Using a naturally occurring system, we investigated metabolome-wide effects of single or dual herbivory on Brassica nigra plants by Brevicoryne brassicae aphids and Pieris brassicae caterpillars, while also considering the effect of aphid density. Metabolomic analysis of leaf material showed that single and dual herbivory had strong effects on the plant metabolome, with caterpillar feeding having the strongest influence. Additionally, aphid-density-dependent effects were found in both the single and dual infestation scenarios. Multivariate analysis revealed treatment-specific metabolomic profiles, and effects were largely driven by alterations in the glucosinolate and sugar pools. Our work shows that analysing the plant metabolome as a single entity rather than as individual metabolites provides new insights into the subcellular processes underlying plant defence against multiple herbivore attackers. These processes appear to be importantly influenced by insect density.
Collapse
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Stefano Papazian
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Benedicte R Albrectsen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
85
|
Puentes A, Björkman C. Costs and benefits of omnivore-mediated plant protection: effects of plant-feeding on Salix growth more detrimental than expected. Oecologia 2017; 184:485-496. [PMID: 28509951 PMCID: PMC5487851 DOI: 10.1007/s00442-017-3878-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/28/2017] [Indexed: 11/10/2022]
Abstract
Predators can decrease herbivore damage to plants, and this is often assumed to be beneficial to plant growth/reproduction without actual quantification. Moreover, previous studies have been biased towards strict carnivores and neglected the role of omnivorous predators in prey-suppression. Here, we examined the costs (reduction in growth) and benefits (increase in growth) of enemy-mediated plant protection via the omnivorous (prey and plant-feeding) Orthotylus marginalis, relative to herbivory by a detrimental insect pest of Salix spp. plantations, the beetle Phratora vulgatissima. In a first experiment, we compared the cost of adult beetle versus omnivore nymph plant-feeding, and assessed the (non-) additive effects of the two types of damage. In a second experiment, we quantified the reduction in plant damage resulting from beetle-egg feeding by omnivorous nymphs and subsequent benefits to plants. We found that plant-feeding by omnivores negatively affected plant growth and this effect was similar to the cost imposed by beetle herbivory. Furthermore, simultaneous damage effects were additive and more detrimental than individual effects. While egg-predation by omnivore nymphs completely prevented beetle damage to plants, there was no difference in plant growth relative to only herbivore-damaged plants and growth was still reduced compared to control plants. Thus, despite herbivore suppression, there was no benefit to plant growth of omnivore-mediated plant protection and the negative effects of omnivore plant-feeding remained. These results are a first for an omnivorous enemy, and provide novel and timely insights on the underlying assumptions of tri-trophic associations and their use for biocontrol of insect pests.
Collapse
Affiliation(s)
- Adriana Puentes
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07, Uppsala, Sweden.
| | - Christer Björkman
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07, Uppsala, Sweden
| |
Collapse
|
86
|
Whitehead SR, Turcotte MM, Poveda K. Domestication impacts on plant-herbivore interactions: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160034. [PMID: 27920379 PMCID: PMC5182430 DOI: 10.1098/rstb.2016.0034] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
For millennia, humans have imposed strong selection on domesticated crops, resulting in drastically altered crop phenotypes compared with wild ancestors. Crop yields have increased, but a long-held hypothesis is that domestication has also unintentionally decreased plant defences against herbivores. To test this hypothesis, we conducted a phylogenetically controlled meta-analysis comparing insect herbivore resistance and putative plant defence traits between crops and their wild relatives. Our database included 2098 comparisons made across 73 crops in 89 studies. We found that domestication consistently reduced plant resistance to herbivores, although the magnitude of the effects varied across plant organs and depended on how resistance was measured. However, domestication had no consistent effects on the specific plant defence traits underlying resistance, including secondary metabolites and physical feeding barriers. The values of these traits sometimes increased and sometimes decreased during domestication. Consistent negative effects of domestication were observed only when defence traits were measured in reproductive organs or in the plant organ that was harvested. These results highlight the complexity of evolution under domestication and the need for an improved theoretical understanding of the mechanisms through which agronomic selection can influence the species interactions that impact both the yield and sustainability of our food systems.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Susan R Whitehead
- Department of Entomology, Cornell University, Comstock Hall 4117, Ithaca, NY 14853, USA
| | - Martin M Turcotte
- Center for Adaptation to a Changing Environment, CHN G35.1, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich 8092, Switzerland
| | - Katja Poveda
- Department of Entomology, Cornell University, Comstock Hall 4117, Ithaca, NY 14853, USA
| |
Collapse
|
87
|
Mescher MC, Pearse IS. Communicative interactions involving plants: information, evolution, and ecology. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:69-76. [PMID: 27421106 DOI: 10.1016/j.pbi.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
The role of information obtained via sensory cues and signals in mediating the interactions of organisms with their biotic and abiotic environments has been a major focus of work on sensory and behavioral ecology. Information-mediated interactions also have important implications for broader ecological patterns emerging at the community and ecosystem levels that are only now beginning to be explored. Given the extent to which plants dominate the sensory landscapes of terrestrial ecosystems, information-mediated interactions involving plants should be a major focus of efforts to elucidate these broader patterns. Here we explore how such efforts might be enhanced by a clear understanding of information itself-a central and potentially unifying concept in biology that has nevertheless been the subject of considerable confusion-and of its relationship to adaptive evolution and ecology. We suggest that information-mediated interactions should be a key focus of efforts to more fully integrate evolutionary biology and ecology.
Collapse
Affiliation(s)
- Mark C Mescher
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Ian S Pearse
- Department of Evolution & Ecology, University of California, Davis, United States.
| |
Collapse
|
88
|
Mitchell C, Brennan RM, Graham J, Karley AJ. Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection. FRONTIERS IN PLANT SCIENCE 2016; 7:1132. [PMID: 27524994 PMCID: PMC4965446 DOI: 10.3389/fpls.2016.01132] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/15/2016] [Indexed: 05/03/2023]
Abstract
Interactions between plants and insect herbivores are important determinants of plant productivity in managed and natural vegetation. In response to attack, plants have evolved a range of defenses to reduce the threat of injury and loss of productivity. Crop losses from damage caused by arthropod pests can exceed 15% annually. Crop domestication and selection for improved yield and quality can alter the defensive capability of the crop, increasing reliance on artificial crop protection. Sustainable agriculture, however, depends on reduced chemical inputs. There is an urgent need, therefore, to identify plant defensive traits for crop improvement. Plant defense can be divided into resistance and tolerance strategies. Plant traits that confer herbivore resistance typically prevent or reduce herbivore damage through expression of traits that deter pests from settling, attaching to surfaces, feeding and reproducing, or that reduce palatability. Plant tolerance of herbivory involves expression of traits that limit the negative impact of herbivore damage on productivity and yield. Identifying the defensive traits expressed by plants to deter herbivores or limit herbivore damage, and understanding the underlying defense mechanisms, is crucial for crop scientists to exploit plant defensive traits in crop breeding. In this review, we assess the traits and mechanisms underpinning herbivore resistance and tolerance, and conclude that physical defense traits, plant vigor and herbivore-induced plant volatiles show considerable utility in pest control, along with mixed species crops. We highlight emerging approaches for accelerating the identification of plant defensive traits and facilitating their deployment to improve the future sustainability of crop protection.
Collapse
Affiliation(s)
| | - Rex M. Brennan
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | |
Collapse
|
89
|
Dicke M. Induced plant volatiles: plant body odours structuring ecological networks. THE NEW PHYTOLOGIST 2016; 210:10-2. [PMID: 26919694 DOI: 10.1111/nph.13896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Marcel Dicke
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
90
|
Kessler A. Introduction to a Virtual Special Issue on plant volatiles. THE NEW PHYTOLOGIST 2016; 209:1333-1337. [PMID: 26840247 DOI: 10.1111/nph.13854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|