51
|
Liu X, Li Q, Wang F, Sun X, Wang N, Song H, Cui R, Wu P, Du N, Wang H, Wang R. Weak Tradeoff and Strong Segmentation Among Plant Hydraulic Traits During Seasonal Variation in Four Woody Species. FRONTIERS IN PLANT SCIENCE 2020; 11:585674. [PMID: 33329647 PMCID: PMC7732674 DOI: 10.3389/fpls.2020.585674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/03/2020] [Indexed: 05/08/2023]
Abstract
Plants may maintain long-term xylem function via efficiency-safety tradeoff and segmentation. Most studies focus on the growing season and community level. We studied species with different efficiency-safety tradeoff strategies, Quercus acutissima, Robinia pseudoacacia, Vitex negundo var. heterophylla, and Rhus typhina, to determine the seasonality of this mechanism. We separated their branches into perennial shoots and terminal twigs and monitored their midday water potential (Ψmd), relative water content (RWC), stem-specific hydraulic conductivity (Ks), loss of 12, 50, and 88% of maximum efficiency (i.e., P12, P50, P88) for 2 years. There were no correlations between water relations (Ψmd, RWC, Ks) and embolism resistance traits (P12, P50, P88) but they significantly differed between the perennial shoots and terminal twigs. All species had weak annual hydraulic efficiency-safety tradeoff but strong segmentation between the perennial shoots and the terminal twigs. R. pseudoacacia used a high-efficiency, low-safety strategy, whereas R. typhina used a high-safety, low-efficiency strategy. Q. acutissima and V. negundo var. heterophylla alternated these strategies. This mechanism provides a potential basis for habitat partitioning and niche divergence in the changing warm temperate zone environment.
Collapse
Affiliation(s)
- Xiao Liu
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qiang Li
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Feng Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Xiaohan Sun
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Huijia Song
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Rong Cui
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Pan Wu
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- *Correspondence: Hui Wang,
| | - Renqing Wang
- School of Life Sciences, Institute of Ecology and Biodiversity, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|
52
|
Pinho BX, Tabarelli M, Engelbrecht BM, Sfair J, Melo FP. Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic Appl Ecol 2019. [DOI: 10.1016/j.baae.2019.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
Waite PA, Schuldt B, Mathias Link R, Breidenbach N, Triadiati T, Hennings N, Saad A, Leuschner C. Soil moisture regime and palm height influence embolism resistance in oil palm. TREE PHYSIOLOGY 2019; 39:1696-1712. [PMID: 31135930 DOI: 10.1093/treephys/tpz061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
With the prospect of climate change and more frequent El Niño-related dry spells, the drought tolerance of oil palm (Elaeis guineensis Jacq.), one of the most important tropical crop species, is of major concern. We studied the influence of soil water availability and palm height on the plasticity of xylem anatomy of oil palm fronds and their embolism resistance at well-drained and seasonally flooded riparian sites in lowland Sumatra, Indonesia. We found overall mean P12 and P50 values, i.e., the xylem pressures at 12% or 50% loss of hydraulic conductance, of -1.05 and - 1.86 MPa, respectively, indicating a rather vulnerable frond xylem of oil palm. This matches diurnal courses of stomatal conductance, which in combination with the observed low xylem safety evidence a sensitive water loss regulation. While the xylem anatomical traits vessel diameter (Dh), vessel density and potential hydraulic conductivity (Kp) were not different between the sites, palms in the moister riparian plots had on average by 0.4 MPa higher P50 values than plants in the well-drained plots. This could largely be attributed to differences in palm height between systems. As a consequence, palms of equal height had 1.3 MPa less negative P50 values in the moister riparian plots than in the well-drained plots. While palm height was positively related to P50, Dh and Kp decreased with height. The high plasticity in embolism resistance may be an element of the drought response strategy of oil palm, which, as a monocot, has a relatively deterministic hydraulic architecture. We conclude that oil palm fronds develop a vulnerable water transport system, which may expose the palms to increasing drought stress in a warmer and drier climate. However, the risk of hydraulic failure may be reduced by considerable plasticity in the hydraulic system and the environmental control of embolism resistance, and a presumably large stem capacitance.
Collapse
Affiliation(s)
- Pierre-André Waite
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, Wuerzburg, Germany
| | - Roman Mathias Link
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
- Chair of Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, Wuerzburg, Germany
| | - Natalie Breidenbach
- Department of Forest Genetic and Forest Tree Breeding, Forestry Faculty, Buesgen Institute, University of Goettingen, Buesgenweg 2, Goettingen, Germany
| | - Triadiati Triadiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor, Indonesia
| | - Nina Hennings
- Department of Soil Science of Temperate Ecosystems, Forestry Faculty, Buesgen Institute, University of Goettingen, Buesgenweg 2, Goettingen, Germany
| | - Asmadi Saad
- Department of Soil Science, University of Jambi, Jalan Raya Jambi Muara Bulian KM 15 Mandalo Darat, Jambi, Sumatra, Indonesia
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2,Goettingen, Germany
| |
Collapse
|
54
|
Chen Y, Uriarte M, Wright SJ, Yu S. Effects of neighborhood trait composition on tree survival differ between drought and postdrought periods. Ecology 2019; 100:e02766. [PMID: 31161620 DOI: 10.1002/ecy.2766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Although direct tree demographic responses to drought are widely recognized, studies of drought-mediated changes in tree interactions are rare. We hypothesize that drought exacerbates soil-water limitation and intensifies competition for water, but reduces light limitation and competition for light. We predict that competition would be stronger for trees (1) consuming more water or more susceptible to water deficits during drought and (2) intercepting more light or more susceptible to shade during postdrought periods. We tested these predictions in a 50-ha tropical forest plot by quantifying the effects of neighborhood mean trait values on tree survival during versus after a severe drought. We used wood density (WD) and leaf mass per area (LMA) as proxies for water and light use strategies, respectively. Tree survival was lower, canopy loss was greater, and sapling recruitment was greater during the drought relative to postdrought census intervals. This suggests that drought pushed water deficits to lethal extremes and increased understory light availability. Relationships between survival and neighborhood WD were independent of drought, which is inconsistent with our first prediction. In contrast, relationships between survival and neighborhood LMA differed strongly with drought. Survival time was unaffected by neighborhood LMA during drought, but was longer for trees of all sizes in low-LMA neighborhoods in the postdrought census interval, consistent with the prediction of reduced competition for light during drought. Our results suggest that severe drought might increase light availability and reduce competition for light in moist tropical forests.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterhurerstrasse 190, Zurich, CH-8057, Switzerland
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | | | - Shixiao Yu
- School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
55
|
Temperature rising would slow down tropical forest dynamic in the Guiana Shield. Sci Rep 2019; 9:10235. [PMID: 31308403 PMCID: PMC6629855 DOI: 10.1038/s41598-019-46597-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/29/2019] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence shows that the functioning of the tropical forest biome is intimately related to the climate variability with some variables such as annual precipitation, temperature or seasonal water stress identified as key drivers of ecosystem dynamics. How tropical tree communities will respond to the future climate change is hard to predict primarily because several demographic processes act together to shape the forest ecosystem general behavior. To overcome this limitation, we used a joint individual-based model to simulate, over the next century, a tropical forest community experiencing the climate change expected in the Guiana Shield. The model is climate dependent: temperature, precipitation and water stress are used as predictors of the joint growth and mortality rates. We ran simulations for the next century using predictions of the IPCC 5AR, building three different climate scenarios (optimistic RCP2.6, intermediate, pessimistic RCP8.5) and a control (current climate). The basal area, above-ground fresh biomass, quadratic diameter, tree growth and mortality rates were then computed as summary statistics to characterize the resulting forest ecosystem. Whatever the scenario, all ecosystem process and structure variables exhibited decreasing values as compared to the control. A sensitivity analysis identified the temperature as the strongest climate driver of this behavior, highlighting a possible temperature-driven drop of 40% in average forest growth. This conclusion is alarming, as temperature rises have been consensually predicted by all climate scenarios of the IPCC 5AR. Our study highlights the potential slow-down danger that tropical forests will face in the Guiana Shield during the next century.
Collapse
|
56
|
Li X, Blackman CJ, Choat B, Rymer PD, Medlyn BE, Tissue DT. Drought tolerance traits do not vary across sites differing in water availability in Banksia serrata (Proteaceae). FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:624-633. [PMID: 30961787 DOI: 10.1071/fp18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Interspecific variation in plant hydraulic traits plays a major role in shaping species distributions across climates, yet variation within species is poorly understood. Here we report on intraspecific variation of hydraulic traits in Banksia serrata (L.f.) sampled from three sites characterised by contrasting climates (warm-wet, warm-dry and cool-wet). Hydraulic characteristics including vulnerability to embolism, hydraulic conductance, pressure-volume traits and key morphological traits were measured. Vulnerability to embolism in leaf and stem, defined by the water potential inducing 50 and 88% loss of hydraulic conductivity (P50 and P88 respectively), did not differ across sites. However, plants from the warm-dry environment exhibited higher stem conductivity (Ks) than the cool-wet environment. Leaf turgor loss point (TLP) did not vary among sites, but warm-dry site plants showed lower leaf capacitance (C*FT) and higher modulus of elasticity (ε) than the other two sites. Plants from the cool-wet site had lower specific leaf area (SLA) and plants from the warm-dry site had lower sapwood density (WD). Overall, key hydraulic traits were generally conserved across populations despite differences in mean site water availability, and the safety-efficiency trade-off was absent in this species. These results suggest that B. serrata has limited ability to adjust hydraulic architecture in response to environmental change and thus may be susceptible to climate change-type drought stress.
Collapse
Affiliation(s)
- Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chris J Blackman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; and Corresponding author.
| |
Collapse
|
57
|
van der Sande MT, Poorter L, Schnitzer SA, Engelbrecht BMJ, Markesteijn L. The hydraulic efficiency-safety trade-off differs between lianas and trees. Ecology 2019; 100:e02666. [PMID: 30801680 PMCID: PMC6850011 DOI: 10.1002/ecy.2666] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
Abstract
Hydraulic traits are important for woody plant functioning and distribution. Associations among hydraulic traits, other leaf and stem traits, and species’ performance are relatively well understood for trees, but remain poorly studied for lianas. We evaluated the coordination among hydraulic efficiency (i.e., maximum hydraulic conductivity), hydraulic safety (i.e., cavitation resistance), a suite of eight morphological and physiological traits, and species’ abundances for saplings of 24 liana species and 27 tree species in wet tropical forests in Panama. Trees showed a strong trade‐off between hydraulic efficiency and hydraulic safety, whereas efficiency and safety were decoupled in lianas. Hydraulic efficiency was strongly and similarly correlated with acquisitive traits for lianas and trees (e.g., positively with gas exchange rates and negatively with wood density). Hydraulic safety, however, showed no correlations with other traits in lianas, but with several in trees (e.g., positively with leaf dry matter content and wood density and negatively with gas exchange rates), indicating that in lianas hydraulic efficiency is an anchor trait because it is correlated with many other traits, while in trees both efficiency and safety are anchor traits. Traits related to shade tolerance (e.g., low specific leaf area and high wood density) were associated with high local tree sapling abundance, but not with liana abundance. Our results suggest that different, yet unknown mechanisms determine hydraulic safety and local‐scale abundance for lianas compared to trees. For trees, the trade‐off between efficiency and safety will provide less possibilities for ecological strategies. For lianas, however, the uncoupling of efficiency and safety could allow them to have high hydraulic efficiency, and hence high growth rates, without compromising resistance to cavitation under drought, thus allowing them to thrive and outperform trees under drier conditions.
Collapse
Affiliation(s)
- Masha T van der Sande
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.,Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, FL 32901, USA.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, Wisconsin, 53201 USA.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Bettina M J Engelbrecht
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.,Department of Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Lars Markesteijn
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.,School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2DG, United Kingdom
| |
Collapse
|
58
|
Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FDV, Cordoba EC, Fagundes MV, Garcia S, Guimaraes ZTM, Hertel M, Schietti J, Rodrigues-Souza J, Poorter L. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. THE NEW PHYTOLOGIST 2019; 221:1457-1465. [PMID: 30295938 DOI: 10.1111/nph.15463] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
Species distribution is strongly driven by local and global gradients in water availability but the underlying mechanisms are not clear. Vulnerability to xylem embolism (P50 ) is a key trait that indicates how species cope with drought and might explain plant distribution patterns across environmental gradients. Here we address its role on species sorting along a hydro-topographical gradient in a central Amazonian rainforest and examine its variance at the community scale. We measured P50 for 28 tree species, soil properties and estimated the hydrological niche of each species using an indicator of distance to the water table (HAND). We found a large hydraulic diversity, covering as much as 44% of the global angiosperm variation in P50 . We show that P50 : contributes to species segregation across a hydro-topographic gradient in the Amazon, and thus to species coexistence; is the result of repeated evolutionary adaptation within closely related taxa; is associated with species tolerance to P-poor soils, suggesting the evolution of a stress-tolerance syndrome to nutrients and drought; and is higher for trees in the valleys than uplands. The large observed hydraulic diversity and its association with topography has important implications for modelling and predicting forest and species resilience to climate change.
Collapse
Affiliation(s)
- Rafael S Oliveira
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Flavia R C Costa
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Emma van Baalen
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Arjen de Jonge
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - Paulo R Bittencourt
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Yanina Almanza
- Instituto de Biociencias, Universidade Federal de Mato Grosso, Av. Fernando Correa, CEP 78060-900, Cuiabá, Brazil
| | - Fernanda de V Barros
- Department of Plant Biology, Instituto de Biologia, University of Campinas, Caixa Postal 6109, CEP 13083-970, Campinas, SP, Brazil
| | - Edher C Cordoba
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Marina V Fagundes
- Restoration Ecology Research Group, Department of Ecology, Universidade Federal do Rio Grande do Norte, CEP 59072970, Natal, RN, Brazil
| | - Sabrina Garcia
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Zilza T M Guimaraes
- Programa de Pós-Graduação em Ciências de Florestas Tropicais, Instituto Nacional de Pesquisas da Amazônia, CEP 69080-971, Manaus, Brazil
| | - Mariana Hertel
- Laboratório de Fisiologia Vegetal, Universidade Estadual de Londrina, Londrina, CEP 86097850, PR, Brazil
| | - Juliana Schietti
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Jefferson Rodrigues-Souza
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
| | - Lourens Poorter
- Coordenação de Pesquisa em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa Postal 2223, CEP 69080-971, Manaus, Brazil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
59
|
Liu H, Gleason SM, Hao G, Hua L, He P, Goldstein G, Ye Q. Hydraulic traits are coordinated with maximum plant height at the global scale. SCIENCE ADVANCES 2019; 5:eaav1332. [PMID: 30788435 PMCID: PMC6374111 DOI: 10.1126/sciadv.aav1332] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/04/2019] [Indexed: 05/17/2023]
Abstract
Water must be transported long distances in tall plants, resulting in increasing hydraulic resistance, which may place limitations on the maximum plant height (H max) in a given habitat. However, the coordination of hydraulic traits with H max and habitat aridity remains poorly understood. To explore whether H max modifies the trade-off between hydraulic efficiency and safety or how water availability might influence the relationship between H max and other hydraulic traits, we compiled a dataset including H max and 11 hydraulic traits for 1281 woody species from 369 sites worldwide. We found that taller species from wet habitats exhibited greater xylem efficiency and lower hydraulic safety, wider conduits, lower conduit density, and lower sapwood density, which were all associated with habitat water availability. Plant height and hydraulic functioning appear to represent a single, coordinated axis of variation, aligned primarily with water availability, thus suggesting an important role for this axis in species sorting processes.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| | - Sean M. Gleason
- Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO 80526, USA
| | - Guangyou Hao
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110010, China
| | - Lei Hua
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Guillermo Goldstein
- Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires C1428EGA, Argentina
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Corresponding author.
| |
Collapse
|
60
|
Bartlett MK, Detto M, Pacala SW. Predicting shifts in the functional composition of tropical forests under increased drought and
CO
2
from trade‐offs among plant hydraulic traits. Ecol Lett 2018; 22:67-77. [DOI: 10.1111/ele.13168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 09/11/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Megan K. Bartlett
- Department of Ecology and Evolutionary Biology Princeton University 109 Eno Hall Princeton NJ08544 USA
- Princeton Environmental Institute Princeton University 129 Guyot Lane Princeton NJ08544 USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology Princeton University 109 Eno Hall Princeton NJ08544 USA
- Princeton Environmental Institute Princeton University 129 Guyot Lane Princeton NJ08544 USA
| | - Stephen W. Pacala
- Department of Ecology and Evolutionary Biology Princeton University 109 Eno Hall Princeton NJ08544 USA
- Princeton Environmental Institute Princeton University 129 Guyot Lane Princeton NJ08544 USA
| |
Collapse
|
61
|
Berenguer E, Malhi Y, Brando P, Cardoso Nunes Cordeiro A, Ferreira J, França F, Chesini Rossi L, Maria Moraes de Seixas M, Barlow J. Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0308. [PMID: 30297467 DOI: 10.1098/rstb.2017.0308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
Human-modified forests are an ever-increasing feature across the Amazon Basin, but little is known about how stem growth is influenced by extreme climatic events and the resulting wildfires. Here we assess for the first time the impacts of human-driven disturbance in combination with El Niño-mediated droughts and fires on tree growth and carbon accumulation. We found that after 2.5 years of continuous measurements, there was no difference in stem carbon accumulation between undisturbed and human-modified forests. Furthermore, the extreme drought caused by the El Niño did not affect carbon accumulation rates in surviving trees. In recently burned forests, trees grew significantly more than in unburned ones, regardless of their history of previous human disturbance. Wood density was the only significant factor that helped explain the difference in growth between trees in burned and unburned forests, with low wood-density trees growing significantly more in burned sites. Our results suggest stem carbon accumulation is resistant to human disturbance and one-off extreme drought events, and it is stimulated immediately after wildfires. However, these results should be seen with caution-without accounting for carbon losses, recruitment and longer-term changes in species composition, we cannot fully understand the impacts of drought and fire in the carbon balance of human-modified forests.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Nino on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Collapse
Affiliation(s)
- Erika Berenguer
- Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK .,Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Yadvinder Malhi
- Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
| | - Paulo Brando
- The Woods Hole Research Center, 149 Woods Hole Road, 02540-1644 Falmouth, MA, USA.,Instituto de Pesquisa Ambiental da Amazônia, Lago Norte, Brasília, DF, Brazil
| | - Amanda Cardoso Nunes Cordeiro
- Programa de Pós-Graduação em Ciências Ambientais, Instituto de Geociências, Universidade Federal do Pará, 66075-110 Belém, PA, Brazil
| | - Joice Ferreira
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100 Belém, PA, Brazil
| | - Filipe França
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.,Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100 Belém, PA, Brazil.,Instituto Federal de Minas Gerais, Rodovia Bambuí/Medeiros, Km-05, 38900-000 Bambuí, MG, Brazil
| | - Liana Chesini Rossi
- Departamento de Ecologia, Universidade Estadual Paulista, 13506-900 Rio Claro, SP, Brazil
| | | | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.,MCT/Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, São Braz, 66040-170 Belém, PA, Brazil
| |
Collapse
|
62
|
Rungwattana K, Kasemsap P, Phumichai T, Kanpanon N, Rattanawong R, Hietz P. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kanin Rungwattana
- Institute of BotanyUniversity of Natural Resources and Life Sciences Vienna Austria
| | - Poonpipope Kasemsap
- Hevea Research Platform in PartnershipDORAS CentreKasetsart University Bangkok Thailand
- Department of HorticultureFaculty of AgricultureKasetsart University Bangkok Thailand
| | | | - Nicha Kanpanon
- Department of HorticultureFaculty of AgricultureKasetsart University Bangkok Thailand
- UMR 1137, Ecologie et Ecophysiologie ForestièresFaculté des SciencesUniversité de Lorraine Vandoeure‐les‐Nancy France
| | - Ratchanee Rattanawong
- Nong Khai Rubber Research CenterRubber Research Institute of Thailand Rattanawapi District Nong Khai Thailand
| | - Peter Hietz
- Institute of BotanyUniversity of Natural Resources and Life Sciences Vienna Austria
| |
Collapse
|
63
|
Maréchaux I, Bonal D, Bartlett MK, Burban B, Coste S, Courtois EA, Dulormne M, Goret J, Mira E, Mirabel A, Sack L, Stahl C, Chave J. Dry‐season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Isabelle Maréchaux
- Laboratoire Evolution et Diversité Biologique UMR5174, CNRS, Université Paul Sabatier, IRD Toulouse Cedex 9 France
- AMAP, INRA, University of Montpellier, IRD, CIRAD, CNRS Montpellier France
- AgroParisTech‐ENGREF Paris France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRA, UMR Silva Nancy France
| | - Megan K. Bartlett
- Department of Ecology and Evolution University of California Los Angeles Los Angeles California
- Princeton Environmental Institute, Princeton University Princeton New Jersey
| | - Benoît Burban
- INRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane Kourou France
| | - Sabrina Coste
- Université de Guyane, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles Cayenne France
| | - Elodie A. Courtois
- Department of Biology University of Antwerp Wilrijk Belgium
- Laboratoire Écologie, évolution, interactions des systèmes amazoniens (LEEISA) Université de Guyane, CNRS Guyane Cayenne France
| | - Maguy Dulormne
- Université des Antilles, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université de Guyane Pointe à Pitre France
| | - Jean‐Yves Goret
- INRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane Kourou France
| | - Eléonore Mira
- Université des Antilles, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université de Guyane Pointe à Pitre France
| | - Ariane Mirabel
- Université de Guyane, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, INRA, Université des Antilles Cayenne France
| | - Lawren Sack
- Department of Ecology and Evolution University of California Los Angeles Los Angeles California
| | - Clément Stahl
- INRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane Kourou France
- Department of Biology University of Antwerp Wilrijk Belgium
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique UMR5174, CNRS, Université Paul Sabatier, IRD Toulouse Cedex 9 France
| |
Collapse
|
64
|
Plant Hydraulic Trait Covariation: A Global Meta-Analysis to Reduce Degrees of Freedom in Trait-Based Hydrologic Models. FORESTS 2018. [DOI: 10.3390/f9080446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current vegetation modeling strategies use broad categorizations of plants to estimate transpiration and biomass functions. A significant source of model error stems from vegetation categorizations that are mostly taxonomical with no basis in plant hydraulic strategy and response to changing environmental conditions. Here, we compile hydraulic traits from 355 species around the world to determine trait covariations in order to represent hydraulic strategies. Simple and stepwise regression analyses demonstrate the interconnectedness of multiple vegetative hydraulic traits, specifically, traits defining hydraulic conductivity and vulnerability to embolism with wood density and isohydricity. Drought sensitivity is strongly (Adjusted R2 = 0.52, p < 0.02) predicted by a stepwise linear model combining rooting depth, wood density, and isohydricity. Drought tolerance increased with increasing wood density and anisohydric response, but with decreasing rooting depth. The unexpected response to rooting depth may be due to other tradeoffs within the hydraulic system. Rooting depth was able to be predicted from sapwood specific conductivity and the water potential at 50% loss of conductivity. Interestingly, the influences of biome or growth form do not increase the accuracy of the drought tolerance model and were able to be omitted. Multiple regression analysis revealed 3D trait spaces and tradeoff axes along which species’ hydraulic strategies can be analyzed. These numerical trait spaces can reduce the necessary input to and parameterization of plant hydraulics modules, while increasing the physical representativeness of such simulations.
Collapse
|