51
|
Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nutritional eustress such as salinity or nutrient stress applied in soilless systems, is a convenient pre-harvest factor efficient in modulating the phytochemical components of horticultural crops, by triggering defensive mechanisms and accumulating plant secondary metabolites in plants tissues. Nevertheless, genetic material (cultivars with different pigmentation) dictates lettuce metabolites and physiological response to extrinsic eustress, with red leaf cultivars being highly nutrient packed notwithstanding the stress. Product quality can be meliorated equally by applying several cuts, a practice proven to increase bioactive compounds accumulation. In this study, we analyzed the effects of four salinity levels (1, 10, 20 and 30 mM NaCl) on green and red pigmented Salad Bowl lettuce (Lactuca sativa L. var. acephala) in two successive harvests cultivated in a floating raft system. The morphological parameters, mineral composition, leaf gas exchanges, bioactive compounds, and antioxidant activity of both cultivars were assessed. The green cultivar exhibited superior crop productivity but was more prone to salinity effect than the red cultivar. Irrespective of cultivar and cut order, the net photosynthesis decreased with increasing salinity in the nutrient solution. The second cut incurred higher dry biomass, greater accumulation of most minerals and higher photosynthetic activity. In red lettuce, 20 mM NaCl proved adequate eustress to increase phytonutrients and beneficial minerals (K, Ca, and Mg) with minimal loss of yield. Mild salinity and sequential harvest have proven effective pre-harvest tools in positively modulating the quality of lettuce. Eustress interaction with genotype was demonstrated as a promising field for future breeding programs targeting select genotypes for agronomic application of eustress to improve the nutraceutical value of vegetable crops.
Collapse
|
52
|
Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants. BIOLOGY 2020; 9:biology9090253. [PMID: 32872247 PMCID: PMC7564450 DOI: 10.3390/biology9090253] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
Algal biomass, extracts, or derivatives have long been considered a valuable material to bring benefits to humans and cultivated plants. In the last decades, it became evident that algal formulations can induce multiple effects on crops (including an increase in biomass, yield, and quality), and that algal extracts contain a series of bioactive compounds and signaling molecules, in addition to mineral and organic nutrients. The need to reduce the non-renewable chemical input in agriculture has recently prompted an increase in the use of algal extracts as a plant biostimulant, also because of their ability to promote plant growth in suboptimal conditions such as saline environments is beneficial. In this article, we discuss some research areas that are critical for the implementation in agriculture of macro- and microalgae extracts as plant biostimulants. Specifically, we provide an overview of current knowledge and achievements about extraction methods, compositions, and action mechanisms of algal extracts, focusing on salt-stress tolerance. We also outline current limitations and possible research avenues. We conclude that the comparison and the integration of knowledge on the molecular and physiological response of plants to salt and to algal extracts should also guide the extraction procedures and application methods. The effects of algal biostimulants have been mainly investigated from an applied perspective, and the exploitation of different scientific disciplines is still much needed for the development of new sustainable strategies to increase crop tolerance to salt stress.
Collapse
|
53
|
The potential improvements of naked barley pretreatments on GABA, β-glucan, and antioxidant properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109698] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
54
|
Wei W, Ye C, Huang HC, Yang M, Mei XY, Du F, He XH, Zhu SS, Liu YX. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability. J Ginseng Res 2020; 44:627-636. [PMID: 32617043 PMCID: PMC7322810 DOI: 10.1016/j.jgr.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Cultivation of medicinal crops, which synthesize hundreds of substances for curative functions, was focused on the synthesis of secondary metabolites rather than biomass accumulation. Nutrition is an important restrict factor for plant growth and secondary metabolites, but little attention has been given to the plasticity of nutrient uptake and secondary metabolites synthesis response to soil nitrogen (N) change. METHODS Two year-field experiments of Sanqi (Panax notoginseng), which can synthesize a high level of saponin in cells, were conducted to study the effects of N application on the temporal dynamics of biomass, nutrient absorption, root architecture and the relationships between these parameters and saponin synthesis. RESULTS Increasing N fertilizer rates could improve the dry matter yields and nutrient absorption ability through increasing the maximum daily growth (or nutrient uptake) rate. Under suitable N level (225 kg/ha N), Sanqi restricted the root length and surface and enhanced the root diameter and N uptake rate per root length (NURI) to promote nutrient absorption, but the opposite status of Sanqi root architecture and NURI was found when soil N was deficient. Furthermore, increasing N rates could promote the accumulation of saponin in roots through improving the NURI, which showed a significant positive relationship with the content of saponin in the taproots. CONCLUSION Appropriate N fertilizer rates could optimize both root architecture and nutrient uptake efficiency, then promote both the accumulation of dry matter and the synthesis of saponins.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Hui-Chuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xin-Yue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shu-Sheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yi-Xiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
55
|
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10070938] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
Collapse
|
56
|
Carillo P, Woo SL, Comite E, El-Nakhel C, Rouphael Y, Fusco GM, Borzacchiello A, Lanzuise S, Vinale F. Application of Trichoderma harzianum, 6-pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E771. [PMID: 32575500 PMCID: PMC7356659 DOI: 10.3390/plants9060771] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022]
Abstract
Many Trichoderma are successfully used to improve agriculture productivity due to their capacity for biocontrol and to stimulate plant growth and tolerance to abiotic stress. This research elucidates the effect of applications with Trichoderma harzianum strain T22 (T22), or biopolymer (BP) alone or in combination (BP + T22 or BP + 6-pentyl-α-pyrone (6PP); a Trichoderma secondary metabolite) on the crop performance, nutritional and functional quality of greenhouse tomato (Solanum lycopersicum L. cultivar Pixel). T22 elicited significant increases in total yield (+40.1%) compared to untreated tomato. The content of lycopene, an important antioxidant compound in tomatoes, significantly increased upon treatment with T22 (+ 49%), BP + T22 (+ 40%) and BP + 6PP (+ 52%) compared to the control. T22 treatments significantly increased the content of asparagine (+37%), GABA (+87%) and MEA (+102%) over the control; whereas BP alone strongly increased GABA (+105%) and MEA (+85%). The synthesis of these compounds implies that tomato plants are able to reuse the photorespiratory amino acids and ammonium for producing useful metabolites and reduce the pressure of photorespiration on plant metabolism, thus optimizing photosynthesis and growth. Finally, these metabolites exert many beneficial effects for human health, thus enhancing the premium quality of plum tomatoes.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.)
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
- National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy;
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.)
| | - Assunta Borzacchiello
- National Research Council, Institute for Composite Polymers and Biomaterials, 80125 Napoli, Italy;
| | - Stefania Lanzuise
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Francesco Vinale
- National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy;
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
57
|
Gorovits R, Sobol I, Akama K, Chefetz B, Czosnek H. Pharmaceuticals in treated wastewater induce a stress response in tomato plants. Sci Rep 2020; 10:1856. [PMID: 32024917 PMCID: PMC7002738 DOI: 10.1038/s41598-020-58776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
Pharmaceuticals remain in treated wastewater used to irrigate agricultural crops. Their effect on terrestrial plants is practically unknown. Here we tested whether these compounds can be considered as plant stress inducers. Several features characterize the general stress response in plants: production of reactive oxygen species acting as stress-response signals, MAPKs signaling cascade inducing expression of defense genes, heat shock proteins preventing protein denaturation and degradation, and amino acids playing signaling roles and involved in osmoregulation. Tomato seedlings bathing in a cocktail of pharmaceuticals (Carbamazepine, Valporic acid, Phenytoin, Diazepam, Lamotrigine) or in Carbamazepine alone, at different concentrations and during different time-periods, were used to study the patterns of stress-related markers. The accumulation of the stress-related biomarkers in leaf and root tissues pointed to a cumulative stress response, mobilizing the cell protection machinery to avoid metabolic modifications and to restore homeostasis. The described approach is suitable for the investigation of stress response of different crop plants to various contaminants present in treated wastewater.
Collapse
Affiliation(s)
- Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Kazuhito Akama
- Department of Biological Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Benny Chefetz
- Institute of Soil and Water sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| |
Collapse
|
58
|
Lucini L, Rocchetti G, Trevisan M. Extending the concept of terroir from grapes to other agricultural commodities: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
59
|
Van Oosten MJ, Dell’Aversana E, Ruggiero A, Cirillo V, Gibon Y, Woodrow P, Maggio A, Carillo P. Omeprazole Treatment Enhances Nitrogen Use Efficiency Through Increased Nitrogen Uptake and Assimilation in Corn. FRONTIERS IN PLANT SCIENCE 2019; 10:1507. [PMID: 31867024 PMCID: PMC6904362 DOI: 10.3389/fpls.2019.01507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 05/28/2023]
Abstract
Omeprazole is a selective proton pump inhibitor in humans that inhibits the H+/K+-ATPase of gastric parietal cells. Omeprazole has been recently shown to act as a plant growth regulator and enhancer of salt stress tolerance. Here, we report that omeprazole treatment in hydroponically grown maize improves nitrogen uptake and assimilation. The presence of micromolar concentrations of omeprazole in the nutrient solution alleviates the chlorosis and growth inhibition induced by low nitrogen availability. Nitrate uptake and assimilation is enhanced in omeprazole treated plants through changes in nitrate reductase activity, primary metabolism, and gene expression. Omeprazole enhances nitrate assimilation through an interaction with nitrate reductase, altering its activation state and affinity for nitrate as a substrate. Omeprazole and its targets represent a novel method for enhancing nitrogen use efficiency in plants.
Collapse
Affiliation(s)
| | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alessandra Ruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Yves Gibon
- UMR 1332 BFP, INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
60
|
Zulfiqar F, Akram NA, Ashraf M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. PLANTA 2019; 251:3. [PMID: 31776765 DOI: 10.1007/s00425-019-03293-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 05/06/2023]
Abstract
Plant osmoprotectants protect against abiotic stresses. Introgression of osmoprotectant genes into crop plants via genetic engineering is an important strategy in developing more productive plants. Plants employ adaptive mechanisms to survive various abiotic stresses. One mechanism, the osmoprotection system, utilizes various groups of low molecular weight compounds, collectively known as osmoprotectants, to mitigate the negative effect of abiotic stresses. Osmoprotectants may include amino acids, polyamines, quaternary ammonium compounds and sugars. These nontoxic compounds stabilize cellular structures and enzymes, act as metabolic signals, and scavenge reactive oxygen species produced under stressful conditions. The advent of recent drastic fluctuations in the global climate necessitates the development of plants better adapted to abiotic stresses. The introgression of genes related to osmoprotectant biosynthesis from one plant to another by genetic engineering is a unique strategy bypassing laborious conventional and classical breeding programs. Herein, we review recent literature related to osmoprotectants and transgenic plants engineered with specific osmoprotectant properties.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
61
|
Small RNA Mobility: Spread of RNA Silencing Effectors and its Effect on Developmental Processes and Stress Adaptation in Plants. Int J Mol Sci 2019; 20:ijms20174306. [PMID: 31484348 PMCID: PMC6747330 DOI: 10.3390/ijms20174306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 01/22/2023] Open
Abstract
Plants are exposed every day to multiple environmental cues, and tight transcriptome reprogramming is necessary to control the balance between responses to stress and processes of plant growth. In this context, the silencing phenomena mediated by small RNAs can drive transcriptional and epigenetic regulatory modifications, in turn shaping plant development and adaptation to the surrounding environment. Mounting experimental evidence has recently pointed to small noncoding RNAs as fundamental players in molecular signalling cascades activated upon exposure to abiotic and biotic stresses. Although, in the last decade, studies on stress responsive small RNAs increased significantly in many plant species, the physiological responses triggered by these molecules in the presence of environmental stresses need to be further explored. It is noteworthy that small RNAs can move either cell-to-cell or systemically, thus acting as mobile silencing effectors within the plant. This aspect has great importance when physiological changes, as well as epigenetic regulatory marks, are inspected in light of plant environmental adaptation. In this review, we provide an overview of the categories of mobile small RNAs in plants, particularly focusing on the biological implications of non-cell autonomous RNA silencing in the stress adaptive response and epigenetic modifications.
Collapse
|
62
|
Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and Nitrogen Rates in Greenhouse Spinach. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9080450] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant-derived protein hydrolysates (PHs) are gaining prominence as biostimulants due to their potential to improve yield and nutritional quality even under suboptimal nutrient regimens. In this study, we investigated the effects of foliar application of a legume-derived PH (0 or 4 mL L−1) on greenhouse baby spinach (Spinacia oleracea L.) under four nitrogen (N) fertilization levels (0, 15, 30, or 45 kg ha−1) by evaluating morphological and colorimetric parameters, mineral composition, carbohydrates, proteins, and amino acids. The fresh yield in untreated and biostimulant-treated spinach plants increased in response to an increase in N fertilization from 1 up to 30 kg ha−1, reaching a plateau thereafter indicating the luxury consumption of N at 45 kg ha−1. Increasing N fertilization rate, independently of PH, lead to a significant increase of all amino acids with the exception of alanine, GABA, leucine, lysine, methionine, and ornithine but decreased the polyphenols content. Interestingly, the fresh yield at 0 and 15 kg ha−1 was clearly greater in PH-treated plants compared to untreated plants by 33.3% and 24.9%, respectively. This was associated with the presence in of amino acids and small peptides PH ‘Trainer®’, which act as signaling molecules eliciting auxin- and/or gibberellin-like activities on both leaves and roots and thus inducing a “nutrient acquisition response” that enhances nutrients acquisition and assimilation (high P, Ca, and Mg accumulation) as well as an increase in the photochemical efficiency and activity of photosystem II (higher SPAD index). Foliar applications of the commercial PH decreased the polyphenols content, but on the other hand strongly increased total amino acid content (+45%, +82%, and +59% at 0, 15, and 30 kg ha−1, respectively) but not at a 45-kg ha−1-rate. Overall, the use of PH could represent a sustainable tool for boosting yield and nitrogen use efficiency and coping with soil fertility problems under low input regimens.
Collapse
|
63
|
Tang H, Niu L, Wei J, Chen X, Chen Y. Phosphorus Limitation Improved Salt Tolerance in Maize Through Tissue Mass Density Increase, Osmolytes Accumulation, and Na + Uptake Inhibition. FRONTIERS IN PLANT SCIENCE 2019; 10:856. [PMID: 31333699 PMCID: PMC6618052 DOI: 10.3389/fpls.2019.00856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
Low phosphorus (P) availability and salt stress are two major constraints for maize (Zea mays L.) growth in north China. A combination of salinity and high P rather than low P is more detrimental to the growth of maize. However, little is known about the mechanisms by which P nutrition modifies the salt tolerance and P uptake of maize. The present study aimed to investigate the combined effects of salinity and P on maize growth and P uptake, and to address the physiological mechanisms of salt tolerance influenced by P availability in maize. Seedlings of a local maize cultivar XY335 were grown hydroponically for 35 days under low (5 μM) or sufficient P supply (200 μM) with or without 100 mM NaCl. Root morphological traits, tissue mass density, leaf osmolytes (sugars and proline) accumulation, and Na+/K+ ratio were measured to allow evaluation of the combined effects of salinity and P on maize growth and P uptake. Both P deficiency and salinity markedly reduced the growth of maize. However, P deficiency had a more pronounced effect on shoot growth while salinity affected root growth more prominently. Combined effects of P deficiency and salinity on total root length, root surface area, and average root diameter were similar to that of plants grown under salt stress. The combination of P deficiency and salinity treatments had a more pronounced effect on tissue mass density, leaf proline and soluble sugars compared to individual treatment of either low P or NaCl. When exposed to salt stress, maize plants of sufficient P accumulated greater amount of Na+ than those under P deficit, but similar amounts of K+ were observed between the two P treatments. Salt stress significantly increased shoot P concentration of maize with sufficient P (P < 0.01), but not for P-deficient plants. In sum, shoots and roots of maize exhibited different responses to P deficiency and salinity, with more marked effect of P deficiency on shoots and of salinity on roots. P deficiency improved salt tolerance of maize plants, which was associated with the increase of tissue mass density, accumulation of osmolytes, reduction of Na+ accumulation, and selective absorption of K+ over Na+.
Collapse
Affiliation(s)
- Hongliang Tang
- College of Life Science, Hebei University, Baoding, China
| | - Le Niu
- College of Life Science, Hebei University, Baoding, China
| | - Jing Wei
- College of Life Science, Hebei University, Baoding, China
| | - Xinying Chen
- College of Life Science, Hebei University, Baoding, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, China
- UWA School of Agriculture and Environment, The Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
64
|
Hanif FM, Mandhwani R, Lail G, Luck NH, Aziz T. Virological Response to Sofosbuvir-Based Treatment in Renal Transplant Recipients With Hepatitis C in Pakistan. EXP CLIN TRANSPLANT 2019; 17:198-201. [PMID: 30777554 DOI: 10.6002/ect.mesot2018.p64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Direct-acting antiviral agents have recently been recommended in renal transplant recipients. Considering our previous encouraging responses with combined sofosbuvir and ribavirin in renal transplant recipients and the availability of daclatasvir, we aimed to evaluate the effectiveness and safety of sofosbuvir-based direct-acting antiviral agents in our population. MATERIALS AND METHODS All renal transplant recipients who received sofosbuvir-based direct-acting antivirals from August 2015 to March 2018 were included in our study. Patients were treated with sofosbuvir and ribavirin for 24 weeks or with combined sofosuvir, daclatasvir, and ribavirin for 12 weeks. Patient demographics and baseline laboratory parameters were collected. Rapid virologic response, end of treatment response, and sustained virologic response at 12 weeks were analyzed. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 20.0, IBM Corporation, Armonk, NY, USA). RESULTS In our study group of 79 patients, mean age was 36.5 ± 10.2 years and 60 were men (78.5%). Fiftysix patients (70.9%) were treatment naive; of the remaining patients, 20 received interferon before transplant and 3 were treated with sofosbuvir and ribavirin after renal transplant. Genotype 1 was observed in 42 patients (53.2%), whereas mixed genotype (1 and 3) was shown in 10 patients (12.6%). Sixty-two patients (78.5%) received sofosbuvir and ribavirin, and 17 patients (21.5%) received sofosbuvir, daclatasvir, and ribavirin. End of treatment response was achieved in 78 recipients (98.1%). Anemia was observed in 13 patients (16.4%). CONCLUSIONS Hepatitis C virus was successfully eradicated in renal transplant recipients who received a combination of sofosbuvir plus ribavirin or sofosbuvir, daclatasvir, and ribavirin. These combinations were effective and well tolerated in our study population, even in those with mixed genotype, with no major adverse events.
Collapse
Affiliation(s)
- Farina Muhammad Hanif
- From the Department of Hepatogastroenterology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
65
|
Cirillo C, De Micco V, Arena C, Carillo P, Pannico A, De Pascale S, Rouphael Y. Biochemical, Physiological and Anatomical Mechanisms of Adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl 2 Salinization. FRONTIERS IN PLANT SCIENCE 2019; 10:742. [PMID: 31214238 PMCID: PMC6558163 DOI: 10.3389/fpls.2019.00742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2019] [Indexed: 05/22/2023]
Abstract
Callistemon citrinus and Viburnum lucidum are appreciated and widespread ornamental shrubs for their abundant flowering and/or brilliant foliage. The intrinsic tolerance to drought/salinity supports their use in urban areas and in xeriscaping. Despite adaptive responses of these ornamental species to sodium chloride (NaCl) have been extensively explored, little is known on the effects of other salt solution, yet iso-osmotic, on their growth, mineral composition and metabolism. The present research was aimed to assess responses at the biochemical, physiological and anatomical levels to iso-osmotic salt solutions of NaCl and CaCl2 to discriminate the effects of osmotic stress and ion toxicity. The two ornamental species developed different salt-tolerance mechanisms depending on the salinity sources. The growth parameters and biomass production decreased under salinization in both ornamental species, independently of the type of salt, with a detrimental effect of CaCl2 on C. citrinus. The adaptive mechanisms adopted by the two ornamental species to counteract the NaCl salinity were similar, and the decline in growth was mostly related to stomatal limitations of net CO2 assimilation rate, together with the reduction in leaf chlorophyll content (SPAD index). The stronger reduction of C. citrinus growth compared to V. lucidum, was due to an exacerbated reduction in net photosynthetic rate, driven by both stomatal and non stomatal limitations. In similar conditions, V. lucidum exhibited other additional adaptive response, such as modification in leaf functional anatomical traits, mostly related to the reduction in the stomata size allowing plants a better control of stomata opening than in C. citrinus. However, C. citrinus plants displayed an increased ability to retain higher Cl- levels in leaves than in roots under CaCl2 salinity compared to V. lucidum, thus, indicating a further attempt to counteract chloride toxicity through an increased vacuolar compartmentalization and to take advantages of them as chip osmotica.
Collapse
Affiliation(s)
- Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
66
|
Biostimulant Application with a Tropical Plant Extract Enhances Corchorus olitorius Adaptation to Sub-Optimal Nutrient Regimens by Improving Physiological Parameters. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050249] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging role of plant biostimulants in enhancing nutrient efficiency is important for maintaining soil fertility under sub-optimal nutrient regimens. We aimed to elucidate the morpho-physiological and biochemical effects as well as mineral composition changes of greenhouse jute (Corchorus olitorius L.) treated with a commercial vegetal-derived biostimulant from a tropical plant extract (PE; Auxym®, Italpollina, Rivoli Veronese, Italy). Plants were sprayed in weekly intervals with a solution containing 2 mL·L−1 PE. Jute plants were supplied with three nutrient solution concentrations: full-, half-, and quarter-strength. Decreasing macronutrient concentrations in the nutrient solution (NS), especially at quarter-strength, triggered a decrease in several morphological (plant height, leaf number, and dry biomass) and physiological (net CO2 assimilation rate (ACO2) and SPAD (Soil Plant Analysis Development) index) parameters. PE application triggered specific ameliorative effects in terms of fresh yield at both half- and quarter-strength nutrient solution (15.5% and 29.5%, respectively). This was associated with an enhancement in ACO2, SPAD index, and especially the nutritional status (high nitrate, K, and Mg contents, and low Na content). The foliar application of PE, strongly increased chlorophyll b content, enhancing jute plant adaptation to fluctuating light and therefore the efficiency of photosynthesis, positively affecting starch, soluble proteins, and total amino acids content but only when jute plants were irrigated with full-strength NS, compared to the respective control treatment. At lower nutrient strength, PE reprogrammed the nitrogen distribution, allowing its remobilization from glutamate, which was quantitatively the major amino acid under lower nutrient strength, but not from chlorophylls, thus maintaining efficient photosynthesis. We confirmed that PE Auxym® acts in a balanced manner on the main metabolic pathways of the plant, regulating the uptake and transport of mineral nutrients and protein synthesis, increasing the accumulation of essential amino acids under full nutritive solutions, and re-distributing nitrogen from amino acids to allow leaf growth and expansion even under sub-optimal nutrient conditions. Overall, the use of natural plant biostimulants may be a potential solution in low-input conditions, where environmental constraints and restricted use of fertilizers may affect potential crop productivity.
Collapse
|
67
|
Carillo P, Kyriacou MC, El-Nakhel C, Pannico A, dell'Aversana E, D'Amelia L, Colla G, Caruso G, De Pascale S, Rouphael Y. Sensory and functional quality characterization of protected designation of origin 'Piennolo del Vesuvio' cherry tomato landraces from Campania-Italy. Food Chem 2019; 292:166-175. [PMID: 31054662 DOI: 10.1016/j.foodchem.2019.04.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
Abstract
Compositional characterization was performed on seven 'Pomodorino del Piennolo del Vesuvio' (PPV) tomato landraces, a signature product of Campania (Italy) threatened by genetic erosion. Characterization encompassed determinations of macro-minerals, soluble carbohydrates, starch, acidity, lycopene, polyphenols, anthocyanins, protein and free amino acids. Exceptionally high dry matter (13.0 ± 0.2%) and sugar content (101.3 ± 3.8 μmol g-1 fw) and very low (0.007-0.009) Na/K ratio were invariably obtained across landraces, contrasted by significant variation in acidity (28.5-3.9 g kg-1 dw). Giagiù, Acampora and Riccia San Vito differentiated by high polyphenols content (131.8 ± 2.5 mg 100 g-1) while Acampora, Cozzolino and Fofò by high lycopene content (13.3 ± 10.6 mg 100 g-1 fw). Glutamate, GABA and glutamine represented 65% of the 22 detected amino acids mean total content. Glutamate, linked to umami taste, was highest (19.2 µmol g-1 fw) in Fofò. Our results will contribute towards the systematic documentation of sensory and functional quality profiles of an important collection of tomato landraces.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Emilia dell'Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Luisa D'Amelia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences University of Tuscia, 01100 Viterbo, Italy
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Youssef Rouphael
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
68
|
Saia S, Fragasso M, De Vita P, Beleggia R. Metabolomics Provides Valuable Insight for the Study of Durum Wheat: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3069-3085. [PMID: 30829031 DOI: 10.1021/acs.jafc.8b07097] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metabolomics is increasingly being applied in various fields offering a highly informative tool for high-throughput diagnostics. However, in plant sciences, metabolomics is underused, even though plant studies are relatively easy and cheap when compared to those on humans and animals. Despite their importance for human nutrition, cereals, and especially wheat, remain understudied from a metabolomics point of view. The metabolomics of durum wheat has been essentially neglected, although its genetic structure allows the inference of common mechanisms that can be extended to other wheat and cereal species. This review covers the present achievements in durum wheat metabolomics highlighting the connections with the metabolomics of other cereal species (especially bread wheat). We discuss the metabolomics data from various studies and their relationships to other "-omics" sciences, in terms of wheat genetics, abiotic and biotic stresses, beneficial microbes, and the characterization and use of durum wheat as feed, food, and food ingredient.
Collapse
Affiliation(s)
- Sergio Saia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 11 per Torino , Km 2,5, 13100 Vercelli , Italy
| | - Mariagiovanna Fragasso
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Pasquale De Vita
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) , Research Centre for Cereal and Industrial Crops (CREA-CI) , S.S. 673 , Km 25,200, 71122 Foggia , Italy
| |
Collapse
|
69
|
Carillo P, Arena C, Modarelli GC, De Pascale S, Paradiso R. Photosynthesis in Ranunculus asiaticus L.: The Influence of the Hybrid and the Preparation Procedure of Tuberous Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:241. [PMID: 30915088 PMCID: PMC6423076 DOI: 10.3389/fpls.2019.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/13/2019] [Indexed: 05/07/2023]
Abstract
Ranunculus asiaticus L. is a quantitative long-day geophyte, grown in a cold greenhouse for cut flowers and potted plants. Flowering in ranunculus is a complex process, strongly steered by temperature and photoperiodism. Vernalization of rehydrated tuberous roots anticipate sprouting and leaf rosette formation and flowering. It is known that the time for flowering and the sensitivity to cold treatment, in terms of flowering anticipation, varies in numerous hybrids, while no information seems to be available on the influence of hybrids and on the vernalization on the photosynthetic process and primary metabolite profiling. We investigated the influence of two ranunculus hybrids, MDR and MBO, and two preparation procedures of tuberous roots, only rehydration (Control, C) and rehydration followed by vernalization (V), on the photosynthesis and photochemistry of plants grown in a climatic chamber, under a controlled environment. In addition, in MBO plants, in which the vernalization showed the main effects, carbohydrate, amino acid and protein levels were also investigated. In control plants, the response of leaf photosynthesis, to increasing white light, revealed higher photosynthetic activity in MDR than in MBO. The quantum yield of PSII (ϕPSII), electron transport rate (ETR) and non-photochemical quenching (NPQ) did not differ between the two hybrids. The maximal photochemical efficiency (Fv/Fm) was higher in MBO than in MDR and showed a decrease in both hybrids after vernalization. The preparation treatment of propagation material affected the light response of photosynthesis in the two hybrids differently, which increased in plants from vernalized tuberous roots, compared to those from only rehydrated in MBO and decreased in MDR, in accordance to the effects of vernalization observed in leaf photosynthetic pigments. In MBO vernalized tuberous roots, starch was rapidly degraded, and the carbon skeletons used to synthesize amino acids. Control plants of MBO, developed more leaves than those of MDR and a consequent larger plant leaf area. Compared to only rehydration, vernalization of rehydrated tuberous roots increased the plant leaf area in both the hybrids. Compared to the control, vernalized tuberous roots of MBO showed higher concentrations of sucrose and free amino acids, which could act as a long-distance signal promoting floral transition in young leaf primordia.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
70
|
Annunziata MG, Ciarmiello LF, Woodrow P, Dell’Aversana E, Carillo P. Spatial and Temporal Profile of Glycine Betaine Accumulation in Plants Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:230. [PMID: 30899269 PMCID: PMC6416205 DOI: 10.3389/fpls.2019.00230] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Several halophytes and a few crop plants, including Poaceae, synthesize and accumulate glycine betaine (GB) in response to environmental constraints. GB plays an important role in osmoregulation, in fact, it is one of the main nitrogen-containing compatible osmolytes found in Poaceae. It can interplay with molecules and structures, preserving the activity of macromolecules, maintaining the integrity of membranes against stresses and scavenging ROS. Exogenous GB applications have been proven to induce the expression of genes involved in oxidative stress responses, with a restriction of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought and salinity, and even stabilizing photosynthetic structures under stress. In the plant kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion of phosphoethanolamine to phosphocholine. However, changes in CMO expression genes under abiotic stresses have been observed. GB accumulation is ontogenetically controlled since it happens in young tissues during prolonged stress, while its degradation is generally not significant in plants. This ability of plants to accumulate high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N) availability and supports the view that plant N allocation is dictated primarily to supply and protect the growing tissues, even under N limitation. Indeed, the contribution of GB to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much higher than that in older ones. In this review, the biosynthesis and accumulation of GB in plants, under several abiotic stresses, were analyzed focusing on all possible roles this metabolite can play, particularly in young tissues.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Loredana Filomena Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Emilia Dell’Aversana
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
71
|
Xu J, Hou QM, Khare T, Verma SK, Kumar V. Exploring miRNAs for developing climate-resilient crops: A perspective review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:91-104. [PMID: 30408672 DOI: 10.1016/j.scitotenv.2018.10.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 05/21/2023]
Abstract
Climate changes and environmental stresses have significant implications on global crop production and necessitate developing crops that can withstand an array of climate changes and environmental perturbations such as irregular water-supplies leading to drought or water-logging, hyper soil-salinity, extreme and variable temperatures, ultraviolet radiations and metal stress. Plants have intricate molecular mechanisms to cope with these dynamic environmental changes, one of the most common and effective being the reprogramming of expression of stress-responsive genes. Plant microRNAs (miRNAs) have emerged as key post-transcriptional and translational regulators of gene-expression for modulation of stress implications. Recent reports are establishing their key roles in epigenetic regulations of stress/adaptive responses as well as in providing plants genome-stability. Several stress responsive miRNAs are being identified from different crop plants and miRNA-driven RNA-interference (RNAi) is turning into a technology of choice for improving crop traits and providing phenotypic plasticity in challenging environments. Here we presents a perspective review on exploration of miRNAs as potent targets for engineering crops that can withstand multi-stress environments via loss-/gain-of-function approaches. This review also shed a light on potential roles plant miRNAs play in genome-stability and their emergence as potent target for genome-editing. Current knowledge on plant miRNAs, their biogenesis, function, their targets, and latest developments in bioinformatics approaches for plant miRNAs are discussed. Though there are recent reviews discussing primarily the individual miRNAs responsive to single stress factors, however, considering practical limitation of this approach, special emphasis is given in this review on miRNAs involved in responses and adaptation of plants to multi-stress environments including at epigenetic and/or epigenomic levels.
Collapse
Affiliation(s)
- Jin Xu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qin-Min Hou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India
| | - Sandeep Kumar Verma
- Biotechnology Laboratory (TUBITAK Fellow), Department of Biology, Bolu Abant Izeet Baysal University, 14030 Bolu, Turkey
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
72
|
Castander-Olarieta A, Montalbán IA, De Medeiros Oliveira E, Dell’Aversana E, D’Amelia L, Carillo P, Steiner N, Fraga HPDF, Guerra MP, Goicoa T, Ugarte MD, Pereira C, Moncaleán P. Effect of Thermal Stress on Tissue Ultrastructure and Metabolite Profiles During Initiation of Radiata Pine Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 9:2004. [PMID: 30705684 PMCID: PMC6344425 DOI: 10.3389/fpls.2018.02004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/27/2018] [Indexed: 05/22/2023]
Abstract
Climate change will inevitably lead to environmental variations, thus plant drought tolerance will be a determinant factor in the success of plantations and natural forestry recovery. Some metabolites, such as soluble carbohydrates and amino acids, have been described as being the key to both embryogenesis efficiency and abiotic stress response, contributing to phenotypic plasticity and the adaptive capacity of plants. For this reason, our main objectives were to evaluate if the temperature during embryonal mass initiation in radiata pine was critical to the success of somatic embryogenesis, to alter the morphological and ultrastructural organization of embryonal masses at cellular level and to modify the carbohydrate, protein, or amino acid contents. The first SE initiation experiments were carried out at moderate and high temperatures for periods of different durations prior to transfer to the control temperature of 23°C. Cultures initiated at moderate temperatures (30°C, 4 weeks and 40°C, 4 days) showed significantly lower initiation and proliferation rates than those at the control temperature or pulse treatment at high temperatures (50°C, 5 min). No significant differences were observed either for the percentage of embryogenic cell lines that produced somatic embryos, or for the number of somatic embryos per gram of embryonal mass. Based on the results from the first experiments, initiation was carried out at 40°C 4 h; 50°C, 30 min; and a pulse treatment of 60°C, 5 min. No significant differences were found for the initiation or number of established lines or for the maturation of somatic embryos. However, large morphological differences were observed in the mature somatic embryos. At the same time, changes observed at cellular level suggested that strong heat shock treatments may trigger the programmed cell death of embryogenic cells, leading to an early loss of embryogenic potential, and the formation of supernumerary suspensor cells. Finally, among all the differences observed in the metabolic profile, it is worth highlighting the accumulation of tyrosine and isoleucine, both amino acids involved in the synthesis of abiotic stress response-related secondary metabolites.
Collapse
Affiliation(s)
| | | | | | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Luisa D’Amelia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Neusa Steiner
- Department of Botany, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Miguel Pedro Guerra
- Laboratório de Fisiología do Desenvolvimento e Genética Vegetal, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Tomás Goicoa
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - María Dolores Ugarte
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - Catia Pereira
- Department of Life Sciences, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
73
|
Rouphael Y, Kyriacou MC, Carillo P, Pizzolongo F, Romano R, Sifola MI. Chemical Eustress Elicits Tailored Responses and Enhances the Functional Quality of Novel Food Perilla frutescens. Molecules 2019; 24:E185. [PMID: 30621323 PMCID: PMC6337370 DOI: 10.3390/molecules24010185] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022] Open
Abstract
Consumer demand for fresh and functional horticultural products is on the rise. Perilla frutescens, L. Britt (Lamiaceae) is a potential specialty/niche crop for consumption and therapeutic uses with high contents of phenolic and volatile compounds. Plant growth, mineral composition, polyphenol profile and aroma volatile components of two perilla genotypes in response to salinity (non-salt control, 10, 20 or 30 mM NaCl) applied as chemical eustressor were assessed. Salinity suppressed growth and yield of both genotypes, although the red-pigmented genotype was less sensitive than the green-pigmented one. Mild (10 mM NaCl) and moderate (20 and 30 mM NaCl) salinity suppressed foliar potassium, magnesium, nitrate and chlorophyll a concentrations of both genotypes and increased the levels of rosmarinic acid, total polyphenols and target aroma volatile components. Green perilla showed higher yield and biomass production and higher content of protein, dry matter, calcium, magnesium, perilla ketone and cis-jasmone, whereas red perilla exhibited higher content of potassium, chlorophyll a, rosmarinic acid, total polyphenols, perilla aldehyde and benzaldehyde. Our findings support that chemical eustressors such as mild to moderate salinity offer valuable means to manipulate phytochemical and aroma profiles.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus.
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Maria Isabella Sifola
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| |
Collapse
|
74
|
Borrelli GM, Fragasso M, Nigro F, Platani C, Papa R, Beleggia R, Trono D. Analysis of metabolic and mineral changes in response to salt stress in durum wheat (Triticum turgidum ssp. durum) genotypes, which differ in salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:57-70. [PMID: 30390432 DOI: 10.1016/j.plaphy.2018.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
The key mechanisms of salinity tolerance (ST) in durum wheat were investigated, with five genotypes used to determine changes in morpho-physiological traits and mineral and metabolite contents after exposure to 50, 100 and 200 mM NaCl. Plant growth impairment was evident at the highest salt level. Under this condition, a wide range of shoot Na+ contents and ST were observed within genotypes. However, no significant correlation was seen between ST and Na+ exclusion from the shoots, which indicates that tissue tolerance also has a role. Consistent with this, there was significant correlation between ST and the Na+:K+ ratio in the shoots. Indeed, the maintenance of the shoot Na+ and K+ homeostasis was found to be essential to achieve osmotic adjustment, which relied substantially on inorganic osmolytes, and to avoid toxicity symptoms, such as chlorophyll loss, which appeared only at the highest salinity level. Consistently, the metabolite changes occurred mainly in the shoots, with a dual response to salinity: (i) a conserved response that was common to all the genotypes and resulted in the accumulation of proline and in the depletion of organic acids, including some intermediates of the Krebs cycle; and (ii) a genotype-specific response that involved the accumulation of GABA, threonine, leucine, glutamic acid, glycine, mannose and fructose and appeared related to the different tolerance of genotypes to salinity. The lower magnitude of response to salinity detected in the roots confirmed the major role of the shoots in the determination of ST of durum wheat.
Collapse
Affiliation(s)
- Grazia Maria Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| | - Mariagiovanna Fragasso
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| | - Franca Nigro
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| | - Cristiano Platani
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| | - Roberto Papa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| | - Romina Beleggia
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122, Foggia, Italy.
| |
Collapse
|
75
|
Hmidi D, Abdelly C, Athar HUR, Ashraf M, Messedi D. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1017-1033. [PMID: 30425420 PMCID: PMC6214428 DOI: 10.1007/s12298-018-0601-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 05/08/2023]
Abstract
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | | | - Dorsaf Messedi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
76
|
Singh V, Singh AP, Bhadoria J, Giri J, Singh J, T V V, Sharma PC. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. PROTOPLASMA 2018; 255:1667-1681. [PMID: 29740721 DOI: 10.1007/s00709-018-1257-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/01/2018] [Indexed: 05/14/2023]
Abstract
The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.
Collapse
Affiliation(s)
- Vijayata Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Ajit Pal Singh
- National Institute of Plant Genome Research, New Delhi, 110 067, India
| | - Jyoti Bhadoria
- National Institute of Plant Genome Research, New Delhi, 110 067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110 067, India
| | - Jogendra Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Vineeth T V
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - P C Sharma
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
77
|
Ferchichi S, Hessini K, Dell Aversana E, D Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, Carillo P. Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1096-1109. [PMID: 32290971 DOI: 10.1071/fp18046] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/21/2018] [Indexed: 05/27/2023]
Abstract
Hordeum maritimum With. (= H. marinum Huds. subsp. marinum, 2n=14) is a wild cereal present in the saline depressions of the Soliman and Kelbia Sebkhas, which contributes significantly to annual biomass production in Tunisia. This species is able to tolerate high NaCl concentrations at the seedling stage without showing symptoms of toxicity; however, the tolerance strategy mechanisms of this plant have not yet been unravelled. Our metabolite analysis, performed on leaves of H. maritimum during extended stress in comparison with Hordeum vulgare L. cv. Lamsi, has revealed an adaptive response of the wild species based on a different temporal accumulation pattern of ions and compatible metabolites. Further, wild and cultivated genotypes with contrasting salt-tolerant behaviour display different pattern of metabolites when salt stress is prolonged over 2 weeks. In particular, when exposed to up to 3 weeks of 200mM NaCl salt stress, H. maritimum is able to maintain lower leaf concentrations of sodium and chloride, and higher concentrations of potassium compared with H. vulgare. This likely restricts sodium entry into plants at the root level, and uses the toxic ions, glycine betaine and low levels of proline for osmotic adjustment. Under prolonged stress, the accumulation of proline increases, reaching the highest levels in concomitance with the decrease of potassium to sodium ratio, the increase of hydrogen peroxide and decrease of chlorophylls. The modulation of proline accumulation over time can be interpreted as an adaptive response to long-term salinity. Moreover, once synthetised glycine betaine is transported but not metabolised, it can contribute together with proline to osmotically balance H. maritimum leaves and protect them from oxidative stress. The 2-3 week delay of H. maritimum in showing the symptoms of stress and damages compared with H. vulgare could be important in the survival of plants when soil salinity is not a permanent condition, but just a transient state of stress.
Collapse
Affiliation(s)
- Selma Ferchichi
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, University of Elmanar, B.P. 901, Hammam-Lif 2050, Tunisia
| | - Kamel Hessini
- Laboratory of Extremophile Plants, Center of Biotechnology of Borj Cedria, University of Elmanar, B.P. 901, Hammam-Lif 2050, Tunisia
| | - Emilia Dell Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Luisa D Amelia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Loredana F Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Amodio Fuggi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
78
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Koehl K, Lunn JE, Stitt M. Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4881-4895. [PMID: 30053131 PMCID: PMC6137998 DOI: 10.1093/jxb/ery276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 05/18/2023]
Abstract
Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania ‘Luigi Vanvitelli’, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
79
|
Cheng B, Li Z, Liang L, Cao Y, Zeng W, Zhang X, Ma X, Huang L, Nie G, Liu W, Peng Y. The γ-Aminobutyric Acid (GABA) Alleviates Salt Stress Damage during Seeds Germination of White Clover Associated with Na⁺/K⁺ Transportation, Dehydrins Accumulation, and Stress-Related Genes Expression in White Clover. Int J Mol Sci 2018; 19:ijms19092520. [PMID: 30149642 PMCID: PMC6163210 DOI: 10.3390/ijms19092520] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine the effect of soaking with γ-aminobutyric acid (GABA) on white clover (Trifolium repens cv. Haifa) seed germination under salt stress induced by 100 mM NaCl. Seeds soaking with GABA (1 μM) significantly alleviated salt-induced decreases in endogenous GABA content, germination percentage, germination vigor, germination index, shoot and root length, fresh and dry weight, and root activity of seedling during seven days of germination. Exogenous application of GABA accelerated starch catabolism via the activation of amylase and also significantly reduced water-soluble carbohydrate, free amino acid, and free proline content in seedlings under salt stress. In addition, improved antioxidant enzyme activities (SOD, GPOX, CAT, APX, DHAR, GR and MDHR) and gene transcript levels (Cu/ZnSOD, FeSOD, MnSOD, CAT, GPOX, APX, MDHR, GPX and GST) was induced by seeds soaking with GABA, followed by decreases in O₂∙-, H₂O₂, and MDA accumulation during germination under salt stress. Seeds soaking with GABA could also significantly improve Na⁺/K⁺ content and transcript levels of genes encoding Na⁺/K⁺ transportation (HKT1, HKT8, HAL2, H⁺-ATPase and SOS1) in seedlings of white clover. Moreover, exogenous GABA significantly induced the accumulation of dehydrins and expression of genes encoding dehydrins (SK2, Y2K, Y2SK, and dehydrin b) in seedlings under salt stress. These results indicate that GABA mitigates the salt damage during seeds germination through enhancing starch catabolism and the utilization of sugar and amino acids for the maintenance of growth, improving the antioxidant defense for the alleviation of oxidative damage, increasing Na⁺/K⁺ transportation for the osmotic adjustment, and promoting dehydrins accumulation for antioxidant and osmotic adjustment under salt stress.
Collapse
Affiliation(s)
- Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linlin Liang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yiqin Cao
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Weihang Zeng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
80
|
Agronomic Management for Enhancing Plant Tolerance to Abiotic Stresses: High and Low Values of Temperature, Light Intensity, and Relative Humidity. HORTICULTURAE 2018. [DOI: 10.3390/horticulturae4030021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abiotic stresses have direct effects on plant growth and development. In agriculture, sub-optimal values of temperature, light intensity, and relative humidity can limit crop yield and reduce product quality. Temperature has a direct effect on whole plant metabolism, and low or high temperatures can reduce growth or induce crop damage. Solar radiation is the primary driver of crop production, but light intensity can also have negative effects, especially if concurrent with water stress and high temperature. Relative humidity also plays an important role by regulating transpiration and water balance of crops. In this review, the main effects of these abiotic stresses on crop performance are reported, and agronomic strategies used to avoid or mitigate the effects of these stresses are discussed.
Collapse
|
81
|
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018; 23:E762. [PMID: 29584636 PMCID: PMC6017249 DOI: 10.3390/molecules23040762] [Citation(s) in RCA: 551] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/20/2023] Open
Abstract
Plant secondary metabolites (SMs) are not only a useful array of natural products but also an important part of plant defense system against pathogenic attacks and environmental stresses. With remarkable biological activities, plant SMs are increasingly used as medicine ingredients and food additives for therapeutic, aromatic and culinary purposes. Various genetic, ontogenic, morphogenetic and environmental factors can influence the biosynthesis and accumulation of SMs. According to the literature reports, for example, SMs accumulation is strongly dependent on a variety of environmental factors such as light, temperature, soil water, soil fertility and salinity, and for most plants, a change in an individual factor may alter the content of SMs even if other factors remain constant. Here, we review with emphasis how each of single factors to affect the accumulation of plant secondary metabolites, and conduct a comparative analysis of relevant natural products in the stressed and unstressed plants. Expectantly, this documentary review will outline a general picture of environmental factors responsible for fluctuation in plant SMs, provide a practical way to obtain consistent quality and high quantity of bioactive compounds in vegetation, and present some suggestions for future research and development.
Collapse
Affiliation(s)
- Li Yang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Kui-Shan Wen
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Xiao Ruan
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Ying-Xian Zhao
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Feng Wei
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| | - Qiang Wang
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
82
|
Rouphael Y, Raimondi G, Lucini L, Carillo P, Kyriacou MC, Colla G, Cirillo V, Pannico A, El-Nakhel C, De Pascale S. Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to NaCl Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:249. [PMID: 29535755 PMCID: PMC5835327 DOI: 10.3389/fpls.2018.00249] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 05/09/2023]
Abstract
Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compelled by plant scientists' attempt to unravel their mode of action implicated in stimulating growth and enhancing tolerance to environmental stressors. The current study aimed at elucidating the morphological, physiological and metabolomic changes occurring in greenhouse tomato (cv. Seny) treated with omeprazole (OMP), a benzimidazole inhibitor of animal proton pumps. The OMP was applied at three rates (0, 10, or 100 μM) as substrate drench for tomato plants grown under nonsaline (control) or saline conditions sustained by nutrient solutions of 1 or 75 mM NaCl, respectively. Increasing NaCl concentration from 1 to 75 mM decreased the tomato shoot dry weight by 49% in the 0 μM OMP treatment, whereas the reduction was not significant at 10 or 100 μM of OMP. Treatment of salinized (75 mM NaCl) tomato plants with 10 and especially 100 μM OMP decreased Na+ and Cl- while it increased Ca2+ concentration in the leaves. However, OMP was not strictly involved in ion homeostasis since the K+ to Na+ ratio did not increase under combined salinity and OMP treatment. OMP increased root dry weight, root morphological characteristics (total length and surface), transpiration, and net photosynthetic rate independently of salinity. Metabolic profiling of leaves through UHPLC liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry facilitated identification of the reprogramming of a wide range of metabolites in response to OMP treatment. Hormonal changes involved an increase in ABA, decrease in auxins and cytokinin, and a tendency for GA down accumulation. Cutin biosynthesis, alteration of membrane lipids and heightened radical scavenging ability related to the accumulation of phenolics and carotenoids were observed. Several other stress-related compounds, such as polyamine conjugates, alkaloids and sesquiterpene lactones, were altered in response to OMP. Although a specific and well-defined mechanism could not be posited, the metabolic processes involved in OMP action suggest that this small bioactive molecule might have a hormone-like activity that ultimately elicits an improved tolerance to NaCl salinity stress.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
83
|
Carillo P. GABA Shunt in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:100. [PMID: 29456548 PMCID: PMC5801424 DOI: 10.3389/fpls.2018.00100] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/18/2018] [Indexed: 05/19/2023]
Abstract
Plant responses to salinity are complex, especially when combined with other stresses, and involve many changes in gene expression and metabolic fluxes. Until now, plant stress studies have been mainly dealt only with a single stress approach. However, plants exposed to multiple stresses at the same time, a combinatorial approach reflecting real-world scenarios, show tailored responses completely different from the response to the individual stresses, due to the stress-related plasticity of plant genome and to specific metabolic modifications. In this view, recently it has been found that γ-aminobutyric acid (GABA) but not glycine betaine (GB) is accumulated in durum wheat plants under salinity only when it is combined with high nitrate and high light. In these conditions, plants show lower reactive oxygen species levels and higher photosynthetic efficiency than plants under salinity at low light. This is certainly relevant because the most of drought or salinity studies performed on cereal seedlings have been done in growth chambers under controlled culture conditions and artificial lighting set at low light. However, it is very difficult to interpret these data. To unravel the reason of GABA accumulation and its possible mode of action, in this review, all possible roles for GABA shunt under stress are considered, and an additional mechanism of action triggered by salinity and high light suggested.
Collapse
Affiliation(s)
- Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
84
|
Mirto A, Iannuzzi F, Carillo P, Ciarmiello LF, Woodrow P, Fuggi A. Metabolic characterization and antioxidant activity in sweet cherry (Prunus avium L.) Campania accessions. Food Chem 2018; 240:559-566. [DOI: 10.1016/j.foodchem.2017.07.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
85
|
Sukweenadhi J, Balusamy SR, Kim YJ, Lee CH, Kim YJ, Koh SC, Yang DC. A Growth-Promoting Bacteria, Paenibacillus yonginensis DCY84 T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. FRONTIERS IN PLANT SCIENCE 2018; 9:813. [PMID: 30083171 PMCID: PMC6065202 DOI: 10.3389/fpls.2018.00813] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Panax ginseng (C.A. Mayer) is a well-known medicinal plant used in traditional medicine in Korea that experiences serious salinity stress related to weather changes or incorrect fertilizer application. In ginseng, the use of Paenibacillus yonginensis DCY84T to improve salt stress tolerance has not been thoroughly explored. Therefore, we studied the role of P. yonginensis DCY84T under short-term and long-term salinity stress conditions in a controlled environment. In vitro testing of DCY84T revealed high indole acetic acid (IAA) production, siderophore formation, phosphate solubilization and anti-bacterial activity. We determined that 10-min dip in 1010 CFU/ml DCY84T was sufficient to protect ginseng against short-term salinity stress (osmotic stress) upon exposure to 300 mM NaCl treatment by enhancing nutrient availability, synthesizing hydrolyzing enzymes and inducing osmolyte production. Upon exposure to salinity stress (oxidative and ionic stress), strain DCY84T-primed ginseng seedlings were protected by the induction of defense-related systems such as ion transport, ROS scavenging enzymes, proline content, total sugars, and ABA biosynthetic genes, as well as genes involved in root hair formation. Additionally, ginseng primed with DCY84T and exposed to 300 mM NaCl showed the same metabolite profile as control ginseng plants, suggesting that DCY84T effectively reduced salt stress. These results indicated that DCY84T can be widely used as a microbial inoculant to protect ginseng plants against salinity stress conditions.
Collapse
Affiliation(s)
- Johan Sukweenadhi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Sri R. Balusamy
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - Yeon-Ju Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- *Correspondence: Yeon-Ju Kim
| | - Choong H. Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Sung C. Koh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Deok C. Yang
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
- Deok C. Yang
| |
Collapse
|
86
|
Chrysargyris A, Michailidi E, Tzortzakis N. Physiological and Biochemical Responses of Lavandula angustifolia to Salinity Under Mineral Foliar Application. FRONTIERS IN PLANT SCIENCE 2018; 9:489. [PMID: 29731759 PMCID: PMC5920160 DOI: 10.3389/fpls.2018.00489] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 05/10/2023]
Abstract
Saline water has been proposed as a solution to partially cover plant water demands due to scarcity of irrigation water in hot arid areas. Lavender (Lavandula angustifolia Mill.) plants were grown hydroponically under salinity (0-25-50-100 mM NaCl). The overcome of salinity stress was examined by K, Zn, and Si foliar application for the plant physiological and biochemical characteristics. The present study indicated that high (100 mM NaCl) salinity decreased plant growth, content of phenolics and antioxidant status and essential oil (EO) yield, while low-moderate salinity levels maintained the volatile oil profile in lavender. The integrated foliar application of K and Zn lighten the presumable detrimental effects of salinity in terms of fresh biomass, antioxidant capacity, and EO yield. Moderate salinity stress along with balanced concentration of K though foliar application changed the primary metabolites pathways in favor of major volatile oil constituents biosynthesis and therefore lavender plant has the potential for cultivation under prevalent semi-saline conditions. Zn and Si application, had lesser effects on the content of EO constituents, even though altered salinity induced changings. Our results have demonstrated that lavender growth/development and EO production may be affected by saline levels, whereas mechanisms for alteration of induced stress are of great significance considering the importance of the oil composition, as well.
Collapse
|
87
|
Mirto A, Iannuzzi F, Carillo P, Ciarmiello LF, Woodrow P, Fuggi A. Dataset on antioxidant metabolites and enzymes activities of freshly harvested sweet cherries ( Prunus avium L.) of Campania accessions. Data Brief 2017; 15:522-527. [PMID: 29071288 PMCID: PMC5651485 DOI: 10.1016/j.dib.2017.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/17/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
In this article, we reported the original data obtained by the study of metabolites and enzymes involved in sweet cherry antioxidant system. We measured hydrogen peroxide (H2O2) and malondialdehyde (MDA), which are indicator of oxidative stress. Moreover, we measured the concentration of reduced and oxidized ascorbate and glutathione that are involved in ROS detoxification together with phenolics, anthocyanins and tocopherols. Among antioxidant enzymes, we analyzed the activities of ascorbate peroxidase (APX; EC 1.11.1.11), and the soluble and bound forms of polyphenol oxidase (PPO; EC 1.10.3.1) and guaiacol peroxidase (POD; EC 1.11.1.7). The data reported in this paper are related to the research article "Metabolic characterization and antioxidant activity in sweet cherry (Prunus avium L.) Campania accessions", authored by Mirto et al. (2018) [1].
Collapse
Affiliation(s)
| | | | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Via Vivaldi 43, Caserta, Italy
| | | | | | | |
Collapse
|
88
|
Guerriero G, Behr M, Hausman JF, Legay S. Textile Hemp vs. Salinity: Insights from a Targeted Gene Expression Analysis. Genes (Basel) 2017; 8:E242. [PMID: 28954403 PMCID: PMC5664092 DOI: 10.3390/genes8100242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Soil salinity is a serious threat to agriculture, because it compromises biomass production and plant productivity, by negatively affecting the vegetative growth and development of plants. Fiber crops like textile hemp (Cannabis sativa L.) are important natural resources that provide, sustainably, both cellulosic and woody fibers for industry. In this work, the response to salinity (200 mM NaCl) of a fiber variety of hemp (Santhica 27) was studied using quantitative real-time PCR. The responses of plantlets aged 15 days were analyzed by microscopy and by measuring the changes in expression of cell wall-related genes, as well as in the general response to exogenous constraints. The results presented here show that a different response is present in the hemp hypocotyls and leaves. In the leaves, genes coding for heat shock proteins were significantly upregulated, together with a phytohormone-related transcript (ethylene-responsive factor 1 ERF1) and genes involved in secondary cell wall biosynthesis (cellulose synthase CesA4, fasciclin-like arabinogalactan proteins FLA10 and FLA8). Moreover, a tendency towards upregulation was also observed in the leaves for genes involved in lignification (4CL, CAD, PAL); a finding that suggests growth arrest. In the hypocotyl, the genes involved in lignification did not show changes in expression, while a gene related to expansion (expansin EXPA8), as well as transcripts coding for calcium-dependent lipid-binding family proteins (CALB), were upregulated. Microscopic analyses on the hypocotyl cross sections revealed changes in the vascular tissues of salt-exposed plantlets, where the lumen of xylem vessels was reduced. The gene expression results show that a different response is present in the hemp hypocotyls and leaves. The data presented contribute to our understanding of the regulatory gene network in response to salinity in different tissues of an important fiber crop.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| | - Marc Behr
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
89
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Mengin V, Lauxmann MA, Köhl K, Nikoloski Z, Stitt M, Lunn JE. Getting back to nature: a reality check for experiments in controlled environments. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4463-4477. [PMID: 28673035 PMCID: PMC5853417 DOI: 10.1093/jxb/erx220] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 05/07/2023]
Abstract
Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania “Luigi Vanvitelli”, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- University of Potsdam, Karl-Liebknecht-Str., Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
90
|
Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P. Durum Wheat Roots Adapt to Salinity Remodeling the Cellular Content of Nitrogen Metabolites and Sucrose. FRONTIERS IN PLANT SCIENCE 2017; 7:2035. [PMID: 28119716 PMCID: PMC5220018 DOI: 10.3389/fpls.2016.02035] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 05/20/2023]
Abstract
Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg-1 in control roots to about 530 mOsmol kg-1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.
Collapse
Affiliation(s)
- Maria Grazia Annunziata
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Loredana F. Ciarmiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Pasqualina Woodrow
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Eugenia Maximova
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Amodio Fuggi
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”Caserta, Italy
| |
Collapse
|
91
|
Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. Methods Mol Biol 2017; 1679:83-95. [PMID: 28913795 DOI: 10.1007/978-1-4939-7337-8_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salinity and drought are interconnected, causing phenotypic, physiological, biochemical, and molecular changes in a cell. These stresses are the major factors adversely affecting growth and productivity in cereals. Genetic engineering methods have advanced to enable development of genotypes with improved salinity and drought tolerance. The resulting transgenic plant produces a group of progenies which includes moderate to high-stress tolerant transgenic lines. Development of reproducible screening methods to identify high-stress tolerant germplasm under laboratory, greenhouse, or field conditions is must. Further, field level demonstration of improved phenotypes and yield under salinity and drought stress conditions is both challenging and expensive. Fast and efficient screening techniques that could be used to screen transgenic lines under greenhouse conditions, for salt and drought stress tolerance, may contribute toward the identification of promising lines for field conditions. This chapter provides information on various approaches which can be developed during different stages of plant development for selecting salinity and drought tolerant plants in cereals, especially wheat.
Collapse
|