51
|
Hernandez AG, Kobayashi RO, Yavuz US, Sartori M. Identification of Motor Unit Twitch Properties in the Intact Human In Vivo. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6310-6313. [PMID: 34892556 DOI: 10.1109/embc46164.2021.9630328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Restoring natural motor function in neurologically injured individuals is challenging, largely due to the lack of personalization in current neurorehabilitation technologies. Signal-driven neuro-musculoskeletal models may offer a novel paradigm for devising novel closed-loop rehabilitation strategies according to an individual's physiology. However, current modelling techniques are constrained to bipolar electromyography (EMG), thereby lacking the resolution necessary to extract the activity of individual motor units (MUs) in vivo. In this work, we decoded MU spike trains from high-density (HD)-EMG to obtain relevant neural properties across multiple isometric plantar-dorsiflexion tasks. Then, we sampled MU statistical distributions and used them to reproduce MU specific activation profiles. Results showed bimodal distributions which may correspond to slow and fast MU populations. The estimated activation profiles showed a high degree of similarity to the reference torque (R2>0.8) across the recorded muscles. This suggests that the estimation of MU twitch properties is a crucial step for the translation of neural information into muscle force.Clinical Relevance- This work has multiple implications for understanding the underlying mechanism of motor impairment and for developing closed-loop strategies for modulating alpha motor circuitries in neurologically injured individuals.
Collapse
|
52
|
Xia M, Ma S, Chen C, Sheng X, Zhu X. Electrodes Adaptive Model in Estimating the Depth of Motor Unit: A Motor Unit Action Potential Based Approach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:673-676. [PMID: 34891382 DOI: 10.1109/embc46164.2021.9629979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-density surface electromyography (EMG) has been proposed to overcome the lower selectivity with respect to needle EMG and to provide information on a wide area over the considered muscle. Motor units decomposed from surface EMG signal of different depths differ in the distribution of action potentials detected in the skin surface. We propose a noninvasive model for estimating the depth of motor unit. We find that the depth of motor unit is linearly related to the Gaussian RMS width fitted by data points extracted from motor unit action potential. Simulated and experimental signals are used to evaluate the model performance. The correlation coefficient between reference depth and estimated depth is 0.92 ± 0.01 for simulated motor unit action potentials. Due to the symmetric nature of our model, no significant decrease is detected during the electrode selection procedure. We further checked the estimation results from decomposed motor units, the correlation coefficient between reference depth and estimated depth is 0.82 ± 0.07. For experimental signals, high discrimination of estimated depth vector is detected across gestures among trials. These results show the potential for a straightforward assessment of depth of motor units inside muscles. We discuss the potential of a non-invasive way for the location of decomposed motor units.
Collapse
|
53
|
Haynes EMK, Kim C. Antagonist surface electromyogram decomposition and the case of the missing motor units. J Neurophysiol 2021; 126:1943-1947. [PMID: 34705579 DOI: 10.1152/jn.00435.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reece & Herda (2021) reported that an antagonist muscle exhibited an organized motor unit (MU) recruitment scheme during isometric elbow flexion contractions. This control scheme, however, differed from the typical MU control scheme in that MU firing rates did not change between force levels (40% and 70% MVC) in the triceps brachii when it acted as an antagonist to isometric elbow flexion. Here we suggest technological considerations with evidence that may have affected these findings. Additionally, we highlight how this paper offers a promising starting point from which further insight into antagonist MU behaviour can be gathered non-invasively, and suggest future research directions to improve our understanding of MU activity of antagonist muscles in the upper limb.
Collapse
Affiliation(s)
- Elijah M K Haynes
- The School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Canada
| | - Changki Kim
- The School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Canada
| |
Collapse
|
54
|
The force-generation capacity of the tibialis anterior muscle at different muscle-tendon lengths depends on its motor unit contractile properties. Eur J Appl Physiol 2021; 122:317-330. [PMID: 34677625 PMCID: PMC8783895 DOI: 10.1007/s00421-021-04829-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Purpose Muscle–tendon length can influence central and peripheral motor unit (MU) characteristics, but their interplay is unknown. This study aims to explain the effect of muscle length on MU firing and contractile properties by applying deconvolution of high-density surface EMG (HDEMG), and torque signals on the same MUs followed at different lengths during voluntary contractions. Methods Fourteen participants performed isometric ankle dorsiflexion at 10% and 20% of the maximal voluntary torque (MVC) at short, optimal, and long muscle lengths (90°, 110°, and 130° ankle angles, respectively). HDEMG signals were recorded from the tibialis anterior, and MUs were tracked by cross-correlation of MU action potentials across ankle angles and torques. Torque twitch profiles were estimated using model-based deconvolution of the torque signal based on composite MU spike trains. Results Mean discharge rate of matched motor units was similar across all muscle lengths (P = 0.975). Interestingly, the increase in mean discharge rate of MUs matched from 10 to 20% MVC force levels at the same ankle angle was smaller at 110° compared with the other two ankle positions (P = 0.003), and the phenomenon was explained by a greater increase in twitch torque at 110° compared to the shortened and lengthened positions (P = 0.002). This result was confirmed by the deconvolution of electrically evoked contractions at different stimulation frequencies and muscle–tendon lengths. Conclusion Higher variations in MU twitch torque at optimal muscle lengths likely explain the greater force-generation capacity of muscles in this position.
Collapse
|
55
|
Martinez-Valdes E, Negro F, Arvanitidis M, Farina D, Falla D. Pain-induced changes in motor unit discharge depend on recruitment threshold and contraction speed. J Appl Physiol (1985) 2021; 131:1260-1271. [PMID: 34473572 DOI: 10.1152/japplphysiol.01011.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
At high forces, the discharge rates of lower- and higher-threshold motor units (MU) are influenced in a different way by muscle pain. These differential effects may be particularly important for performing contractions at different speeds since the proportion of lower- and higher-threshold MUs recruited varies with contraction velocity. We investigated whether MU discharge and recruitment strategies are differentially affected by pain depending on their recruitment threshold (RT), across a range of contraction speeds. Participants performed ankle dorsiflexion sinusoidal-isometric contractions at two frequencies (0.25 and 1 Hz) and two modulation amplitudes [5% and 10% of the maximum voluntary contraction (MVC)] with a mean target torque of 20%MVC. High-density surface electromyography recordings from the tibialis anterior muscle were decomposed and the same MUs were tracked across painful (hypertonic saline injection) and nonpainful conditions. Torque variability, mean discharge rate (MDR), DR variability (DRvar), RT, and the delay between the cumulative spike train and the resultant torque output (neuromechanical delay, NMD) were assessed. The average RT was greater at faster contraction velocities (P = 0.01) but was not affected by pain. At the fastest contraction speed, torque variability and DRvar were reduced (P < 0.05) and MDR was maintained. Conversely, MDR decreased and DRvar and NMD increased significantly during pain at slow contraction speeds (P < 0.05). These results show that reductions in contraction amplitude and increased recruitment of higher-threshold MUs at fast contraction speeds appear to compensate for the inhibitory effect of nociceptive inputs on lower-threshold MUs, allowing the exertion of fast submaximal contractions during pain.NEW & NOTEWORTHY Pain induces changes in motor performance, motor unit recruitment, and rate coding behavior that varies across different contraction speeds. Here we show that that pain reduces motor unit discharge rate and prolongs the neuromechanical delay at slow contraction speeds only. This new evidence suggests that there are differential nociceptive inhibitory effects across the motor unit pool, which allows fast submaximal contractions to be exerted despite the presence of pain.
Collapse
Affiliation(s)
- Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
56
|
Tanzarella S, Muceli S, Santello M, Farina D. Synergistic Organization of Neural Inputs from Spinal Motor Neurons to Extrinsic and Intrinsic Hand Muscles. J Neurosci 2021; 41:6878-6891. [PMID: 34210782 PMCID: PMC8360692 DOI: 10.1523/jneurosci.0419-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Our current understanding of synergistic muscle control is based on the analysis of muscle activities. Modules (synergies) in muscle coordination are extracted from electromyographic (EMG) signal envelopes. Each envelope indirectly reflects the neural drive received by a muscle; therefore, it carries information on the overall activity of the innervating motor neurons. However, it is not known whether the output of spinal motor neurons, whose number is orders of magnitude greater than the muscles they innervate, is organized in a low-dimensional fashion when performing complex tasks. Here, we hypothesized that motor neuron activities exhibit a synergistic organization in complex tasks and therefore that the common input to motor neurons results in a large dimensionality reduction in motor neuron outputs. To test this hypothesis, we factorized the output spike trains of motor neurons innervating 14 intrinsic and extrinsic hand muscles and analyzed the dimensionality of control when healthy individuals exerted isometric forces using seven grip types. We identified four motor neuron synergies, accounting for >70% of the variance of the activity of 54.1 ± 12.9 motor neurons, and we identified four functionally similar muscle synergies. However, motor neuron synergies better discriminated individual finger forces than muscle synergies and were more consistent with the expected role of muscles actuating each finger. Moreover, in a few cases, motor neurons innervating the same muscle were active in separate synergies. Our findings suggest a highly divergent net neural inputs to spinal motor neurons from spinal and supraspinal structures, contributing to the dimensionality reduction captured by muscle synergies.SIGNIFICANCE STATEMENT We addressed whether the output of spinal motor neurons innervating multiple hand muscles could be accounted for by a modular organization, i.e., synergies, previously described to account for the coordination of multiple muscles. We found that motor neuron synergies presented similar dimensionality (implying a >10-fold reduction in dimensionality) and structure as muscle synergies. Nonetheless, the synergistic behavior of subsets of motor neurons within a muscle was also observed. These results advance our understanding of how neuromuscular control arises from mapping descending inputs to muscle activation signals. We provide, for the first time, insights into the organization of neural inputs to spinal motor neurons which, to date, has been inferred through analysis of muscle synergies.
Collapse
Affiliation(s)
- Simone Tanzarella
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Silvia Muceli
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
57
|
Trypidakis G, Amiridis IG, Enoka R, Tsatsaki I, Kellis E, Negro F. Ankle Angle but Not Knee Angle Influences Force Fluctuations During Plantar Flexion. Int J Sports Med 2021; 43:131-137. [PMID: 34282592 DOI: 10.1055/a-1502-6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of the study was to evaluate the influence of changes in ankle- and knee-joint angles on force steadiness and the discharge characteristics of motor units (MU) in soleus when the plantar flexors performed steady isometric contractions. Submaximal contractions (5, 10, 20, and 40% of maximum) were performed at two ankle angles (75° and 105°) and two knee angles (120° and 180°) by 14 young adults. The coefficient of variation of force decreased as the target force increased from 5 to 20% of maximal force, then remained unaltered at 40%. Independently of knee angle, the coefficient of variation for force at the ankle angle of 75° (long length) was always less (p<0.05) than that at 105° (shorter length). Mean discharge rate, discharge variability, and variability in neural activation of soleus motor units were less (p<0.05) at the 75° angle than at 105°. It was not possible to record MUs from medial gastrocnemius at the knee angle of 120° due to its minimal activation. The changes in knee-joint angle did not influence any of the outcome measures. The findings underscore the dominant role of the soleus muscle in the control of submaximal forces produced by the plantar flexor muscles.
Collapse
Affiliation(s)
- Georgios Trypidakis
- Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis G Amiridis
- Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Serres, Greece
| | - Roger Enoka
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, United States
| | - Irini Tsatsaki
- Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Kellis
- Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Serres, Greece
| | - Francesco Negro
- Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
58
|
Evans V, Koh RGL, Duarte FCK, Linde L, Amiri M, Kumbhare D. A randomized double blinded placebo controlled study to evaluate motor unit abnormalities after experimentally induced sensitization using capsaicin. Sci Rep 2021; 11:13793. [PMID: 34215800 PMCID: PMC8253857 DOI: 10.1038/s41598-021-93188-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/17/2021] [Indexed: 12/02/2022] Open
Abstract
Central sensitization is a condition that represents a cascade of neurological adaptations, resulting in an amplification of nociceptive responses from noxious and non-noxious stimuli. However, whether this abnormality translates into motor output and more specifically, ventral horn abnormalities, needs to be further explored. Twenty healthy participants aged 20-70 were randomly allocated to topical capsaicin or a placebo topical cream which was applied onto their left upper back to induce a transient state of sensitization. Visual analogue scale (VAS) ratings of pain intensity and brush allodynia score (BAS) were used to determine the presence of pain and secondary allodynia. Surface electromyography (sEMG) and intramuscular electromyography (iEMG) were used to record motor unit activity from the upper trapezius and infraspinatus muscles before and twenty minutes after application of capsaicin/placebo. Motor unit recruitment and variability were analyzed in the sEMG and iEMG, respectively. An independent t-test and Kruskal-Wallis H test were performed on the data. The sEMG results demonstrated a shift in the motor unit recruitment pattern in the upper trapezius muscle, while the iEMG showed a change in motor unit variability after application of capsaicin. These results suggest that capsaicin-induced central sensitization may cause changes in ventral horn excitability outside of the targeted spinal cord segment, affecting efferent pathway outputs. This preclinical evidence may provide some explanation for the influence of central sensitization on changes in movement patterns that occur in patients who have pain encouraging of further clinical investigation.Clinical Trials registration number: NCT04361149; date of registration: 24-Apr-2020.
Collapse
Affiliation(s)
- Valerie Evans
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine, Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, 550 University Ave, Suite 7-131, Toronto, ON, M5G 2A2, Canada
| | - Ryan G L Koh
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Felipe C K Duarte
- Division of Research and Innovation, Canadian Memorial of Chiropractic College, Toronto, ON, Canada
| | - Lukas Linde
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mohammadreza Amiri
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada.
- Department of Medicine, Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, 550 University Ave, Suite 7-131, Toronto, ON, M5G 2A2, Canada.
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
59
|
Senefeld JW, Keenan KG, Ryan KS, D'Astice SE, Negro F, Hunter SK. Greater fatigability and motor unit discharge variability in human type 2 diabetes. Physiol Rep 2021; 8:e14503. [PMID: 32633071 PMCID: PMC7379048 DOI: 10.14814/phy2.14503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study determined the discharge characteristics of motor units from two lower limb muscles before and after fatiguing exercise in people with type 2 diabetes (T2D) with no symptoms of polyneuropathy and activity‐matched controls. Seventeen people with T2D (65.0 ± 5.6 years; 8 women) and 17 controls (63.6 ± 4.5 years; 8 women) performed: (a) intermittent, isometric contractions at 50% maximal voluntary isometric contraction (MVIC) sustained to failure with the ankle dorsiflexors, and (b) a dynamic fatiguing task (30% MVIC load) for 6 min with the knee extensors. Before and after the fatiguing tasks, motor unit characteristics (including coefficient of variation (CV) of interspike intervals (ISI)) were quantified from high‐density electromyography and muscle contractile properties were assessed via electrical stimulation. Fatigability was ~50% greater for people with T2D than controls for the dorsiflexors (time‐to‐failure: 7.3 ± 4.1 vs. 14.3 ± 9.1 min, p = .010) and knee extensors (power reduction: 56.7 ± 11.9 vs. 31.5 ± 25.5%, p < .001). The CV of ISI was greater for the T2D than control group for the tibialis anterior (23.1 ± 11.0 vs. 21.3 ± 10.7%, p < .001) and vastus lateralis (27.8 ± 20.2 vs. 24.5 ± 16.1%, p = .011), but these differences did not change after the fatiguing exercises. People with T2D had greater reductions in the electrically evoked twitch amplitude of the dorsiflexors (8.5 ± 5.1 vs. 4.0 ± 3.4%·min‐1, p = .013) and knee extensors (49.1 ± 10.0 vs. 31.8 ± 15.9%, p = .004) than controls. Although motor unit activity was more variable in people with T2D than controls, the greater fatigability of the T2D group for lower limb muscles was due to mechanisms involving disruption of contractile function of the exercising muscles rather than motor unit behavior.
Collapse
Affiliation(s)
- Jonathon W Senefeld
- Exercise Science Program, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin G Keenan
- Department of Kinesiology, University of Wisconsin, Milwaukee, WI, USA.,Center for Aging and Translational Research, University of Wisconsin, Milwaukee, WI, USA
| | - Kevin S Ryan
- Exercise Science Program, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Sarah E D'Astice
- Exercise Science Program, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sandra K Hunter
- Exercise Science Program, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
60
|
Lulic-Kuryllo T, Thompson CK, Jiang N, Negro F, Dickerson CR. Neural control of the healthy pectoralis major from low-to-moderate isometric contractions. J Neurophysiol 2021; 126:213-226. [PMID: 34107220 DOI: 10.1152/jn.00046.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pectoralis major critically enables arm movement in several directions. However, its neural control remains unknown. High-density electromyography (HD-sEMG) was acquired from the pectoralis major in two sets of experiments in healthy young adults. Participants performed ramp-and-hold isometric contractions in: adduction, internal rotation, flexion, and horizontal adduction at three force levels: 15%, 25%, and 50% scaled to task-specific maximal voluntary force (MVF). HD-sEMG signals were decomposed into motor unit spike trains using a convolutive blind source separation algorithm and matched across force levels using a motor unit matching algorithm. The mean discharge rate and coefficient of variation were quantified across the hold and compared between 15% and 25% MVF across all tasks, whereas comparisons between 25% and 50% MVF were made where available. Mean motor unit discharge rate was not significantly different between 15% and 25% MVF (all P > 0.05) across all tasks or between 25% and 50% MVF in horizontal adduction (P = 0.11), indicating an apparent saturation across force levels and the absence of rate coding. These findings suggest that the pectoralis major likely relies on motor unit recruitment to increase force, providing first-line evidence of motor unit recruitment in this muscle and paving the way for more deliberate investigations of the pectoralis major involvement in shoulder function.NEW & NOTEWORTHY This work is the first to investigate the relative contribution of rate coding and motor unit recruitment in the pectoralis major muscle in several functionally relevant tasks and across varying force levels in healthy adults. Our results demonstrate the absence of motor unit rate coding with an increase in EMG amplitude with increases in force level in all tasks examined, indicating that the pectoralis major relies on motor unit recruitment to increase force.
Collapse
Affiliation(s)
- Tea Lulic-Kuryllo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Ning Jiang
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Clark R Dickerson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
61
|
Oliveira AS, Negro F. Neural control of matched motor units during muscle shortening and lengthening at increasing velocities. J Appl Physiol (1985) 2021; 130:1798-1813. [PMID: 33955258 DOI: 10.1152/japplphysiol.00043.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modulation of movement velocity is necessary during daily life tasks, work, and sports activities. However, assessing motor unit behavior during muscle shortening and lengthening at different velocities is challenging. High-density surface electromyography (HD-sEMG) is an established method to identify and track motor unit behavior in isometric contractions. Therefore, we used this methodology to unravel the behavior of the same motor units in dynamic contractions at low contraction velocities. Velocity-related changes in tibialis anterior motor unit behavior during concentric and eccentric contractions at 10% and 25% maximum voluntary isometric contraction were assessed by decomposing HD-sEMG signals recorded from the tibialis anterior muscle of eleven healthy participants at 5°/s, 10°/s, and 20°/s. Motor units extracted from the dynamic contractions were tracked across different velocities at the same load levels. On average, 14 motor units/participant were matched across different velocities, showing specific changes in discharge rate modulation. Specifically, increased velocity led to an increased rate of change in discharge rate (e.g., discharge rate slope, P = 0.025), recruitment and derecruitment discharge rates (P = 0.003 and P = 0.001), and decreased recruitment angles (P = 0.0001). Surprisingly, the application of the motor unit extraction filters calculated from 20°/s onto the recordings at 5°/s and 10°/s revealed that >92% of motor units recruited at the highest velocity were active on both lower velocities, indicating no additional recruitment of motor units. Our results suggest that motor unit rate coding rather than recruitment is responsible for controlling muscle shortening and lengthening contractions at increasing velocities against a constant load.NEW & NOTEWORTHY The control of movement velocity is accomplished by the modulation of the neural drive to muscle and its variation over time. In this study, we tracked motor units decomposed from HD-sEMG across shortening and lengthening contractions at increasing velocities in two submaximal load levels. We demonstrate that concentric and eccentric contractions of the tibialis anterior muscle at slow velocities are achieved by specific motor unit rate coding strategies rather than distinct recruitment schemes.
Collapse
Affiliation(s)
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
62
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
63
|
Gómez A, Gómez P, Palacios D, Rodellar V, Nieto V, Álvarez A, Tsanas A. A Neuromotor to Acoustical Jaw-Tongue Projection Model With Application in Parkinson's Disease Hypokinetic Dysarthria. Front Hum Neurosci 2021; 15:622825. [PMID: 33790751 PMCID: PMC8005556 DOI: 10.3389/fnhum.2021.622825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
Aim The present work proposes the study of the neuromotor activity of the masseter-jaw-tongue articulation during diadochokinetic exercising to establish functional statistical relationships between surface Electromyography (sEMG), 3D Accelerometry (3DAcc), and acoustic features extracted from the speech signal, with the aim of characterizing Hypokinetic Dysarthria (HD). A database of multi-trait signals of recordings from an age-matched control and PD participants are used in the experimental study. Hypothesis: The main assumption is that information between sEMG and 3D acceleration, and acoustic features may be quantified using linear regression methods. Methods Recordings from a cohort of eight age-matched control participants (4 males, 4 females) and eight PD participants (4 males, 4 females) were collected during the utterance of a diadochokinetic exercise (the fast repetition of diphthong [aI]). The dynamic and acoustic absolute kinematic velocities produced during the exercises were estimated by acoustic filter inversion and numerical integration and differentiation of the speech signal. The amplitude distributions of the absolute kinematic and acoustic velocities (AKV and AFV) are estimated to allow comparisons in terms of Mutual Information. Results The regression results show the relationships between sEMG and dynamic and acoustic estimates. The projection methodology may help in understanding the basic neuromotor muscle activity regarding neurodegenerative speech in remote monitoring neuromotor and neurocognitive diseases using speech as the vehicular tool, and in the study of other speech-related disorders. The study also showed strong and significant cross-correlations between articulation kinematics, both for the control and the PD cohorts. The absolute kinematic variables presents an observable difference for the PD participants compared to the control group. Conclusion Kinematic distributions derived from acoustic analysis may be useful biomarkers toward characterizing HD in neuromotor disorders providing new insights into PD.
Collapse
Affiliation(s)
- Andrés Gómez
- Old Medical School, Medical School, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom.,NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pedro Gómez
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Daniel Palacios
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Escuela Técnica Superior de Ingeniería Informática-Universidad Rey Juan Carlos, Móstoles, Spain
| | - Victoria Rodellar
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Víctor Nieto
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Agustín Álvarez
- NeuSpeLab, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Athanasios Tsanas
- Old Medical School, Medical School, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
64
|
Jiang X, Ren H, Xu K, Ye X, Dai C, Clancy EA, Zhang YT, Chen W. Quantifying Spatial Activation Patterns of Motor Units in Finger Extensor Muscles. IEEE J Biomed Health Inform 2021; 25:647-655. [PMID: 32750937 DOI: 10.1109/jbhi.2020.3002329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ability to expertly control different fingers contributes to hand dexterity during object manipulation in daily life activities. The macroscopic spatial patterns of muscle activations during finger movements using global surface electromyography (sEMG) have been widely researched. However, the spatial activation patterns of microscopic motor units (MUs) under different finger movements have not been well investigated. The present work aims to quantify MU spatial activation patterns during movement of distinct fingers (index, middle, ring and little finger). Specifically, we focused on extensor muscles during extension contractions. Motor unit action potentials (MUAPs) during movement of each finger were obtained through decomposition of high-density sEMG (HD-sEMG). First, we quantified the spatial activation patterns of MUs for each finger based on 2-dimension (2-D) root-mean-square (RMS) maps of MUAP grids after spike-triggered averaging. We found that these activation patterns under different finger movements are distinct along the distal-proximal direction, but with partial overlap. Second, to further evaluate MU separability, we classified the spatial activation pattern of each individual MU under distinct finger movement and associated each MU with its corresponding finger with Regularized Uncorrelated Multilinear Discriminant Analysis (RUMLDA). A high accuracy of MU-finger classification tested on 12 subjects with a mean of 88.98% was achieved. The quantification of MU spatial activation patterns could be beneficial to studies of neural mechanisms of the hand. To the best of our knowledge, this is the first work which manages to quantify MU behaviors under different finger movements.
Collapse
|
65
|
Enoka RM, Farina D. Force Steadiness: From Motor Units to Voluntary Actions. Physiology (Bethesda) 2021; 36:114-130. [DOI: 10.1152/physiol.00027.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voluntary actions are controlled by the synaptic inputs that are shared by pools of spinal motor neurons. The slow common oscillations in the discharge times of motor units due to these synaptic inputs are strongly correlated with the fluctuations in force during submaximal isometric contractions (force steadiness) and moderately associated with performance scores on some tests of motor function. However, there are key gaps in knowledge that limit the interpretation of differences in force steadiness.
Collapse
Affiliation(s)
- Roger M. Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
66
|
Pincheira PA, Martinez-Valdes E, Guzman-Venegas R, Falla D, Garrido MI, Cresswell AG, Lichtwark GA. Regional changes in muscle activity do not underlie the repeated bout effect in the human gastrocnemius muscle. Scand J Med Sci Sports 2020; 31:799-812. [PMID: 33378553 DOI: 10.1111/sms.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The repeated bout effect (RBE) confers protection following exercise-induced muscle damage. Typical signs of this protective effect are significantly less muscle soreness and faster recovery of strength after the second bout. The aim of this study was to compare regional changes in medial gastrocnemius (MG) muscle activity and mechanical hyperalgesia after repeated bouts of eccentric exercise. Twelve healthy male participants performed two bouts of eccentric heel drop exercise (separated by 7 days) while wearing a vest equivalent to 20% of their body weight. High-density MG electromyographic amplitude maps and topographical pressure pain sensitivity maps were created before, two hours (2H), and two days (2D) after both exercise bouts. Statistical parametric mapping was used to identify RBE effects on muscle activity and mechanical hyperalgesia, using pixel-level statistics when comparing maps. The results revealed a RBE, as a lower strength loss (17% less; P < .01) and less soreness (50% less; P < .01) were found after the second bout. However, different muscle regions were activated 2H and 2D after the initial bout but not following the repeated bout. Further, no overall changes in EMG distribution or mechanical hyperalgesia were found between bouts. These results indicate that muscle activation is unevenly distributed during the initial bout, possibly to maintain muscle function during localized mechanical fatigue. However, this does not reflect a strategy to confer protection during the repeated bout by activating undamaged/non-fatigued muscle areas.
Collapse
Affiliation(s)
- Patricio A Pincheira
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia.,Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rodrigo Guzman-Venegas
- Escuela de Kinesiología, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Laboratory, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Saint Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Canberra, ACT, Australia
| | - Andrew G Cresswell
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
67
|
Škarabot J, Brownstein CG, Casolo A, Del Vecchio A, Ansdell P. The knowns and unknowns of neural adaptations to resistance training. Eur J Appl Physiol 2020; 121:675-685. [PMID: 33355714 PMCID: PMC7892509 DOI: 10.1007/s00421-020-04567-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The initial increases in force production with resistance training are thought to be primarily underpinned by neural adaptations. This notion is firmly supported by evidence displaying motor unit adaptations following resistance training; however, the precise locus of neural adaptation remains elusive. The purpose of this review is to clarify and critically discuss the literature concerning the site(s) of putative neural adaptations to short-term resistance training. The proliferation of studies employing non-invasive stimulation techniques to investigate evoked responses have yielded variable results, but generally support the notion that resistance training alters intracortical inhibition. Nevertheless, methodological inconsistencies and the limitations of techniques, e.g. limited relation to behavioural outcomes and the inability to measure volitional muscle activity, preclude firm conclusions. Much of the literature has focused on the corticospinal tract; however, preliminary research in non-human primates suggests reticulospinal tract is a potential substrate for neural adaptations to resistance training, though human data is lacking due to methodological constraints. Recent advances in technology have provided substantial evidence of adaptations within a large motor unit population following resistance training. However, their activity represents the transformation of afferent and efferent inputs, making it challenging to establish the source of adaptation. Whilst much has been learned about the nature of neural adaptations to resistance training, the puzzle remains to be solved. Additional analyses of motoneuron firing during different training regimes or coupling with other methodologies (e.g., electroencephalography) may facilitate the estimation of the site(s) of neural adaptations to resistance training in the future.
Collapse
Affiliation(s)
- Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Callum G Brownstein
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Université Lyon, Saint-Étienne, France
| | - Andrea Casolo
- Department of Bioengineering, Imperial College London, London, UK.,Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence and Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander University, Erlangen-Nurnberg, 91052, Erlangen, Germany
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
68
|
Zhang X, Zhu G, Chen M, Chen X, Chen X, Zhou P. Muscle Force Estimation Based on Neural Drive Information From Individual Motor Units. IEEE Trans Neural Syst Rehabil Eng 2020; 28:3148-3157. [PMID: 33284755 DOI: 10.1109/tnsre.2020.3042788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Estimation of muscle contraction force based on the macroscopic feature of surface electromyography (SEMG) has been widely reported, but the use of microscopic neural drive information has not been thoroughly investigated. In this study, a novel method is proposed to process individual motor unit (MU) activities (firing sequences and action potential waveforms) derived from the decomposition of high density SEMG (HD-SEMG), and it is applied to muscle force estimation. In the proposed method, a supervised machine learning approach was conducted to determine the twitch force of each MU according to its action potential waveforms, which enables separate calculation of every MU's contribution to force. Thus, the muscle force was predicted through a physiologically meaningful muscle force model. In the experiment, HD-SEMG data were recorded from the abductor pollicis brevis muscles of eight healthy subjects during their performance of thumb abduction with the force increasing gradually from zero to four force levels (10%, 20%, 30%, 40% of the maximal voluntary contraction), while the true muscle force was measured simultaneously. When the proposed method was used, the root mean square difference (RMSD) of the error of the estimated force with respect to the measured force was reported to be 8.3% ± 2.8%. The proposed method also significantly outperformed the other four common methods for force estimation (RMSD: from 11.7% to 20%, ), demonstrating its effectiveness. This study offers a useful tool for exploiting the neural drive information towards muscle force estimation with improved precision. The proposed method has wide applications in precise motor control, sport and rehabilitation medicine.
Collapse
|
69
|
Cogliati M, Cudicio A, Martinez-Valdes E, Tarperi C, Schena F, Orizio C, Negro F. Half marathon induces changes in central control and peripheral properties of individual motor units in master athletes. J Electromyogr Kinesiol 2020; 55:102472. [DOI: 10.1016/j.jelekin.2020.102472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
|
70
|
Generalized Finger Motion Classification Model Based on Motor Unit Voting. Motor Control 2020; 25:100-116. [PMID: 33207316 DOI: 10.1123/mc.2020-0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 01/12/2023]
Abstract
Surface electromyogram-based finger motion classification has shown its potential for prosthetic control. However, most current finger motion classification models are subject-specific, requiring calibration when applied to new subjects. Generalized subject-nonspecific models are essential for real-world applications. In this study, the authors developed a subject-nonspecific model based on motor unit (MU) voting. A high-density surface electromyogram was first decomposed into individual MUs. The features extracted from each MU were then fed into a random forest classifier to obtain the finger label (primary prediction). The final prediction was selected by voting for all primary predictions provided by the decomposed MUs. Experiments conducted on 14 subjects demonstrated that our method significantly outperformed traditional methods in the context of subject-nonspecific finger motion classification models.
Collapse
|
71
|
Negro F, Bathon KE, Nguyen JN, Bannon CG, Orizio C, Hunter SK, Hyngstrom AS. Impaired Firing Behavior of Individually Tracked Paretic Motor Units During Fatiguing Contractions of the Dorsiflexors and Functional Implications Post Stroke. Front Neurol 2020; 11:540893. [PMID: 33192970 PMCID: PMC7658471 DOI: 10.3389/fneur.2020.540893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: This study quantified stroke-related changes in the following: (1) the averaged discharge rate of motor units (individually tracked and untracked) identified from high-density electromyography (HD-EMG) recordings, (2) global muscle EMG properties of the dorsiflexors during a fatiguing contraction, and the relationship between task endurance and measures of leg function. Methods: Ten individuals with chronic stroke performed a sustained sub-maximal, isometric, fatiguing dorsiflexion contraction in paretic and non-paretic legs. Motor-unit firing behavior, task duration, maximal voluntary contraction strength (MVC), and clinical measures of leg function were obtained. Results: Compared to the non-paretic leg, the paretic leg task duration was shorter, and there was a larger exercise-related reduction in motor unit global rates, individually tracked discharge rates, and overall magnitude of EMG. Task duration of the paretic leg was more predictive of walking speed and lower extremity Fugl-Meyer scores compared to the non-paretic leg. Discussion: Paretic leg muscle fatigability is increased post stroke. It is characterized by impaired rate coding and recruitment and relates to measures of motor function.
Collapse
Affiliation(s)
- Francesco Negro
- Department of Clinical and Experimental Sciences, Research Center for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani", Università degli Studi di Brescia, Brescia, Italy
| | - Kathleen E Bathon
- Uniformed Services, University of Health Sciences, Bethesda, MD, United States
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cassidy G Bannon
- Uniformed Services, University of Health Sciences, Bethesda, MD, United States
| | - Claudio Orizio
- Department of Clinical and Experimental Sciences, Research Center for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani", Università degli Studi di Brescia, Brescia, Italy
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
72
|
Martinez-Valdes E, Negro F, Falla D, Dideriksen JL, Heckman CJ, Farina D. Inability to increase the neural drive to muscle is associated with task failure during submaximal contractions. J Neurophysiol 2020; 124:1110-1121. [DOI: 10.1152/jn.00447.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor unit firing and contractile properties during a submaximal contraction until failure were assessed with a new tracking technique. Two distinct phases in firing behavior were observed, which compensated for changes in twitch area and predicted time to failure. However, the late increase in firing rate was below the rates attained in the absence of fatigue, which points to an inability of the central nervous system to sufficiently increase the neural drive to muscle with fatigue.
Collapse
Affiliation(s)
- Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Research Centre for Neuromuscular Function and Adapted Physical Activity “Teresa Camplani,” Università degli Studi di Brescia, Brescia, Italy
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jakob Lund Dideriksen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - C. J. Heckman
- Department of Physiology, Northwestern University, Chicago, Illinois
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Royal School of Mines, London, United Kingdom
| |
Collapse
|
73
|
Barsakcioglu DY, Bracklein M, Holobar A, Farina D. Control of Spinal Motoneurons by Feedback From a Non-Invasive Real-Time Interface. IEEE Trans Biomed Eng 2020; 68:926-935. [PMID: 32746024 DOI: 10.1109/tbme.2020.3001942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interfacing with human neural cells during natural tasks provides the means for investigating the working principles of the central nervous system and for developing human-machine interaction technologies. Here we present a computationally efficient non-invasive, real-time interface based on the decoding of the activity of spinal motoneurons from wearable high-density electromyogram (EMG) sensors. We validate this interface by comparing its decoding results with those obtained with invasive EMG sensors and offline decoding, as reference. Moreover, we test the interface in a series of studies involving real-time feedback on the behavior of a relatively large number of decoded motoneurons. The results on accuracy, intuitiveness, and stability of control demonstrate the possibility of establishing a direct non-invasive interface with the human spinal cord without the need for extensive training. Moreover, in a control task, we show that the accuracy in control of the proposed neural interface may approach that of the natural control of force. These results are the first that demonstrate the feasibility and validity of a non-invasive direct neural interface with the spinal cord, with wearable systems and matching the neural information flow of natural movements.
Collapse
|
74
|
Tutorial: Analysis of motor unit discharge characteristics from high-density surface EMG signals. J Electromyogr Kinesiol 2020; 53:102426. [DOI: 10.1016/j.jelekin.2020.102426] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
75
|
Monjo F, Shemmell J. Probing the neuromodulatory gain control system in sports and exercise sciences. J Electromyogr Kinesiol 2020; 53:102442. [DOI: 10.1016/j.jelekin.2020.102442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
|
76
|
Murphy BB, Mulcahey PJ, Driscoll N, Richardson AG, Robbins GT, Apollo NV, Maleski K, Lucas TH, Gogotsi Y, Dillingham T, Vitale F. A gel-free Ti 3C 2T x-based electrode array for high-density, high-resolution surface electromyography. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:2000325. [PMID: 33693054 PMCID: PMC7939071 DOI: 10.1002/admt.202000325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 05/20/2023]
Abstract
Wearable sensors for surface electromyography (EMG) are composed of single- to few-channel large-area contacts, which exhibit high interfacial impedance and require conductive gels or adhesives to record high-fidelity signals. These devices are also limited in their ability to record activation across large muscle groups due to poor spatial coverage. To address these challenges, we have developed a novel high-density EMG array based on titanium carbide (Ti3C2Tx) MXene encapsulated in parylene-C. Ti3C2Tx is a two-dimensional nanomaterial with excellent electrical, electrochemical, and mechanical properties, which forms colloidally stable aqueous dispersions, enabling safe, scalable solutions-processing. Leveraging the excellent combination of metallic conductivity, high pseudocapacitance, and ease of processability of Ti3C2Tx MXene, we demonstrate the fabrication of gel-free, high-density EMG arrays which are ~8 μm thick, feature 16 recording channels, and are highly skin-conformable. The impedance of Ti3C2Tx electrodes in contact with human skin is 100-1000x lower than the impedance of commercially-available electrodes which require conductive gels to be effective. Furthermore, our arrays can record high-fidelity, low-noise EMG, and can resolve muscle activation with improved spatiotemporal resolution and sensitivity compared to conventional gelled electrodes. Overall, our results establish Ti3C2Tx-based bioelectronic interfaces as a powerful platform technology for high-resolution, non-invasive wearable sensing technologies.
Collapse
Affiliation(s)
- Brendan B Murphy
- Department of Bioengineering, 210 S. 33rd Street, 240 Skirkanich Hall, University of Pennsylvania, Philadelphia, PA, United States 19104
| | - Patrick J Mulcahey
- Department of Chemistry, 37th & O Streets NW, Georgetown University, Washington, DC, United States 20057
| | - Nicolette Driscoll
- Department of Bioengineering, 210 S. 33rd Street, 240 Skirkanich Hall, University of Pennsylvania, Philadelphia, PA, United States 19104
| | - Andrew G Richardson
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall, University of Pennsylvania, Philadelphia, PA, United States 19104
| | - Gregory T Robbins
- Department of Physical Medicine & Rehabilitation, 1800 Lombard Street, University of Pennsylvania, Philadelphia, PA, United States 19147
| | - Nicholas V Apollo
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall, University of Pennsylvania, Philadelphia, PA, United States 19104
| | - Kathleen Maleski
- Department of Materials Science and Engineering, A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, United States 19104
| | - Timothy H Lucas
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall, University of Pennsylvania, Philadelphia, PA, United States 19104
| | - Yury Gogotsi
- Department of Materials Science and Engineering, A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, United States 19104
| | - Timothy Dillingham
- Department of Physical Medicine & Rehabilitation, 1800 Lombard Street, University of Pennsylvania, Philadelphia, PA, United States 19147
| | - Flavia Vitale
- Center for Neuroengineering & Therapeutics, 240 S. 33rd Street, 301 Hayden Hall, University of Pennsylvania, Philadelphia, PA, United States 19104
| |
Collapse
|
77
|
Casolo A, Nuccio S, Bazzucchi I, Felici F, Del Vecchio A. Reproducibility of muscle fibre conduction velocity during linearly increasing force contractions. J Electromyogr Kinesiol 2020; 53:102439. [PMID: 32563844 DOI: 10.1016/j.jelekin.2020.102439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle fibre conduction velocity (MFCV) is a basic physiological parameter biophysically related to the diameter of muscle fibres and properties of the sarcolemma. The aim of this study was to assess the intersession reproducibility of the relation between voluntary force and estimates of average muscle fibre conduction velocity (MFCV) from multichannel high-density surface electromyographic recordings (HDsEMG). Ten healthy men performed six linearly increasing isometric ankle dorsiflexions on two separate experimental sessions, 4 weeks apart. Each session involved the recordings of voluntary force during maximal isometric (MViF) and submaximal ramp contractions at 35-50-70% of MViF. Concurrently, the HDsEMG activity was detected from the tibialis anterior muscle and MFCV estimates were derived in 250-ms epochs. Absolute and relative reproducibility of MFCV initial value (intercept) and rate of change (regression slope) as a function of force were assessed by within-subject coefficient of correlation (CVw) and with intraclass correlation coefficient (ICC). MFCV was positively correlated with voluntary force (R2 = 0.75 ± 0.12) in all individuals and test conditions (P < 0.001). Average CVw for MFCV intercept and slope were of 2.6 ± 2.0% and 11.9 ± 3.2% and ICC values of 0.96 and 0.94, respectively. Overall, MFCV regression coefficients showed a high degree of intersession reproducibility in both absolute and relative terms. These results may have important practical implications in the tracking of training-induced neuromuscular changes and/or in the monitoring of the progress of neuromuscular disorders when a full sEMG signal decomposition is problematic or not possible.
Collapse
Affiliation(s)
- Andrea Casolo
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy; Department of Bioengineering, Imperial College London, SW7 2AZ London, UK
| | - Stefano Nuccio
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy; Department of Bioengineering, Imperial College London, SW7 2AZ London, UK
| | - Ilenia Bazzucchi
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Alessandro Del Vecchio
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy; Department of Bioengineering, Imperial College London, SW7 2AZ London, UK.
| |
Collapse
|
78
|
Gogeascoechea A, Kuck A, van Asseldonk E, Negro F, Buitenweg JR, Yavuz US, Sartori M. Interfacing With Alpha Motor Neurons in Spinal Cord Injury Patients Receiving Trans-spinal Electrical Stimulation. Front Neurol 2020; 11:493. [PMID: 32582012 PMCID: PMC7296155 DOI: 10.3389/fneur.2020.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Trans-spinal direct current stimulation (tsDCS) provides a non-invasive, clinically viable approach to potentially restore physiological neuromuscular function after neurological impairment, e.g., spinal cord injury (SCI). Use of tsDCS has been hampered by the inability of delivering stimulation patterns based on the activity of neural targets responsible to motor function, i.e., α-motor neurons (α-MNs). State of the art modeling and experimental techniques do not provide information about how individual α-MNs respond to electrical fields. This is a major element hindering the development of neuro-modulative technologies highly tailored to an individual patient. For the first time, we propose the use of a signal-based approach to infer tsDCS effects on large α-MNs pools in four incomplete SCI individuals. We employ leg muscles spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-MNs discharges across multiple lumbosacral segments during isometric plantar flexion sub-maximal contractions. This is done before, immediately after and 30 min after sub-threshold cathodal stimulation. We deliver sham tsDCS as a control measure. First, we propose a new algorithm for removing compromised information from decomposed α-MNs spike trains, thereby enabling robust decomposition and frequency-domain analysis. Second, we propose the analysis of α-MNs spike trains coherence (i.e., frequency-domain) as an indicator of spinal response to tsDCS. Results showed that α-MNs spike trains coherence analysis sensibly varied across stimulation phases. Coherence analyses results suggested that the common synaptic input to α-MNs pools decreased immediately after cathodal tsDCS with a persistent effect after 30 min. Our proposed non-invasive decoding of individual α-MNs behavior may open up new avenues for the design of real-time closed-loop control applications including both transcutaneous and epidural spinal electrical stimulation where stimulation parameters are adjusted on-the-fly.
Collapse
Affiliation(s)
- Antonio Gogeascoechea
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Alexander Kuck
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Edwin van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Jan R Buitenweg
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Utku S Yavuz
- Biomedical Signals and Systems Group, University of Twente, Enschede, Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| |
Collapse
|
79
|
Afsharipour B, Manzur N, Duchcherer J, Fenrich KF, Thompson CK, Negro F, Quinlan KA, Bennett DJ, Gorassini MA. Estimation of self-sustained activity produced by persistent inward currents using firing rate profiles of multiple motor units in humans. J Neurophysiol 2020; 124:63-85. [PMID: 32459555 DOI: 10.1152/jn.00194.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Persistent inward calcium and sodium currents (IP) activated during motoneuron recruitment help synaptic inputs maintain self-sustained firing until derecruitment. Here, we estimate the contribution of the IP to self-sustained firing in human motoneurons of varying recruitment threshold by measuring the difference in synaptic input needed to maintain minimal firing once the IP is fully activated compared with the larger synaptic input required to initiate firing before full IP activation. Synaptic input to ≈20 dorsiflexor motoneurons simultaneously recorded during ramp contractions was estimated from firing profiles of motor units decomposed from high-density surface electromyography (EMG). To avoid errors introduced when using high-threshold units firing in their nonlinear range, we developed methods where the lowest threshold units firing linearly with force were used to construct a composite (control) unit firing rate profile to estimate synaptic input to higher threshold (test) units. The difference in the composite firing rate (synaptic input) at the time of test unit recruitment and derecruitment (ΔF = Frecruit - Fderecruit) was used to measure IP amplitude that sustained firing. Test units with recruitment thresholds 1-30% of maximum had similar ΔF values, which likely included both slow and fast motor units activated by small and large motoneurons, respectively. This suggests that the portion of the IP that sustains firing is similar across a wide range of motoneuron sizes.NEW & NOTEWORTHY A new method of estimating synaptic drive to multiple, simultaneously recorded motor units provides evidence that the portion of the depolarizing drive from persistent inward currents that contributes to self-sustained firing is similar across motoneurons of different sizes.
Collapse
Affiliation(s)
- Babak Afsharipour
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nagib Manzur
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Duchcherer
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Keith F Fenrich
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Francesco Negro
- Research Centre for Neuromuscular Function and Adapted Physical Activity "Teresa Camplani," Università degli Studi di Brescia, Brescia, Italy
| | - Katharina A Quinlan
- Department of Biomedical and Pharmaceutical Sciences and George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - David J Bennett
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
80
|
Hassan AS, Kim EH, Khurram OU, Cummings M, Thompson CK, Miller McPherson L, Heckman CJ, Dewald JPA, Negro F. Properties of Motor Units of Elbow and Ankle Muscles Decomposed Using High-Density Surface EMG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3874-3878. [PMID: 31946719 DOI: 10.1109/embc.2019.8857475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analyses of motor unit activity provide a window to the neural control of motor output. In recent years, considerable advancements in surface EMG decomposition methods have allowed for the discrimination of dozens of individual motor units across a range of muscle forces. While these non-invasive methods show great potential as an emerging technology, they have difficulty discriminating a representative sample of the motor pool. In the present study, we investigate the distribution of recruitment thresholds and motor unit action potential waveforms obtained from high density EMG across four muscles: soleus, tibialis anterior, biceps brachii, and triceps brachii. Ten young and healthy control subjects generated isometric torque ramps between 10-50% maximum voluntary torque during elbow or ankle flexion and extension. Hundreds of motor unit spike trains were decomposed for each muscle across all trials. For lower contraction levels and speeds, surface EMG decomposition discriminated a large number of low-threshold units. However, during contractions of greater speed and torque level the proportion of low threshold motor units decomposed was reduced, resulting in a relatively uniform distribution of recruitment thresholds. The number of motor units decomposed decreased as the contraction level and speed increased. The decomposed units showed a wide range of recruitment thresholds and motor unit action potential amplitudes. In conclusion, although surface EMG decomposition is a useful tool to study large populations of motor units, results of such methods should be interpreted in the context of limitations in sampling of the motor pool.
Collapse
|
81
|
Martinez‐Valdes E, Negro F, Farina D, Falla D. Divergent response of low‐
versus
high‐threshold motor units to experimental muscle pain. J Physiol 2020; 598:2093-2108. [DOI: 10.1113/jp279225] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eduardo Martinez‐Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences University of Birmingham Birmingham UK
| | - Francesco Negro
- Department of Clinical and Experimental Sciences Università degli Studi di Brescia Brescia Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London Royal School of Mines London UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences University of Birmingham Birmingham UK
| |
Collapse
|
82
|
Hoshizaki T, Clancy EA, Gabriel DA, Green LA. The reliability of surface EMG derived motor unit variables. J Electromyogr Kinesiol 2020; 52:102419. [PMID: 32305018 DOI: 10.1016/j.jelekin.2020.102419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Motor unit (MU) recordings obtained from surface electromyography (sEMG) decomposition are used to investigate the neural control of muscle in response to interventions, but our understanding of the longer-term reliability of MU variables is limited. This study examined the reliability of MU variables in the flexor carpi radialis (FCR) and tibialis anterior (TA) over a three-month period. Forty college-aged participants completed isometric wrist flexion (n = 20) and dorsiflexion (n = 20). There were 3 maximal isometric voluntary contractions (MVC) and 3 ramp contractions to 60% of MVC on four separate sessions separated by a total of 13 weeks. Intraclass correlation coefficients (ICC) were calculated from a fully nested ANOVA model. Maximal force was highly reliable (ICC = 0.94-0.99). The ICC values ranged from 0.49 to 0.92 for the FCR MU variables and from 0.58 to 0.96 for the TA MU variables. All MU variables exhibited a high degree of stability of means across test session and consistency within subjects, with the exception of the number of MUs detected in the TA. Poor ICC values did not reflect poor reliability but rather, convergence towards a narrow range of physiologically normal values. Surface EMG decomposition of a large population of MUs showed no differences in common drive between FCR (0.273) and for the TA (0.267) across test sessions. Forty percent of the sampled MUs in both muscles had a common drive of 0.30 or greater, which provides indirect support for the validity of the decompositions. MU variables may be used to monitor adaptations to a longer-term intervention study.
Collapse
Affiliation(s)
| | | | | | - Lara A Green
- Brock University, St. Catharines, ON, Canada; Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
83
|
Hassan A, Thompson CK, Negro F, Cummings M, Powers RK, Heckman CJ, Dewald JPA, McPherson LM. Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. J Neural Eng 2020; 17:016063. [PMID: 31801123 DOI: 10.1088/1741-2552/ab5eda] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Noninvasive estimation of motoneuron excitability in human motoneurons is achieved through a paired motor unit analysis (ΔF) that quantifies hysteresis in the instantaneous firing rates at motor unit recruitment and de-recruitment. The ΔF technique provides insight into the magnitude of neuromodulatory synaptic input and persistent inward currents (PICs). While the ΔF technique is commonly used for estimating motoneuron excitability during voluntary contractions, computational parameters used for the technique vary across studies. A systematic investigation into the relationship between these parameters and ΔF values is necessary. APPROACH We assessed the sensitivity of the ΔF technique with several criteria commonly used in selecting motor unit pairs for analysis and methods used for smoothing the instantaneous motor unit firing rates. Using high-density surface EMG and convolutive blind source separation, we obtained a large number of motor unit pairs (5409) from the triceps brachii of ten healthy individuals during triangular isometric contractions. MAIN RESULTS We found an exponential plateau relationship between ΔF and the recruitment time difference between the motor unit pairs and an exponential decay relationship between ΔF and the de-recruitment time difference between the motor unit pairs, with the plateaus occurring at approximately 1 s and 1.5 s, respectively. Reduction or removal of the minimum threshold for rate-rate correlation of the two units did not affect ΔF values or variance. Removing motor unit pairs in which the firing rate of the control unit was saturated had no significant effect on ΔF. Smoothing the filter selection had no substantial effect on ΔF values and ΔF variance; however, filter selection affected the minimum recruitment and de-recruitment time differences. SIGNIFICANCE Our results offer recommendations for standardized parameters for the ΔF approach and facilitate the interpretation of findings from studies that implement the ΔF analysis but use different computational parameters.
Collapse
Affiliation(s)
- Altamash Hassan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America. Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Kumar RI, Mallette MM, Cheung SS, Stashuk DW, Gabriel DA. A method for editing motor unit potential trains obtained by decomposition of surface electromyographic signals. J Electromyogr Kinesiol 2020; 50:102383. [DOI: 10.1016/j.jelekin.2019.102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
|
85
|
Vecchio AD, Farina D. Interfacing the neural output of the spinal cord: robust and reliable longitudinal identification of motor neurons in humans. J Neural Eng 2019; 17:016003. [DOI: 10.1088/1741-2552/ab4d05] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
86
|
Tankisi H, Burke D, Cui L, de Carvalho M, Kuwabara S, Nandedkar SD, Rutkove S, Stålberg E, van Putten MJAM, Fuglsang-Frederiksen A. Standards of instrumentation of EMG. Clin Neurophysiol 2019; 131:243-258. [PMID: 31761717 DOI: 10.1016/j.clinph.2019.07.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 12/14/2022]
Abstract
Standardization of Electromyography (EMG) instrumentation is of particular importance to ensure high quality recordings. This consensus report on "Standards of Instrumentation of EMG" is an update and extension of the earlier IFCN Guidelines published in 1999. First, a panel of experts in different fields from different geographical distributions was invited to submit a section on their particular interest and expertise. Then, the merged document was circulated for comments and edits until a consensus emerged. The first sections in this document cover technical aspects such as instrumentation, EMG hardware and software including amplifiers and filters, digital signal analysis and instrumentation settings. Other sections cover the topics such as temporary storage, trigger and delay line, averaging, electrode types, stimulation techniques for optimal and standardised EMG examinations, and the artefacts electromyographers may face and safety rules they should follow. Finally, storage of data and databases, report generators and external communication are summarized.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital & Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - David Burke
- Royal Prince Alfred Hospital and University of Sydney, Australia
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mamede de Carvalho
- Faculdade de Medicina-iMM, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences, Centro Hospitalar Universitário de Lisboa, Portugal
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Japan
| | | | | | - Erik Stålberg
- Department Clin Neurophysiology, Inst Neurosciences, Uppsala University, Sweden
| | | | - Anders Fuglsang-Frederiksen
- Department of Clinical Neurophysiology, Aarhus University Hospital & Dept of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
87
|
CASOLO ANDREA, FARINA DARIO, FALLA DEBORAH, BAZZUCCHI ILENIA, FELICI FRANCESCO, DEL VECCHIO ALESSANDRO. Strength Training Increases Conduction Velocity of High-Threshold Motor Units. Med Sci Sports Exerc 2019; 52:955-967. [DOI: 10.1249/mss.0000000000002196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
88
|
Reliability of surface electromyography in estimating muscle fiber conduction velocity: A systematic review. J Electromyogr Kinesiol 2019; 48:53-68. [DOI: 10.1016/j.jelekin.2019.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022] Open
|
89
|
Boccia G, Martinez-Valdes E, Negro F, Rainoldi A, Falla D. Motor unit discharge rate and the estimated synaptic input to the vasti muscles is higher in open compared with closed kinetic chain exercise. J Appl Physiol (1985) 2019; 127:950-958. [DOI: 10.1152/japplphysiol.00310.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conflicting results have been reported on whether closed kinetic chain exercises (such as a leg press) may induce more balanced activation of vastus medialis (VM) and lateralis (VL) muscles compared with open kinetic chain exercise (such as pure knee extension). This study aimed to 1) compare between-vasti motor unit activity and 2) analyze the combined motor unit behavior from both muscles between open and closed kinetic chain exercises. Thirteen participants (four women, mean ± SD age: 27 ± 5 yr) performed isometric knee extension and leg press at 10, 30, 50, 70% of the maximum voluntary torque. High density surface EMG signals were recorded from the VM and VL and motor unit firings were automatically identified by convolutive blind source separation. We estimated the total synaptic input received by the two muscles by analyzing the difference in discharge rate from recruitment to target torque for motor units matched by recruitment threshold. When controlling for recruitment threshold and discharge rate at recruitment, the motor unit discharge rates were higher for knee extension compared with the leg press exercise at 50% [estimate = 1.2 pulses per second (pps), standard error (SE) = 0.3 pps, P = 0.0138] and 70% (estimate = 2.0 pps, SE = 0.3 pps, P = 0.0001) of maximal torque. However, no difference between the vasti muscles were detected in both exercises. The estimates of synaptic input to the muscles confirmed these results. In conclusion, the estimated synaptic input received by VM and VL was similar within and across exercises. However, both muscles had higher firing rates and estimated synaptic input at the highest torque levels during knee extension. Taken together, the results show that knee-extension is more suitable than leg-press exercise at increasing the concurrent activation of the vasti muscles. NEW & NOTEWORTHY There is a significant debate on whether open kinetic chain, single-joint knee extension exercise can influence the individual and combined activity of the vasti muscles compared with closed kinetic chain, multijoint leg press exercise. Here we show that attempting to change the contribution of either the vastus medialis or vastus lateralis via different forms of exercise does not seem to be a viable strategy. However, the adoption of open kinetic chain knee extension induces greater discharge rate and estimated synaptic input to both vasti muscles compared with the leg press.
Collapse
Affiliation(s)
- Gennaro Boccia
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- NeuroMuscularFunction Research Group, School of Exercise and Sport Sciences, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Alberto Rainoldi
- NeuroMuscularFunction Research Group, School of Exercise and Sport Sciences, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
90
|
Kim EH, Hassan AS, Heckman CJ. Changes in motor unit discharge patterns following strength training. J Physiol 2019; 597:3509-3510. [PMID: 31157914 DOI: 10.1113/jp278137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Edward H Kim
- Department of Physical Therapy and Human Movement Sciences.,Department of Physiology
| | - Altamash S Hassan
- Department of Physical Therapy and Human Movement Sciences.,Department of Biomedical Engineering
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences.,Department of Physiology.,Department of Physical Medicine and Rehabilitation, Northwestern University, IL, USA
| |
Collapse
|
91
|
Wu R, Delahunt E, Ditroilo M, Ferri Marini C, De Vito G. Torque steadiness and neuromuscular responses following fatiguing concentric exercise of the knee extensor and flexor muscles in young and older individuals. Exp Gerontol 2019; 124:110636. [PMID: 31195103 DOI: 10.1016/j.exger.2019.110636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/16/2019] [Accepted: 06/09/2019] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the age-related alterations in the ability to exert maximal and to sustain submaximal isometric muscle torques after a fatiguing concentric exercise conducted with knee extensor (KE) and flexor (KF) muscles. Sixteen young (aged 19-30 years; 8 women) and 17 older (aged 65-75 years; 9 women) volunteers participated. The following tasks were performed before and immediately after 22 maximal concentric efforts of the right KE and KF at 1.05 rad/s: (1) a maximal voluntary isometric contraction (MVIC) task involving both KE and KF; and (2) a KE torque-steadiness task at a submaximal target contraction intensity (20% MVIC). During the dynamometric tests, surface EMG was recorded simultaneously from the KE and KF muscles. Fatigue-induced reductions in knee extension MVIC were similar (~15%) between groups, but young participants showed more pronounced declines in agonist (i.e. quadriceps) EMG responses in both time (RMS amplitude; ~15% vs. ~10%, p < 0.001) and frequency (median frequency; ~14% vs. ~8%, p < 0.01) domains. Torque steadiness exhibited a similar post-fatigue decrease in the two age groups (p < 0.01), but interestingly agonist activation (~17%; p < 0.001) and antagonist (i.e. hamstrings) co-activation (~16%; p < 0.001) declined only in the older participants. These findings suggest that the fatiguing concentric KE and KF exercise results in similar relative reductions (%) in maximal torque and steadiness of the KE in young and older individuals, but they are sustained by different age-related neuromuscular strategies.
Collapse
Affiliation(s)
- Rui Wu
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.
| | - Eamonn Delahunt
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Massimiliano Ditroilo
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Carlo Ferri Marini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Italy
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; Institute for Sport and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
92
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
93
|
Kapelner T, Vujaklija I, Jiang N, Negro F, Aszmann OC, Principe J, Farina D. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. J Neuroeng Rehabil 2019; 16:47. [PMID: 30953528 PMCID: PMC6451263 DOI: 10.1186/s12984-019-0516-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. METHODS We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. RESULTS The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). CONCLUSIONS These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
Collapse
Affiliation(s)
- Tamás Kapelner
- Institute of Neurorehabilitation Systems, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Vujaklija
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ning Jiang
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Oskar C Aszmann
- Christian Doppler Laboratory for Restoration of Extremity Function and Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Wien, Austria
| | - Jose Principe
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, USA
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
94
|
Pereira HM, Schlinder-DeLap B, Keenan KG, Negro F, Farina D, Hyngstrom AS, Nielson KA, Hunter SK. Oscillations in neural drive and age-related reductions in force steadiness with a cognitive challenge. J Appl Physiol (1985) 2019; 126:1056-1065. [PMID: 30817244 DOI: 10.1152/japplphysiol.00821.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A cognitive challenge when imposed during a low-force isometric contraction will exacerbate sex- and age-related decreases in force steadiness, but the mechanism is not known. We determined the role of oscillations in the common synaptic input to motor units on force steadiness during a muscle contraction with a concurrent cognitive challenge. Forty-nine young adults (19-30 yr; 25 women, 24 men) and 36 old adults (60-85 yr; 19 women, 17 men) performed a cognitive challenge (counting backward by 13) during an isometric elbow flexion task at 5% of maximal voluntary contraction. Single-motor units were decomposed from high-density surface EMG recordings. For a subgroup of participants, motor units were matched during control and cognitive challenge trials, so the same motor unit was analyzed across conditions. Reduced force steadiness was associated with greater oscillations in the synaptic input to motor units during both control and cognitive challenge trials ( r = 0.45-0.47, P < 0.01). Old adults and young women showed greater oscillations in the common synaptic input to motor units and decreased force steadiness when the cognitive challenge was imposed, but young men showed no change across conditions (session × age × sex, P < 0.05). Oscillations in the common synaptic input to motor units is a potential mechanism for altered force steadiness when a cognitive challenge is imposed during low-force contractions in young women and old adults. NEW & NOTEWORTHY We found that oscillations in the common synaptic input to motor units were associated with a reduction in force steadiness when a cognitive challenge was imposed during low-force contractions of the elbow flexor muscles in young women and old men and women but not young men. Age- and sex-related muscle weakness was associated with these changes.
Collapse
Affiliation(s)
- Hugo M Pereira
- Department of Health and Exercise Science, University of Oklahoma , Norman, Oklahoma
| | | | - Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia , Brescia , Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Royal School of Mines , London , United Kingdom
| | | | - Kristy A Nielson
- Department of Psychology, Marquette University , Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
95
|
Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 2019; 597:1873-1887. [PMID: 30727028 DOI: 10.1113/jp277250] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Previous studies have indicated that several weeks of strength training is sufficient to elicit significant adaptations in the neural drive sent to the muscles. There are few data, however, on the changes elicited by strength training in the recruitment and rate coding of motor units during voluntary contractions. We show for the first time that the discharge characteristics of motor units in the tibialis anterior muscle tracked across the intervention are changed by 4 weeks of strength training with isometric voluntary contractions. The specific adaptations included significant increases in motor unit discharge rate, decreases in the recruitment-threshold force of motor units and a similar input-output gain of the motor neurons. The findings suggest that the adaptations in motor unit function may be attributable to changes in synaptic input to the motor neuron pool or to adaptations in intrinsic motor neuron properties. ABSTRACT The strength of a muscle typically begins to increase after only a few sessions of strength training. This increase is usually attributed to changes in the neural drive to muscle as a result of adaptations at the cortical or spinal level. We investigated the change in the discharge characteristics of large populations of longitudinally tracked motor units in tibialis anterior before and after 4 weeks of strength training the ankle-dorsiflexor muscles with isometric contractions. The adaptations exhibited by 14 individuals were compared with 14 control subjects. High-density electromyogram grids with 128 electrodes recorded the myoelectric activity during isometric ramp contractions to the target forces of 35%, 50% and 70% of maximal voluntary force. The motor unit recruitment and derecruitment thresholds, discharge rate, interspike intervals and estimates of synaptic inputs to motor neurons were assessed. The normalized recruitment-threshold forces of the motor units were decreased after strength training (P < 0.05). Moreover, discharge rate increased by 3.3 ± 2.5 pps (average across subjects and motor units) during the plateau phase of the submaximal isometric contractions (P < 0.001). Discharge rates at recruitment and derecruitment were not modified by training (P < 0.05). The association between force and motor unit discharge rate during the ramp-phase of the contractions was also not altered by training (P < 0.05). These results demonstrate for the first time that the increase in muscle force after 4 weeks of strength training is the result of an increase in motor neuron output from the spinal cord to the muscle.
Collapse
Affiliation(s)
- Alessandro Del Vecchio
- Department of Bioengineering, Imperial College London, London, UK.,Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Andrea Casolo
- Department of Bioengineering, Imperial College London, London, UK.,Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Scorcelletti
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Roger Enoka
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
96
|
MARTINEZ-VALDES EDUARDO, FARINA DARIO, NEGRO FRANCESCO, DEL VECCHIO ALESSANDRO, FALLA DEBORAH. Early Motor Unit Conduction Velocity Changes to High-Intensity Interval Training versus Continuous Training. Med Sci Sports Exerc 2018; 50:2339-2350. [DOI: 10.1249/mss.0000000000001705] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Murphy SA, Negro F, Farina D, Onushko T, Durand M, Hunter SK, Schmit BD, Hyngstrom A. Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol 2018; 120:3246-3256. [PMID: 30379629 DOI: 10.1152/jn.00923.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.
Collapse
Affiliation(s)
- Spencer A Murphy
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia , Brescia , Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College of London , London , United Kingdom
| | - Tanya Onushko
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Allison Hyngstrom
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
98
|
Feeney DF, Mani D, Enoka RM. Variability in common synaptic input to motor neurons modulates both force steadiness and pegboard time in young and older adults. J Physiol 2018; 596:3793-3806. [PMID: 29882259 PMCID: PMC6092304 DOI: 10.1113/jp275658] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The fluctuations in force during a steady isometric contraction (force steadiness) are associated with oscillations in common synaptic input to the involved motor neurons. Decreases in force steadiness are associated with increases in pegboard times in older adults, although a mechanism for this link has not been established. We used a state-space model to estimate the variability in common synaptic input to motor neurons during steady, isometric contractions. The estimate of common synaptic input was derived from the discharge times of motor units as recorded with high-density surface electrodes. We found that the variability in common synaptic input to motor neurons modulates force steadiness for young and older adults, as well as pegboard time for older adults. ABSTRACT We investigated the associations between grooved pegboard times, force steadiness (coefficient of variation for force) and variability in an estimate of the common synaptic input to motor neurons innervating the wrist extensor muscles during steady contractions performed by young and older adults. The discharge times of motor units were derived from recordings obtained with high-density surface electrodes when participants performed steady isometric contractions at 10% and 20% of maximal voluntary contraction force. The steady contractions were performed with a pinch grip and wrist extension, both independently (single action) and concurrently (double action). The variance in common synaptic input to motor neurons was estimated with a state-space model of the latent common input dynamics. There was a statistically significant association between the coefficient of variation for force during the steady contractions and the estimated variance in common synaptic input in young (r2 = 0.31) and older (r2 = 0.39) adults, although not between either the mean or the coefficient of variation for interspike interval of single motor units with the coefficient of variation for force. Moreover, the estimated variance in common synaptic input during the double-action task with the wrist extensors at the 20% target was significantly associated with grooved pegboard time (r2 = 0.47) for older adults but not young adults. These findings indicate that longer pegboard times of older adults were associated with worse force steadiness and greater fluctuations in the estimated common synaptic input to motor neurons during steady contractions.
Collapse
Affiliation(s)
- Daniel F. Feeney
- Department of Integrative PhysiologyUniversity of Colorado BoulderCOUSA
| | - Diba Mani
- Department of Integrative PhysiologyUniversity of Colorado BoulderCOUSA
| | - Roger M. Enoka
- Department of Integrative PhysiologyUniversity of Colorado BoulderCOUSA
| |
Collapse
|
99
|
Mani D, Almuklass AM, Hamilton LD, Vieira TM, Botter A, Enoka RM. Motor unit activity, force steadiness, and perceived fatigability are correlated with mobility in older adults. J Neurophysiol 2018; 120:1988-1997. [PMID: 30044670 DOI: 10.1152/jn.00192.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of our study was to examine the associations between the performance of older adults on four tests of mobility and the physical capabilities of the lower leg muscles. The assessments included measures of muscle strength, muscle activation, and perceived fatigability. Muscle activation was quantified as the force fluctuations-a measure of force steadiness-and motor unit discharge characteristics of lower leg muscles during submaximal isometric contractions. Perceived fatigability was measured as the rating of perceived exertion achieved during a test of walking endurance. Twenty participants (73 ± 4 yr) completed one to four evaluation sessions that were separated by at least 3 wk. The protocol included a 400-m walk, a 10-m walk at maximal and preferred speeds, a chair-rise test, and the strength, force steadiness, and discharge characteristics of motor units detected by high-density electromyography of lower leg muscles. Multiple-regression analyses yielded statistically significant models that explained modest amounts of the variance in the four mobility tests. The variance explained by the regression models was 39% for 400-m walk time, 33% for maximal walk time, 42% for preferred walk time, and 27% for chair-rise time. The findings indicate that differences in mobility among healthy older adults were partially associated with the level of perceived fatigability (willingness of individuals to exert themselves) achieved during the test of walking endurance and the discharge characteristics of soleus, medial gastrocnemius, and tibialis anterior motor units during steady submaximal contractions with the plantar flexor and dorsiflexor muscles. NEW & NOTEWORTHY Differences among healthy older adults in walking endurance, walking speed, and ability to rise from a chair can be partially explained by the performance capabilities of lower leg muscles. Assessments comprised the willingness to exert effort (perceived fatigability) and the discharge times of action potentials by motor units in calf muscles during submaximal isometric contractions. These findings indicate that the nervous system contributes significantly to differences in mobility among healthy older adults.
Collapse
Affiliation(s)
- Diba Mani
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Awad M Almuklass
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
| | - Landon D Hamilton
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Taian M Vieira
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Turin , Italy
| | - Alberto Botter
- LISiN, Department of Electronics and Telecommunications, Politecnico di Torino, Turin , Italy
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| |
Collapse
|
100
|
Vastus lateralis muscle tissue composition and motor unit properties in chronically endurance-trained vs. sedentary women. Eur J Appl Physiol 2018; 118:1789-1800. [PMID: 29948198 DOI: 10.1007/s00421-018-3909-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
This study examined motor unit (MU) amplitudes (APAMPS) and firing rates during moderate-intensity contractions and muscle cross-sectional area (mCSA) and echo intensity (mEI) of the vastus lateralis (VL) in chronically endurance-trained and sedentary females. Eight endurance-trained (ET) and nine sedentary controls (SED) volunteered for this study. Surface electromyographic (EMG) signals from a five-pin electrode array were recorded from the VL during isometric trapezoid muscle actions at 40% of maximal voluntary contraction (MVC). Decomposition methods were applied to the EMG signals to extract the firing events and amplitudes of single MUs. The mean firing rate (MFR) during steady force and MUAPAMP for each MU was regressed against recruitment threshold (RT, expressed as %MVC). The y-intercepts and slopes from the MFR and MUAPAMP vs. RT relationships were calculated. EMG amplitude during steady force was normalized (N-EMGRMS) to peak EMG amplitude recorded during the MVC. Ultrasonography was used to measure mCSA and mEI. Significant differences existed between the ET and SED for the slopes (P = 0.005, P = 0.001) from the MFR and MUAPAMP vs. RT relationships with no differences for the y-intercepts (P > 0.05). N-EMGRMS was significantly (P = 0.033) lower for the ET than SED. There were no differences between groups for mCSA; however, the SED possessed significantly (P = 0.001) greater mEI. Subsequently, the ET likely possessed hypertrophied and stronger MUs that allowed for lower necessary muscle activation to maintain the same relative task as the SED. The larger MUs for the ET is supported via the MFR vs. RT relationships and ultrasound data.
Collapse
|