51
|
Lapitskaya N, Coleman MR, Nielsen JF, Gosseries O, de Noordhout AM. Disorders of consciousness: further pathophysiological insights using motor cortex transcranial magnetic stimulation. PROGRESS IN BRAIN RESEARCH 2009; 177:191-200. [DOI: 10.1016/s0079-6123(09)17713-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
52
|
Cros D, Soto O, Chiappa KH. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation. Brain Res 2007; 1185:103-16. [PMID: 17961516 DOI: 10.1016/j.brainres.2007.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/11/2007] [Accepted: 09/05/2007] [Indexed: 12/22/2022]
Abstract
Single-pulse transcranial magnetic stimulation (TMS) of the human motor cortex evokes simple muscle jerks whose physiological significance is unclear. Indeed, in subjects performing a motor task, there is uncertainty as to whether TMS-evoked outputs reflect the ongoing behavior or, alternatively, a disrupted motor plan. Considering force direction and magnitude to reflect qualitative and quantitative features of the motor plan respectively, we studied the relationships between voluntary forces and those evoked by TMS. In five healthy adults, we recorded the isometric forces acting a hand joint and the electromyographic activity in the first dorsal interosseous (FDI) muscle. Responses obtained at rest were highly invariant. Evoked responses obtained while subjects generated static and dynamic contractions were highly codirectional with the voluntary forces. Such directional relationships were independent of stimulation intensity, stimulated cortical volume, or magnitude of voluntary force exerted. Dynamic force generation was associated with a marked increase in the magnitude of the evoked force that was linearly related to the rate of force generation. The timing of central conduction was different depending on functional role of the target muscle, as either agonist or joint fixator. These results indicate that the architecture of motor plans remain grossly undisrupted by cortical stimulation applied during voluntary motor behavior. The significant magnitude modulation of responses during dynamic force generation suggests an essential role of the corticospinal system in the specification of force changes. Finally, the corticospinal activation depends on the functional role assumed by the target muscle, either postural or agonist.
Collapse
Affiliation(s)
- Didier Cros
- Clinical Neurophysiology Laboratories, Department of Neurology, Massachusetts General Hospital, 3 Hawthorne Place, Suite 112 Boston, MA 02114, USA.
| | | | | |
Collapse
|
53
|
Mitchell WK, Baker MR, Baker SN. Muscle responses to transcranial stimulation in man depend on background oscillatory activity. J Physiol 2007; 583:567-79. [PMID: 17627997 PMCID: PMC2167351 DOI: 10.1113/jphysiol.2007.134031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/22/2007] [Indexed: 01/04/2023] Open
Abstract
Muscle responses to transcranial stimulation show high sweep-to-sweep variability, which may reflect an underlying noise process in the motor system. We examined whether response amplitude correlated with the level of prestimulus background EMG, and network oscillations. Transcranial magnetic or electrical stimulation was delivered to primary motor cortex whilst human subjects performed a precision grip task known to promote beta-band ( approximately 20 Hz) cortical oscillations. Responses were recorded from two intrinsic hand muscles. Response magnitude correlated significantly with the level of background EMG (mean r(2) = 0.20). Using a novel wavelet method, we quantified the amplitude and phase of oscillations in prestimulus sensorimotor EEG. Surprisingly, response magnitude showed no significant correlation with EEG oscillations at any frequency. However, oscillations in the prestimulus EMG were significantly correlated with response size; the correlation coefficient had peaks around 20 Hz. When oscillations in one muscle were used to predict response amplitude in a different muscle, correlations were substantially smaller. Finally, for each recording, we calculated the best possible prediction of response size obtainable from up to 20 measures of prestimulus EEG and EMG oscillations. Such optimal predictions had low correlation coefficients (mean r(2) = 0.2; 76% were below 0.3). We conclude that prestimulus oscillations, mainly in the beta-band, do explain some of the variability in responses to transcranial stimulation. Oscillations may likewise increase the noise of natural motor processing, explaining why this form of network activity is usually suppressed prior to dynamic movements. However, the majority of the variation is determined by other factors, which are not accessible by noninvasive recordings.
Collapse
Affiliation(s)
- W Kyle Mitchell
- Department of Anatomy, Cambridge University, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
54
|
Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol 2006; 117:1641-59. [PMID: 16595189 DOI: 10.1016/j.clinph.2006.01.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 12/20/2022]
Abstract
Transcranial Magnetic Stimulation has been used for over 20 years to investigate recovery of motor function in stroke patients. In particular, it has been used to quantify the extent of damage to the corticospinal output, reorganisation of the cortical representation of the affected body parts and excitability of intracortical and cortico-cortical circuitries in both hemispheres. In this review, we provide a detailed account of most of the published data with particular reference to methodological issues that affect their interpretation.
Collapse
Affiliation(s)
- P Talelli
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, 8-11 Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
55
|
Taylor JL, Todd G, Gandevia SC. EVIDENCE FOR A SUPRASPINAL CONTRIBUTION TO HUMAN MUSCLE FATIGUE. Clin Exp Pharmacol Physiol 2006; 33:400-5. [PMID: 16620309 DOI: 10.1111/j.1440-1681.2006.04363.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Muscle fatigue can be defined as any exercise-induced loss of ability to produce force with a muscle or muscle group. It involves processes at all levels of the motor pathway between the brain and the muscle. Central fatigue represents the failure of the nervous system to drive the muscle maximally. It is defined as a progressive exercise-induced reduction in voluntary activation or neural drive to the muscle. Supraspinal fatigue is a component of central fatigue. It can be defined as an exercise-induced decline in force caused by suboptimal output from the motor cortex. 2. When stimulus intensity is set appropriately, transcranial magnetic stimulation (TMS) over the motor cortex during an isometric maximal voluntary contraction (MVC) of the elbow flexors commonly evokes a small twitch-like increment in flexion force. This increment indicates that, despite the subject's maximal effort, motor cortical output at the moment of stimulation was not maximal and was not sufficient to drive the motoneurons to produce maximal force from the muscle. An exercise-induced increase in this increment demonstrates supraspinal fatigue. 3. Supraspinal fatigue has been demonstrated during fatiguing sustained and intermittent maximal and submaximal contractions of the elbow flexors where it accounts for about one-quarter of the loss of force of fatigue. It is linked to activity and the development of fatigue in the tested muscles and is little influenced by exercise performed by other muscles. 4. The mechanisms of supraspinal fatigue are unclear. Although changes in the behaviour of cortical neurons and spinal motoneurons occur during fatigue, they can be dissociated from supraspinal fatigue. One factor that may contribute to supraspinal fatigue is the firing of fatigue-sensitive muscle afferents that may act to impair voluntary descending drive.
Collapse
Affiliation(s)
- Janet L Taylor
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
56
|
Bretzner F, Drew T. Changes in Corticospinal Efficacy Contribute to the Locomotor Plasticity Observed After Unilateral Cutaneous Denervation of the Hindpaw in the Cat. J Neurophysiol 2005; 94:2911-27. [PMID: 16014797 DOI: 10.1152/jn.00254.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used microwire electrodes chronically implanted into the hindlimb representation of the motor cortex as well as into the pyramidal tract to test the hypothesis that the corticospinal system contributes to the locomotor plasticity that is observed after cutaneous denervation of the cat hindpaw. A total of 23 electrodes implanted into the motor cortex in three cats trained to walk on a treadmill produced phase-dependent, short-latency, twitch responses in hindlimb flexor and extensor muscles during locomotion. After a unilateral cutaneous denervation of the hindpaw, the cats showed transient deficits in locomotion, including a dragging of the hindpaw along the treadmill belt during the swing phase. This deficit rapidly recovered over the course of a few days. The recovery of locomotion was accompanied by an increase in the magnitude of the responses evoked in different muscles by the cortical stimulation at all 23 cortical sites. Response magnitude increased rapidly within the first 1–2 wk postdenervation before attaining a plateau at ≥3 wk. In two cats, for which detailed information was obtained, response magnitude in the knee flexor, semitendinosus (St), was increased by >250% at 14/18 sites (mean increase = 1,235%). Increased responses in the St to stimulation were also observed at two of the four pyramidal tract sites after the denervation but were relatively smaller (max = 593%) than those evoked by the cortical stimulation. We suggest that the denervation produces changes in both cortical and spinal excitability that, together, produce a change in corticospinal efficacy that contributes to the recovery of locomotor function.
Collapse
|
57
|
van Kuijk AA, Pasman JW, Geurts ACH, Hendricks HT. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. J Clin Neurophysiol 2005; 22:10-24. [PMID: 15689709 DOI: 10.1097/01.wnp.0000150975.83249.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been successful in the prediction of motor recovery in acute stroke patients with initially severe paresis or paralysis of the upper extremity. Motor evoked potentials (MEP) appear to have a high specificity but a rather low sensitivity with regard to motor recovery. The silent period (SP) has been proposed as an additional factor to the MEP for predicting motor recovery that might optimize the sensitivity of TMS. The authors reviewed the literature and case series focusing on the additional value of the SP to the MEP for predicting poststroke hand motor recovery. Studies that have analyzed the SP for predicting poststroke motor recovery have rather inconsistent results and suffer from heterogeneity in technical methods, methodology, and patient characteristics. In most studies, prolonged SPs have been found immediately after stroke, whereas in the (sub)acute phase thereafter, different patterns of SP duration have been found. These differences are thought to be related to stroke localization, though contraction-induced reduction phenomena and recovery-related intracortical phenomena may also be responsible. Although the SP might be used to identify clinically silent or minor strokes, in acute stroke patients with initial severe paresis or paralysis, the SP seems to have no additional value to MEP for predicting poststroke motor recovery. Nevertheless, the SP (poststroke-reduced SPs and contraction-induced inhibitory phenomena) has been proposed as a prognostic factor for poststroke spasticity. This review emphasizes the significance of the SP in predicting poststroke motor recovery and spasticity. Although the relation among the SP, recovery-related intracortical phenomena, and spasticity remains unclear, a neurophysiologic model underlying the SP is discussed. However, more research is needed on the value of the SP for predicting poststroke spasticity.
Collapse
Affiliation(s)
- Annette A van Kuijk
- Department of Rehabilitation Medicine, University Medical Centre Sint Radboud, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
58
|
Shibuya S, Ohki Y. Cutaneous Inputs Can Activate the Ipsilateral Primary Motor Cortex During Bimanual Sensory-Driven Movements in Humans. J Neurophysiol 2004; 92:3200-9. [PMID: 15115786 DOI: 10.1152/jn.00937.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using transcranial magnetic stimulation (TMS), we examined whether sensory input from a finger affects activity of the ipsilateral primary motor cortex (M1) when human subjects hold a virtual object bimanually and whether this ipsilateral activation varies under different contexts. Subjects used both index fingers to hold two plates, which were subjected to unpredictable pulling loads from torque motors. Loads were delivered in a random sequence to either plate or concurrently to both, although the latter occurred most frequently. Finger forces vertical to the plates and surface electromyographs from the first dorsal interosseous muscles were recorded bilaterally during the task. TMS was sometimes applied over the finger area of the left M1 at variable times relative to load onset to examine cortical excitability. Strength of TMS was set around the active motor threshold of the right finger muscle while subjects waited for loading to the handheld plates. When one plate was singly loaded, the M1 contralateral to the loaded finger was activated, causing automatic force increases in the finger. In addition, the ipsilateral M1 was activated during such loading, associated with transient force increases in the contralateral nonloaded finger. Activations in the ipsilateral M1 were also observed during concurrent loading, when activations were stronger than those following single loading of the contralateral plate. Ipsilateral activations weakened when concurrent loading was less frequent. These results suggest interactions between bilateral sensorimotor cortices during bimanual coordinated movements, with strength varying by context.
Collapse
Affiliation(s)
- Satoshi Shibuya
- Department of Health and Sports Science, Faculty of Education, Tokyo Gakugei University, Tokyo, Japan
| | | |
Collapse
|
59
|
Ellaway PH, Prochazka A, Chan M, Gauthier MJ. The sense of movement elicited by transcranial magnetic stimulation in humans is due to sensory feedback. J Physiol 2004; 556:651-60. [PMID: 14755003 PMCID: PMC1664943 DOI: 10.1113/jphysiol.2003.060483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 01/29/2004] [Indexed: 11/08/2022] Open
Abstract
It has been claimed that transcranial magnetic stimulation (TMS) of the human motor cortex can produce a sense of movement of the contralateral hand, even when the hand is paralysed. The sense of movement was equated with a 'corollary discharge', a nulling mechanism originally posited for maintaining constancy of the visual field during eye movements. Our experiments were designed to test whether the sensation that accompanies TMS-evoked finger movements is generated centrally or whether it arises as a result of sensory feedback. Matched twitches of the left and right fingers were elicited either by bilateral electrical stimulation of forearm extensor muscles, or by a combination of TMS of left motor cortex (eliciting twitches of the right forefinger), and electrical stimulation of the left forearm muscles (eliciting twitches of the left forefinger). The time interval between stimuli activating left and right twitches was varied randomly (range +/- 90 ms) from trial to trial. Subjects reported whether they sensed that the left or the right movement occurred first, or if they could detect no difference. The left and right movements evoked by bilateral electrical stimulation of muscles were sensed as near simultaneous when there was zero delay between them. When TMS was applied in conjunction with unilateral muscle stimulation, the TMS-evoked movement was felt, on average, 20 ms after the movement evoked by muscle stimulation. Similar results were obtained when the skin under the cathodal electrodes was anaesthetized. Since the TMS-evoked movements were felt later rather than earlier than the electrically evoked movements, the results do not support the idea that the sensation of movement was elicited centrally by TMS. Rather, they favour sensory feedback as the source of the sense of movement. The earlier perception of electrically evoked versus TMS-evoked movements was probably due to earlier sensory responses in the periphery rather than a suppression of the excitability of somatosensory cortex.
Collapse
Affiliation(s)
- P H Ellaway
- Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Campus, London W6 8RP, UK.
| | | | | | | |
Collapse
|
60
|
Petersen NT, Pyndt HS, Nielsen JB. Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 2003; 152:1-16. [PMID: 12879177 DOI: 10.1007/s00221-003-1537-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 05/21/2003] [Indexed: 12/22/2022]
Abstract
In this review we discuss the contribution of transcranial magnetic stimulation (TMS) to the understanding of human motor control. Compound motor-evoked potentials (MEPs) may provide valuable information about corticospinal transmission, especially in patients with neurological disorders, but generally do not allow conclusions regarding the details of corticospinal function to be made. Techniques such as poststimulus time histograms (PSTHs) of the discharge of single, voluntarily activated motor units and conditioning of H reflexes provide a more optimal way of evaluating transmission in specific excitatory and inhibitory pathways. Through application of such techniques, several important issues have been clarified. TMS has provided the first real evidence that direct monosynaptic connections from the motor cortex to spinal motoneurons exist in man, and it has been revealed that the distribution of these projections roughly follows the same proximal-distal gradient as in other primates. However, pronounced differences also exist. In particular, the tibialis anterior muscle appears to receive as significant a monosynaptic corticospinal drive as muscles in the hand. The reason for this may be the importance of this muscle in controlling the foot trajectory in the swing phase of walking. Conditioning of H reflexes by TMS has provided evidence of changes in cortical excitability prior to and during various movements. These experiments have generally confirmed information obtained from chronic recording of the activity of corticospinal cells in primates, but information about the corticospinal contribution to movements for which information from other primates is sparse or lacking has also been obtained. One example is walking, where TMS experiments have revealed that the corticospinal tract makes an important contribution to the ongoing EMG activity during treadmill walking. TMS experiments have also documented the convergence of descending corticospinal projections and peripheral afferents on spinal interneurons. Current investigations of the functional significance of this convergence also rely on TMS experiments. The general conclusion from this review is that TMS is a powerful technique in the analysis of motor control, but that care is necessary when interpreting the data. Combining TMS with other techniques such as PSTH and H reflex testing amplifies greatly the power of the technique.
Collapse
Affiliation(s)
- Nicolas T Petersen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
61
|
Cerri G, Shimazu H, Maier MA, Lemon RN. Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles. J Neurophysiol 2003; 90:832-42. [PMID: 12904495 DOI: 10.1152/jn.01026.2002] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrate that in the macaque monkey there is robust, short-latency facilitation by ventral premotor cortex (area F5) of motor outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles. Experiments were carried out on two adult macaques under light sedation (ketamine plus medetomidine HCl). Facilitation of hand muscle electromyograms (EMG) was tested using arrays of fine intracortical microwires implanted, respectively, in the wrist/digit motor representations of F5 and M1, which were identified by previous mapping with intracortical microstimulation. Single pulses (70-200 microA) delivered to F5 microwires never evoked any EMG responses, but small responses were occasionally seen with double pulses (interval: 3 ms) at high intensity. However, both single- and double-pulse stimulation of F5 could facilitate the EMG responses evoked from M1 by single shocks. The facilitation was large (up to 4-fold with single and 12-fold with double F5 shocks) and occurred with an early onset, with significant effects at intervals of only 1-2 ms between conditioning F5 and test M1 stimuli. A number of possible pathways could be responsible for these effects, although it is argued that the most likely mechanism would be the facilitation, by cortico-cortical inputs from F5, of corticospinal I wave activity evoked from M1. This facilitatory action could be of considerable importance for the coupling of grasp-related neurons in F5 and M1 during visuomotor tasks.
Collapse
Affiliation(s)
- G Cerri
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
62
|
Bohotin V, Fumal A, Vandenheede M, Bohotin C, Schoenen J. Excitability of visual V1-V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil. Cephalalgia 2003; 23:264-70. [PMID: 12716343 DOI: 10.1046/j.1468-2982.2003.00475.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used transcranial magnetic stimulation (TMS) with a figure-of-eight coil to excite motor and visual V1-V2 cortices in patients suffering from migraine without (MO) (n = 24) or with aura (MA) (n = 13) and in healthy volunteers (HV) (n = 33). Patients who had a migraine attack within 3 days before or after the recordings were excluded. All females were recorded at mid-cycle. Single TMS pulses over the occipital cortex elicited phosphenes in 64% of HV, 63% of MO and 69% of MA patients. Compared with HV, the phosphene threshold was significantly increased in MO (P = 0.001) and in MA (P = 0.007), but there was no difference between the two groups of migraineurs. The motor threshold tended to be higher in both migraine groups than in HV, but the differences were not significant. In conclusion, this study shows that two-thirds (64.86%) of patients affected by either migraine type present an increased phosphene threshold in the interictal period, which suggests that their visual cortex is hypoexcitable.
Collapse
Affiliation(s)
- V Bohotin
- Department of Neurology, University of Liege, Liège, Belgium
| | | | | | | | | |
Collapse
|
63
|
Tinazzi M, Farina S, Tamburin S, Facchini S, Fiaschi A, Restivo D, Berardelli A. Task-dependent modulation of excitatory and inhibitory functions within the human primary motor cortex. Exp Brain Res 2003; 150:222-9. [PMID: 12677319 DOI: 10.1007/s00221-003-1448-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 02/22/2003] [Indexed: 11/30/2022]
Abstract
We evaluated motor evoked potentials (MEPs) and duration of the cortical silent period (CSP) from the right first dorsal interosseous (FDI) muscle to transcranial magnetic stimulation (TMS) of the left motor cortex in ten healthy subjects performing different manual tasks. They abducted the index finger alone, pressed a strain gauge with the thumb and index finger in a pincer grip, and squeezed a 4-cm brass cylinder with all digits in a power grip. The level of FDI EMG activity across tasks was kept constant by providing subjects with acoustic-visual feedback of their muscle activity. The TMS elicited larger amplitude FDI MEPs during pincer and power grip than during the index finger abduction task, and larger amplitude MEPs during pincer gripping than during power gripping. The CSP was shorter during pincer and power grip than during the index finger abduction task and shorter during power gripping than during pincer gripping. These results suggest excitatory and inhibitory task-dependent changes in the motor cortex. Complex manual tasks (pincer and power gripping) elicit greater motor cortical excitation than a simple task (index finger abduction) presumably because they activate multiple synergistic muscles thus facilitating corticomotoneurons. The finger abduction task probably yielded greater motor cortical inhibition than the pincer and power tasks because muscles uninvolved in the task activated the cortical inhibitory circuit. Increased cortical excitatory and inhibitory functions during precision tasks (pincer gripping) probably explain why MEPs have larger amplitudes and CSPs have longer durations during pincer gripping than during power gripping.
Collapse
Affiliation(s)
- Michele Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Neurologia Riabilitativa, Università di Verona, Policlinico G. B. Rossi, P.le A. L. Scuro, 37134, Verona, Italy.
| | | | | | | | | | | | | |
Collapse
|
64
|
George MS, Nahas Z, Lisanby SH, Schlaepfer T, Kozel FA, Greenberg BD. Transcranial magnetic stimulation. Neurosurg Clin N Am 2003; 14:283-301. [PMID: 12856495 DOI: 10.1016/s1042-3680(02)00120-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
TMS is a powerful new tool with extremely interesting research and therapeutic potentials. Further understanding of the ways by which TMS changes neuronal function, especially as a function of its use parameters, will improve its ability to answer neuroscience questions as well as to treat diseases. Because of its noninvasiveness, it does not readily fit under the umbrella of neurosurgery. Nevertheless, it is important for neurosurgeons to be aware of TMS, because findings from TMS studies will have implications for neurosurgical approaches like DBS and VNS. Indeed, it is possible to think of using TMS as a potential noninvasive initial screening tool to identify whether perturbation of a circuit has short-term clinical effects. In the example of chronic refractory depression or OCD, which is generally a chronic illness, it might then follow that rather than having daily or weekly TMS for the rest of their lives, patients would have DBS electrodes implanted in the same circuit. Whatever road the future takes, TMS is an important new tool that will likely be of interest to neurosurgeons over the next 20 years and perhaps even longer.
Collapse
Affiliation(s)
- Mark S George
- Department of Psychiatry, 502 North, Institute of Psychiatry, Medical University of South Carolina, 67 President Street, Charleston, SC, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Lemon RN, Maier MA, Armand J, Kirkwood PA, Yang HW. Functional differences in corticospinal projections from macaque primary motor cortex and supplementary motor area. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 508:425-34. [PMID: 12171139 DOI: 10.1007/978-1-4615-0713-0_48] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
We made a quantitative comparison of the density of macaque corticospinal projections from primary motor cortex (M1) and supplementary motor area (SMA) to spinal motor nuclei supplying hand and finger muscles. We also compared the action of corticospinal outputs from these two areas on 84 upper limb (mostly hand) motoneurones in chloralose-anaesthetised macaques. The hand representations of M1 and SMA were first identified using MRI and intracortical microstimulation. We made focal injections of WGA-HRP into these representations. Densitometric analysis showed that corticospinal projections from M1 were far denser and occupied a much greater proportion of the hand muscle motor nuclei than did SMA projections. Stimulation of M1 and SMA with bipolar intracortical pulses evoked monosynaptic EPSPs. These were significantly larger and more common from M1 (88% of motoneurons) than from SMA (48%). The results demonstrate corticomotoneuronal connections from both M1 and SMA, some converging upon single motoneurons. Both areas give rise to CM projections but that those from M1 are far more numerous and exert stronger excitatory effects than those from the SMA.
Collapse
Affiliation(s)
- Roger N Lemon
- Sobell Department of Neurophysiology, Institute of Neurology, University College London, UK.
| | | | | | | | | |
Collapse
|
66
|
Di Lazzaro V, Oliviero A, Pilato F, Mazzone P, Insola A, Ranieri F, Tonali PA. Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurol Res 2003; 25:143-50. [PMID: 12635512 DOI: 10.1179/016164103101201292] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The direct recording in conscious humans of corticospinal volleys evoked by different magnetic and electric techniques of transcranial stimulation demonstrates that it is possible to activate neurones of the motor cortex in several different ways. Lateral electrical stimulation of the motor cortex preferentially activates the axons of corticospinal neurones in the subcortical white matter, and evokes a D-wave in pyramidal tract. The way of activation of corticospinal neurones using magnetic stimulation depends on the direction of the electrical current induced in the brain and on the shape of the coil. Monophasic magnetic stimulation with a focal figure-of-eight coil inducing posterior-anterior current in the brain activates corticospinal neurones trans-synaptically recruiting an 11-wave, with later I-waves appearing in sequence at higher intensities and a D-wave at very high intensities. If the induced current is rotated to the anterior-posterior direction late I-waves are preferentially recruited and when a D-wave is recruited, it has a later onset than the electrical D-wave, suggesting an activation nearer the cell body of the pyramidal neurones. A latero-medial induced current activates both corticospinal axons at the same point as electrical stimulation evoking a D wave and cortico-cortical axons evoking I-waves. A nonfocal large circular coil centered at the vertex is capable of activating pyramidal neurones both at the initial segment and trans-synaptically evoking a D wave with a longer latency than the electrical D-wave and I-waves. Using a biphasic magnetic stimulation, both phases of the biphasic pulse are capable of activating descending motor output and the pattern of recruitment of descending activity depends on the intensity of the stimulus and the relative threshold of each volley to each direction of current flow.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Institute of Neurology, Catholic University, L.go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Pain is a complex multi-dimensional phenomenon that influences a wide variety of nervous system functions, including sensory--discriminative, affective--motivational and cognitive--evaluative components. So far, these components have been studied in both patients with chronic pain and in normal subjects in whom pain was induced experimentally. The interaction between pain and motor function is not fully understood, although from everyday life it is known that pain affects movements. The effects of pain on motor control are typically seen as a limited or impaired ability to perform movements. Most studies have dealt with the effects of pain on the spinal cord reflexes, but in recent years, several lines of evidence suggest that the interaction between motor and pain systems in conditions of pain induced experimentally, rather than a simple spinal reflex, is a more complex process that involves also supraspinal brain areas. Although pain-motor interaction shows different features and time course depending on different pain variables, such as duration (tonic versus phasic pain), submodalities (deep versus superficial pain) and location (distal versus proximal pain), a common finding is that pain is able to inhibit the motor cortex. This motor cortex inhibition may act as a sort of motor 'decerebration' so as to allow the spinal motor system to freely develop protective responses to noxious stimulation. Further studies are required to assess the effects of pain on the motor system in patients suffering from chronic pain, in order to develop innovative rational therapeutic strategies to reduce both pain and motor disability.
Collapse
Affiliation(s)
- Simona Farina
- Dipartimento di Scienze Neurologiche e della Visione, Sez. di Neurologia Riabilitativa, Verona, Italy
| | | | | | | |
Collapse
|
68
|
George MS, Nahas Z, Kozel FA, Li X, Denslow S, Yamanaka K, Mishory A, Foust MJ, Bohning DE. Mechanisms and state of the art of transcranial magnetic stimulation. J ECT 2002; 18:170-81. [PMID: 12468991 DOI: 10.1097/00124509-200212000-00002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In 1985, Barker et al. built a transcranial magnetic stimulation (TMS) device with enough power to stimulate dorsal roots in the spine. They quickly realized that this machine could likely also noninvasively stimulate the superficial cortex in humans. They waited a while before using their device over a human head, fearing that the TMS pulse might magnetically "erase the hard-drive" of the human brain. Almost 10 years later, in 1994, an editorial in this journal concerned whether TMS might evolve into a potential antidepressant treatment. In the intervening years, there has been an explosion of basic and clinical research with and about TMS. Studies are now uncovering the mechanisms by which TMS affects the brain. It does not "erase the hard-drive" of the brain, and it has many demonstrated research and clinical uses. This article reviews the major recent advances with this interesting noninvasive technique for stimulating the brain, critically reviewing the data on whether TMS has anticonvulsant effects or modulates cortical-limbic loops.
Collapse
Affiliation(s)
- Mark S George
- Psychiatry Departmemt, Center for Advanced Imaging Research, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Fitzgerald PB, Brown TL, Daskalakis ZJ, deCastella A, Kulkarni J. A study of transcallosal inhibition in schizophrenia using transcranial magnetic stimulation. Schizophr Res 2002; 56:199-209. [PMID: 12072169 DOI: 10.1016/s0920-9964(01)00222-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A considerable body of imaging research has demonstrated morphological changes in the corpus callosum (CC) of patients with schizophrenia. Transcranial magnetic stimulation (TMS) allows the possibility for the in vivo investigation of a variety of aspects of brain function including the spread of information across the CC. We aimed to investigate whether patients with schizophrenia demonstrate abnormalities of transcallosal inhibition (TCI), a TMS parameter measured with both single and paired pulse experiments. 25 patients with DSM-IV schizophrenia and 20 normal volunteers participated in the study. Electromyographic (EMG) recordings from the bilateral abductor pollicis brevis (APB) muscle were made during focal TMS stimulation to the motor cortex. Experimental paradigms were utilised to measure both the timing and degree of the effect of TCI. The patient group demonstrated a reduction in the degree of TCI at rest and during a sustained muscle contraction. TCI commenced at the same time in the patient and the control group but was of prolonged duration in the patient group although the length of TCI correlated with medication dose. Patients with schizophrenia demonstrate a reduction in the degree of TCI that appeared independent of medication dose. The latency of TCI is not altered in the patient group suggesting that cortical inhibitory mechanisms, rather than corpus callosal ones, are likely to be the cause of these TCI alterations.
Collapse
Affiliation(s)
- P B Fitzgerald
- Dandenong Psychiatry Research Centre, Monash University and Dandenong Area Mental Health Service, P.O. Box 956, Dandenong, Vic. 3175, Australia.
| | | | | | | | | |
Collapse
|
70
|
Abstract
Transcranial magnetic stimulation (TMS) is now established as an important noninvasive measure for neurophysiologic investigation of the central and peripheral nervous systems in humans. Magnetic stimulation can be used for stimulating peripheral nerves with a similar mechanism of activation as for electrical stimulation. When TMS is applied to the cerebral cortex, however, some features emerge that distinguish it from transcranial electrical stimulation. One of the most important features is designated the D and I wave hypothesis, which is now widely accepted as a mechanism of TMS of the motor cortex. Transcranial electrical stimulation excites the pyramidal tract axons directly, either at the initial segment of the neuron or at proximal internodes in the subcortical white matter, giving rise to D (direct) waves, whereas TMS excites the pyramidal neurons transsynaptically, giving rise to I (indirect) waves. There are still other phenomena with mechanisms that remain to be elucidated. First, not only excitatory effects but also inhibitory effects can be elicited by TMS of the cerebral cortex (e.g., the silent period and intracortical inhibition). The inhibitory effect may also be used to investigate cerebral functions other than the motor cortex, such as the visual, sensory cortices, and the frontal eye field, from which no overt response like the motor evoked potential can be elicited. Second, there is an abundance of intraregional functional connectivities among different cortical areas that can also be revealed by TMS, or TMS in combination with neuroimaging techniques. Last, repetitive transcranial stimulation exerts a lasting effect on brain function even after the stimulation has ceased. With further investigation of the neural mechanisms of TMS, these techniques will open up new possibilities for investigating the physiologic function of the brain as well as opportunities for clinical application.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, University of Tokyo, Japan.
| | | |
Collapse
|
71
|
Löscher WN, Nordlund MM. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions. Muscle Nerve 2002; 25:864-72. [PMID: 12115976 DOI: 10.1002/mus.10124] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A decline in voluntary muscle activation and adaptations in motor cortical excitability contribute to the progressive decline in voluntary force during sustained isometric contractions. However, the neuronal control of muscle activation differs between isometric and dynamic contractions. This study was designed to investigate voluntary activation, motor cortex excitability, and intracortical inhibition during fatiguing concentric and eccentric actions. Eight subjects performed 143 torque motor-controlled, repeated shortening and lengthening actions of the elbow flexor muscles. Transcranial magnetic stimulation (TMS) was applied three times every 20 cycles. Magnetic evoked motor potentials (MEP), duration of the silent period (SP), and the torque increase due to TMS were analyzed. TMS resulted in a small torque increase in unfatigued actions. With repeated actions, voluntary torque dropped rapidly and the amplitude of the TMS-induced twitches increased, especially during repeated lengthening actions. MEP area of biceps brachii and brachioradialis muscles increased during repeated actions to a similar extent during lengthening and shortening fatigue. The duration of biceps and brachioradialis SP did not change with fatigue. Thus, voluntary activation became suboptimal during fatiguing dynamic actions and motor cortex excitability increased without any changes in intracortical inhibition. The apparent dissociation of voluntary activation and motor cortex excitability suggests that the central fatigue observed, especially during lengthening actions, did not result from changes in motor cortex excitability.
Collapse
Affiliation(s)
- Wolfgang N Löscher
- Department of Neurology, University Hospital Innsbruck, Leopold Franzens University, Anichstr. 35, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
72
|
Kato T, Kasai T, Maehara T. Effects of transcranial magnetic stimulation to the reciprocal Ia inhibitory interneurones in the human wrist. Percept Mot Skills 2002; 94:575-94. [PMID: 12027355 DOI: 10.2466/pms.2002.94.2.575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In humans, which neural volleys strongly activate the reciprocal Ia inhibitory interneurones have not been clarified via the corticospinal tract or from the muscle spindles. We examined the inhibition from the corticospinal tract and antagonist group Ia fibres to alpha motoneurone pools using the combined method of transcranial magnetic stimulation (TMS) and the standard H-reflex technique. The test stimulus for the forearm H-reflex and the conditioning stimulus to antagonist muscle afferents were applied to the median and radial nerves, respectively. The transcranial magnetic stimulation was applied noninvasively over the left motor cortex. The radial nerve conditioning strongly suppressed the H-reflex rather than the transcranial magnetic stimulation. Transcranial magnetic stimulation-induced inhibition was disinhibited by the conditioning stimulus applied to the median nerve. To estimate the subliminal inhibition produced by the transcranial magnetic stimulation, we used the following method: the radial nerve conditioning was altered among several different intensities, while transcranial magnetic stimulation intensity was fixed at that for which transcranial magnetic stimulation-induced inhibition was observable. A minor subliminal inhibition was observed. These results suggest that the corticospinal excitatory inputs to reciprocal Ia inhibitory interneurones in the human wrist are very weak relative to those of the originating group I muscle afferents.
Collapse
Affiliation(s)
- Takashi Kato
- Graduate School for International Development and Cooperation, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
73
|
Abstract
Electric fields can stimulate excitable tissue by a number of mechanisms. A uniform long, straight peripheral axon is activated by the gradient of the electric field that is oriented parallel to the fiber axis. Cortical neurons in the brain are excited when the electric field, which is applied along the axon-dendrite axis, reaches a particular threshold value. Cardiac tissue is thought to be depolarized in a uniform electric field by the curved trajectories of its fiber tracts. The bidomain model provides a coherent conceptual framework for analyzing and understanding these apparently disparate phenomena. Concepts such as the activating function and virtual anode and cathode, as well as anode and cathode break and make stimulation, are presented to help explain these excitation events in a unified manner. This modeling approach can also be used to describe the response of excitable tissues to electric fields that arise from charge redistribution (electrical stimulation) and from time-varying magnetic fields (magnetic stimulation) in a self-consistent manner. It has also proved useful to predict the behavior of excitable tissues, to test hypotheses about possible excitation mechanisms, to design novel electrophysiological experiments, and to interpret their findings.
Collapse
Affiliation(s)
- P J Basser
- Section on Tissue Biophysics & Biomimetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5772, USA.
| | | |
Collapse
|
74
|
Aglio LS, Kraus KH, Desai S, Romero R, Ramirez M, Levy WJ, Gugino LD. Efficacious use of a cap shaped coil for transcranial magnetic stimulation of descending motor paths. CLINICAL EEG (ELECTROENCEPHALOGRAPHY) 2002; 33:21-9. [PMID: 11795208 DOI: 10.1177/155005940203300105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report another technique of transcranial magnetic stimulation (TMS) for exciting the originating cells of the descending corticospinal tract. A cap shaped TMS coil has been described for simultaneously exciting muscles in all four extremities. This TMS coil is useful for monitoring the functional integrity of the descending motor paths during spinal cord surgery, because information regarding the integrity of both the left and right sides of the spinal cord motor paths can be obtained concurrently. Despite the improved design of the cap coil, careful placement is required for achieving bilateral spinal cord motor responses. Cortical mapping was used to identify the optimum scalp foci for the muscles studied. The cap coil must overlap these foci to simultaneously elicit compound muscle action potentials (CMAPs) in all four extremities. Increasing TMS stimulation intensity will increase the magnitude of the acquired CMAPs responses without significantly changing latency.
Collapse
Affiliation(s)
- Linda S Aglio
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Insola A, Mazzone P, Tonali PA, Rothwell JC. Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clin Neurophysiol 2002; 113:114-9. [PMID: 11801432 DOI: 10.1016/s1388-2457(01)00696-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To directly compare the volleys evoked by figure-of-eight and circular magnetic coil stimulation of the motor cortex and to correlate the descending volleys with the EMG responses in distal hand muscles. METHODS Descending corticospinal volleys were recorded from an electrode inserted into the cervical epidural space of two conscious human subjects after transcranial stimulation of the hand area of the motor cortex. We compared volleys evoked by stimulation with (a) a figure-of-eight coil inducing posterior-anterior or latero-medial currents in the brain, (b) a large circular coil centred at the vertex inducing clockwise currents in the brain, and (c) anodal electric pulses. RESULTS For a given amplitude of EMG response in the first dorsal interosseous muscle, volleys were larger after stimulation with a circular than a figure-of-eight coil. In addition, the D wave evoked by circular coil stimulation had a longer latency than the anodal D wave, and increased in amplitude when stimulation was given during voluntary contraction. CONCLUSIONS We conclude that stimulation with a large circular coil activates descending outputs less selectively than figure-of-eight coil stimulation and that it is capable of activating pyramidal neurones at the initial segment region.
Collapse
Affiliation(s)
- V Di Lazzaro
- Institute of Neurology, Università Cattolica, L.go A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, Pyndt HS, Hansen NL, Nielsen JB. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol 2001; 537:651-6. [PMID: 11731595 PMCID: PMC2278954 DOI: 10.1111/j.1469-7793.2001.00651.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/08/2001] [Accepted: 10/12/2001] [Indexed: 11/29/2022] Open
Abstract
1. The involvement of the motor cortex during human walking was evaluated using transcranial magnetic stimulation (TMS) of the motor cortex at a variety of intensities. Recordings of EMG activity in tibialis anterior (TA) and soleus muscles during walking were rectified and averaged. 2. TMS of low intensity (below threshold for a motor-evoked potential, MEP) produced a suppression of ongoing EMG activity during walking. The average latency for this suppression was 40.0 +/- 1.0 ms. At slightly higher intensities of stimulation there was a facilitation of the EMG activity with an average latency of 29.5 +/- 1.0 ms. As the intensity of the stimulation was increased the facilitation increased in size and eventually a MEP was clear in individual sweeps. 3. In three subjects TMS was replaced by electrical stimulation over the motor cortex. Just below MEP threshold there was a clear facilitation at short latency (approximately 28 ms). As the intensity of the electrical stimulation was reduced the size of the facilitation decreased until it eventually disappeared. We did not observe a suppression of the EMG activity similar to that produced by TMS in any of the subjects. 4. The present study demonstrates that motoneuronal activity during walking can be suppressed by activation of intracortical inhibitory circuits. This illustrates for the first time that activity in the motor cortex is directly involved in the control of the muscles during human walking.
Collapse
Affiliation(s)
- N T Petersen
- Department of Medical Physiology, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Olivier E, Baker SN, Nakajima K, Brochier T, Lemon RN. Investigation into non-monosynaptic corticospinal excitation of macaque upper limb single motor units. J Neurophysiol 2001; 86:1573-86. [PMID: 11600621 DOI: 10.1152/jn.2001.86.4.1573] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There has been considerable recent debate as to relative importance, in the primate, of propriospinal transmission of corticospinal excitation to upper limb motoneurons. Previous studies in the anesthetized macaque monkey suggested that, compared with the cat, the transmission of such excitation via a system of C3-C4 propriospinal neurons may be relatively weak. However, it is possible that in the anesthetized preparation, propriospinal transmission of cortical inputs to motoneurons may be depressed. To address this issue, the current study investigated the responses of single motor units (SMUs) to corticospinal inputs in either awake (n = 1) or lightly sedated (n = 3) macaque monkeys. Recordings in the awake state were made during performance of a precision grip task. The responses of spontaneously discharging SMUs to electrical stimulation of the pyramidal tract (PT) via chronically implanted electrodes were examined for evidence of non-monosynaptic, presumed propriospinal, effects. Single PT stimuli (up to 250 microA; duration, 0.2 ms, 2 Hz) were delivered during steady discharge of the SMU (10-30 imp/s). SMUs were recorded from muscles acting on the thumb (adductor pollicis and abductor pollicis brevis, n = 18), wrist (extensor carpi radialis, n = 29) and elbow (biceps, n = 9). In all SMUs, the poststimulus time histograms to PT stimulation consisted of a single peak at a fixed latency and with a brief duration [0.74 +/- 0.25 (SD) ms, n = 56], consistent with the responses being mediated by monosynaptic action of cortico-motoneuronal (CM) impulses. Later peaks, indicating non-monosynaptic action, were not present even when the probability of the initial peak response was low and when there was no evidence for suppression of ongoing SMU activity following this peak (n = 20 SMUs). Even when repetitive (double-pulse) PT stimuli were used to facilitate transmission through oligosynaptic linkages, no later peaks were observed (16 SMUs). In some thumb muscle SMUs (n = 8), responses to PT stimulation were compared with those evoked by transcranial magnetic stimulation, using a figure-eight coil held over the motor cortex. Responses varied according the orientation of the coil: in the latero-medial position, single peak responses similar to those from the PT were obtained; their latencies confirmed direct excitation of CM cells, and there were no later peaks. In the posterio-anterior orientation, responses had longer latencies and consisted of two to three subpeaks. At least under the conditions that we have tested, the results provide no positive evidence for transmission of cortical excitation to upper limb motoneurons by non-monosynaptic pathways in the macaque monkey.
Collapse
Affiliation(s)
- E Olivier
- Sobell Department of Neurophysiology, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | | | | | | | | |
Collapse
|
78
|
Abstract
Muscle fatigue is an exercise-induced reduction in maximal voluntary muscle force. It may arise not only because of peripheral changes at the level of the muscle, but also because the central nervous system fails to drive the motoneurons adequately. Evidence for "central" fatigue and the neural mechanisms underlying it are reviewed, together with its terminology and the methods used to reveal it. Much data suggest that voluntary activation of human motoneurons and muscle fibers is suboptimal and thus maximal voluntary force is commonly less than true maximal force. Hence, maximal voluntary strength can often be below true maximal muscle force. The technique of twitch interpolation has helped to reveal the changes in drive to motoneurons during fatigue. Voluntary activation usually diminishes during maximal voluntary isometric tasks, that is central fatigue develops, and motor unit firing rates decline. Transcranial magnetic stimulation over the motor cortex during fatiguing exercise has revealed focal changes in cortical excitability and inhibitability based on electromyographic (EMG) recordings, and a decline in supraspinal "drive" based on force recordings. Some of the changes in motor cortical behavior can be dissociated from the development of this "supraspinal" fatigue. Central changes also occur at a spinal level due to the altered input from muscle spindle, tendon organ, and group III and IV muscle afferents innervating the fatiguing muscle. Some intrinsic adaptive properties of the motoneurons help to minimize fatigue. A number of other central changes occur during fatigue and affect, for example, proprioception, tremor, and postural control. Human muscle fatigue does not simply reside in the muscle.
Collapse
Affiliation(s)
- S C Gandevia
- Prince of Wales Medical Research Institute, Prince of Wales Hospital and University of New South Wales, Randwick, Sydney, Australia.
| |
Collapse
|
79
|
Christensen LO, Andersen JB, Sinkjaer T, Nielsen J. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. J Physiol 2001; 531:545-57. [PMID: 11230526 PMCID: PMC2278473 DOI: 10.1111/j.1469-7793.2001.0545i.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stretch of the ankle dorsiflexors was applied at different times of the walking cycle in 17 human subjects. When the stretch was applied in the swing phase, only small and variable reflex responses were observed in the active tibialis anterior (TA) muscle. Two of the reflex responses that could be distinguished had latencies which were comparable with the early (M1) and late (M3)components of the three reflex responses (M1, M2 and M3) observed during tonic dorsiflexion in sitting subjects. In the stance phase a single very large response was consistently observed in the inactive TA muscle. The peak of this response had the same latency as the peak of M3, but in the majority of subjects the onset latency was shorter than that of M3. The TA reflex response in the stance phase was abolished by ischaemia of the lower leg at the same time as the soleus H-reflex, suggesting that large muscle afferents were involved in the generation of the response. Motor-evoked potentials (MEPs) elicited in the TA by transcranial magnetic stimulation (TMS) were strongly facilitated corresponding to the peak of the stretch response in the stance phase and the late reflex response in the swing phase. A similar facilitation was not observed corresponding to the earlier responses in the swing phase and the initial part of the response in stance. Prior stretch did not facilitate MEPs evoked by transcranial electrical stimulation in the swing phase of walking. However, in the stance phase MEPs elicited by strong electrical stimulation were facilitated by prior stretch to the same extent as the MEPs evoked by TMS. The large responses to stretch seen in the stance phase are consistent with the idea that stretch reflexes are mainly involved in securing the stability of the supporting leg during walking. It is suggested that a transcortical reflex pathway may be partly involved in the generation of the TA stretch responses during walking.
Collapse
Affiliation(s)
- L O Christensen
- Division of Neurophysiology, Department of Medical Physiology, The Panum Institute, University of Copenhagen and Centre for Sensory-Motor Interaction, Department of Medical Informatics and Image Analysis, Aalborg University, Denmark.
| | | | | | | |
Collapse
|
80
|
Abstract
During exercise, changes occur at many sites in the motor pathway, including the muscle fiber, motoneuron, motor cortex, and "upstream" of the motor cortex. Some of the changes result in fatigue, which can be defined as a decrease in ability to produce maximal muscle force voluntarily. Transcranial magnetic stimulation (TMS) over the human motor cortex reveals changes in both motor evoked potentials (MEPs) and the silent period during and after fatiguing voluntary contractions in normal subjects. The relationship of these changes to loss of force or fatigue is unclear. However, during a sustained maximal contraction TMS evokes extra force from the muscle and thus demonstrates the development of suboptimal output from the motor cortex, that is, fatigue at a supraspinal level. In some patients with symptoms of fatigue, the response to TMS after exercise is altered, but the changed MEP behavior is not yet linked to particular symptoms or pathology.
Collapse
Affiliation(s)
- J L Taylor
- Prince of Wales Medical Research Institute and University of New South Wales, Barker Street, Randwick, Sydney, NSW 2031, Australia.
| | | |
Collapse
|
81
|
Christensen LO, Petersen N, Andersen JB, Sinkjaer T, Nielsen JB. Evidence for transcortical reflex pathways in the lower limb of man. Prog Neurobiol 2000; 62:251-72. [PMID: 10840149 DOI: 10.1016/s0301-0082(00)00007-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The existence of transcortical reflex pathways in the control of distal arm and hand muscles in man is now widely accepted. Much more controversy exists regarding a possible contribution of such reflexes to the control of leg muscles. It is often assumed that transcortical reflex pathways play no, or only a minor, role in the control of leg muscles. Transcortical reflex pathways according to this view are reserved for the control of the distal upper limb and are seen in close relation to the evolution of the primate hand. Here we review data, which provide evidence that transcortical reflexes do exist for lower limb muscles and may play a significant role in the control of at least some of these muscles. This evidence is based on animal research, recent experiments combining transcranial magnetic stimulation with peripheral electrical and mechanical stimulation in healthy subjects and neurological patients. We propose that afferent activity from muscle and skin may play a role in the regulation of bipedal gait through transcortical pathways.
Collapse
Affiliation(s)
- L O Christensen
- Department of Medical Physiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
82
|
Morita H, Olivier E, Baumgarten J, Petersen NT, Christensen LO, Nielsen JB. Differential changes in corticospinal and Ia input to tibialis anterior and soleus motor neurones during voluntary contraction in man. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 170:65-76. [PMID: 10971225 DOI: 10.1046/j.1365-201x.2000.00762.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motor-evoked potentials (MEPs) were recorded in the tibialis anterior and soleus muscles following transcranial magnetic stimulation (TMS) of the motor cortex. In the soleus, the H-reflex amplitude increased with the contraction level to the same extent as that of MEPs, whereas in the tibialis anterior, the H-reflex amplitude increased significantly less than that of MEPs. The latency of the MEPs decreased with contraction, whereas this was not the case of the H-reflexes. In the tibialis anterior, the response probability of single-motor units (SMU) to TMS increased more substantially during voluntary contraction than following stimulation of the peroneal nerve. In the tibialis anterior, the response probability of SMU increased more substantially during voluntary contraction than following stimulation of the peroneal nerve. The short-latency facilitation, presumably monosynaptic of origin, of the soleus H-reflex evoked by subthreshold TMS increased as a function of the plantarflexion force. This was not the case for the heteronymous Ia facilitation of the soleus H-reflex following stimulation of the femoral nerve. It is concluded that the corticospinal input to lower limb motor neurones generated by TMS increases with the level of voluntary contraction, whereas this is true only to a limited extent for the synaptic input from Ia afferents. It is suggested that this reflects changes in the susceptibility of corticospinal cells to TMS during voluntary contraction.
Collapse
Affiliation(s)
- H Morita
- Division of Neurophysiology, Department of Medical Physiology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
83
|
Ellaway PH, Moosavi SH, Stokes MJ, Catley M, Haque N. Indices of cortical motor function following severe brain injury in man. PROGRESS IN BRAIN RESEARCH 2000; 123:473-9. [PMID: 10635743 DOI: 10.1016/s0079-6123(08)62883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P H Ellaway
- Department of Sensorimotor Systems, Imperial College School of Medicine, Charing Cross Hospital, London, UK.
| | | | | | | | | |
Collapse
|
84
|
Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 2000; 123 ( Pt 1):51-64. [PMID: 10611120 DOI: 10.1093/brain/123.1.51] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
From studies of subhuman primates it has been assumed that functional corticospinal innervation occurs post-natally in man. We report a post-mortem morphological study of human spinal cord, and neurophysiological and behavioural studies in preterm and term neonates and infants. From morphological studies it was demonstrated that corticospinal axons reach the lower cervical spinal cord by 24 weeks post-conceptional age (PCA) at the latest. Following a waiting period of up to a few weeks, it appears they progressively innervate the grey matter such that there is extensive innervation of spinal neurons, including motor neurons, prior to birth. Functional monosynaptic corticomotoneuronal projections were demonstrated neurophysiologically from term, but are also likely to be present from as early as 26 weeks PCA. At term, direct corticospinal projections to Group Ia inhibitory interneurons were also confirmed. Independent finger movements developed much later, between 6 and 12 months post-natally. These data do not support the proposal that in man, establishment of functional corticomotoneuronal projections occurs immediately prior to and provides the capacity for the expression of fine finger movement control. We propose instead that such early corticospinal innervation occurs to permit cortical involvement in activity dependent maturation of spinal motor centres during a critical period of perinatal development. Spastic cerebral palsy from perinatal damage to the corticospinal pathway secondarily involves disrupted development of spinal motor centres. Corticospinal axons retain a high degree of plasticity during axon growth and synaptic development. The possibility therefore exists to promote regeneration of disrupted corticospinal projections during the perinatal period with the double benefit of restoring corticospinal connectivity and normal development of spinal motor centres.
Collapse
Affiliation(s)
- J A Eyre
- Developmental Neuroscience Group, Department of Child Health, University of Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
85
|
Funase K, Miles TS, Gooden BR. Trial-to-trial fluctuations in H-reflexes and motor evoked potentials in human wrist flexor. Neurosci Lett 1999; 271:25-8. [PMID: 10471205 DOI: 10.1016/s0304-3940(99)00467-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The H-reflexes and the motor potentials (MEPs) evoked by electromagnetic brain stimulation in the human wrist flexor were recorded over many trials. The responses from each stimulus at two steady levels of muscle activation were sorted into three groups, based on their amplitudes. The electromyogram (EMG) in each of these groups was rectified and averaged. The level of pre-response muscle activity was found to correlate with the amplitude of both the averaged H-reflexes and the averaged MEPs. This suggests that much of the amplitude fluctuations of both H-reflexes and MEPs can be attributed to moment-to-moment changes in the level of activity of the motoneurone pool. Overall, however, the amplitude of MEPs increased more rapidly than the amplitude of H-reflexes as the pre-stimulus EMG activity increased. This is probably because, while the amplitude of H-reflexes depends primarily on the level of motoneurone pool excitability, the amplitude of an MEP depends not only on this, but also on the excitability of the motor cortex, and the former is to some extent also dependent on the latter.
Collapse
Affiliation(s)
- K Funase
- Department of Physiology, The University of Adelaide, Australia
| | | | | |
Collapse
|
86
|
Pascual-Leone A, Bartres-Faz D, Keenan JP. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of 'virtual lesions'. Philos Trans R Soc Lond B Biol Sci 1999; 354:1229-38. [PMID: 10466148 PMCID: PMC1692644 DOI: 10.1098/rstb.1999.0476] [Citation(s) in RCA: 294] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) provides a non-invasive method of induction of a focal current in the brain and transient modulation of the function of the targeted cortex. Despite limited understanding about focality and mechanisms of action, TMS provides a unique opportunity of studying brain-behaviour relations in normal humans. TMS can enhance the results of other neuroimaging techniques by establishing the causal link between brain activity and task performance, and by exploring functional brain connectivity.
Collapse
Affiliation(s)
- A Pascual-Leone
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
87
|
de Noordhout AM, Rapisarda G, Bogacz D, Gérard P, De Pasqua V, Pennisi G, Delwaide PJ. Corticomotoneuronal synaptic connections in normal man: an electrophysiological study. Brain 1999; 122 ( Pt 7):1327-40. [PMID: 10388798 DOI: 10.1093/brain/122.7.1327] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to determine the mono- or oligosynaptic character of connections between pyramidal axons and individual spinal motor neurons, we constructed peri-stimulus time histograms (PSTHs) of the firing probability of voluntarily activated single motor units (SMUs) of various upper and lower limb muscles upon slightly suprathreshold transcranial anodal electrical stimulations of the motor cortex in normal subjects. Weak anodal cortical stimuli are known to activate preferentially fast-conducting pyramidal axons directly, bypassing cell bodies and cortical interneurons. A narrow bin width (0.1 ms) was chosen to measure precisely the duration of the PSTH excitatory peak, which corresponds to the rise time of the underlying compound excitatory post-synaptic potentials (EPSP). A short duration PSTH peak indicates sharp-rising EPSPs, most commonly encountered in the case of monosynaptic connections. In flexor carpi radialis and soleus SMUs, the PSTHs of built-in responses to anodal cortical stimuli were compared with those produced by 1A afferent stimulation able to elicit a Hoffmann reflex, which is known to be largely monosynaptic. In all upper and lower limb muscles, excitable SMUs responded to anodal cortical stimuli with a highly synchronized peak of increased firing probability. In flexor carpi radialis and soleus SMUs, the mean duration of this peak was significantly narrower than that evoked by 1A afferent stimulation, indicating that monosynaptic corticomotor neuronal transmission dominates low-threshold motor units, even in proximal arm and leg muscles. In the various muscles studied, and particularly in forearm SMUs, we did not observe broad PSTH peaks against the activation of non-monosynaptic corticomotor neuronal pathways, even with near-threshold stimuli. In some triceps and forearm flexor SMUs, subthreshold anodal pulses caused significant inhibition of their voluntary firing, with a latency consistent with activation of 1A inhibitory interneurons by the descending volleys. Measurements of the maximal number of counts in the excitatory PSTH peak upon anodal cortical stimuli provide comparisons of the strength of monosynaptic inputs to various muscles which seems to be maximal for hand and finger extensor muscles, and also for deltoid.
Collapse
Affiliation(s)
- A M de Noordhout
- University Department of Neurology, Hôpital de la Citadelle, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
88
|
Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 1999. [PMID: 10024369 DOI: 10.1523/jneurosci.19-05-01855.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcranial magnetic stimulation (TCMS) causes leg muscle contractions, but the neural structures in the brain that are activated by TCMS and their relationship to these leg muscle responses are not clearly understood. To elucidate this, we concomitantly recorded leg muscle responses and thoracic spinal cord-evoked potentials (SCEPs) after TCMS for the first time in 10 awake, neurologically intact human subjects. In this report we provide evidence of direct and indirect activation of corticospinal neurons after TCMS. In three subjects, SCEP threshold (T) stimulus intensities recruited both the D wave (direct activation of corticospinal neurons) and the first I wave (I1, indirect activation of corticospinal neurons). In one subject, the D, I1, and I2 waves were recruited simultaneously, and in another subject, the I1 and I2 waves were recruited simultaneously. In the remaining five subjects, only the I1 wave was recruited first. More waves were recruited as the stimulus intensity increased. The presence of D and I waves in all subjects at low stimulus intensities verified that TCMS directly and indirectly activated corticospinal neurons supplying the lower extremities. Leg muscle responses were usually contingent on the SCEP containing at least four waves (D, I1, I2, and I3).
Collapse
|
89
|
Andersson G, Ohlin A. Spatial facilitation of motor evoked responses in monitoring during spinal surgery. Clin Neurophysiol 1999; 110:720-4. [PMID: 10378744 DOI: 10.1016/s1388-2457(98)00049-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During spinal cord monitoring, motor responses in the tibialis anterior muscles were recorded on transcranial electrical stimulation of the motor cortex. In order to facilitate the responses, the cortical stimulus was preceded by a train of stimuli to the foot sole within the receptive field of the withdrawal reflex of the tibialis anterior muscle. This cutaneous input provides a spatial facilitation of the cortically elicited response. When the stimulus interval was 50-100 ms, large and reliable responses were seen in most cases.
Collapse
Affiliation(s)
- G Andersson
- Department of Clinical Neurophysiology, Lund University Hospital, Sweden
| | | |
Collapse
|
90
|
Moosavi SH, Ellaway PH, Catley M, Stokes MJ, Haque N. Corticospinal function in severe brain injury assessed using magnetic stimulation of the motor cortex in man. J Neurol Sci 1999; 164:179-86. [PMID: 10402031 DOI: 10.1016/s0022-510x(99)00065-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have assessed corticospinal function in 19 post-coma patients severely brain-injured by anoxia or physical trauma. Eleven patients were unresponsive (Category 1) and eight demonstrated minimal, non-verbal responses to simple commands (Category 2). Motor evoked potentials (MEPs) could be elicited in hand and leg muscles in nine Category 1 and all eight Category 2 patients in response to transcranial magnetic stimulation (TMS). In comparison with normal subjects, threshold to TMS was significantly elevated in Category 1 but not in Category 2. Central conduction times were within the normal range except for two patients (one in each category) in whom they were prolonged. The variability in MEP amplitude to constant TMS was not significantly different from normal in either category. The size of MEPs recorded simultaneously in different hand muscles were correlated in all three groups. The presence of H-reflexes in hand muscles was associated with an absence of MEPs or a high threshold to TMS. Variability of MEPs was substantially greater than that of H-reflexes. We conclude that brain injury of a severity that may preclude consciousness and voluntary movement does not invariably predicate a non-functional motor cortex and corticospinal system.
Collapse
Affiliation(s)
- S H Moosavi
- Department of Sensorimotor Systems, Imperial College School of Medicine, Charing Cross Hospital, London, UK
| | | | | | | | | |
Collapse
|
91
|
Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA. Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 1999; 19:1855-62. [PMID: 10024369 PMCID: PMC6782161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1998] [Revised: 12/15/1998] [Accepted: 12/16/1998] [Indexed: 02/10/2023] Open
Abstract
Transcranial magnetic stimulation (TCMS) causes leg muscle contractions, but the neural structures in the brain that are activated by TCMS and their relationship to these leg muscle responses are not clearly understood. To elucidate this, we concomitantly recorded leg muscle responses and thoracic spinal cord-evoked potentials (SCEPs) after TCMS for the first time in 10 awake, neurologically intact human subjects. In this report we provide evidence of direct and indirect activation of corticospinal neurons after TCMS. In three subjects, SCEP threshold (T) stimulus intensities recruited both the D wave (direct activation of corticospinal neurons) and the first I wave (I1, indirect activation of corticospinal neurons). In one subject, the D, I1, and I2 waves were recruited simultaneously, and in another subject, the I1 and I2 waves were recruited simultaneously. In the remaining five subjects, only the I1 wave was recruited first. More waves were recruited as the stimulus intensity increased. The presence of D and I waves in all subjects at low stimulus intensities verified that TCMS directly and indirectly activated corticospinal neurons supplying the lower extremities. Leg muscle responses were usually contingent on the SCEP containing at least four waves (D, I1, I2, and I3).
Collapse
Affiliation(s)
- D A Houlden
- Division of Neurosurgery, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
92
|
Petersen N, Christensen LO, Nielsen J. The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol 1998; 513 ( Pt 2):599-610. [PMID: 9807007 PMCID: PMC2231281 DOI: 10.1111/j.1469-7793.1998.599bb.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The effect of transcranial magnetic stimulation (TMS) on the soleus H reflex was investigated in the stance phase of walking in seventeen human subjects. For comparison, measurements were also made during quiet standing, matched tonic plantar flexion and matched dynamic plantar flexion. 2. During walking and dynamic plantar flexion subliminal (0.95 times threshold for a motor response in the soleus muscle) TMS evoked a large short-latency facilitation (onset at conditioning-test interval: -5 to -1 ms) of the H reflex followed by a later (onset at conditioning-test interval: 3-16 ms) long-lasting inhibition. In contrast, during standing and tonic plantar flexion the short-latency facilitation was either absent or small and the late inhibition was replaced by a long-lasting facilitation. 3. When grading the intensity of TMS it was found that the short-latency facilitation had a lower threshold during walking than during standing and tonic plantar flexion. Regardless of the stimulus intensity the late facilitation was never seen during walking and dynamic plantar flexion and the late inhibition was not seen, except for one subject, during standing and tonic plantar flexion. 4. A similar difference in the threshold of the short-latency facilitation between walking and standing was not observed when the magnetic stimulation was replaced by transcranial electrical stimulation. 5. The lower threshold of the short-latency facilitation evoked by magnetic but not electrical transcranial stimulation during walking compared with standing suggests that cortical cells with direct motoneuronal connections increase their excitability in relation to human walking. The significance of the differences in the late facilitatory and inhibitory effects during the different tasks is unclear.
Collapse
Affiliation(s)
- N Petersen
- Division of Neurophysiology, Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N,
| | | | | |
Collapse
|
93
|
Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 109:397-401. [PMID: 9851296 DOI: 10.1016/s0924-980x(98)00038-1] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The present experiments were designed to compare the understanding of the transcranial electric and magnetic stimulation of the human motorcortex. METHODS The spinal volleys evoked by single transcranial magnetic or electric stimulation over the cerebral motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of two conscious human subjects. These volleys were termed D- and I waves, according to their latency. Magnetic stimulation was performed with a figure-of-eight coil held over the right motor cortex at the optimum scalp position, in order to elicit motor responses in the contralateral FDI using two different orientations over the motor strip. The induced current flowed either in a postero-anterior or in a latero-medial direction. RESULTS At active motor threshold intensity, the electric anodal stimulation evoked pure D activity. At this intensity, magnetic stimulation with the induced current flowing in a posterior-anterior direction evoked pure I1 activity. When a latero-medial induced current was used, magnetic stimulation evoked both D and I1 activity. Using electric anodal stimulation, at a stimulus intensity of 9% of the stimulator output above the active motor threshold (corresponding approximately to 1.5 active motor threshold), a small I1 wave appeared only in subject 1. Using magnetic stimulation with a posterior-anterior induced current, at a stimulus intensity of 21% of maximum stimulator output above the active motor threshold (corresponding approximately to 1.8 times threshold in subject 1 and to two times threshold in subject 2), a small D wave appeared in subject 1 but not in subject 2. CONCLUSIONS Present results demonstrate that, in conscious humans at threshold intensities, electric stimulation evokes D waves and magnetic stimulation (with a posterior-anterior induced current) evokes I waves, while magnetic stimulation (with a latero-medial induced current) evokes both activities.
Collapse
Affiliation(s)
- V Di Lazzaro
- Istituto di Neurologia, Università Cattolica, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Petersen N, Christensen LO, Morita H, Sinkjaer T, Nielsen J. Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol 1998; 512 ( Pt 1):267-76. [PMID: 9729635 PMCID: PMC2231172 DOI: 10.1111/j.1469-7793.1998.267bf.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1997] [Accepted: 06/12/1998] [Indexed: 11/29/2022] Open
Abstract
1. In human subjects, stretch applied to ankle dorsiflexors elicited three bursts of reflex activity in the tibialis anterior (TA) muscle (labelled M1, M2 and M3) at mean onset latencies of 44, 69 and 95 ms, respectively. The possibility that the later of these reflex bursts is mediated by a transcortical pathway was investigated. 2. The stretch evoked a cerebral potential recorded from the somatosensory cortex at a mean onset latency of 47 ms in nine subjects. In the same subjects a compound motor-evoked potential (MEP) in the TA muscle, evoked by magnetic stimulation of the motor cortex, had a mean onset latency of 32 ms. The M1 and the M2 reflexes thus had too short a latency to be caused by a transcortical pathway (minimum latency, 79 ms (47 + 32)), whereas the later part of the M2 and all of the M3 reflex had a sufficiently long latency. 3. When the transcranial magnetic stimulation was timed so that the MEP arrived in the TA muscle at the same time as the M1 or M2 reflexes, no extra increase in the potential was observed. However, when the MEP arrived at the same time as the M3 reflex a significant (P < 0.01) extra-facilitation was observed in all twelve subjects investigated. 4. Peaks evoked by transcranial magnetic stimulation in the post-stimulus time histogram of the discharge probability of single TA motor units (n = 28) were strongly facilitated when they occurred at the same time as the M3 response. This was not the case for the first peaks evoked by electrical transcranial stimulation in any of nine units investigated. 5. We suggest that these findings are explained by an increased cortical excitability following TA stretch and that this supports the hypothesis that the M3 response in the TA muscle is - at least partly - mediated by a transcortical reflex.
Collapse
Affiliation(s)
- N Petersen
- Division of Neurophysiology, Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
95
|
Heinen F, Fietzek UM, Berweck S, Hufschmidt A, Deuschl G, Korinthenberg R. Fast corticospinal system and motor performance in children: conduction proceeds skill. Pediatr Neurol 1998; 19:217-21. [PMID: 9806140 DOI: 10.1016/s0887-8994(98)00057-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcranial magnetic stimulation and motor performance tests were used to study the correlation between corticospinal maturation and actual motor performance in a group of young school children (n = 10, mean age = 7 years, age range = 6-9 years). The results were compared with normal adults (n = 10, mean age = 24 years, age range = 22-26 years). In children the central conduction time under the preinnervation condition of facilitation and the postexcitatory silent period was similar to that in adults. However, the central conduction time under relaxation, the latency jump (defined as the difference between the two preinnervation conditions), and the stimulus intensity were statistically different between children and adults (P < 0.01-0.001). Children did not reach the same level of performance as adults in any of the motor performance tasks (simple acoustic reaction time, tapping, ballistic movement, tracking, and diadochokinesis) (P < 0.05-0.01). The results indicate that at an early school age, children already possess mature fast corticospinal pathways able to access spinal motoneurons through the pyramidal tract. However, despite the partially adult-like level of neuronal maturation, young school children were not able to perform deliberate motor actions with the same proficiency as adults.
Collapse
Affiliation(s)
- F Heinen
- Department of Neuropediatrics, University Children's Hospital, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Maier MA, Illert M, Kirkwood PA, Nielsen J, Lemon RN. Does a C3-C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. J Physiol 1998; 511 ( Pt 1):191-212. [PMID: 9679174 PMCID: PMC2231097 DOI: 10.1111/j.1469-7793.1998.191bi.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1997] [Accepted: 04/30/1998] [Indexed: 11/27/2022] Open
Abstract
1. Synaptic responses to electrical stimulation of the contralateral pyramidal tract were measured in intracellular recordings from 206 upper limb motoneurones in ten chloralose-anaesthetized macaque monkeys. The objective was to search for evidence of a disynaptic excitatory pathway via C3-C4 propriospinal interneurones similar to that in the cat. 2. In monkeys with intact spinal cords, only a small proportion of motoneurones (19%) responded with late EPSPs to repetitive stimulation of the pyramid; only 3% had segmental latencies that were appropriate for a disynaptic pathway. 3. From previous studies in the cat, it was expected that a lesion to the dorsolateral funiculus (DLF) at C5 would interrupt the corticospinal input to the spinal segments supplying upper limb muscles, whilst leaving intact excitation transmitted via a C3-C4 propriospinal system, the descending axons of which travel in the ventral part of the funiculus. In five of the monkeys a lesion was made to the DLF at C5 which spared the ventrolateral columns. It severely reduced the monosynaptic EPSPs and disynaptic IPSPs evoked from the pyramidal tract that were present in the intact monkey spinal cord, and which might have masked the presence of disynaptic EPSPs. However, even after the lesion the proportion of motoneurones with such late EPSPs was still low (18%); 14% of motoneurones had EPSPs within the disynaptic range. 4. In addition, some EPSPs with relatively long segmental latencies (> 1.1 ms) were recorded before and after the C5 lesions, but since these effects could be evoked by single stimuli, had stable latencies and did not facilitate with repetitive shocks, it is likely that they represent monosynaptic EPSPs evoked by slowly conducting corticospinal fibres which survived the lesions. 5. In seven of the monkeys motoneurone responses to stimulation of the ipsilateral lateral reticular nucleus (LRN) were also tested. Most motoneurones showed EPSPs with short latencies (1.2-2.5 ms) and other properties characteristic of monosynaptic activation. This is consistent with the presence of collaterals of C3-C4 propriospinal neurones to the LRN, as demonstrated in the cat. 6. These short-latency EPSPs evoked from the LRN were just as common before (77%) as after (75%) the C5 lesion. They had small amplitudes both before (mean +/- s.d. 1.1 +/- 0.59 mV) and after (1.2 +/- 0.72 mV) the lesion. Unlike the situation in the cat, only a small proportion (16%) of motoneurones activated from the LRN showed late EPSPs after repetitive stimulation of the pyramid. 7. The results provide little evidence for significant corticospinal excitation of motoneurones via a system of C3-C4 propriospinal neurones in the monkey. The general absence of responses mediated by such a system in the macaque, under experimental conditions similar to those in which they are seen in the cat, show that extrapolation of results from the cat to the primate should be made with considerable caution.
Collapse
Affiliation(s)
- M A Maier
- Sobell Department of Neurophysiology, Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
97
|
Davey NJ, Smith HC, Wells E, Maskill DW, Savic G, Ellaway PH, Frankel HL. Responses of thenar muscles to transcranial magnetic stimulation of the motor cortex in patients with incomplete spinal cord injury. J Neurol Neurosurg Psychiatry 1998; 65:80-7. [PMID: 9667566 PMCID: PMC2170166 DOI: 10.1136/jnnp.65.1.80] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate changes in electromyographic (EMG) responses to transcranial magnetic stimulation (TMS) of the motor cortex after incomplete spinal cord injury in humans. METHODS A group of 10 patients with incomplete spinal cord injury (motor level C3-C8) was compared with a group of 10 healthy control subjects. Surface EMG recordings were made from the thenar muscles. TMS was applied with a 9 cm circular stimulating coil centred over the vertex. The EMG responses to up to 50 magnetic stimuli were rectified and averaged. RESULTS Thresholds for compound motor evoked potentials (cMEPs) and suppression of voluntary contraction (SVC) elicited by TMS were higher (p < 0.05) in the patient group. Latency of cMEPs was longer (p < 0.05) in the patient group in both relaxed (controls 21.3 (SEM 0.5) ms; patients 27.7 (SEM 1.3) ms) and voluntarily contracted (controls 19.8 (SEM 0.5) ms; patients 27.6 (SEM 1.3) ms) muscles. The latency of SVC was longer (p < 0.05) in the patients (51.8 (SEM 1.8) ms) than in the controls (33.4 (SEM 1.9) ms). The latency difference (SVC-cMEP) was longer in the patients (25.3 (SEM 2.4) ms) than in the controls (13.4 (SEM 1.6) ms). CONCLUSION The longer latency difference between cMEPs and SVC in the patients may reflect a weak or absent early component of cortical inhibition. Such a change may contribute to the restoration of useful motor function after incomplete spinal cord injury.
Collapse
Affiliation(s)
- N J Davey
- Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Charing Cross Hospital, London, UK.
| | | | | | | | | | | | | |
Collapse
|
98
|
Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 1998; 15:333-43. [PMID: 9736467 DOI: 10.1097/00004691-199807000-00005] [Citation(s) in RCA: 545] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) can be applied in different paradigms to obtain a measure of various aspects of cortical excitability. These different TMS paradigms provide information about different neurotransmitter systems, enhance our understanding about the pathophysiology of neuropsychiatric conditions, and in the future may be helpful as a guide for pharmacological interventions. In addition, repetitive TMS (rTMS) modulates cortical excitability beyond the duration of the rTMS trains themselves. Depending on rTMS parameters, a lasting inhibition or facilitation of cortical excitability can be induced. These effects can be demonstrated neurophysiologically or by combining rTMS with neuroimaging techniques. The effects do not remain limited to the cortical area directly targeted by rTMS, but affect a wider neural network transynaptically. Modulation of cortical excitability by rTMS may in the future be useful not only as a research tool but also as a therapeutic intervention in neurology, psychiatry, and neurorehabilitation.
Collapse
Affiliation(s)
- A Pascual-Leone
- Departamento de Fisiologia, Universidad de Valencia, and Instituto Cajal, Consejo Superior de Investigaciones Científicas, Spain
| | | | | | | | | | | |
Collapse
|
99
|
Suihko V. Modeling direct activation of corticospinal axons using transcranial electrical stimulation. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 109:238-44. [PMID: 9741790 DOI: 10.1016/s0924-980x(98)00016-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corticospinal axons can be directly activated using anodal transcranial electrical stimulation. The purpose of this work was to find the location of the direct activation. The response to stimulation was modeled with a spherical head model and an active model of a corticospinal nerve. The nerve model had a deep bend at a location corresponding to a corticospinal fiber entering the midbrain. The threshold activation initiated close to brain surface; the exact location depended on whether the cell body located in the surface layers of the brain or in the bank of the central sulcus. The stimulation time constant was 44 micros. When the stimulus amplitude was increased, the site of activation shifted gradually to deeper level, until the activation initiated directly at the bend causing a half millisecond latency jump at spinal level. These results support the theory that the corticospinal axons can be directly activated at deep locations using anodal transcranial electrical stimulation. However, the high amplitude needed for the direct activation suggests that not only the bends on the fibers, but also the shape of surrounding volume conductor (intracranial cavity) favor activation at this location.
Collapse
Affiliation(s)
- V Suihko
- Ragnar Granit Institute, Tampere University of Technology, Finland.
| |
Collapse
|
100
|
Kamida T, Fujiki M, Hori S, Isono M. Conduction pathways of motor evoked potentials following transcranial magnetic stimulation: a rodent study using a "figure-8" coil. Muscle Nerve 1998; 21:722-31. [PMID: 9585325 DOI: 10.1002/(sici)1097-4598(199806)21:6<722::aid-mus3>3.0.co;2-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have examined the conduction pathways of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation, and their correlation with locomotor function in rats. MEPs were concomitantly recorded from the spinal cord (sMEPs) and the limb muscles (mMEPs) before and after various spinal tract ablations. Motor function was also examined using an inclined plane test. sMEPs were composed of four negative peaks (N1-N4) and mMEPs of high-voltage, biphasic waves. Ventral funiculus transection reduced the N1-N3 peaks and abolished mMEPs. Contrarily, dorsal funiculus transection including the pyramidal tract did not alter these MEPs. Motor performance on an inclined plane was worse after ventral funiculus transection than after other transections. These findings indicate that, in rats, the N1-N3 peaks of magnetic sMEPs conduct ventral funiculus activity, and that magnetic mMEPs mainly reflect extrapyramidal activities and are correlated with locomotor function.
Collapse
Affiliation(s)
- T Kamida
- Department of Neurosurgery, Oita Medical University, Japan
| | | | | | | |
Collapse
|